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The normal process of dermal wound healing fails in some cases, due to fibro-proliferative 
disorders such as keloid and hypertrophic scars. These types of abnormal healing may be 
regarded as pathologically excessive responses to wounding in terms of fibroblastic cell 
profiles and their inflammatory growth-factor mediators. Biologically, these conditions are 
poorly understood and current medical treatments are thus unreliable. 

In this paper, the authors apply an existing deterministic mathematical model for 
fibroplasia and wound contraction in adult mammalian dermis (Olsen et al., J. theor. Biol. 
177, 113-128, 1995) to investigate key clinical problems concerning these healing disorders. 
A caricature model is proposed which retains the fundamental cellular and chemical 
components of the full model, in order to analyse the spatiotemporal dynamics of the 
initiation, progression, cessation and regression of fibro-contractive diseases in relation to 
normal healing. This model accounts for fibroblastic cell migration, proliferation and death 
and growth-factor diffusion, production by cells and tissue removal/decay. 

Explicit results are obtained in terms of the model processes and parameters. The rate of 
cellular production of the chemical is shown to be critical to the development of a stable 
pathological state. Further, cessation and/or regression of the disease depend on appropri- 
ate spatiotemporally varying forms for this production rate, which can be understood in 
terms of the bistability of the normal dermal and pathological steady states-a central 
property of the model, which is evident from stability and bifurcation analyses. 

The work predicts novel, biologically realistic and testable pathogenic and control 
mechanisms, the understanding of which will lead toward more effective strategies for 
clinical therapy of fibro-proliferative disorders. 

1. Introduction. The normal healing response of full-thickness dermal 
excisional wounds may be considered within the context of three continu- 
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ous, overlapping temporal phases, termed “inflammation,” “proliferation” 
and “remodelling” (Clark, 1988; Kirsner and Eaglstein, 1993). During the 
proliferative phase, wound closure is usually achieved by a combination of 
wound contraction and new tissue formation (Rudolph et al,, 1992; Skalli 
and Gabbiani, 1988), with the proportions of these contributions dependent 
upon species, age and the location, extent and geometry of the wound. 

The complex, interregulatory cellular events whereby fibroblasts prolifer- 
ate into the wound site, secrete growth factors and extracellular matrix 
proteins, differentiate into myofibroblasts and effect wound contraction are 
collectively termed “fibroplasia,” a constitutive feature of the proliferative 
phase of normal healing (Clark, 1993). The underlying mechanisms of these 
processes are increasingly well delineated and have attracted considerable 
investigation, both experimental (see Clark, 1993; Jennings and Hunt, 1992; 
Kirsner and Eaglstein, 1993; Mast, 1992; Rudolph et al., 1992 for thorough 
reviews) and theoretical (focusing primarily on the contractile effects of 
cell-matrix interactions during fibroplasia (Olsen et al., 1995; Tranquillo 
and Murray, 1992; Traqui et al., 1996)). 

Abnormal regulation of fibroplasia and wound contraction, however, may 
result in one of a wide range of healing disorders (see Asmussen and 
Sollner, 1993; Skalli and Gabbiani, 1988 for overviews). For example, 
excessive dermal responses can lead to gross hypertrophic scars (in which 
the healed wound tissue becomes elevated above the plane of the skin) or 
keloids (in which the scar does not remain confined to the original wound 
margins), characterized by increased levels of cellularity (fibroblasts and 
myofibroblasts), collagen deposition and inflammatory growth factors 
(Ehrlich et al., 1994; Murray and Pinnell, 1992). In addition, active cell 
traction generates intense mechanical stresses, especially around the scar 
periphery, resulting in physical pain. Extensive scarring may also cause 
psychological trauma (Murray and Pinnell, 1992). 

Detailed biological insight into the mechanisms of pathogenesis, progres- 
sion, stabilization and regression of these “fibro-contractive diseases” is 
lacking, and existing clinical corrective methods are typically long-term, 
unpredictable, traumatic for the patient and prone to failure or recurrence. 
These include extensive surgical excision of affected tissues, full-thickness 
skin grafting and mechanical compression (Asmussen and Siillner, 1993; 
Boykin and Molnar, 1992; Murray and Pinnell, 1992; Rudolph et al., 1992). 

Phenomenologically, fibro-contractive diseases commonly exhibit in- 
creased fibroplastic and retractile tissue responses in which myofibroblasts 
are ubiquitous cellular components (Gabbiani, 1992; Skalli and Gabbiani, 
19881, but otherwise, the features of these pathologies are highly diverse 
(Murray, 1993; Skalli et al., 1989). Excessive disorganized extracellular 
matrix deposition (notably fibrillar collagen) and continual inflammatory 
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responses are also characteristic of many fibro-contractive diseases (Ehrlich 
et al., 1994; Murray, 1993). Most of these pathologies stabilize with time, 
and some even partially or completely regress, but the determinants of this 
behaviour are unknown (Asmussen and Sollner, 1993; Murray and Pinnell, 
1992). 

