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ABSTRACT

We review some recent work investigating a hierarchy of patterning processes in which
a reaction-diffusion model forms the top level. In one such hierarchy, it is assumed
that the boundary is differentiated, and it is shown that this can greatly enhance the
robustness of the patterns subsequently formed by the reaction-diffusion model. In the
second, a spatial heterogeneity in background environment is first set-up by a simple
gradient model. The resulting patterns produced by the reaction-diffusion system may
be isolated to specific parts of the domain. The application of such hierarchical models
to skeletal patterning in the tetrapod limb is considered.

Keywords: Pre-patterns, boundary conditions, limb development, robustness, reaction-
diffusion.

1. Introduction

The central goal in developmental biology is to understand how various processes
in the embryo conspire to produce the spatial patterning of cellular differentiation
which leads to the vast range of pattern and structure observed in the adult. The
formation of structure is termed morphogenesis and the role of modelling in mor-
phogenesis is to suggest possible scenarios for how various physical and chemical
processes interact to produce pattern.

Broadly speaking, there are two main types of models in embryology: chemical
prepattern models, which propose that a spatially heterogeneous pattern in some
chemical is set-up, and that cells then differentiate in response to this prepattern
according to some interpretation mechanism; and mechanochemical models, which
propose that the physicochemical interactions between cells and their environment
set-up a spatial pattern in cell density. In mechanochemical models it is hypoth-
esized that high density cell aggregates then differentiate to form structures. The
book by Murray [18] presents a comprehensive review of both types of model and
contains the relevant references.

Many of the above models concentrate on a specific patterning mechanism. How-
ever, morphogenesis is composed of a complex hierarchy of processes in which pat-
terning mechanisms at one level regulate those at higher levels. This was recognised
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by Turing himself who remarked, in his classical 1952 paper, that “most of an or-
ganism, most of the time, is developing from one pattern into another, rather than
from homogeneity into a pattern.’ [25]. In this paper we review some recent work
on two such hierarchical models. In the first, an initial mechanism sets up dif-
ferent types of boundary conditions for a reaction-diffusion model. In the second,
the properties of the chemicals in a reaction-diffusion system are controlled by the
spatial distribution of a chemical set-up by an underlying model.

Turing [25] showed that a system of reacting and diffusing chemicals could be
driven unstable and evolve to a spatially heterogeneous pattern in the chemical
concentrations. Turing called these chemicals morphogens. Assuming that cells
differentiate if the morphogen concentration lies above a particular threshold value,
this prepattern would then result in spatially-patterned cell differentiation. Turing’s
mechanism provides one means of generating positional information [26].

Reaction diffusion models have been proposed as possible pattern generators
in a variety of biological contexts. However, it is well known that Turing models
can exhibit multiple stable steady state solutions and that pattern selection can be
sensitive to initial conditions and small variations in parameter values [3]. Thus,
Turing models are unreliable pattern generators and therefore inadequate for cases
in which pattern formation occurs via a robust sequence of transitions, such as
in skeletal patterning in the tetrapod limb. Furthermore, the patterns produced
by Turing systems are symmetric across the domain and therefore the structures
they specify are essentially the same. However, in some applications, the structures
observed biologically are intrinsically different.

Turing’s model for pattern formation has been extensively analysed mathemati-
cally and numerically for the case in which all chemicals are assumed to satisfy the
same type of boundary condition pointwise on the boundary. Typically, these are
either zero flux or fixed at the uniform steady state concentration. We call these
boundary conditions scalar boundary conditions. In Sec. 2, we review some results
for the case of non-scalar boundary conditions, wherein each species satisfies differ-
ent boundary conditions at any point on the boundary. We compare the properties
of the solutions of the scalar case with those of the non-scalar case and show that
boundary conditions can greatly influence the form and robustness of solutions.

