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A NONLINEAR ANALYSIS OF A MECHANICAL MODEL FOR BIOLOGICAL
PATTERN FORMATION*

P. K. MAINI{# AND J. D. MURRAYYT

Abstract. This paper studies a simplified but biologically relevant version of a mechanical model for
morphogenesis proposed by Oster, Murray, and Harris [J. Embryol. Exp. Morph., 78 (1983), pp. 83-125]. A
nonlinear bifurcation analysis of the partial differential system is presented. In the one-dimensional version,
the derivation of the amplitude equation involves a nonstandard element. The analysis of a caricature of
the two-dimensional system predicts the formation of rolls and hexagons. The biological significance of
these results to feather germ formation is briefly discussed.
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1. Introduction. Several models have been proposed to describe pattern formation
in early embryonic development. Most consist of reaction-diffusion systems which, in
the appropriate region of parameter space, bifurcate from an initial homogeneous
steady state and evolve to an inhomogeneous steady state (for example, Turing (1952),
Murray (1977), (1981a), (1981b), Meinhardt (1982)). Cells interpret the concentration
of chemical in some way and differentiate accordingly, thus leading to pattern; this is
the essence of Wolpert’s (1969), (1981) “positional information” concept.

An alternative approach to pattern formation in embryology has been made by
Oster, Murray, and Harris (1983), Murray and Oster (1984a), (1984b), Oster, Murray,
and Maini (1985) based on the mechano-chemical properties of embryonic cells and
tissue. Section 2 contains a brief derivation of a simple version of the model equations
(see Oster et al. (1983) for fuller details). In § 3 we carry out a nonlinear bifurcation
analysis on the model. Using small parameter expansions, multi-time scales, and the
method of balancing harmonics, we derive an amplitude equation for the
inhomogeneous steady state. The asymptotic technique requires a nonstandard
approach. In § 4 we investigate regular two-dimensional patterns in a caricature of the
model analyzed in § 3. We conclude (§ 5) that nonlinear analysis predicts patterns in
the appropriate parameter space in one dimension, and the formation of rolls and
hexagons in two dimensions. We briefly discuss the biological significance of these
results to feather germ formation in chicks.

2. Mechanical model equations. Mesenchymal cells in the dermis of the developing
embryo exert large traction forces which deform the cross linked fibrous substratum,
the extracellular matrix (ECM), on which they move (Fig. 2.1). The model is based
on the three field variables:

n(x, t) = density of mesenchymal cells at position x and time .

p(x, t) =density of extracellular matrix at position x and time ¢

u(x, t) =displacement at time ¢ of a material point of ECM initially at x.

The full model equations are given in Oster et al. (1983). As we shall study a
simplified version of the original model in this paper, here we only give the simpler
system.
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F1G. 2.1. Diagrammatic representation of chick epzthelzum at day six. The epithelium is composed of two
layers; an epidermis consisting of columnar cells, and a mesenchymal dermis, connected by anchor filaments.
The dermis consists of mesenchymal cells in a jelly-like matrix, the extracellular matrix (ECM), which is
composed of cross linked collagen fibres capable of exerting elastic forces (Trinkaus (1984)). The cell tractions
deform the matrix and eventually lead to an aggregate of dermal cells known as a papilla. The mechano-chemical
interaction between the dermis and epidermis leads to epidermal aggregates called placodes which, together with
the papillae, form primordia, or feather germs, which eventually form feathers. The model presented here is
concerned only with the formation of dermal aggregates.

Cell conservation:

(2.1a) on/at+V -[nou/at]=0.
Mechanical force balance:

(2.1b) V - [y 9e/9t+m,00/9t I+{E/(1+ v)}(e+ v*0I)+ n(p + BV?p)I] = sup.
Matrix conservation:

(2.1¢) ap/ot+V -[pou/ot]=0

where e=[Vu+Vu”]/2 is the linear strain tensor, § =V - u the dilatation, I the unit

tensor, and w,, u,, E, v, v*, 7, 5, and B are nonnegative parameters which we describe

below.
We briefly motivate the various contributions to (2.1a)-(2.1c).
Cell conservation. The equation for cell conservation is of the form

(2.2) on/at=-V-J,,

where J, is the cell flux through a volume element of matrix and we assume that at
the pattern formation stage cell proliferation is negligible as appears to be the case
from experimental observations. The cell flux, J,, is composed of a number of terms
(see Oster et al. (1983)). In this paper we only deal with the convective flux since
experimentally this seems to be the major contribution to cell movement. The convective
velocity is du/adt so the flux term is

(2.3) J,=—ndu/ot.