Some fibro-contractive conditions arise from inflammatory settings, such 
as wound healing and soft tissue remodelling; these include severe burn 
scar contractures (with similar consequences to Dupuytren’s disease), hy- 
pertrophic scar, keloids, liver cirrhosis, kidney and liver fibroses, regenerat- 
ing tendon, cataract and fibrotic capsules surrounding tissue implants 
(Boykin and Mollnar, 1992; Ehrlich et al., 1994; Murray and Pinnell, 1992; 
Schiirch et al., 1990; Skalli and Gabbiani, 1988). Others, known as fibro- 
matoses, are non-inflammatory, non-invasive (myo-Nbroplastic lesions; an 
example is the well-documented Dupuytren’s contracture, a permanent 
condition affecting the upper palmar skin which consists of actively contrac- 
tile cellular nodules and fibrous connective tissue cords (Flint, 1990; 
Rudolph and Vande Berg, 1991; Schiirch et al., 1990), resulting in severe 
discomfort and loss of function of the affected hand. There are other 
proliferative tissue disorders with important similarities which do not arise 
from physical injury; an important class is those believed to be neoplastic 
responses, characterized by vigorous myofibroblastic proliferations in the 
stroma of invasive carcinomas (Skalli and Gabbiani, 1988). 

In this paper, we focus on the inflammatory growth-factor-mediated 
fibro-proliferative responses associated with wound healing disorders. These 
are investigated within the framework of a mathematical model recently 
proposed for fibroplasia and wound contraction (Olsen et al., 1995) with the 
aim of an improved understanding of the pathogenic mechanisms of such 
conditions and their relationships to normal healing. 

2. Mathematical Modelling. 

2.1. The fill model framework. We have recently proposed a continuum 
model for fibroplasia and wound contraction in adult mammalian dermis 
(Olsen et al., 1995). This “full” model is briefly summarized here since it 
will be used to investigate abnormal healing. It is based upon the following 
fundamental processes operating within the proliferative phase of healing 
(see also Olsen et al., 1995 and references therein for the biological basis of 
the model): 

Fibroblasts. During wound healing, fibroblasts are actively motile, ex- 
hibiting both random and directed migration. These fluxes are modelled as 
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unbiased Brownian motion for the former and as a chemotactic response to 
gradients in the growth-factor profiles for the latter. Fibroblasts are also 
passively convected by the strained tissue in which they reside. 

New cells are generated by mitosis, modelled by the logistic growth 
function, with the mitotic rate substantially enhanced by the growth factors 
(which are cell cycle competence and progression factors). “Natural” cell 
senescence is described by simple linear decay. Finally, there are transfor- 
mations between the two fibroblastic cell phenotypes. Within a dermal 
wound, a proportion of the fibroblasts undergo a reversible phenotypic 
change into contractile cells known as myofibroblasts. We model this 
transition by reversible kinetics, mediated by the growth-factor profile. 

In addition, fibroblasts metabolize and secrete active growth factors, 
synthesize and degrade fibrillar extracellular matrix components (mediated 
by growth factors) and generate local traction stress within the tissue. 

Myojibroblasts. These cells are not actively motile, but like fibroblasts, 
undergo passive convection by the moving tissue. 

Cell proliferation and death are modelled as for the fibroblasts and the 
phenotypic transformations are the same, but with reversed signs. Note that 
the linear growth rate of myofibroblasts is lower than that for fibroblasts 
(Vande Berg et al., 1989) and that the death rate is increased due to 
“programmed” cell death, or “apoptosis” (Gabbiani, 1992). 

Myofibroblasts also metabolize and secrete growth factors and synthesize 
and degrade extracellular matrix, possibly at a different rate to fibroblasts. 
Their roles in mediating fibroblast-generated traction forces are assumed to 
be transmission and amplification of these stresses within the extracellular 
matrix. 

Growth factors. Many different families of inflammatory growth factors 
are known to regulate fibroplasia, but we consider a single, generic chemi- 
cal (for simplicity) whose properties simulate the combined roles of in vivo 
promoters of healing such as platelet-derived growth factor and transform- 
ing growth factor p. 

The chemical may diffuse through the tissue (again, modelled by Brown- 
ian motion) and is carried by passive convection. It is produced and 
metabolized by both cell types and undergoes tissue removal/inactivation, 
modelled as simple linear decay. 

ExtraceZluZur matrix. Again, a wide variety of extracellular matrix compo- 
nents are involved in dermal wound healing, but we include only (fibrillar) 
type I collagen because of its central roles in fibroplasia and contraction. 
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The only flux of the fibrillar collagen network is due to passive convec- 
tion. It is synthesized (with growth-factor mediation and inhibition by high 
collagen concentrations) and degraded via specific enzymes by both cell 
types. The extracellular matrix also provides the support for cell-derived 
traction stresses and intrinsic tissue stresses. 

2.2. Governing equations, boundary and initial conditions. With some 
further detail on the mathematical representations of these processes 
(Olsen et al., 1995) the non-dimensional model equations are derived from 
conservation laws for the fibroblast density n(x, t), myofibroblast density 
111(x, t), chemical concentration c(x, t) and collagen concentration p(x, t), 
where x is the spatial position vector and t denotes time. 

