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Abstract—Reaction-diffusion, or Turing, models have been proposed to account for a number of
pattern formation phenomena in early development. However, there are a number of crucial morpho-
genetic phenomena that contradict the standard Turing model. Here we review three generalisations
of the Turing model and show how they can be applied to two such phenomena. We discuss how
these generalisations can provide insight to the processes underlying patterning in these cases.
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1. INTRODUCTION

One of the main areas of research in developmental biology seeks to understand the key processes
and mechanisms that underlie morphogenesis, the formation of structure and form within the
embryo. Broadly speaking, there are two main classes of models. In one, it is hypothesized
that a chemical prepattern is set up, either via a source-sink model {1], or due to diffusion-
driven instability (DDI) in a reaction-diffusion system (Turing systems [2]). It is then proposed
that cells interpret this prepattern by differentiating only where the chemical (or morphogen)
concentrations lie above or within specified threshold values. Hence, the observed spatial pattern
of cell differentiation is thought to overlie the chemical prepattern. In the second, it is proposed
that due to the mechanochemical interactions between cells and their external environment, a
spatial pattern in cell density arises. It is then proposed that cells in high density aggregates
differentiate [3,4]. The book by Murray [5] provides an excellent and detailed review of the above
models.

In this paper, we review some recent work on generalised Turing systems in one dimension
and consider their application to two areas of morphogenesis, namely, skeletal patterning in
the chick limb, and tooth morphogenesis in the alligator. These two examples exhibit many
developmental phenomena that occur in general so that an understanding of the underlying
mechanisms giving rise to pattern in these specific examples, may have widespread application.
Sections 3 and 4 present two generalisations of the standard Turing model and their application to
limb development is discussed in Section 5. In Section 6, we present a further generalisation and
detail its application to tooth morphogenesis in the alligator. Section 7 discusses the biological
implications of these generalised Turing models.
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2. THE TURING MODEL

The nondimensionalised Turing model for two chemicals in one space dimension takes the form

ug = 7f(u,v, P) + (Dytsz)s,

in (0,1), 1
U = 'yg(u,v, P) + (vaw)z; ( ) ( )
with boundary conditions
ou
018— = p(1 — 61) (B3u® — u),
875 forz =0,1, (2)
502% = 6p(1 - 92) (93’03 - 'U) N

where u(z,t) and v(z,t) are nondimensionalised chemical concentrations at position z and time ¢,
with z € {0,1]; v is a nondimensional parameter proportional to the dimensional length L of the
domain, and the diffusion coefficients of v and v are D,, and D,, respectively. The functions f
and g model the reaction kinetics and typically take the form of rational polynomials. The
vector P denotes the kinetic parameters. The parameters §; € [0,1],7 = 1,2,3, are homotopy
parameters, and u® and v® denote the uniform steady state values of morphogen concentrations,
that is, f(u®,v®, P) = g(u®,v®*, P) =0.

In the standard Turing model, the parameters D,, D, and P are taken as constant and the
boundary conditions are either zero flux, that is, (61,62,03) = (1,1,-), or fixed at the steady
state, that is, (61, 62,63) = (0,0,1). We refer to these two types of boundary conditions as scalar
boundary conditions [6].

The standard Turing model has been extensively analysed and applied to several developmental
phenomena. One of the major criticisms of the application of this model to pattern formation
in embryology is that the patterns they generate are too sensitive to variation in parameter
values or initial conditions for them to realistically account for robust patterning mechanisms [7).
Moreover, Turing patterns are symmetrical in the sense that each peak in concentration has
the same height and the wavelength is constant across the domain, at least near to primary
bifurcation points, whereas many patterns in embryology are asymmetrical. Furthermore, this
well-ordered generation of pattern is inconsistent with certain patterns which form in a complex
spatiotemporal sequence.

We will consider three generalisations of the above model which address the above issues. In
the first, we consider the role of different types of boundary conditions. In the second, we examine
the effects on the patterns due to a spatially-varying diffusion coefficient, and in the third, the
effects of spatiotemporal variation in one of the kinetic parameters.