Substituting (2.3) into (2.2) gives (2.1a).

Mechanical force balance. We are dealing with a system with low Reynolds number
(Purcell (1977), Odell et al. (1981)), so the viscous and elastic forces dominate the
inertial terms and cell motion instantly ceases when the applied forces are switched
off. Therefore, the mechanical force balance equation is

(2.4) V-o+pF=0

where o is the stress tensor and F the body force.
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We model the cell-matrix composite as a linear, isotropic, viscoelastic material
with stress tensor

O = Omatrix + O cell-matrix
where

(2.5a) O mateix = M1 0€/3t+u,00/3t I+[E/(1+ v)])(e+ v*6I)
viscous elastic

0=V - y, the dilation, E is Young’s modulus, u, and u, the shear and bulk viscosities,
respectively, v the Poisson ratio, v*=vr/(1—2v), and I is the unit tensor (see, for
example, Landau and Lifshitz (1970)).

The stress exerted by the contractile forces of the cells on the matrix is taken as

(2.5b) Ocell-matrix — Tn[ P + szp]l

where 7 and B are both nonnegative. The B8V’p term accounts for long-range traction
forces (cf. long-range diffusion).

We assume that the cell-matrix composite is attached elastically to a subdermal
layer in the skin. We model this, in the simplest possible way, as a linear elastic spring
with spring constant s(>0). Thus the body force, F, is

(2.6) F=—su.
Matrix conservation. The equation for matrix conservation is
ap/at=-V-J,+S(n,up),

where Jp is the flux and S(n, u, p) the secretion rate.

The matrix moves only due to the contractile forces exerted by the cells, that is,
by convection. At the stage in development we are concerned with, matrix secretion
is negligible. Hence the equation for matrix conservation is

2.7) ap/at=—=V -[pou/at]
convective flux

3. One-dimensional nonlinear analysis. In Murray and Oster (1984a), (1984b), we
nondimensionalized the full original model system and carried out a linear stability
analysis about the steady state n = p =1, u = 0. In this paper we examine the nonlinear
behavior of the simpler model (2.1) in one dimension, namely,

(3.1a) on/ot+9/9x(nou/ot) =0,
(3.1b) u/ox* ot+0°u/ox*+79/dx[n(p+B d°p/ox*)]—sup =0,
(3.1¢) op/ot+a/ax(p du/at)=0,

where we have rescaled time by dividing through by u(= w;+ u,) and the remaining
parameters by dividing through by (1+ v*).
The dispersion relation is

(3.2) a(k*)=—[Brk*+(1—-27)k*+ 5]/ K%,

where

=S

aexp [o(k*)t+ik - x],

A~
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with n', u’, and p’ small perturbations from the steady state n=p =1, u =0. Figure
3.1 illustrates its behavior as 7 increases.

We take 7 as the bifurcation parameter. If 7 is slightly greater than 7, the uniform
steady state will be linearly unstable to random perturbations and the fastest growing
unstable wave number is k. (Fig. 3.1). To examine the behavior of the full nonlinear
system near the bifurcation point, we set 7= 7.+ £°8, where 0<e« 1 and § = +1.

Expanding o about (k7, 7.) in a Taylor series we have

\
(3.3) o(k2, 1.+ €%8) = o (k?, 7.)+ €8 90/97|i2, + O(eh

0

and the exponential growth term is exp [O(e?)t] which suggests the usual long time
scale T=¢’t. As k, is the fastest growing wave number we assume that it will be the
dominant spatial term on the long time scale. We also assume that temporal changes
occur only on the long, or slow, time scale T. To investigate the nonlinear behavior
of (3.1) therefore, we ignore the fast time variable, ¢, and use the method of balancing
harmonics. To this end we substitute

n(x, T,e)=1+ Y /{A(e, T) cos jk.x+ D;(e, T) sin jk.x},
j=1
(3.4) u(x, T,e)= Y. e/{B(e, T)sin jk.x + E(e, T) cos jk.x},
j=1
p(x, T,e) =1+ Y &{C(e, T) cos jk.x+ F;(e, T) sin jk,x}
j=1
where
T=¢t, Ai(e, T)=Y £'AYT),
i=0
with similar expressions for B;, C;, D;, E;, and F,;. We substitute these into (3.1) and
equate coefficients of . This leads to a hierarchy of linear equations for the coefficients