For simplicity, we consider a linear (or “slash”) wound. Assuming the 
model variables to be independent of wound depth, this requires only a 
single spatial coordinate, x say, in the plane of the skin. In this case the 
model equations are 

KlC 
--n+K,m- 6n , 

c+c 
(1) - 

phenotypic 
conversion 

death 

KlC 
+ -n - K2m - h6m , 

c+c - 
death 

phenotypic 
conversion 

(2) 

diffusion and convection production by cells 

dc d K,(n + fmk 
decay 

-=- 
dt dx Yc + c 

(3) 

convection synthesis and degradation by cells 
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Here, all parameters are positive, and typical values are given in the legend 
to Fig. 1. Note the fibroblast/myofibroblast phenotypic conversions, given 
by reversible dynamics in equations (1) and (2), with chemical mediation of 
the myofibroblastic differentiation. Note also that the chemical production 
term in equation (3) has a maximal rate related to the parameter K,. 

All of the above processes which involve chemical mediation are mod- 
elled by the monotonically increasing and saturating Michaelis-Menten 
dynamics. This functional form is intuitively sensible, but is also derived 
from a theoretical analysis of cell-surface receptor binding dynamics in 
fibroblastic cell-growth-factor interactions (Olsen et al., 1995; Raines et al.; 
Sherratt et al., 1993). 

In reality, unbiased cell movement may also depend upon the local 
growth-factor concentration (a phenomenon termed “chemokinesis”): this 
may be modelled by setting 0, = D,(c), but does not yield qualitative 
results different from those presented in this paper. Previous models of 
epidermal wound closure have shown chemokinesis to be an unimportant 
effect (see Dale et al., 1994, for example), and so we neglect this detail 
here. 

A conservation law for the tissue momentum, together with simplifying 
assumptions that the tissue is a viscoelastic deformable continuum with a 
linear constitutive relation and negligible inertia, yields the fifth model 
equation governing tissue displacement, u(x, t). In the one-dimensional 
linear geometry, this is 

The first two terms on the left-hand side of equation (5) arise from the 
viscous and elastic contributions to the intrinsic tissue stress tensor. The 
third term models the active cell traction stress, which is proportional to 
cell density and inversely proportional to the collagen concentration (for 
sufficiently large p), in agreement with theoretical and experimental con- 
siderations (Bell et al., 1979; Murray et al., 1988). Fibroblasts are assumed 
to generate the traction stresses, whereas myofibroblasts transmit and 
amplify these stresses within the extracellular matrix. The term on the 
right-hand side of (5) represents the (linear) restoring force which resists 
dermal tissue motion, which is assumed to be proportional to the displace- 
ment u per unit collagen concentration. The parameter s thus accounts for 
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dermal tethering-it assumes lower values for loose-skinned mammals 
(such as rats and rabbits) and higher values for tight-skinned mammals 
(such as pigs and humans). 

The wound centre is at x = 0 with the initial wound margin given by 
x = 1. By symmetry, these equations may be solved over the semi-infinite 
domain 0 IX, t < ~0 with symmetric boundary conditions at x = 0 and 
q = (n, m, c, p, u) --, q, = (n,,,O, 0, po, 0) as x + ~0. Throughout this paper, q 
denotes the vector of model variables. 

The vector q. is a uniform steady state representative of normal dermis 
in which the myofibroblast and generic growth-factor levels are zero. By the 
scalings used in the non-dimensionalization process, ~~ and p0 are set to 
unity (Olsen et al., 1995). The initial wound state, qinit(X) = 
(ninit,O, Cinit, Pinit, 0) is a large perturbation of the dermal state qO. Specifi- 
cally, the initial conditions corresponding to a dermal excisional wound are 
as given in the following list: 

Fibroblasts: None inside the wound and unwounded dermal levels out- 
side, so ni,it(x> = H(x - l), where H(e) is the Heaviside step 
function. 

Chemical: Active growth-factor profile centred around the wound site 
due to the early inflammatory response following injury. Specifi- 
cally, we use the function Cinit(X) = ci exp( -x2), which has an 
appropriate qualitative form. 

Collagen: Low-level matrix deposition inside the wound during the early 
inflammatory phase and unwounded dermal concentration out- 
side, giving Pinit( X> = pi + (1 - p,)H( x - 1). 

The non-dimensional model parameter value estimates, sensitivity analy- 
ses and biological interpretations are detailed in Olsen et al. (1995), but 
some key parameters are highlighted as required in this paper. 

2.3. Pathological steady states. Under normal conditions q, is a locally 
stable steady state and the initial wound state evolves back to q,,, thus 
simulating fibroplasia and contraction over a time scale of about 30 days, 
which is characteristic of the proliferative phase of healing. An example 
simulation of normal healing is illustrated in Fig. 1 (only the fibroblast 
density and tissue displacement is shown). 

More generally, steady states q* are the time-independent solutions of 
equations (l)-(5). The passive convection terms are zero at any steady 
state, so that the values of p and u are governed by the values of n, m and 
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Fibroblasts 
I I 
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Figure 1. Numerical solution (using the methods of lines and Gear’s method) of 
the “full” model given by equations (l)-(5) with boundary and initial conditions 
as in section 2.2. This simulation corresponds to normal healing. Profiles of 
fibroblast cell density and tissue displacement only are plotted against distance 
x from the wound centre at six successive time intervals of 5 days. For the 
fibroblasts, these are indicated by increasingly broken curves. Tissue displace- 
ment is represented as the movement of (initially evenly spaced) tattoo marks in 
and around the wound site with time, as indicated by the arrows. The initial 
wound margin is x = 1 (given by the dashed line in the tissue displacement 
picture) and a finite domain approximation x, = 20 is used for these simula. 
tions, with zero flux imposed at x, rather than dermal steady state values. Only 
x E f0,4] is shown, for clarity. These simulations show that during normal 
healing, fibroblasts infiltrate the wound space and tissue contraction occurs in 
and around the wound site. Parameter values are D,, = 0.02, (Y = 0.1, p = 0.2, 
u = 0.02, A = 44.5, B = 1, y = 0.01, tcl = 10, c = 1, K2 = 1, 6 = 0.0198, e# * 0.5, 
A=lO, D,=O.2, KC=0.4, C=l, x=1, &=0.5, w=O.O08, P=lO, e-0.1, 
~p=3, S,=0.0008, q-2, ~~~220, v=O.O3, 5=5, ~=0.005, s=l, ci=l and 
pi = 0.01. Note that K,, = 1 and ~c(~) = 0.5. 