Most applications of Turing systems assume that the background environment
is spatially homogeneous, that is, all model parameters are assumed constant across
the domain. However, there is now substantial experimental evidence to suggest
that in some systems, such as the tetrapod limb, environmental inhomogeneity may
play an important role in regulating pattern. In Sec. 3 we consider how an under-
lying spatial prepattern in a control chemical which modifies morphogen diffusivity
can influence the patterning properties of the Turing model. In Sec. 4 we consider
an application to skeletal development in the tetrapod limb.
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2. The Role of Boundary Conditions

The role of boundary conditions on the form and stability of the solutions of a one-
dimensional reaction-diffusion equation was analysed in [8]. The two species Turing
model in one space dimension takes the form

uy = vuge + f(u,v,p)
in (0,1) (1)
vy = vbuge + g(u, v, p),

with boundary conditions

6182 = p(1 - 6,)(f3u° — u)
for { =0,1 (2)
66282 = 6p(1 — 62)(B3v° — v),

where u(¢,t) and v(£,t) are nondimensionalised chemical concentrations at position
¢ and time t, with £ € [0,1}; v = D, /wL?, § = D,/ D,, where D, and D, are the di-
mensional diffusion coefficients of u and v respectively, w™! is a typical reaction time
scale, and L is a measure of the domain length. The functions f and g are rational
polynomials which model the reaction kinetics and p denotes the vector of kinetic
parameters. In this system, all the parameters are assumed constant throughout
the domain. The parameters 8; € [0,1],7 = 1, 2,3 are homotopy parameters, and u*
and v* denote the uniform steady state values of morphogen concentrations, that
is, f(u®,v*,p) = g(u’,v°,p) = 0.

When (61,602,63) = (1,1, ) the boundary conditions (2) reduce to homogeneous
Neumann conditions (zero flux), and when (6,,62,63) = (0,0,1) we have Dirichlet
conditions fixed at the uniform steady state. These two types of boundary con-
ditions are referred to as scalar boundary conditions. However, if (6,,63,03) =
(1,0,1), then u satisfies homogeneous Neumann boundary conditions, and v satis-
fies homogeneous Dirichlet conditions. This is an example of a non-scalar boundary
condition.

Many properties of the solutions of the Turing model for scalar boundary con-
ditions are well known {19]. For comparison, one can analyse the non-scalar case in
a number of ways. The steady state problem may be analysed using the numerical
package AUTO [7]. This scheme calculates the steady states and their stability as a
specified parameter varies. By varying the parameters 8;, it is possible to homotop
between various types of boundary conditions. The time evolution problem can
be investigated using a combination of numerical integration, linear analysis, and
nonlinear bifurcation analysis. Imposing non-scalar boundary conditions greatly in-
creases the mathematical complexity of the problem. For example, standard linear
analysis cannot be used as the choice of appropriate spatial eigenfunctions is no
longer obvious. However, a modification of the standard linear analysis can be used
for certain special cases [8].

Different choices of f and g in (1) model different reaction schemes for the Turing
system and the effect of different types of boundary conditions can be investigated
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by focussing on a particular reaction-diffusion system. Using a combination of the
analyses outlined above, results for different boundary conditions can be compared
as a particular parameter is varied. Dillon et al. [8] considered the parameter L
as the bifurcation parameter, and observed a number of differences which can be
summarised as follows (for the simplified glycolysis model [2], for which f(u,v,p) =
B — ku — uwv?, g(u,v,p) = ku + uv? — v, where § and « are fixed parameters):

o For the case of scalar boundary conditions, a minimum domain length is required
for a spatially non-uniform steady state to exist. For certain non-scalar boundary
conditions, however, a stable, non-constant, steady state can exist at arbitrarily
small L.

¢ For the scalar case, the bifurcation diagram increases in complexity with increas-
ing L. For the non-scalar case, the range of admissible solutions decreases and
hence the complexity of the bifurcation diagram is greatly reduced.

e For the scalar case there are regions in parameter space wherein more than one
stable steady state solution exists. For the non-scalar case the problem of mul-
tiplicity of solutions is greatly reduced. Solutions are less sensitive to changes in
domain size and are more robust to changes in other parameters and in initial
conditions.