Aj(T), B)(T), Cj(T), D{T), E)(T), and Fi(T) which we can solve. To lowest order
in g, we have

d/dT{A)T)+k,B)(T)}=0,
(3.5) k.. AY(T)+ (ki +s)BY(T)+k.7.(1-k2B)CY(T) =0,
d/dT{CT)+k.BXT)}=0

CIN

/—\ \Kz

k'l-
¢ T INCREASING
T=T,

F1G. 3.1. Behavior of the dispersion relation (3.2) for fixed B and s as 7, the bifurcation parameter, increases.
For 1<, the uniform steady state n=p=1, u=0 (in nondimensional form) is stable to random spatial
perturbations. For 7= 1.+ ¢>8(0< & < 1, 6 =1), the uniform steady state is unstable and the spatial disturbance
with wave number k_ grows fastest, where k2= (s/B7,)"? and 7, =[1+ s +{(1+sB)*—1}?)/2.
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and a similar set of equations for {DY(T), E1(T), Fi(T)}. To simplify the analysis we
shall only consider {A;(T), B,’-(T), Ci( T)} for the remaining calculation. The analysis
may be repeated exactly for {D;(T), E;(T), F(T)}.
Order & terms give
d/dT{AXT)+2k.BX T)}+ k. ANT) dBYT)/dT =0,
2k, 7, AYT)+ (4k>+s)BY(T) +2k.7.(1—-4Bk2) CYT)

d/dT{CYT)+2k.B3T)}+k.CYT) dBS(T)/dT =0.
Secular terms appear at order & in (3.1b). Suppressing these gives the condition
—kz dBY(T)/dT — k.8{A)(T)+ C(T)}+ B 8kiCI(T)
3.7 + ke (2Bk; —2) ANT) CAT) + 3 ke7e( Bk~ 1) AX(T) CI(T)
~3s{CY(T)B(T)~ BY(T)C3(T)}=0.

Standard nonlinear analysis simply requires successive suppression of secular
terms. However, with the structure of our equations this is not sufficient to determine
the amplitude equation. We have to use an integrated form of the conservation
equations. Integrating the first and third of (3.5) we have three simultaneous
inhomogeneous equations for AY(T), BY(T), and C{(T), namely,

ANT)+k.BY(T) =i,
k:BY(T)+Ci(T) =73
where 7y} and v are constants depending on the initial conditions. The system (3.8)
is degenerate and has a nontrivial solution if and only if
[k%(l - Tc) + S]’yg+ kz'Tc y(l) = Oa
that is, there is a constraint on the initial conditions. This is only to be expected because
of the intimate relationship between u and p; that is, the initial random perturbations
in the matrix density from the uniform steady state (p =1) automatically give rise to
the displacements (u) of the material points of the ECM. The correlation between the
two is given by the above constraint. Thus an initial perturbation of the system (2.1)
cannot be random in all variables n, u, and p. Once p is perturbed, u is determined
(and vice versa). Mathematically, other initial conditions are possible but are not of
biological interest.
Integrating the first and third of (3.6), we obtain
AX(T)+2k BY(T) ={ANT)Y/2+ vi,
CAT)+2kB(T) ={CUT)}*/2+ 73
where 7y, and v} are constants.

To simplify the analysis we shall consider initial perturbations to be O(e”); thus
y=1v3=1vy}=1v3;=0. From (3.8) and the integrated form of (3.6), we can solve for
B)(T), C(T), AXT), BXT), and C3(T) in terms of AJ(T) and, substituting into
(3.7), we have the usual Landau equation
d/dT{AN(T)}=6XANT)+ Y{AYT)}Y

where X = (27,+1)/27,, Y = (14B7.s + 247, —63Bs —12)/72Bs

Table 3.1 summarizes the behavior of the amplitude equation (3.10).
Figure 3.2 illustrates the B —s parameter space wherein the cell density evolves
to the bounded steady state n =1+ ¢&(X/|Y])"? cos k. x.