c, whose steady state equations are decoupled from those of p and U. 
Restricting attention to spatially uniform steady states yields the equations 

for n, m and c. 
In addition to the normal dermal steady state q, = (no,O,O, po,O), equa- 

tions (6)~(8) also permit solutions for which n > no, m > 0 and c > 0, which 
is highly indicative of a pathologically excessive healing response. This is 
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0 
x X 

Figure 2. Numerical solution of the “full” model as in Fig. 1, but plotted at 
successive time intervals of 8 days. This simulation corresponds to a pathologi- 
cal response; fibroblast density becomes elevated above the normal dermal level 
and considerable tissue forces are generated (note that in this simulation, the 
cell traction parameter v was decreased in order to yield mathematically valid 
solutions-see below and Fig. 1 legend). The apparent outward tissue strain is 
due to the “tugging” effect at the leading edge of the advancing pathology, and 
is followed by contraction of the affected tissue behind the front. In addition 
(not shown), myofibroblast, chemical and collagen levels also become substan- 
tially and permanently increased above their normal values, suggestive of the 
type of fibro-proliferative disorder introduced in section 1. A wider spatial 
domain, x E [0, lo], is shown here. Parameter values as in Fig. 1 except K, = 1 
and v = 0.002. 

evident from numerical solutions of (6)-(8) for a wide range of biologically 
valid parameter values, and some “pathological” steady states, qp say, can 
be shown to be locally stable to small perturbations. Figure 2 shows a 
typical pathological simulation. 

Significantly, equations (6)-(8) imply that if c > 0 and n > 0, then m f 0, 
so that any pathological state with a persistent inflammatory component 
(indicated by c > 0) exhibits a permanent myofibroblastic profile, which is a 
paradigm of an important class of fibro-proliferative pathologies (Ehrlich et 
al., 1994; McCann et al., 1993; Murray, 1993; Rudolph and Vande Berg, 
1991; Schiirch et al., 1990; Skalli and Gabbiani, 1988). 

3. Analysis of a Caricature Model. The model has been shown to exhibit 
steady solutions reminiscent of healing pathologies. Biologically, it is crucial 
to determine the key parameters which regulate the transformation be- 
tween normal and abnormal healing. Equations (6)~(8) are not explicitly 
solvable, however, so to gain further insight into the steady states of (l)-(5) 
and the dynamics of pathological and normal healing responses we propose 
a caricature model which mimics the essential features of the full system. 
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3.1. Derivation of the caricature model. Explicitly, we consider a compos- 
ite cell density n(x, t) representing both fibroblasts and myofibroblasts, and 
a generic chemical concentration c(x, t) with similar properties to those 
described in section 2.1: 

Cells. Since the tissue biomechanics have been omitted, passive convec- 
tion is neglected and the cell flux is due to random migration and chemo- 
taxis. The cell proliferation and loss terms are the same as in the full 
model, but there are no phenotypic conversions because of the assumption 
of fibroblastic homogeneity. 

Chemical. Diffusion is the only contribution to the chemical flux, as 
there is no convection. The cells produce the chemical, with the same 
metabolic dependence on chemical concentration as in the full model, and 
there is also tissue removal/inactivation. 

As in the full model, chemical mediation of cell chemotaxis, proliferation 
and production of the chemical obeys the Michaelis-Menten uptake form 
based on the dynamics of growth factors and their cell-surface receptors. 

The equations. The above processes capture the fundamental fibroblas- 
tic cellular functions and their coupling to the growth-factor dynamics of 
the full model as in equations (l)-(3), giving the caricature system 

cell movement 

mitosis 

+:(I+$-) 

death 

n(1 - yn) - Sn - =f(n,c), (9) 

diffusion 

decay 

F =g(n,c). (10) 

As in section 2.2, the boundary conditions are zero species gradients at 
x = 0 by symmetry and q = (n, c) + q,, = (n,,O> as x --) ~0. Again, q. is 
interpreted as the normal dermal steady state and no = [l - 6/a l/y is set 
to unity. The initial wound state is given by ginit = (H(x - 11, Cinit(X)), 
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obtained by analogous arguments for the initial cellular and chemical 
profiles as in the full model. 

3.2. Existence and stability of steady states. Uniform steady states q* of 
(9) and (10) are the solutions of f(n, c) = 0 = g(n, c). These, together with 
the parameter inequalities which determine their existence (equivalent to 
non-negative values for the species variables) and stability, can be deduced 
analytically: 

Trivial: qt = (O,O>. With no cells or growth factors, this steady state is 
expected intuitively and may be representative of a chronic non-healing 
wound scenario; however, it is of little relevance to excessive healing 
pathologies, the focus of this paper. The steady state exists for all parame- 
ter values and is locally stable if and only if u < 6. 