3. GENERALISATION 1

Dillon et al. [6] analysed the Turing model with constant parameter values for several different
types of boundary conditions, corresponding to different values of (6;,62,603). This increases
enormously the complexity of the analysis of the model. For example, for the nonscalar boundary
conditions (84, s,03) = (1,0, 1), the eigenfunctions of the linearised equations about the uniform
steady state are no longer simple sines and cosines. Furthermore, for many nonscalar boundary
conditions there is no uniform steady state. For example, if u° is nonzero, then for (6,62,63) =
(0,1,1), the system does not have a uniform steady state.

In [6], the Turing model for nonscalar boundary conditions was extensively analysed numer-
ically by solving the time evolution equations and by using the numerical bifurcation package
AUTO [8]. The particular Turing model studied was the simplified glycolysis model, where
f(u,v,P) = B — ku — uv?, g(u,v, P) = ku + uwv? — v, and B and & are fixed parameters. The
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analysis revealed a number of key differences between the solutions for scalar boundary conditions
and those for nonscalar boundary conditions. Two examples of these differences follow here.

(1) For scalar boundary conditions, it is well known that a minimum domain length is required
for spatially nonuniform steady states to exist. For certain nonscalar boundary conditions,
however, spatially nonuniform steady states can exist for arbitrarily small domain length.
Moreover, using variational techniques, it can be shown that some of these states are stable
(see [6] for full details).

(2) For scalar boundary conditions, the complexity of the form of the spatially nonuniform
steady states increases with domain length and, for sufficiently large length, multiple
stable steady states are possible. For most nonscalar boundary conditions, the range of
admissible solutions decreases, and hence the complexity of the bifurcation diagram is
reduced. As a result, solutions are less sensitive to changes in domain size (and in other
parameters) and initial conditions, that is, the robustness of the admissible solutions is
greatly enhanced.

These results have been shown to hold for other types of reaction kinetics [9].

4. GENERALISATION 2

We now consider the Turing model for the case of scalar boundary conditions in which we
impose spatial variation on the diffusion coefficients. Although Turing models with spatially-
varying parameters have been analysed by a number of authors (for example, [10-14]), the case
of spatially-varying diffusion coefficients has received less attention [15]. Here, we assume that
one or both of the diffusion coefficients D,, and D, are functions of a control chemical ¢ which
itself satisfies the reaction-diffusion equation

cr = Ve — O%c (3)
subject to the boundary conditions
cz(0,t) =0, c(1,t) = co, (4)

where 12 and ©? are, respectively, the nondimensionalised diffusion coefficient and the rate of
linear degradation of ¢. This form is motivated from considering the application to skeletal
patterning along the anterior-posterior axis of the chick limb bud in which there are gradients
of several key chemicals which influence morphogenesis. The simplest possible generalisation
of the standard model in this case is to assume that either one or both of D,, and D, depend
linearly on c¢. A further simplification can be made if we assume that the ¢ equation is on a
faster timescale compared to the equations for u and v. One can then substitute the equilibrium
distribution ¢p cosh(2z)/ cosh Q for ¢, where Q = ©/v.

The mathematical investigation of this system is again nonstandard. A linear analysis can be
carried out for the case in which the equilibrium distribution for c is approximated by a piecewise
linear function. In this way, it is possible to delimit regions in parameter space wherein different
types of patterns can arise [16]. In this case, the imposed asymmetry in diffusion coefficients
leads to asymmetrical patterns. The asymmetry can take two forms (for full details see [16,17]).

(1) The pattern peaks have almost constant amplitude but their wavelength varies across the
domain.

(2) The amplitude of the peaks varies markedly across the domain while the wavelength stays
apparently constant throughout the domain. This results in a pattern that is isolated to
one part of the domain.

