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1. Introduction and background biology

Development of spatial pattern and form is one of the central issues in embryology and is included
under the general name of morphogenesis. Pattern generation models are grouped together as
morphogenetic models. These models provide the embryologist with possible scenarios as to how, and
often when, pattern is laid down and how the embryonic form might be created. Although genes
control pattern formation genetics says nothing about the actual mechanisms involved nor how the vast
range of pattern and form that we see evolves from a homogeneous mass of dividing cells.

Broadly speaking the two prevailing views of pattern generation that have dominated the thinking of
embryologists in the past few years are the long standing Turing (1952) chemical pre-pattern approach
and the more recent mechanochemical approach developed by G.F. Oster and J.D. Murray and their
colleagues [for example, Murray et al. 1983, Oster et al. 1983, Murray and Oster 1984a, b, Oster et al.
1985]. General descriptions have been given by Murray and Maini [1986] and Oster and Murray [1988].

Turing’s theory [1952] of morphogenesis involves hypothetical chemicals, morphogens, which react
and diffuse in such a way that if the kinetics have certain properties and the diffusion coefficients of the
chemicals are not all the same then steady state heterogeneous spatial patterns in chemical concen-
trations can evolve from initial random perturbations about homogeneous steady states. Morphogenesis
then proceeds by the cells reacting to the chemical prepattern and differentiating according to some
bauplan [Wolpert 1969, 1981]. Turing’s theory has stimulated a large amount of research, both
theoretical and experimental. Such reaction diffusion models have been widely studied and applied to a
variety of biological problems: see, for example [Murray 1977, 1981, Meinhardt 1982} and the book by
Murray [1988]. The books by Fife [1979], Smoller [1983] and Britton [1986] give mathematical
treatments of reaction diffusion systems. The dramatic Belousov—Zhabotinskii reaction is the best
known reaction which will generate steady state concentration patterns. The book of articles edited by
Field and Burger [1985] gives a good overview of this fascinating reaction.

In this paper we shall describe the comparatively new Oster—-Murray mechanochemical approach,
which directly brings forces and known properties of biological tissue into the process of morphogenetic
pattern formation, and apply it to several specific developmental problems of current widespread
interest in embryology.

The two approaches are basically quite different. In the chemical prepattern approach, pattern
formation and morphogenesis takes place sequentially. First the chemical concentration pattern is
formed, then the cells “read out” this pattern and the various cell differentiations, cell movement, and
so on, follow from the chemical blueprint. So, in this approach morphogenesis is essentially a slave
process which is determined once the chemical pattern has been established. Mechanical shaping of
form which occurs during embryogenesis is not addressed in the chemical theory of morphogenesis. The
continuing elusiveness of the chemical morphogens is also proving a considerable drawback in the
acceptance of such a theory of morphogenesis. There is, however, no question but that chemicals play
important roles in embryogenesis.

In the mechanochemical approach, pattern formation and morphogenesis is considered to go on
simultaneously as a single process. An important aspect of this approach is that the models associated
with it are formulated in terms of measurable quantities such as cell densities, forces, tissue deformation
and so on. This focuses attention on the morphogenetic process itself and is more amenable to
experimental investigation. The principal use of any theory is in its predictions and, even though each
theory might be able to create similar patterns, they are mainly distinguished by the different
experiments they suggest.
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A telling point in favour of simultaneous development is that such mechanisms have the potential for
self-correction. Embryonic development is usually a very stable process with the embryo capable of
adjusting to many outside disturbances. The process whereby a prepattern exists and then mor-
phogenesis takes place is effectively an open loop system. These are potentially unstable processes and
make it difficult for the embryo to make the necessary corrective adjustments as development proceeds.

Here we shall discuss morphogenetic processes which involve coordinated movement or patterning of
populations of cells. The two types of early embryonic cells we shall be concerned with are fibroblast, or
dermal or mesenchymal, cells and epidermal, or epithelial, cells. Fibroblast cells are capable of
independent movement, due to long finger-like protrusions called filopodia or lamellapodia which grab
onto adhesive sites on a tissue or external substratum and pull themselves along: spatial aggregation
patterns in these appear as spatial variations in cell number density. Epidermal cells, on the other hand,
in general do not move but are packed together in sheets and spatial patterns in their population are
manifested by cell deformations. A notable exception is in the process of wound healing which is one of
the applications we discuss in Section 6.