Dermal: q0 = (n,, 0). Here there are fibroblasts, but no active growth 
factors. This dermal, or unwounded, steady state exists if and only if 6 < (T, 
so this constraint must be satisfied by realistic parameter values. q, is 
locally stable if and only if 6 < cr and K,TQ < ‘y, 8,. 

Pathological: q,, = (n,, cJ. Steady states with q > 0 are not quite as 
simple: cP is given by real, positive roots of p(c P = a2c2 + a,c + a0 = 0, 
where a2 = (1 +A)&, a, = (1 +&(~,6, - K,IZ~) +AK,(~, - 7-l) + SS, and 
a, = B(y, 8, - K,Tz~). Also, g = 0 implies np = S,(y, + cp)/~,. The necessary 
and sufficient condition for one such steady state is a, < 0 and those for 
two pathological steady states (q *, say, where q+ > q_> are a, > 0, a, < 0 
and a; - 4a,a, > 0. Otherwise, there are no such solutions. 

Linear stability analysis together with the signs of f and g in the 
(n, c) 2 (0,O) quadrant of phase space show that when only one pathologi- 
cal steady state exists, it is a stable node and q,, is a saddle point. If both 
q + exist, however, then q_ is a saddle point and both q, and q+ are stable 
nodes. The regions of attractions of q. and q+ are delineated by the 
separatrix, II = S(c) say, which is also the stable manifold through q_. S(c) 
is confined to the positive quadrant and is a monotonic decreasing function. 
These results are summarised qualitatively in Fig. 3. 

3.3. Key parameters and bifurcations. The values of parameters in the 
inequality K,no < y,S, (except no, which is set to unity) are crucial in 
determining the outcome of the healing response. Note that the intercept 
of the g = 0 null cline on the n-axis is yC&/~,nO (Fig. 3). As K, is 
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Figure 3. Qualitative phase space diagrams for the caricature model with 
kinetics f and g as in (9) and (101, respectively (section 3.1). The positive 
quadrant null clines f= 0 and g = 0 and the biologically realistic steady states 
q* are shown, with filled circles representing (locally) stable steady states and 
open circles representing unstable steady states. In (a), the dermal steady state 
q,, is globally stable. In (b), q0 and the pathological steady state q+ are locally 
stable whereas the pathological steady state q_ is unstable-the attracting 
regions of q, and q+ are separated by the stable manifold through the saddle 
point at q_. In (cl, q+ is globally stable. 

sequentially increased (or as ‘yC or 8, is decreased) whilst fixing the other 
parameter values, the dynamics exhibit two important bifurcations. This is 
qualitatively evident from Fig. 3, but also from the steady state equations 
f( n, c) = 0 = g( n, c) and their linear stability analyses. 

We focus on the parameter K, for the remainder of this paper. This 
parameter represents the maximal rate of active growth-factor production 
by fibroblastic cells, since this is a potentially manipulable biological param- 
eter. Much of the following analysis, however, could be pursued for either 
SC, the rate of active growth-factor removal from the tissue, or yC, the active 
growth-factor concentration which elicits half-maximal binding of cell- 
surface receptors to their growth-factor ligands. 

(i) Saddle-node bifurcation at K, = K$). K(~) is calculated from the 
equation a: - 4a,a, = 0 under the constraintsC a, > 0 and a, < 0 (section 
3.2). As K, increases through K:I), q,, remains locally stable but loses its 
global stability as the pathological steady states q_ and q, appear, which 
are unstable and locally stable, respectively (Fig. 3(a, b)). 

(ii) Transcritical bifurcation at K, = ~c(*). KC*) is easily calculated to be 
y,S,/n,. As K, increases through ~c(*), qO loies stability and q+ becomes 
globally stable (Fig. 3(b, c>). 

The dynamics of n and c may be summarized in a bifurcation diagram, 
obtained by plotting the steady states n* and c* as functions of K, as 
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Figure 4. Qualitative bifurcation diagrams illustrating the variations of the 
steady states (n*,c*) with the parameter K.~, as deduced from the analysis of 
sections 3.2 and 3.3 (see also Fig. 3). Solid curves represent (locally) stable 
steady states and broken curves represent unstable steady states. The dermal 
steady state (n,,c,) and the pathological steady states (n,,c,) are indicated. 

shown in Fig. 4. The qualitative dynamics of the system can be subdivided 
into three intervals: I,,, = (0, K:‘)), Ibist = ( K!~), K:~)) and Ipath = (KC(~), w). 

If K, E &,,, then the dynamics represent normal wound healing, for any 
initial conditions (see also Fig. 3(a)). If K, E Ipath, then a pathological 
transition will occur-again, given any initial data (see also Fig. 3(c)). The 
bistable regime, K, E Ibist , however, exhibits richer behaviour (see also Fig. 
3(b)). Here, the initial conditions and other parameter values strongly 
influence the dynamics of the system (9) and (10). The dependence on 
initial profiles is crucial and means that some wound conditions may trigger 
a pathological response while others do not. 