Detailed numerical simulations show that these results carry over for the full system (with the
diffusion coefficients varying continuously with space).
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5. APPLICATION TO SKELETAL PATTERN FORMATION
IN THE CHICK LIMB

‘We now consider the significance of the above generalisations of the Turing model by apply-
ing the model to the formation of skeletal pattern in the chick limb. This is a widely studied
problem both theoretically and experimentally (see [18] for review). The actual process of pat-
tern formation in the chick limb occurs at a very early stage, when the limb has the shape of
an almost cylindrical bud, that is, before the complex geometry of the limb develops. Pattern
formation essentially occurs along two axis: the front to back axis, or anterior-posterior (AP)
axis, and the axis pointing outward from the limb, namely the proximal-distal (PD) axis. The
skeletal pattern along the PD axis follows the transitional sequence 1-2-3, corresponding to the
humerus, the radius and ulna, and the digits, of which there are three in the chick wing bud. The
extra elements appear to be accommodated by a widening of the AP axis. Although it may be
possible to generate this sequence using the standard Turing model, the parameters of the model
would have to change in a very precise manner [19]. This is because of the sensitive nature of the
standard Turing model to perturbations in initial conditions and/or parameter values. However,
as discussed in Section 3, imposing certain nonscalar boundary conditions can greatly enhance
robustness. In fact, it can be shown that the required sequence of pattern can be generated easily
and robustly as domain length L changes [6]. It is important to note that as the parameter L oc-
curs in a nondimensionalised parameter which also includes diffusion coeflicients, such a sequence
could also arise due to appropriate changes in diffusion coefficients.

The above model does not capture the asymmetry of the skeletal elements along the AP
axis. This can be achieved, however, by considering the generalisation presented in Section 4.
In that case, the control chemical ¢ essentially partitions the domain into pattern-forming and
nonpattern-forming subdomains. The intuitive understanding of this result is quite clear. Not-
ing that the diffusion coeflicient and domain length are closely linked, changing the diffusion
coefficient corresponds to varying the length. Therefore, a spatially-varying diffusion coefficient
essentially rescales the domain in such a way that certain subdomains are “large,” and therefore
pattern-forming, while others are “smaller” than the minimum domain length necessary for pat-
tern formation. Combining both generalisations, one can show that the corresponding generalised
Turing model can exhibit solutions which are consistent with the patterns observed in normal
development (20].

We now consider a recent experiment which contradicts the standard Turing model but is
consistent with Generalisation 2 above. In this experiment [21], double anterior chick limbs
were formed by replacing the posterior section of a host limb bud with the anterior part of a
donor limb bud, in such a way that the resultant limb bud was the same size as a normal limb
bud. The double anterior limb formed two humeri despite being the same size as a normal limb
bud which produces only one humerus. This is inconsistent with the traditional Turing model
which predicts that the complexity of the pattern formed depends crucially on the length of the
domain. However, it is wholly consistent with Generalisation 2 as the result can be interpreted
as combining two pattern-forming subdomains [22].

It is also important to examine more closely another claim of the authors. They state that be-
cause there was no sign of any pattern in cell density at the time the experiments were performed,
it follows that skeletal patterning in the vertebrate limb can not be due to a mechanochemical
mechanism. However, as the mechanochemical model shares many similarities with the Turing
model, we conjecture that a generalisation of the mechanochemical model similar to that pro-
posed in Section 4 for the Turing model would result in patterns consistent with this experiment.
Hence, a different interpretation of this result is that skeletal patterning in the limb is the con-
sequence of a patterning hierarchy of mechanisms in which a gradient type model first partitions
the domain into a set of subdomains on which a more complex model acts [23]. That model may
be a chemical prepattern or a mechanochemical model.
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6. APPLICATION TO TOOTH MORPHOGENESIS

In the above biological example, the pattern forms in a simple temporal sequence in which,
due to the increase in domain size with time, more complex spatial patterns are laid down. We
now consider an example of complex spatiotemporal pattern formation, namely that of tooth
morphogenesis in the vertebrate jaw of the alligator, Alligator mississippiensis. This is a process
of complex self-organisation, where both domain growth and pattern inhibition play crucial roles,
and it has been the source of detailed experimental investigation [24-26] so that there is ample
experimental data on which to base a realistic mathematical model.