Ngwa [20] has shown that these results also hold for the Schnakenberg model [22].
Moreover, he solved the time evolution problem on a growing domain. For the scalar
case, as L grows, it moves into the parameter regime where more than one stable
steady state exists. Which state is selected will depend on the solution profile of
the morphogens as L moves into this region. Consequently, one cannot predict a
priori which pattern will be exhibited. However, with certain non-scalar boundary
conditions, the problem exhibits a unique stable steady state (which changes with
L) for a large range of L and therefore this problem does not arise.

3. Composite Model

To investigate how the second hierarchical scheme may influence the patterning
properties of a reaction-diffusion model, a composite model with scalar boundary
conditions in which the spatial variation in diffusion coefficients of the morphogens
is controlled by a regulatory chemical ¢ was considered by Maini et al. [16]. They
assumed, as before, that the diffusion coefficient of u was constant, but that the
diffusion coefficient of v was modulated by ¢. This could, for example, reflect a
change in gap junction permeability for v due to the presence of ¢ [21].

The chemical ¢, which is the control chemical, is assumed to be secreted at one
end of the domain, diffuse and be degraded throughout the domain, and satisfy
a zero flux condition on the other boundary. The appropriate nondimensionalised
equation for c is

Ct = dzc“ - 620 (3)



Hierarchical Models for Spatial Pattern Formation in Biology 991

Pr ¢ > D
A
N
v

Fig. 1. Diagrammatic representation of the skeletal pattern within the chick limb. H — humerus,
R — radius, U — Ulna, II, III, IV — digits, A — anterior, P — posterior, Pr — proximal,
D — distal.

subject to the boundary conditions

65(0, t) = 01 c(lvt) =Co, (4)

where d? and ©? are, respectively, the nondimensionalised diffusion coefficient and
the rate of linear degradation of c.

Assuming that this reaction-diffusion equation reaches a stable equilibrium on a
fast time scale during which insignificant changes in morphogen concentration take
place, then the equilibrium distribution of c is ¢y cosh(€2¢)/ cosh 2, where @ = ©/d.
A further assumption, that the diffusivity of v is directly proportional to ¢, implies
that the composite model has the form

Ut = Vuge + f(u,vap)
in (0,1) (5)
vp = v(6(€)ve)e + 9(u,v,p),

where 6(£) = aco cosh(Q€)/ cosh §, and a is a constant.

The introduction of spatially varying parameters greatly increases the complex-
ity of the reaction-diffusion system, even for the case of scalar boundary conditions.
There have been a number of numerical studies of the effects of spatially varying
reaction terms in reaction-diffusion systems [9,13,14] and of spatially varying dif-
fusion [12]. A mathematical analysis in which one of the reaction terms is spatially
varying was carried out in {1] and [11]. Recently, we carried out a linear stabil-
ity analysis for (5) with a step function approximation to the diffusion coefficient
and determined, analytically, regions in parameter space wherein the system can be
driven unstable and evolve to spatially heterogeneous patterns [16]. It was shown
that (5) exhibited qualitatively similar behaviour to that of the simpler system.
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In particular, the solutions of (5) are not symmetric, but have a spatially-varying
amplitude of oscillation; the explicit form of this dependence can be obtained from
linear analysis for the case of the step function approximation to the diffusion coef-
ficient [4]. A consequence of this spatial variation in amplitude is that patterns can
be isolated to certain regions of the domain. A typical spatial pattern is illustrated
in Fig. 3(a).