The bistability in this system (for K, E Ibist, see Fig. 4) has important 
consequences. Suppose that K, E Ibist and that normal healing dynamics are 
in progress. If a forced perturbation to the system causes (n,c) to move 
from the attracting region for q. to that for q,, then there will be a 
pathological outcome unless another parameter, such as K,, is also changed. 
Similarly, if a forced perturbation increases K, above K:~), then K, must be 
lowered below K,(~) to ensure normal healing. Biologically, these predictions 
suggest various therapeutic strategies, as discussed later. 

3.4. Spatiotemporal development of pathological states. The spatial na- 
ture of normal and pathological healing dynamics is of great interest. First, 
normal healing is simulated by solving equations (9) and (10) with boundary 
and initial conditions as in section 3.2. Typical results are shown in Fig. 5, 
in which K, E Ibist and the initial data lie entirely within the attracting 
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Figure 5. Numerical solution of the caricature model given by equations (9) and 
(10) and boundary and initial conditions as in section 3.2, corresponding to 
normal healing. Profiles of cell density and chemical concentration are plotted 
against distance x from the wound centre at six successive time intervals (given 
by increasing broken curves) of 5 days (cells) and 1 day (chemical). See also Fig. 
1. Parameter values are D, = 0.02, a = 0.05, p = 0.2, u= 0.02, A = 44.5, 8 = 1, 
y= 0.01, 6 = 0.0198, DC = 0.2, K, = 0.1, -yC = 1, 8, = 0.5, and ci = 1. Again, 
n, = 1 and K!‘) = 0.5. 

region for q,,. Normal healing is characterised by chemical-driven cellular 
proliferation into the wound space (0 IX I 1) accompanied by a relatively 
rapid chemical decay (Fig. 5). 

If K, E $ath9 however, the numerical simulations show markedly different 
behaviour, as demonstrated in Fig. 6, which is suggestive of a severe 
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Figure 6. Numerical solution of the caricature model as in Fig. 5, but with 
successive time intervals of 5 days for both the cell and chemical profiles, and 
K = 0.6 > KB). This simulation corresponds to a severe healing pathology, 
characterised by grossly excessive cellular and chemical levels which propagate 
from near the orieinal wound margin. See also Fig. 2. 
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fibro-proliferative pathology (section 11. Wave-like solutions appear to 
evolve from a point near the initial wound boundary, x = 1, resulting in 
highly elevated cell and chemical levels which not only invade the wound 
space, but also spread into previously unaffected tissue over a time scale of 
days. 

Pathological responses arising from K, E Ibist (as discussed above) exhibit 
similar spatiotemporal behaviour to that illustrated in Fig. 6 (not shown). 

From the form of equations (9) and (10) and the numerical simulations of 
the pathological response, it appears that travelling wave solutions (that is, 
with constant wave velocity and wave profiles) develop from the initial 
conditions. Such solutions have the form n(x, t> = N(z) and c(x, t) = C(z), 
where z =x - at and a is the wave velocity. Substituting into (9) and (10) 
gives a system of coupled ordinary differential equations. 

The supposition that travelling wave solutions effect a transition from the 
dermal steady state Q. to the pathological steady state Q, is true if and 
only if there exists a phase trajectory, Y say, between Q. and Q, in 
Q=(N,C,U,V) space, where U = dN/dz and V= dC/dz (see Murray, 
1989, for several examples of travelling wave analyses). Further, Fig. 6 
shows that Q + Q. as z + m and that Q + Q, as z + -to. Thus, necessary 
conditions for Y to exist are a stable local manifold at Q,, and an unstable 
local manifold at Q,. 

Local stability analyses of the system in Q-space at Q. and Q, reveal 
that for K, E Ipath, these conditions are satisfied. The further requirement 
that Y must lie entirely in the subspace (N, C) 2 (O,O> imposes a lower 
bound on a in terms of the model parameters: 

For K, E Ibist, the above conditions are again satisfied, but no minimum 
wave velocity is stipulated in this case. 

In summary, travelling wave solutions of (9) and (10) may drive the 
system to the stable pathological steady state if and only if K, > KAY), and 
that this state invades neighbouring tissue with a minimum wave velocity of 
a if K > K!~). It can be shown that if either cell chemotaxis or random m,n 
migration is neglected, by setting (Y or 0, to zero, respectively, in (91, then 
the basic methods and results of the travelling wave analysis as outlined 
above are unaffected. 

Whether active extracellular growth factors are freely diffusible through 
tissue is unclear-the availability of active growth factors in viva may be 
mediated by ligand binding to fixed sites within the fibrillar extracellular 
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matrix scaffold (Clark, 1991). This scenario is modelled by setting 0, to 
zero in equation (10). A similar analysis to that above predicts that 
travelling wave solutions may exist for any K, > K:‘), but no minimum wave 
velocity is imposed. In this case, numerical simulations reveal that patholog- 
ical waves do form (as for the case 0, > 0) and that this depends on the 
initial conditions when K, E Ibist. 

3.5. Cessation and regression. Having investigated the initiation and 
progression of pathological responses in relation to normal healing dynam- 
ics, two important clinical problems remain. First, how do invasive patho- 
logical dynamics become spatially limited? Fibro-proliferative pathologies 
rarely proceed far beyond the original wound boundaries, except in exces- 
sive dermal scars such as keloids (Asmussen and Siillner, 1993; Murray, 
19931, whereas the model predicts that a pathological wave will advance 
(with constant speed) throughout the skin. Second, what mechanisms might 
cause a fibro-proliferative disorder to partially or fully regress? The clinical 
occurrence, extent and permanence of regression is unpredictable and 
unexplained (McCann et al., 1993; Murray and Pinnell, 1992). These issues 
are addressed below. 

