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1 Numerical methods

This section provides details of the numerical methods for model simulation and calculation
of the profile likelihoods.

1.1 Numerical solutions of the PDE models

We use a finite difference method to simulate the general form of the model, given in Eq. (1).
For simulations in two spatial dimensions, the size of the domain, corresponding to the size
of the image, is L, = L, = 4380 pm. This domain is discretized into n, = 150 by n, = 150
squares, each with side length Az = Ay = 29.2 pm. We used At = 1/30 h.

Let C;;x denote C(z;,y;,tx), where z; = (i — 1)Ax, y; = (j — 1)Ay, t, = (k — 1)At are

the mesh points. The scheme we used follows = [(], and can be written as follows:
% {D(Ci,j,k)%l - é |:D(Ci+1/27j’k)0i+1,j,kA; Cijk D<Ci_1/27j7k>0i,j,kz _Afi—l,j,k
= (A—lx)g |:D(Ci+1/2,j7k)0i+1,j,k — (D(Cit125%) + D(Ciz1/2,51))Cijii
+ D(Ci_l/zw)ci_l,j,k} ; (SM.1)
where
D(Criajasn) = %[D(Ci,j,k) n D(cHl,j,k)}, 1<ij<n,=n,=150, 1<k<n =77

The discretization in the y direction is completely analogous. Zero flux boundary conditions
are imposed at x = 0, L, and y = 0, L,,.

We use an implicit-explicit (IMEX) scheme [1, 4] for time-stepping, where the nonlinear
diffusion coefficient, D(C'), and the proliferation term, f(C'), are treated with the explicit
Euler method, and the diffusion term overall is treated with the implicit Crank-Nicolson
method, which has second order convergence. The advantage of this scheme is that the
explicit treatment of the nonlinear components of the equation allows us to avoid having to
solve a nonlinear root-finding problem at every time step, which would be necessitated by
a fully implicit scheme. The implicit treatment of the diffusion term improves the stability
of the scheme, and [1] showed that this class of schemes has reasonably low relative errors

when the diffusion term is not vanishingly small, which is the case in this work. The IMEX



Crank-Nicolson time stepping scheme can be written as

9C;..  Cisprr—Cigp 1
a;’k ~ ’J’HIN TE 5 V- (D(Cijk)VCijri1) + V- (D(Cijr)VCijn) | + f(Cijin)-

We have verified that the scheme is convergent by successively halving Az or At and
recomputing the model solutions with the default parameter values in Eq. (SM.2), and check
that the norm of the difference between successive model solutions decreases almost linearly
on a log-log plot with respect to Az or At.

To justify that the discretisation we have chosen is sufficiently fine, let C} ., denote the
model solution computed with Az = 29.2 pm and At = 1/30 h, C?_ 4., C3 4o be the model
solution computed with Az or At halved, respectively. Then the difference between C'}

model
and C?

2 de» averaged over all grid points, is 0.448, while that between C} ., and C2 .. is

4.224, both much smaller than the averaged magnitude of the model solutions, which is on

the order of 103, therefore we conclude that the numerical scheme is suitably accurate.

1.2 Optmisation procedure for MLE and profile likelihoods

To solve the optimisation problems for finding the MLEs and evaluating the profile likelihood
functions, we use three algorithms, all implemented in MATLAB: the built-in fmincon and
globalsearch, and Covariance Matrix Adaptation Evolution Strategy (CM-AES) [3], with the
implementation obtained at [2].

The optimisation procedure is initialized with the following default parameter values:

Dy = 1300 pm?/h, r=03h"!, K =2600 cell/mm*, a=f=~v=1, n=0.
(SM.2)

We impose the following bounds for the parameters to guide the optimisation procedures:

100 pm?/h < Dy < 10000 pm?/h,  0.01h™' <7 < 1h ™,

(SM.3)
500 cell/mm? < K < 5000 cell/mm?, 0<a,B,n<3, 0<v<0.

We use globalsearch to find the MLEs, and fmincon to evaluate points on the profile likelihood
functions. In the case where fmincon struggles to find the true maximum, we use CM-AES

instead.