We first consider mesenchymal (fibroblast) cell pattern formation in early embryogenesis. In animal
development the basic body plan is more or less laid down in the first few weeks. It is during this crucial
early period that we expect pattern and form generating mechanisms, such as we propose here, to be
operative. All of the models we describe are firmly based on macroscopic experimentally measurable
variables and on generally accepted properties of embryonic cells.

In the following section we show how the models are derived and how a variety of effects can be
incorporated if indicated from subsequent experiments. We should perhaps add here that these models
pose numerous unsolved mathematical, both analytical and numerical, and biological modelling
problems.

2. Mechanical models for mesenchymal morphogenesis

Several factors affect the movement of embryonic cells within a tissue substratum which is made up
of extracellular matrix (ECM). For example, (i) convection, where cells may move passively on the
ECM, due to the forces exerted on the ECM by other cells; (ii) contact guidance, in which the
substratum on which cells crawl suggests a preferred direction; (iii) contact inhibition by cells, whereby
a high density of neighbouring cells inhibits motion; (iv) haptotaxis, which we describe below, where
the cells move up an adhesive gradient; (v) diffusion, where the cells move randomly but generally
down a cell density gradient; (vi) galvanotaxis, where movement from the field generated by electric
potentials, which are known to exist in embryos, provides a preferred direction of motion; (vii)
chemotaxis, whereby a chemical gradient can direct cell motion both up and down a concentration
gradient. These effects are all well documented from experiment.

The model field equations encapsulate the key features which affect cell movement within its
extracellular environment. We shall not include all of the effects just mentioned but it will be clear how
they can be incorporated and their effect quantified. The subsequent analysis of the field equations will
show how regular patterned aggregates of cells come about. In sections 4 and 5 we shall describe two
real applications of the model, namely to the highly organised patterns on skin such as the primordia
which become feathers and scales, and the condensation of cells which presage the cartilage pattern in
developing limbs.
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The basic mechanical model hinges on two key experimentally determined properties of mesenchy-
mal cells in vitro: (i) cells migrate within a tissue substratum made up of fibrous extracellular matrix,
the ECM, and other cells; (ii) cells can generate large traction forces [Harris et al. 1981]. The basic
mechanism models the mechanical interaction between the motile cells and the viscoelastic substratum,
within which they move.

Mesenchymal cells move by exerting forces on their surroundings, consisting of the viscoelastic
fibrous ECM and the surface of other cells. They use their cellular protrusions, the filopodia or
lamellapodia, which stretch out from the cell in all directions, to grip whatever is available and pull. As
the cells move through the ECM they deform it by virtue of their traction forces. These deformations in
the ECM induce anisotropy effects which in turn affect the cell motion. Analysis of models incorporat-
ing these various effects show that coordination of such effects result in spatially organised cell
aggregations. The basic model is essentially that proposed by Murray et al. [1983], Murray and Oster
[1984a, b], with a detailed biological description by Oster et al. [1983].

The model, a continuum one, consists of three equations governing (i) the equation for the cell
population density, (ii) the mechanical balance of the forces between the cells and the ECM and (iii)
the conservation law governing the ECM. Let n(r, #) and p(r, ) denote respectively the cell density (the
number of cells per unit volume) and ECM density at position r and time ¢. Denote by u(r, t) the
displacement vector of the ECM, that is, a material point in the matrix initially at position r undergoes
a displacement to r + u. We derive forms for each of these equations in turn.

2.1. Cell equation
This takes the general form
onlot=~-V-J+ M, (D

where J is the flux of cells, that is, the number crossing a unit area in unit time, and M is the mitotic or
cell proliferation rate. For simplicity we shall take a logistic form for the cell growth, namely rn(N — n)
where r is the linear proliferative rate and N is the maximum cell density in the absence of any other
effects. We include in J some of the factors mentioned above which affect cell motion.