(i) Cessation. The phenomenon of a wave-like progression of a patho- 
logical state (Fig. 6) followed by a cessation of the wave resulting in a 
stable, spatially bounded disease would correspond to a stable spatially 
inhomogeneous steady state solution of equations (9) and (10). Such a 
solution is only possible if some model parameters are spatially inhomoge- 
neous such that q+ is locally stable near x = 0 and unstable for large X. 

Focusing again on K=, this implies that K, E I,,,, for large X, and Fig. 7 
illustrates the solution of the caricature model with such a spatially vary- 
ing K,. 

Figure 7 confirms that the pathological travelling wave is halted approxi- 
mately at the point n =xb where K, falls below K$), although there is 
substantial “overshoot,” most notably in cellular levels, due to the chemical 
diffusive flux which effectively modulates the sharp transition of K, through 
its bifurcation value. This is confirmed by setting 0, to zero and repeating 
the simulations. In this case, the wave stops abruptly at xb with no 
overshoot (not shown). 

Note that if K,(X) E Ipath for 0 IX Ix, but K,(X) E Ibist for X > xb9 then 
the pathological wave velocity and profiles will become modulated at xb but 
cessation does not occur because q+ remains locally stable. 

The implications of the above results are discussed in section 5. 
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Figure 7. Numerical solution of the caricature model as in Fig. 6, but with 
K,(X) = 0.6 if 0 IX I 4 and K,(X) = 0 if x > 4. The solid curves are the steady 
state profiles (calculated at 150 days). Note that the spatial extent of the 
pathology extends beyond the value xb = 4 (see text). 

(ii) Regression. A related problem concerns the generally variable re- 
gression of some fibro-proliferative disorders. In the context of the carica- 
ture model, such behaviour is represented by pathological dynamics toward 
q+ from the initial conditions, followed in time by wave cessation and a 
gradual return toward q. throughout the domain. 

Whereas cessation is an inherently spatial problem, regression is essen- 
tially a temporal anti-pathogenic phenomenon. Such a mechanism could 
involve time-dependent model parameter values-a reduction in K,, for 
example. By analogy with the above arguments for cessation, regression is 
possible if I, E I,,,,, for all t > t,, where t, is a characteristic regression 
time of the disease. This would imply that q, loses stability to q, at time t,, 
initiating a transition back toward the normal dermal state. Results for a 
simple switch K,(t) = 1.2~~ (‘) for 0 I t I t, and K,(t) = 0 for t > t, are 
shown in Fig. 8. 

After time t,, the regression in the chemical concentration is rapid, 
within a few days, whereas ceil levels diminish much more gradually, over a 
time scale of years toward their dermal levels (Fig. 8), as is typical of keloid 
and hypertrophic scar regression (Murray and Pinnell, 1992). Note that the 
pathological response response progresses some distance beyond the point 
at which the temporal switch occurs and that the regression dynamics are 
monotonic rather than wave-like: these features are particularly evident 
from the cell profiles in Fig. 8. Again, overshoot does not occur for the case 
0, = 0 (not shown), and reducing K, into the interval Ibist only serves to 
modulate the advancing pathology rather than inducing regression. 
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Figure 8. Numerical solution of the caricature model as in Fig.‘6, but with 12 
successive time intervals teach of 5 days) and I, = 0.6 if 0 <t I 20 and 
Kc(t) = 0 if t > 20. Solution profiles at times 0 it I 20 are indicated by solid 
curves and those for t > 20 by broken curves for clarity. The pathological wave 
progression is indicated by solid arrows and the regression by empty arrows. 

These non-autonomous forms for K&.X, t) could, in reality, arise from 
factors not explicitly modelled in this work. For example, synergy between 
different types of growth factors (which are activated during wound healing) 
can cause one such chemical to up-regulate cellular production of another 
(Clark, 1991; Martin et al., 1992; Sprugel et al., 1987), perhaps by increasing 
cell-surface receptor expression or by promoting intracellular messenger 
signals involved in growth-factor-mediated biosynthesis. 

4. Discussion. In this work, we have addressed some clinically important 
issues regarding fibro-proliferative disorders of dermal wound healing (out- 
lined in section 1) by application of a previously proposed deterministic 
mathematical model for fibroplasia and wound contraction (Olsen et al., 
1995) (section 2). A simpler, caricature model was developed to investigate 
a range of fibro-proliferative healing disorders characterized by excessive 
fibroblastic cell and inflammatory growth-factor profiles (sections 2.3 and 
3.1). Qualitative and quantitative insight was obtained into the pathogene- 
sis, progression, stability, cessation and regression of pathological states in 
relation to normal healing, highlighting the roles of key model processes 
and parameters (sections 3.2-3.5). 