4. Biological Application

We now consider the application of Turing models to skeletal patterning in the
vertebrate limb. Figure 1 illustrates the pattern of skeletal elements within the
chick limb. The elements are laid down along the proximal-distal (PD) axis in a 1-
2-3 transition sequence and they are asymmetrical along the anterior-posterior (AP)
axis. In Fig. 2 we compare the transition sequence for the scalar Turing model with
that of the non-scalar model as the parameter L increases. The latter can reliably
and robustly generate the transition sequence observed along the PD axis. Thus,
one can capture the PD behaviour of the skeletal pattern by imposing suitable
non-scalar boundary conditions on the Turing model. Note that when the skeletal
pattern is laid down, the limb bud is cylindrical with an elliptical cross-section and
does not have the complicated geometry of the adult wing.
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Fig. 2. The subintervals of (0,1) in which the v-component of the solution to (1) for glycolysis
kinetics exceeds a fixed threshold concentration, as the parameter L increases, with 8 and & fixed
at 1.0 and 0.001, respectively. (a) The scalar case where v and v satisfy zero flux boundary
conditions; (b) The non-scalar case where u satisfies zero flux boundary conditions and v is fixed
to zero on the boundary. Clearly for (b) a simple threshold mechanism can reliably produce the
sequence 1-2-3- ... of pattern elements as the parameter L increases, whereas this is impossible for
the standard case with scalar boundary conditions. If the corresponding time evolution equations
are solved on a growing domain one obtains the same solutions to those observed in (a) and (b)
[20]. Note that in (b) there is no discontinuity between successive elements. During early limb
development successive proximal-distal elements initially appear continuous but separate from
each other at a later stage.
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Fig. 3. The v component of the solution of the composite model for the case of Schnackenberg
kinetics [22], where f =a—u— u?v, g = b—u2v, a and b are constant parameters fixed at 0.1 and
0.9, respectively, for different boundary conditions on the control chemical ¢ and different domain
lengths, L. (a) c satisfies the boundary conditions (4), and L = 1. (b) c satisfies the boundary
conditions (6), and L = 1.5. For a fixed threshold concentration (- - - -), the prepattern in (a)
specifies three distinct elements, while (b) predicts a complete duplication of six elements, two of
each kind specified in (a).

To capture the asymmetry along the AP axis, we consider the composite model.
In this model, the underlying spatial pattern in control chemical influences the posi-
tion and amplitude of peaks in morphogen concentration. Therefore, the positional
information supplied by these morphogen profiles could lead, via cell differentiation,
to the specification of asymmetrically patterned elements, whose position within the
domain is controlled by the spatial distribution of ¢. For example, Fig. 3(a) shows
that for a suitably chosen threshold concentration, the composite model can specify
three skeletal elements, corresponding to the digits, which are intrinsically distinct
because of the varying concentrations of morphogen to which they are each exposed.
This is in contrast to the standard reaction-diffusion system with spatially uniform
parameters, which produces identical and equally spaced elements. The asymmetry
in the solution profiles of the composite model is a consequence of the spatial gradi-
ent in the control chemical ¢. Such gradients do exist in the limb [24], and appear to
emanate from the zone of polarising activity, or ZPA, which is a specialised group
of cells occurring at the posterior margin of the developing limb bud. Grafting a
donor ZPA to different positions along the AP axis of a host chick limb leads to
the formation of additional digits and stimulates growth along this axis [23]. If, in
our composite model, we assume that the ZPA is the source of the control chemical
¢, then grafting a donor ZPA onto the anterior margin of the limb corresponds to
creating a new source of the chemical c¢. As this graft stimulates growth, ¢ now
satisfies (3) with boundary conditions

C(O’ t) = C(L’t) = Cp, (6)
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where L is the new domain length. The distribution of the control chemical, and
hence the diffusion coefficient of v, is now determined by

8(&) = acq cosh((€ — L/2))/ cosh(L/2). (7

Figure 3(b) shows that the system can generate a mirror symmetric pattern
which has six concentration peaks of varying amplitude for the case in which the
ZPA graft increases the domain size by 50%. Together with the same threshold
mechanism as before, the model predicts the formation of a duplicate set of ad-
ditional digits, which is consistent with experimental results (see [15] for a review
of experimental results on the limb). On smaller domains (corresponding to trans-
planting donor ZPA to a more posterior site) the model predicts the formation of
fewer digits, as is also observed experimentally. Note that the standard Turing
model also predicts that additional digits will form if the domain size is increased,
but it cannot specify which digits are duplicated. In contrast, the composite model
exhibits a prepattern in morphogen concentration which can distinguish between
the different types of digit formed.