We focus on the patterning of teeth in the lower jaw of the alligator (see [27] for full details).
The alligator jaw has left-right symmetry so that one need only consider one side of the jaw.
Moreover, to a very good approximation, one can think of the jaw as being essentially a one-
dimensional domain going from posterior (back of the jaw) to anterior (front of the jaw). Teeth
arise as the result of tooth primordia which are clumps of cells in the jaw mesenchyme which mark
where future teeth will form. The sequence in which these primordia form is very complex, so we
shall focus only on the first seven tooth primordia. They are formed along the posterior-anterior
axis in the sequence 7-3-6-2-5-1-4. That is, the first tooth (tooth 1) forms near the anterior end of
the jaw. The second tooth primordium to form is posterior to the first tooth, and primordium 3
forms posterior still. By this stage, the jaw has elongated sufficiently for tooth 4 to form anterior
to tooth 1. Teeth 5, 6 and 7 then form in a posterior sequence.

It appears that when a tooth primordium forms, it inhibits, for a certain length of time, tooth
primordium formation nearby. We now show how a generalised form of the Turing model can
exhibit this type of behaviour. We consider the Schnakenberg model [28], where f(u,v,P) =
a —u — u?v, g(u,v,P) = b — u?v, but we assume that the source of the morphogen u is now
determined by the concentration of a control chemical ¢. Specifically, we assume that a = hc,
where h is a positive constant. We assume further that the control chemical ¢ diffuses and is
degraded, linearly. Hence, the equation for ¢ takes the form

¢t = Docgg — bc, (5)
and we impose the boundary conditions
¢ (0,t) =0, ¢(1,t) = co; (6)

that is, there is a source of ¢ at the posterior end (z = 1) of the jaw, with zero flux at the
anterior end. We assume that the morphogens u and v have zero flux boundary conditions
at both ends. We incorporate domain growth into the equations by assuming that jaw length
grows at a constant rate r. On rescaling the domain to [0,1], this results in the diffusion terms
being multiplied by the factor e~2"* and contributes a dilution term —ry to the kinetics of each
reaction-diffusion equation, setting y = u, v, ¢, respectively.

Now for ¢ large, the Schnakenberg system does not exhibit diffusion-driven instability (DDI).
Therefore, the domain length has to grow sufficiently, and ¢ decay to sufficiently small values, so
that DDI can occur. We can choose parameters (see [27] for full details) such that DDI occurs
in the anterior part of the domain, and a single peak in u forms. We assume that this then
marks tooth primordium 1. We assume further that this tooth becomes another source of ¢. If
we continue to run the model we find that ¢ falls below the level required for DDI in a region
posterior to tooth 1, so that tooth 2 forms there. In a similar fashion, tooth 3 forms posterior
to tooth 2. However, at this point, the domain has grown sufficiently so that ¢ next breaches
the threshold anterior to tooth 1, and this is where tooth 4 forms. Continuing this simulation,
it can be shown that, for a wide range of parameter values, the model can generate the correct
spatiotemporal sequence of the first seven teeth. The upper jaw also exhibits a spatiotemporal
sequence of tooth formation, but the sequence is different to that in the lower jaw. However, the
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model can also generate this sequence, by a simple change in parameter values. Moreover, the
model can make a number of experimentally testable predictions on the results of removing or
implanting tooth primordia.

7. DISCUSSION

In this paper, we have considered three generalisations of the standard Turing model. We
have shown how generalising the type of boundary conditions imposed on the standard Turing
model can greatly increase the robustness of certain solutions. This may be considered to be a
particular example of the more general hypothesis of Goodwin et al. [29], which suggests that
morphogenesis is intrinsically robust due to the dynamic coupling between different patterning
mechanisms.

The second generalisation assumes that the diffusion coefficients of the morphogens vary spa-
tially. This is not an unrealistic assumption. In fact, it has been shown, via dye spreading
experiments, that such spatially varying diffusion does occur along the AP axis of the vertebrate
limb [30,31].

The third generalisation consists of spatiotemporal variation of the kinetics. This was proposed
to describe the complex spatiotemporal patterning that occurs during tooth primordia formation
in the developing alligator jaw. This model gives rise to specific biologically testable predictions
which should help us to gain an increased understanding of the mechanisms underlying this
developmental phenomenon.
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