The dynamics g(n, c) of the inflammatory growth-factor mediators are 
crucial to the behaviour of the model system given by equations (9) and (10) 
and, particularly, the balance between cellular production of the active 
chemical and chemical removal from the tissue is pivotal; the former is 
controlled by the parameter K,. Pathogenesis to a disease state is guaran- 
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teed if K, > Ki2) and is possible, depending on the initial perturbation to 
the nOrma dermal state, if K, > K, . (l) This is clear from the phase plane, 
linear stability and bifurcation analyses of sections 3.2 and 3.3 (see also 
Figs. 3 and 4). Transitions to pathological states are proposed to occur via 
travelling waves: one moving into the wound space (the “healing” wave) 
and another moving away from the wound (the “pathological” wave) into 
normal skin (Fig. 6, section 3.4). If K, > ~2~) and 0, > 0, then the pathologi- 
cal wave has a minimum speed which we have calculated analytically. 

The resulting pathology can become spatially bounded if K, varies 
appropriately with distance, X, from the wound centre (section 3.5). Figure 
7 illustrates this phenomenon, showing considerable “overshoot” of the 
pathological response. Similarly, gradual regression of the disease may 
occur if K, varies appropriately with time t (section 3.5), as demonstrated 
in Fig. 8. The difference between keloid and hypertrophic scarring-namely, 
that the latter condition generally remains confined within the original 
wound boundaries-is manifest in the spatial extent of the pathology, 
which in this model is determined by the form of K,(x, t) and by other 
parameter values (the chemical diffusion coefficient 0, influences the 
degree of the overshoot effect, for example). 

The prescribed non-autonomous forms for K&X, t) (section 3.5) crudely 
account for processes involved in wound healing that have not been 
explicitly included in this model. Although K,(x, t) may, in principle, be 
derived from an appropriate conservation-type equation, the additional 
complexity would question this approach within our “caricature” frame- 
work. 

The effects of spatiotemporal changes in K, may be understood by 
reference to the bifurcation diagram (Fig. 4). The bistability exhibited by 
the system for K;l) < K, < Kz2) is a crucial property of the model and has 
potentially important implications. For example, suppose that the dynamics 
lie on the stable branch q,. If K, is increased beyond ~c(~), then the 
dynamics move to the stable “pathological” branch q,. However, a thera- 
peutic (or natural) reduction in K, below ~2~) is insufficient: K, must fall 
below K(~) for the pathology to be successfully treated. Therapeutic and 
correcti;e strategies in combating fibro-proliferative disorders could benefit 
from new insights gained from these theoretical results. 

We propose that adult human dermis of individuals has an effective K, 
below ~c(~) with the consequence that the dermal state is stable so that 
normal healing dynamics are initiated upon wounding (Fig. 5). This permits 
the scenario that K, > K~I), however, in which case, certain wound condi- 
tions and trauma-induced local perturbations may trigger a pathological 
response (section 3.3). Such a hypothesis suggests mechanisms for the 
apparent differential incidences of fibro-proliferative disorders between 
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racial groups and variations with age, anatomical location and other at- 
tributes (Asmussen and Siillner, 1993; Murray, 1993). The hypothesis may 
also explain the well known but inadequately understood observation that 
hypertrophic scarring occurs more frequently in full-thickness bums wounds 
than in excisional wounds (Asmussen and Siillner, 1993; Boykin and 
Molnar, 1992; Murray and Pinnell, 1992). The heightened inflammatory cell 
influx early in the healing of bum wounds may serve to increase the initial 
supply of active growth factors, thus triggering the excessive healing re- 
sponse. Pathogenic stimuli could also be related to cellular signals that 
either effectively enhance K~, perhaps by up-regulating ligand receptor 
expression in fibroblastic cells, or that deplete growth-factor inactivation 
sites in the extracellular milieu (Clark, 1991). There are also other possibili- 
ties, such as excessive supplies of activated growth factors or activation 
signals, or up-regulated binding protein levels which effectively prolong the 
efficacy of polypeptide growth factors in uivo (Bowen-Pope et aE., 1984; 
Raines et al., 1990; Sprugel et al., 1987). These scenarios are all potentially 
testable, with the model predictions of section 3 borne in mind. 

One important outstanding question concerns whether the caricature 
model (9) and (10) is an adequate representation of the full model system 
(l)-(5) with respect to the behaviour studied in section 3. Numerical 
simulations suggest that this is indeed the case. The full model can be 
shown to exhibit a steady state structure similar to that for the caricature 
model, as alluded to in sections 2.3-3.2. The advantage of the caricature 
model is that it can be studied analytically; in the full model we must rely 
on numerical solutions alone. The full model elicits the same qualitative 
phenomena of pathogenesis, wave-like progression, cessation and regres- 
sion as the caricature model, but also yields insight into the extracellular 
matrix involvement in these diseases. Specifically, excessive collagen accu- 
mulation occurs in the pathological response-which is expected from 
equation (4)-and intense mechanical forces (“contractures”) are gener- 
ated, particularly at the leading front of the disease (not shown). These 
biological features are typical of fibro-proliferative disorders (Boykin and 
Molnar, 1992; Flint, 1990; Murray, 1993; Rudolph et al., 1992; Skalli and 
Gabbiani, 1988). 

The fundamental conclusion of this work is that with an understanding of 
the spatiotemporal dynamics of fibro-proliferative disorders, we may sug- 
gest mechanisms by which these pathologies arise, develop, stabilize and 
regress, and propose strategies for new clinical approaches in managing 
these diseases-all of which are potentially testable in experiments. 
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