Convection. With u(r, t) the displacement vector of the ECM the convective flux contribution J, is

J.=ndulot. 2)

Here the velocity of deformation of the matrix is Ju/dt and the amount of cells transported is simply n
times this velocity.

Random dispersal. Cells tend to disperse randomly when in a homogeneous isotropic medium.
Classical diffusion contributes a flux term — D, Vn, which models the random motion in which the cells
respond to /ocal variations in the cell density and tend to move down the density gradient. This results
in the usual diffusion contribution D,V’n to the cell equation and represents local, or short range
random motion.

In developing embryos the cell densities are relatively high and classical diffusion, which applies to
dilute systems is not, perhaps, sufficiently accurate. The long filopodia extended by the cells can sense
density variations beyond their nearest neighbours and so we must include a nonlocal effect on diffusive
dispersal since the cells sense more distant densities. The appropriate form of the diffusion contribution
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can be derived from a Landau-Ginsberg approach [see Cohen and Murray 1981]. The flux of cells in
this situation is modelled by

J,=—D,Vn+ D,V(V’n), 3)

where D, >0 is the usual Fickian diffusion coefficient and D, >0 is the long range diffusion coefficient.
The long range contribution gives rise to a biharmonic term in eq. (1) and has a stabilising effect if
D,>0. We can see this immediately if we consider the long range diffusion equation, obtained by
substituting eq. (3) into eq. (1) and omitting the mitotic term M, to get

onlat=-V-J,=D,V’n—D,V'n.

If we look for solutions of the form
n(r, t) xexplot +ik-r],

where k is the wavevector and substitute into the last equation we get the dispersion relation
o=-D,k*- D,k <0

for all wavenumbers k(=|k|). So n—0 as t— « which implies n =0 is stable. If the biharmonic term
had D, <0, n =0 would be unstable for wavenumbers k° > —D,/D,. To account for contact guidance,
the diffusion coefficients may be functions of the strain tensor £(=[Vu + Vu"], where T denotes the
transpose). Here however we shall take them to be constants.

Haptotaxis or Mechanotaxis. The traction exerted by the cells on the matrix generates gradients in
the matrix density p(r, t). We associate the density of matrix with the density of adhesive sites for the
cell lamellapodia to get a hold of. Cells free to move in an adhesive gradient tend to move up it since
they can get a stronger grip on the denser matrix. This results in a net flux of cells up the gradient which
gives the haptotactic flux as

Jh = anvp ’ (4)

where a > 0.
The cell equation (1), with the flux contributions to J from eqs. (2)-(4) and a logistic form for the
mitosis M, becomes

dnldt = V- (ndu/dt) + V+[D,Vn — D,¥(V’n)] (convection + diffusion)
—V-(an¥p) + rn(N — n) (haptotaxis + mitosis) , (5)

where D, D,, a, r and N are positive parameters.

We have not included galvanotaxis and chemotaxis in eq. (5) but we can easily deduce what such a
contribution would look like. For example, if ¢ is the electric potential then the galvanotactic flux can
be written as

J,=8nVo, (6a)
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where the parameter g > 0. If cells responded to a chemoattractant ¢, chemotactic flux would be
Jchem = HXVC 3 (6b)

where x(c) is a function of the attractant. There are other refinements which could also be included; see
for example [Murray 1988].

Although eq. (5) is clearly not the most general possible it suffices to show what can be expected in
more realistic model mechanisms for biological pattern generation.

The analysis of such models allows us to compare the various effects as to their pattern formation
potential and hence to come up with the simplest realistic system which can generate pattern and which
is experimentally testable.

2.2. Cell-matrix mechanical interaction equation

The composition of the fibrous extracellular matrix, the ECM, within which the cells move is complex
and moreover, its constituents change as development proceeds. Here we are interested in the
mechanical interaction between the cells and the matrix. As the mechanical deformations are small a
reasonable first approximation is to consider the composite material of cells plus matrix to be modelled
as a linear, isotropic viscoelastic continuum with stress tensor a(r, t).