2 Profile likelihoods for synthetic datasets

In this section, we present the profile likelihoods for each model for two sets of synthetic data.
The main purpose of this exercise is to verify that the profile likelihoods behave as expected
under ideal conditions. The synthetic data are generated by simulating the model, Eq. (1)
of the main text, in one spatial dimension, using the parameter values in Eq. (SM.2), and
perturbing by adding Gaussian noise to the model solution. The “low noise” dataset uses
o = 20, while the “high noise” dataset uses ¢ = 400. In comparison, the ¢* estimated from
real data ranges between 380 — 460, depending on the dataset and the model.

The profile likelihoods for the high noise dataset are presented in Fig. 1, which shows that
all profile likelihood curves are unimodal with a finite confidence interval, and the MLEs are
close to the true parameter values. For the low noise dataset, the profile likelihood curves
are very narrow, and centered almost exactly at the true parameter values. These results
verify that the profile likelihoods can recover the true parameter values, at least in a highly
idealized case, as the theories suggest.

The profile likelihood curves for the parameters of the Richards and Generalised Fisher
models tend to be broader compared to those of the Standard Fisher model, which reflect
the greater flexibility of the more complicated models to compensate for a change in one

parameter value by shifting the other parameter values.
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Figure 1: Profile likelihoods for the four models as described in Eq. (1) and Table 1 of the
main text, for a synthetic dataset generated with Eq. (1) and parameter values in Eq. (SM.2),
perturbed as in Eq. (2) of the main text with o = 400. The dotted vertical lines mark the
location of the true parameter values, while the dashed vertical lines mark the MLE for each
parameter. The black horizontal line at —1.92 marks the threshold for the 95% confidence
interval. The axis scale for the parameters shared between the models (Dy,r, K) is kept
consistent.



3 Inference results for all datasets

In this section, we present the MLE and 95% confidence intervals of the parameter values
calculated for all experimental datasets in table format, and ¢*, the MLE for the noise
parameter, as well as the AIC and BIC. Recall that we have cell density data from eight
experiments, which we refer to as the full datasets. Experiments 1-4 have circular initial
conditions, while Experiments 5-8 have triangular initial conditions. For Experiments 1-
4 we also consider the radially-averaged datasets. All results are given to four significant
figures.

We also perform a y*likelihood ratio test for nested models [5], and report the p-value.
The Standard Fisher model is nested inside the Porous Fisher, Richards, and Generalised
Fisher models, and this test provides a measure of whether the more complicated models
have a significant improvement in maximum likelihood over the simpler model. Denote the
MLE parameters of the Standard Fisher model as 6;, and the MLE parameters of one of the

more complicated models as 87. Let

L(Odata|03)

A=-21
o8 L(Odmw:)

:| =2 IOg L<Cdata’01> -2 lOg L(Cdata‘08>7

be the test statistic based on the ratio of maximum likelihoods of the two nested models
being compared. Then, under our assumption of normal i.i.d observation errors (Eq. (2)),
by Wilks’” theorem [7], A ~ X?df)? where the degrees of freedom, df, is equal to the number
of additional parameters in the more complicated model compared to the simpler model.
This allow us to compute a p-value, p = 1 — ®(\), where ® is the cdf of A ~ X%df)' The
p—value represents how likely the observed improvement in likelihood can happen, if the
simpler model were the true model underlying the data. According to this metric, the more
complicated model should be accepted if the p-value is sufficiently small.

For all datasets and all three more complicated models, we have p < 0.05, suggesting these
models are a significant improvement upon the Standard Fisher model. However, this test is
only accurate if the observation errors are indeed normal i.i.d. As discussed in the main text,
the observation errors are likely correlated across space and time, hence the improvement in

likelihoods are overestimated, and the p-values reported here are likely overestimates.