(3.6)

(3.9)

(3.10)
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TABLE 3.1
Behavior of AY(T) from (3.10).

Y<0 Y>0

A evolves to
>0 (x/1Ypv? Af-> o0

Threshold in A9(0)
§<0 A%>0 AN0) < (X/Y)V*=A0-0
A0)>(X/Y)/*= A0

B
/

N

|
\\
\\
\ P\
\\
NN

> S
FIG. 3.2. B-s parameter space (P) where AJ(T) ((3.10)) evolves to a bounded steady state (see Table 3.1).

If we do not make the assumption that the initial perturbations are O(e*) then
we have the perturbed version of the above amplitude equation, namely,

(3.11)  d/dT{AUT)} = Co+8(X + Xo)ANT) + Z{ANT)Y + Y{AUT)}Y

where C,, X,, and Z, are functions of y; and vy}, i =0, 1 and the homogeneous steady
state bifurcates to a heterogeneous steady state dependent (continuously) on initial
conditions. Equation (3.11) is a simple ordinary differential equation which may be
analyzed in the usual way, giving rise to results which are slightly different from those
summarized in Table 3.1 for (3.10). For example, in the case § <0, Y <0, the solution
to (3.10) becomes unbounded. In (3.11), however, the possibility exists of a small
stable steady-state solution, depending on the values of y;, i=0, 1, j=1, 3. The y; are
initial conditions and will be determined from a previous developmental process. Thus
the model suggests that the process of development may lead to a variation in pattern,
depending on the previous developmental phase.

4. Two-dimensional nonlinear analysis. To investigate the nonlinear behavior of
the model in two dimensions is clearly a very complex problem. Experimental observa-
tions indicate that u and V - uy are small. Therefore we may simplify the analysis (with
biological justification) and consider a caricature of the above model in two dimensions.
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We linearize the conservation equations for n and p about the steady state n=p =1,
and integrate to give
(4.1) n=1-60, p=1-6
where 0 =V - y, the dilation. As n and p are necessarily nonnegative we assume 6 <1,
that is, we are dealing with small strains; this is justified from biological observations.

If we replace the sup term in the force balance equation by the linearized term
sy, substitute the linear approximations (4.1) for n and p into the resulting equation,
and take the divergence, we finish up with an equation for 6, namely,
(4.2) V260/39t+V?0+7V{(1—0)*—B(1—0)V*6}—s0=0
where we have used the identity

V - e=grad div u —3 curl curl w.

Clearly the dispersion relation for (4.2) is still (3.2) and, for 7> ., the uniform
steady state, 8 =0, loses linear stability. To study the full nonlinear system, we substitute
(4.3) r=7.+Y g1, 0(x,t)=Y £6_,(x, 1) where0<e« 1

i=1 i=1
into (4.2). As in the analysis in § 3, we equate coefficients of ¢ and the problem reduces
to the solution of a hierarchy of linear equations. We follow in part the process used
by Busse (1983).

The only regular patterns in the plane are rolls, triangles (hexagons), squares, and
tesselations of these. Therefore we look for 6y(x, t) of the form

(4.4) 0o(x, t) =3a,(t){(cos (kx+Iy)+cos (Iy — kx)}+ a,(t) cos 2ly
where the fastest growing unstable mode has wave number K(=(s/B7.)"*) and
k*+1?=K?, 4= K”. Putting a,(t)=0, a,(t)=0, a,(t) =2a,(t) into (4.4) gives roll,
rhombic and hexagonal patterns, respectively (Christopherspn (1940)). On substituting
the above form of 6,(x, t) into (4.2), we find that 6,(x, t) must have the form
0,(x, t) = b,(t) cos 4ly + b,(t) cos (3ly + kx )+ b;(¢) cos (3ly — kx)

+by(t) cos 2(ly + kx) + bs(t) cos 2(ly — kx) + bg(t) cos 2kx
where, on equating coefficients of &7, we can find b,(t), i=1,2 - - - 6 in terms of a,(t)
and a,(t); it is a simple but tedious calculation.