The time scale of embryonic motions during development is very long (hours) and the spatial scale is
very small (less than a few millimetres). We can thus ignore inertial effects in the mechanical equation
for the cell-ECM interaction (we are in a small Reynolds number regime) and take the traction forces
generated by the cells to be in mechanical equilibrium with the viscoelastic restoring forces developed in
the matrix and any external forces present. The mechanical cell-matrix equation is then [see, for
example, Landau and Lifshitz 1970]

Veo+pF=0 (7

where F is the external force (per unit matrix density) acting on the matrix and o is the stress tensor.
Consider first the stress tensor o. It consists of contributions from the ECM and the cells and we write

O=0gcyt Oy - (8)

The usual expression for a linear viscoelastic material [Landau and Lifshitz 1970] gives the stress—strain
constitutive relation as

Opom = (1,8, + 1,01+ E'[€ + v'6l] (viscous + elastic) , 9
where
E'=E/(1+v), "= p/(1-2v). (10)

Here the subscript ¢ denotes partial differentiation with respect to time, / is the unit tensor, u,, u, are
the shear and bulk viscosities of the ECM, & and 6 are respectively the strain tensor and dilation defined
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by
e=4Vu+WVu"), 6=V-u (11)

and E and v are the Young’s modulus and Poisson ratio respectively.

Fibrous materials are also characterised by nonlocal elastic interactions since the fibres can transmit
stress between points in the ECM quite far apart. By arguments analogous to those which lead to the
biharmonic term in the cell equation (5) we should include long range effects in the elastic stress for the
composite material. We could also introduce anisotropy by having a #-dependence for E and v but,
again, do not do so here.

Now consider the contribution to the stress tensor from the cell tractions, that is @,,,. The more cells
there are the greater the traction force. There is, however, experimental evidence indicating cell-cell
contact inhibition with the traction force decreasing for large enough cell densities. This can be simply
modelled by assuming that the cell traction forces 7(n) per unit mass of matrix initially increase with n
but eventually decrease with n for large enough n. Here we simply choose

m(n)=rn/(1+ An?), (12)

where 7 [dyne cm/gm] is a measure of the traction force generated by a cell and A>0. Typical
experimental values for 7 are of the order of 107> dyne/pm of cell edge, which is a very substantial
force [Harris et al. 1981].

As the filopodia, with which the cells attach to the ECM, extend beyond their immediate
neighbourood, it is again reasonable to include a nonlocal effect analogous to the long range diffusion
effect we included in the cell equation. We thus take the contribution o, to the stress tensor to be

Oy =1(1+An*) "n(p+ yVp)l , (13)

where y >0 is the measure of the nonlocal long-range cell-ECM interaction. The long range effects
here are more important than the long range diffusion effect in the cell equation.

Finally consider the body force F in eq. (7). With the applications discussed below, the matrix
material is attached to a substratum of underlying tissue by what can perhaps be best described as kinds
of guy ropes. We model these restraining forces as body forces per unit matrix density proportional to
the displacement of the matrix from its unstrained position and thus take

F=-su, (14)
where s >0 is an elastic parameter characterising the substrate attachments.
Thus the force equation we take for the mechanical equilibrium between the cells and the ECM is

eq. (7), with eqgs. (8)-(14), which gives

Velw e + w01+ E(e+v'0l)+rn(1+An’) (p+yVo)]-spu=0, (15)

(viscous + elastic + cell traction + external forces)

where E’ and v’ are defined by eq. (10).
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2.3. Matrix conservation equation
The conservation equation for the matrix material, p(r, ), is
dplat+V-(pduldt)y=0, (16)

that is, the matrix only moves by convection. At certain times the cells secrete matrix, but not with the
applications we shall be discussing so we omit it here.

Equations (5), (15) and (16) constitute the field equations for our model pattern formation
mechanism for fibroblast cells. The model involves 13 parameters, namely D,, D,, a, r, N, u;, it,, 7, A,
¥, s, E and », all of which are in principle measurable and some of which are currently being
investigated experimentally.