Model Dy r K Parameters unique o AIC BIC p—value
to model
Standard Fisher | 1287 [1267, 1307] | 0.2707 [0.2683, 0.2731] | 2620 [2614, 2625 39.698 | 162289 | 162310 B
Porous Fisher || 1361 [1306, 1419] | 0.2686 [0.2658, 0.2714] | 2622 [2616, 2628] | 7 : 0.0219[0.0069,0.0372] || 39.689 | 162283 | 162311 | 4.07 x 10~°
Richards 1467 [1400, 1535] | 0.2272 [0.2146, 0.2410] | 2612 [2606, 2618] | ~ : 1.3119[1.1950, 1.4416] || 39.663 | 162258 | 162287 | 1.07 x 10
o e , ‘ B i | o 1.1086[1.0779, 1.1434 B o
Generalised Fisher | 1391 [1321, 1463] | 01429 0.1130, 0.1758] | 2664 [2652, 2678] | ;- 1203411 1587 1.2508) | 29571 | 162175 | 162210 | <10
Table 1: Experiment 1, radially-averaged dataset
Model Dy r K Parameters unique o AIC BIC | p—value
to model
Standard Fisher || 1287 [1282, 1203] | 0.2775 [0.2767, 0.2782] | 2621 [2619, 2622 21.447 | 26161393 | 26161430 B
Porous Fisher | 1545 [1529, 1564] | 0.2702 [0.2694, 0.2710] | 2628 [2627, 2630] |  : 0.0719[0.0677,0.0766] || 21.445 | 26160486 | 26160536 | < 1020
Richards 1402 [1385, 1418] | 0.2462 [0.2425, 0.2502] | 2616 [2615, 2618 | v : 1.1972[1.1677, 1.2249] || 21.447 | 26161172 | 26161221 | < 102
o ) . , o 1.1733[1.1688, 1.1818 0
Generalised Fisher | 1423 [1403, 1443] | 0.1013 [0.0945, 0.1085] | 2701 [2698, 2704] B 1.3548[1.3437, 1.3663) 21.437 | 26158023 | 26158085 | < 10
Table 2: Experiment 1, full dataset
Model Dy r K Parameters unique o AIC BIC p—value
to model
Standard Fisher || 1211 [1192, 1231] | 0.2780 [0.2755, 0.2805] | 2551 [2546, 2556 39.620 | 162216 | 162238 B
Porous Fisher || 1650 [1578, 1725] | 0.2673 [0.2645, 0.2701] | 2564 [2558, 2570] | 7 : 0.1270[0.1086,0.1458] || 39.396 | 162009 | 162038 | < 102
Richards 981 [938, 1026] | 0.3675 [0.3474, 0.3891] | 2560 [2554, 2565] | ~ : 0.6808[0.6333,0.7323] || 39.509 | 162115 | 162143 | < 102
I e o . 1 | o1 1.0744[1.0532, 1.0984 0
Generalised Fisher | 806 [758, 857] | 0.2787 [0.2374, 0.3219] | 2873 [2838, 2913] | ' 2.0151[1 9249 2 1130] | 35260 | 160935 | 160970 | <10
Table 3: Experiment 2, radially-averaged dataset