5. Discussion

We have reviewed recent work that considers two modifications of the traditional
one-dimensional reaction-diffusion model. It has been shown that imposing appro-
priate non-scalar boundary conditions can lead, in a robust and controlled manner,
to a sequence of transitions that closely resembles those observed in skeletal pattern-
ing along the proximal-distal axis in the developing limb. Although domain length
L was taken as the transition parameter it should be noted that this parameter
occurs in the dimensionless grouping v = D; /wL?. Therefore the sequence of tran-
sitions illustrated in Fig. 2 could be generated by changes in any of the parameters
that occur in this dimensionless quantity, for example, due to changes in diffusion
coefficient. This could arise due to a change in gap junction permeability [6].

Imposing a background gradient in the diffusion coefficient of one of the mor-
phogens results in asymmetrical patterns consistent with those observed along the
anterior-posterior axis of the limb. It is now known that retinoic acid occurs in a
graded distribution along the AP axis. Furthermore, there is recent experimental
evidence that retinoic acid modulates gap junction permeability and hence diffusicn
of chemicals through cells [5, 17].

Recently, it was shown that recombinant double-anterior limb buds produce
two humeri [27]. As the recombinant limb bud was the same size as a normal
limb bud, the standard Turing or mechanochemical model would predict that the
pattern should be normal, that is, one humerus should form. Hence this result
suggests that the humeral element must have been determined prior to the stage
at which the experiment was performed. As there was no sign of any pattern in
cell density at this stage, the authors concluded that skeletal patterning in the
limb could not possibly be due to a mechanochemical mechanism. However, the
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composite model described in Sec. 3 is consistent with this observation [16]. As the
mechanochemical and Turing models share a number of important mathematical
properties, we conjecture that this result also holds true for the mechanochemical
model. Therefore, an alternative explanation of the result in [27] is that skeletal
patterning in the limb is due to a hierarchical process. At alow level of this hierarchy
is a gradient mechanism which can partition the domain into pattern-forming and
non-pattern-forming subdomains. This simple pattern is then elaborated upon by
a more complicated mechanism higher up in the hierarchy which, in turn, leads to
a more complex pattern. That mechanism could well be of mechanochemical type.

One of the important consequences of the model described in Sec. 2 is that by
essentially combining two patterning mechanisms, namely one which differentiates
the boundary so that it is an impermeable membrane to one morphogen and a sink
to the other, with a reaction-diffusion model greatly enhances the robustness of the
latter. This is a specific example of the more general hypothesis recently proposed
by Goodwin et al. [10] which suggests that morphogenesis is intrinsically robust
due to the dynamic coupling between different patterning mechanisms.

The scenario for skeletal pattern formation in the limb presented in this paper
does not capture the temporal sequence of development along the AP axis, but this
may be due to cells responding to the morphogen prepattern in a time-specific fash-
ion. Moreover, it proposes that the AP asymmetry in pattern is due to a spatially
varying diffusion coefficient. Such patterns could also be set-up by spatially varying
reaction kinetics parameters or, in two-dimensions, by an asymmetrical domain.
However, noting that the diffusion coefficient and the length scale are intrinsically
linked, we have, in effect, considered the second case. Moreover, experimental ob-
servations do show that diffusion is asymmetrical across the AP axis.

We have considered the pattern forming processes along the PD and AP axis as
separate, uncoupled processes. This is a common assumption which provides useful
insights and yields predictions which are consistent with many experimental obser-
vations. However, there are a number of experiments which suggest that a fully
realistic model for spatial patterning must be two- or three-dimensional, incorpo-
rating the ideas presented here but also introducing interactions between specific
specialised regions in the limb. This is presently under investigation.
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