To assess the relative importance of the various effects we nondimensionalize the equations. We use
general length and time scales L and T, typical cell and matrix densities N and p, and set

r*=r/L, t*=t/T, n*=n/N, u*=u/L, p*=plp,,

V*=LV, 6*=6, e*=¢, y*=y/L*, r*=/NT,

s*=sp, L(1+v)/E, A*=AN’, t*=mN(1+v)/E, (17)

a*=ap,T/IL*, pw*=u(1+v)/TE, i=1,2,

D*=D,T/L*, D*=D,T/L*.
Depending on what time and length scales we are particularly concerned with we can reduce the
parameter set further. For example, if we choose T as the mitotic time 1/rN, then r* = 1: this means we
are interested in the evolution of pattern on the mitotic time scale. Alternatively we could choose T so
that y*=1or u, =1 for i =1 or 2. Similarly we can choose a relevant length scale and further reduce

the number of groupings.
The model mechanism is thus, on dropping the asterisks for notational simplicity,

n,=D,V’n—D,V'n—V-(anVp) —V-(nu,) + rn(1-n), (18)
V- {(m &+ w81 + (e + v'ol)+[rn/(1+ AnD)](p + yV0)I} = spu,, (19)
p.tV-(pu)=0. (20)

Although the model system is analytically formidable the model’s conceptual framework is quite clear,
as illustrated in fig. 2.1.

This model does not include all the effects that might be relevant, however it suffices to show how
such realistic models can be constructed. One of the major roles of such modelling and subsequent
analysis is to indicate just what features are essential for pattern formation. Although the following
linear analysis can be carried out for the full system we simply want to demonstrate the pattern
formation potential and so look at a simple version of the model (18-20) in which we set various
parameters to zero.
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Fig. 2.1. Conceptual framework for the mechanical models. Cell tractions play a central role in orchestrating pattern formation.

3. Simple model: linear analysis, dispersion relation and pattern formation potential

To model spatial aspects observed in embryonic development the basic system (18-20) must admit
spatially inhomogeneous solutions. There is little hope, at this stage, of finding useful analytic solutions
to such nonlinear systems. However, much of the pattern formation potential is predicted by a linear
analysis about uniform steady state solutions. Such predictions must be backed up by a nonlinear theory
or by numerical simulations if finite amplitude structures far from homogeneity are required.

Let us consider a particularly simple version of (18-20) by taking diffusion and haptotaxis to be
negligible, that is D, = D, = a = 0. Further consider the situation with no cell proliferation so r =0 and
where, for illustrative purposes only, there is no cell-cell inhibition so A =0. In this situation the
one-dimensional version of the model mechanism becomes

n,+(nu,), =0,
pu,, +u, +[mn(p + vo,)], =spu, (21)
p,+(pu,), =0,

where pu = pu, + pu, and we have rescaled u, 7 and s by E(1+ »). The implication of the simple
conservation equation for » is that the cells are simply convected by the matrix. This is believed to be
the major transport process.

The uniform steady state solutions of eq. (21) are

n=u=p=0; n=1,p=0,u=1; n=p=1,u=0. (22)

The first two solutions are not relevant as p is zero. In fact there is a general steady state n =n,, p = p,,
u =0 where n, and p, are constants. By suitable nondimensionalisation we can take these constants to
be 1. The linear stability of the third solution is found in the usual way by seeking solutions of (21)
linearized about this steady state. We thus consider n — 1, p — 1 and u to be small and on substituting
into the nonlinear system and retaining only linear terms in n —1, p —1 and u we get the following
linear system, where for algebraic convenience we have written n and p for n — 1 and p — 1 respectively:
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n+tu,=0,
pu,, tu, +(@n+p+ryp), =su, (23)
pt uxl=0'

Now look for solutions by setting
(n, p, u) xexp[ot +ikx], (24)

where k is the wavenumber and o is the linear growth factor. Substitution of eq. (24) into (23) gives the
dispersion relation o = a(k’) as

o(k*) = —b(K*) 2uk’,

b(k*)y=yrk* + (1 -27)k’ + . )

Spatially heterogeneous solutions of the linear system are characterised by a d1spers1on o(k*) which
has o((0) =0 but which exhibits a range of unstable modes with a(k*) >0 for k* #0. All the solutions
(24) with these k’s are then linearly unstable and grow exponentially with time. In the usual way we
expect these unstable heterogeneous linear solutions to evolve into finite amplitude spatially structured
solutions.