Model Dy r K Parameters unique o AIC BIC p—value
to model
Standard Fisher || 1157 [1152, 1163] | 0.2896 [0.2888, 0.2904] | 2550 [2548, 2552 21.258 | 26099801 | 26099338 -
Porous Fisher | 1527 [1509, 1545] | 0.2788 [0.2779, 0.2795] | 2561 [2560, 2563] |  : 0.1099[0.1071,0.1129] || 21.250 | 26097458 | 26097507 | < 10~ 20
Richards 916 [907, 926] | 0.4061 [0.4004, 0.4119] | 2561 [2559, 2562] | ~ : 0.6307[0.6196,0.6419] || 21.250 | 26097356 | 26097406 | < 10~ 20
toneralised Fi e o Y e o e | o 1.1091[1.1024, 1.1160 , o
Generalised Fisher | 826 [316, 837) | 02383 [0.2283, 0.2484] | 2893 [2881, 2005] | 10" o’ o 14g] | 21204 | 26082314 | 26082376 | < 10
Table 4: Experiment 2, full dataset
Model Do r K Parameters unique o AIC BIC p—value
to model
Standard Fisher | 1107 [1083, 1131] | 0.3172 [0.3133, 0.3212] | 2518 [2511, 2525 47.887 | 169220 | 169242 -
Porous Fisher || 1228 [1160, 1301] | 0.3136 [0.3003, 0.3179] | _ 2520 (2513, 2527] | 1 : 0.0304]0.0191, 0.0604] || 47.868 | 169207 | 169236 | 1.11 x 107
Richards 1200 [1117, 1288] | 0.2860 [0.2622, 0.3122] | 2514.7850 [2507, 2522] | 7 : 1.1669[1.0249, 1.3367] || 47.880 | 160217 | 160245 | 1.94 x 102
I , o a0 , ” R a: 1050110231, LOSLL] | o | - oo | -
Generalised Fisher || 1146 [1064, 1237] | 0.2391 [0.1941, 0.2866] 2534 [2516, 2553) 3 :1.1005(1.0093, 1.1850] 47.867 | 169209 | 169245 | 4.77 x 10
Table 5: Experiment 3, radially-averaged dataset
Model Do r K Parameters unique - AIC BIC | p—value
to model
Standard Fisher | 1118 [1113,1122] | 0.3198 [0.3191,0.3206] | 2521 [2520,2523] 21418 | 26152075 | 26152112 B
Porous Fisher || 1300 [1286,1314] | 0.3144 [0.3136,0.3153] | 2524 (2523, 2526] | 1 : 0.0569[0.0529,0.0609] || 21.416 | 26151214 | 26151263 | < 1020
Richards 1293 [1275,1307] | 0.2633 [0.2597,0.2678] | 2514 [2513,2516] |  : 1.3493[1.3131,1.3801] || 21.417 | 26151457 | 26151506 | < 102
e ame 1ac o . i o= om1g] | @ ¢ 1.0506[1.0439,1.0576 o 0
Generalised Fisher | 1377 [1353,1398] | 0.1999 [0.1919,0.2080] | 2500 [2498,2504] | ') 0.86710.8413. 0.5043) | 21410 | 26151117 | 26151179 | < 10