Taking powers of & up to &’ into account, to suppress secular terms, a,( t) and
a,(t) must satisfy the pair of ordinary differential equations,

K? day(1)/ dt = Xa, (1) — Ya,(t)ay(t) —2Za,(1)a3(1) —3(2Z + R)ai(1),

4.5
(*3) K? da,(1)/ dt = Xa,(t) -3 Yai(t) - Zai(t)ay(t) — Ra(t)

where
X=[Q2r+1)/27.{er, + e’} K?, Y=(1/27){er.+ e’} K?,
Z=(3¢’/16B7.){r.—1},  R=(&*/36B7.){67.—5}.
For 7,>0 and & small, X and Y are positive, and the sign of Z and R depends on
the value of 7.
The system (4.5) has the following steady states:
(D) a,(t) = ay(t) =0,
(11)39 b: al(t)=09 a2(t)=:t(X/R)1/29
(4.6) (II)a,b: a,(t)=2ay(t), a,(t)=[-Y=x£{Y’+4X(4Z+R)}"/*]/2(4Z+R),
(IV)a,b: a,(t) =—2ay(t),  ay(t)=[-Y+{Y>*+4X(4Z+R)}"/*]/2(4Z+R),
(V)a,b: a,(t)=+2{X —RY/(R-22Z)}'*/{R+2Z}"?, a)(t)=Y/(R-2Z)
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where, for example, (II)a, b exist if and only if 7.>5/6. To lowest order in ¢, (III)a
is a,(t) =2a,(t), a,(t) =[— Yo+~ Y2]/2(4Z + R) =0, where Y,=¢K?2/2, and this is the
same as (I). A similar argument can be applied to (IV)a and, in the following analysis,
we shall not distinguish between states (I), (III)a, and (IV)a.

We analyze the stability of states (I)-(IV) in the usual way by calculating the
eigenvalues (A,) of the appropriate matrix. This gives a quadratic in A,, with coefficients
dependent on e. To simplify the analysis, we approximate these coefficients to lowest
order in e. The results of the stability analysis are summarized in Table 4.1.

TABLE 4.1
Summary of linear stability analysis of steady states (1)-(1V) (see (4.6)) of the coupled
ordinary differential equations (4.5). (See text for details.)

7.<5/6 5/6<7.,<47/51 47/51<7.<32/33 7.>32/33

T unstable star

|
(Ila, b do | (IT)a stable star
not exist : (II)b saddle point
| |
(III)b and (IV)b | (II)b and (IV)b (III)b and (IV)b
unstable node [ saddle point : stable node

Note that when the critical traction, 7., lies between 5/6 and 32/33, the only stable
regular pattern is a roll, while for 7.>32/33 rolls and hexagons are stable. In the latter
case, the evolved pattern depends on initial conditions.

5. Conclusion. We have shown that, in a simplified version (2.1) of the model
proposed by Oster, Murray, and Harris (1983), nonlinear analysis predicts one- and
two-dimensional patterns in the appropriate parameter space. The one-dimensional
analysis requires an integrated form of the conservation equations in order to get the
amplitude equation. The two-dimensional analysis shows that rolls and hexagons are
linearly stable in certain parameter regimes.

The model is based on the properties of cells in chick dermis and it is well known
that the cells develop into an hexagonal array of aggregations on the chicken back
during feather germ development (Davidson (1983a), (1983b)). Initially, a row of feather
germs appears on the mid-dorsal line on the chick back. Subsequent rows appear
laterally adjacent to this initial row with aggregates at interdigitating points, leading
to a hexagonal pattern. We have shown that the model wherein convection is the major
contribution to cell movement can give rise to such patterns in the dermis. In the case
of the two-dimensional analysis, the pattern of dermal aggregates forms simultaneously.
This sets up a pre-strain on the epidermis and if the mechano-chemical properties of
the epidermis were to change in such a way that the epidermis became competent to
form aggregations sequentially, then the feather germs (epidermal placode+ dermal
papilla) would appear to form sequentially (Murray and Oster (1984a), (1984b)). Note
that the dermis controls the geometry of the feather germ pattern; this appears to be
observed.

Numerical simulations (Perelson, Maini, Murray, Hyman, and Oster (1986)) of
the full original model have shown the possibility of one-dimensional pattern in the



1072 P. K. MAINI AND J. D. MURRAY

vicinity of the bifurcation, and the possibility of a sequentially organized hexagonal
pattern in two dimensions, wherein an aggregation pattern of cells in one dimension
imposes a strain field on either side causing neighboring aggregates to form at interdigi-
tating points.
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