From eq. (25), if kK’ =0, the spatially homogeneous case, b(O) =5>0 and so o(k*) <0 for small
enough k. For a(k*) >0, to exist for at least some k” # 0, requires from the expression for b(k”) in eq.
(25), that for a range of k°, b(k®) <0; that is at least 7>1/2. Since

b . =s—(2r—1)/4yr,
we thus have a range of k> >0 where o(k’)>0 if
>7,=(1+ys)+[(1+ys)’ - 1]'"7. (26)

This defines a bifurcation surface in (7, y, s) parameter space wherein the homogeneous steady state is
unstable to spatial disturbances with wavenumbers

K<k<kl, ki, ki={Qr-1)=[Q2r 1)’ -4syr]'?*} /297, (27)

where 7, y and s must satisfy eq. (26). There is a fastest growing linear mode, the one with wavenumber
giving o, which predicts, usually only in one-dimensional models with random initial conditions, the
ultimate nonlinear spatial pattern.

From the dispersion relation (25), the only way a solution with o(k®) >0 can exist is if b(k*) <0,
which in turn relies on a large enough cell traction 7, given by eq. (26), to be precise. It is also clear
heuristically from the mechanism that this has to be the case since the cell traction forces are the only
contribution to the aggregative process in the force balance equation in eq. (21). Typically values for
the cell traction, in vitro are of the order of 107> Nm™" of cell edge.

When eq. (26) is satisfied the dispersion relation (25) is a typical basic dispersion relation of the type
which initiates spatial patterns: it is illustrated in fig. 3.1.
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unstable modes

- :

T>7T,

T =T,

T<T,

Fig. 3.1. Behaviour of the dispersion relation o(k’), for the model (23). As the traction, r, increases above a critical 7,, given by eq. (26),
wavenumbers in the interval [k2, kJ], given by eq. (27), go unstable.

The system (18-20) can display an astonishing range of dispersion relations depending on the model
parameters. These have been analysed by Murray and Oster [1984a]. Figure 3.2 is only a selection
which demonstrates the richness of dispersion relation types wherein a range of wavenumbers are
linearly unstable.

The nonlinear singular perturbation technique developed by Maini and Murray [1988] can be used on
mechanisms with such dispersion relations of the type illustrated in fig. 3.1. They also considered
two-dimensional mechanisms and obtained roll and hexagonal solutions. The significance of the latter
will be discussed in the following section on a biological application to skin organ morphogenesis.

Perhaps it should be mentioned here that the spectrum of spatial patterns possible with the
mechanism (18-20) and its numerous simplifications is orders of magnitude greater than with a
reaction—diffusion system — even three-species systems. The implications of a paper by Penrose [1979]
indicate that tensor systems have solutions with a wider class of singularities than vector systems. Since
the cell-matrix equation is a tensor equation, its solutions should thus include a wider class of
singularities than reaction—diffusion vector systems. Even with the linear systems analytical and
numerical studies have only just started. Another property of models such as (21) is that the final
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Fig. 3.2. Some examples of dispersion relations o(k’), obtained from the mechanical model mechanism (18-20) on setting various parameters to
zero. Realistic models for those with infinite linear growth must be treated as singular perturbation problems, with small values for the appropriate
parameters in terms which have been omitted so as to make the linear growth finite although large.
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solution will depend on the initial conditions, that is, since cell density is conserved, different initial
conditions (and hence different cell number) will give rise to different patterns. However, as the
random perturbations are small, the differences in the final solution are also small. This seems
biologically realistic as no two patterns are exactly the same.

In the following two sections we consider two biologically important and widely studied pattern
formation problems using mechanical models of pattern generation.