Table 6: Experiment 3, full dataset




Parameters unique

Model Dy r K o AIC BIC p—value
to model
Standard Fisher 1239 [1221,1257] | 0.2849 [0.2825,0.2873] | 2784 [2779,2790 39.387 | 161998 | 162019 -
Porous Fisher 1406 [1356,1458] | 0.2800 [0.2773,0.2827] | 2789 [2784,2795] | 7 : 0.0499[0.0363,0.0637] || 39.329 | 161945 | 161974 | 1.56 x 10~13
Richards 1466 [1410,1523] | 0.2273 [0.2168,0.2387] | 2775 [2770,2781] | ~ : 1.4221[1.3136, 1.5407] | 39.304 | 161922 | 161951 | 1.14 x 1078
alised Fis 116 1135812 16 : o+ 1.1009[1.0761, 1.1284] | . ) 720
Generalised Fisher || 1416 [1358,1476] | 0.1464 [0.1216,0.1732] | 2799 [2789,2810] 5 : 1.0869[1.0457, 1.1293)] 39.292 | 161913 | 161948 | 4.32 x 10
Table 7: Experiment 4, radially-averaged dataset
Model Do r K Parameters unique - AIC BIC | p—value
to model
Standard Fisher 1252 [1247,1258] | 0.2865 [0.2858,0.2872] | 2788 [2787,2790 21.436 | 26157597 | 26157634 -
Porous Fisher 1440 [1425,1454] | 0.2809 [0.2801,0.2817] | 2794 [2792,2795] | n : 0.0539[0.0500,0.0575] || 21.433 | 26156816 | 26156866 | < 102
Richards 1565 [1548,1580] | 0.2108 [0.2084,0.2137] | 2775 [2773,2776] | ~ : 1.6398[1.6013, 1.6736] || 21.429 | 26155625 | 26155675 | < 102
o , o+ 1.1489[1.1398, 1.1583 , r oo
Generalised Fisher || 1552 [1533,1570] | 0.1028 [0.0965,0.1093] | 2797 [2794,2800] 5 : 1.0701[1.0572, 1.0831] 21.429 | 26155629 | 26155691 | < 10
Table 8: Experiment 4, full dataset
Model Dy r K Parameters unique o AIC BIC | p—value
to model
Standard Fisher 1416 [1410,1422] | 0.3085 [0.3077,0.3093] | 2344 [2343,2346 20.048 | 25693899 | 25693936 -
Porous Fisher 4102 [4059,4145] | 0.2739 [0.2731,0.2747] | 2377 [2375,2379] | n : 0.5677[0.5609,0.5746] | 19.920 | 25649571 25649620 | < 1072
Richards 2697 [2688,2706] | 0.1364 [0.1359,0.1367] | 2336 [2334,2337] | v : 7.8055[7.7527,7.9284] || 19.749 | 25589713 | 25589762 | < 10720
Generalised Fisher - - - E; : - - - -
Table 9: Experiment 5, full dataset
Model Dy r K Parameters unique o AIC BIC p—value
to model
Standard Fisher 1161 [1156,1166] | 0.3244 [0.3235,0.3253] | 2307 [2305,2308 19.820 | 25614660 | 25614697 -
Porous Fisher 2713 [2685,2743] | 0.2931 [0.2922,0.2940] | 2333 [2331,2334] | 1 : 0.4097[0.4041,0.4157] | 19.743 | 25587515 25587565 | < 10720
Richards 2290 [2282,2299] | 0.1413 [0.1409,0.1416] | 2288 [2286,2289] | ~ : 8.1042[8.0335,8.1723] || 19.593 | 25534767 | 25534816 | < 102
Generalised Fisher - - - (3)/ : - - - -
Table 10: Experiment 6, full dataset
Model Dy r K Parameters unique o AIC BIC p—value
to model
Standard Fisher 1845 [1837,1853] | 0.2260 [0.2254,0.2266] | 2419 [2417,2421 19.945 | 25658251 25658288 -
Porous Fisher 10061 [9894,10232] | 0.1637 [0.1628,0.1646] | 2627 [2622,2631] | 5 : 1.0443[1.0313,1.0573] || 19.750 | 25590211 25590260 | < 10720
Richards 3180 [3170,3190] | 0.1057 [0.1055,0.1059] | 2353 [2352,2354 1 00% 19.556 | 25521509 | 25521559 | < 102
Generalised Fisher - - - o : - - - -

Table 11: Experiment 7, full dataset. Note that for v in the Richards model, the profile
likelihood seems to be monotonically increasing up to the upper bound of v = 9 which we
have imposed for numerical stability, therefore the true MLE is likely to be very large or

infinite.



Parameters unique

Model D, r K o AIC BIC p—value
to model
Standard Fisher || 1448 [1442,1454] | 0.2669 [0.2662,0.2676] | 2294 [2292,2296 19.598 | 25536527 | 25536564 -
Porous Fisher 3504 [3467,3543] | 0.2374 [0.2367,0.2382] | 2337 [2335,2339] | n : 0.4475[0.4414,0.4539] || 19.518 | 25508165 | 25508214 | < 102
Richards 2666 [2658,2675] | 0.1199 [0.1196,0.1201] | 2241 [2239,2242 v 1 o0% 19.341 | 25444985 | 25445034 | < 1072

Generalised Fisher

[

o~

Table 12: Experiment 8, full dataset. Similar observations for v as in Experiment 7.

We also present the profile likelihoods for Experiments 2-8 (those for Experiment 1 are

presented in Fig. 2 and Fig. 3 of the main text).
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Figure 2: Profile likelihoods for Experiment 2, full dataset.
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4 Profile likelihoods for down-sampled data

In Fig. 12 we present the profile likelihoods for the down-sampled datasets.
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Figure 12: Profile likelihoods for the down-sampled datasets. A subset of these were presented
in Fig. 7 of the main text.
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