4. Periodic patterns of feather germs

Generation of regular patterns occurs in many situations in early embryogenesis. These are
particularly evident in skin organ morphogenesis such as in the formation of feather and scale primordia
and are widely studied [see, for example, Sengel 1976, Davidson 1983a, b]. Feather formation has much
in common with scale formation during the early developmental phase of primordia. Here we shall
concentrate on feather germ formation with particular reference to the chick, and fowl in general.
Feather primordial structures are distributed across the surface of the animal in a characteristic and
regular hexagonal fashion. The application of the Oster—Murray mechanical theory to feather germ
primordia was first put forward by Murray et al. [1983] and Oster et al. [1983] and it is their scenario we
describe here. We first present the biological background which suggests a mechanical model.

Vertebrate skin consists essentially of two layers; an epithelial epidermis overlays a much thicker
mesenchymal dermis and is separated from it by a fibrous basal lamina. In general, epithelial cells do
not move, but the epithelial layer can deform through buckling. Dermal cells are loosely packed and
motile and can move around in the extracellular matrix, the ECM, as we described earlier. The earliest
observable developmental stages of feather and scale germs begin the same way. We shall concentrate
here on the initiation and subsequent appearance of feather rudiments in the dorsal pteryla - the
feather forming region on the chick back.

In the chick the first feather rudiments become visible about 6 days after egg fertilization. Each
feather germ, or primordium, consists of a thickening of the epidermis with one or more layers of
columnar cells, called a placode, beneath which is an aggregation of dermal (mesenchymal) cells, called
a papilla. The dermal condensations are largely the result of cell migration, with localised proliferation
playing a secondary role. Whether or not the placodes form prior to the dermal papillae is a
controversial issue. There is considerable experimental work going on to determine the order of
appearance or, indeed, whether the epidermis and dermis interact to produce their patterns simulta-
neously. The dermis seems to determine the spatial patterning-as shown by epidermal-dermal
recombination experiments [Rawles 1963, Dhouailly 1975]. The model we discuss here is for the
formation of dermal papillae. Subsequent development, however, is a coordinated process involving
both the epidermal and dermal layers [Sengel 1976, Wessells 1977].

Davidson [1983a, b] demonstrates that chick feather primordia appear sequentially. A central
column of dermal cells forms on the dorsal pteryla and subsequently breaks up into a row of papillae.
As the papillae form, tension lines develop joining the cell aggregation centres. With the above
mechanical models this is consistent with the cells trying to align the ECM. Now lateral rows of papillae
form sequentially but these are interdigitated with the papillae in the preceding row: see fig. 4.1. These
lateral rows spread out from the central midline almost like a wave of pattern initiation. Experiments by
Davidson [1983] tend to confirm this wave theory — later we show how these results can be explained by
our model and we present corroborative numerical results.
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Fig. 4.1. (a) This shows the predicted breakup of a uniform distribution of mesenchymal (dermal) motile cells into regular cell condensations with a
wavelength determined by the parameters of the model mechanism (stage 1). These cell aggregations are the primordial papillae for feathers and
scales. (d) Vertical cross section qualitatively showing the feather germ primordia. The placodes in the epidermis are underlain by the papillae which
create the stress field. (b) Subsequent aggregations form laterally. The prestressed strain field from the first line of condensations induces a bias so
that the neighbouring line of papillae interdigitate with the first line (stage 2). The resulting periodic array is thus hexagonal, the basic unit of which
is illustrated in (c) (stage 3). (e) The epidermal placode pattern that mirrors the dermal pattern.

These observations suggest that it is reasonable first to model the pattern formation process for the
initial row of papillae by a one-dimensional column of cells and look for the conditions for spatial
instability which generates a row of papillae. This is stage 1 and is illustrated in fig. 4.1a.

We have seen in the previous sections that even the simple mechanical model (21) can generate
spatial patterns as the cell traction parameter 7 increases beyond some critical value 7_. At this value a
mode with a specific wavenumber k_, that is, with wavelength 27 /k_, first becomes unstable and a
spatial pattern starts to evolve: this generates a regular pattern of dermal papillae.

Simulations of the one-dimensional version of the following nonlinear mechanical model, a simpler
version of the more comprehensive model (18-20), have been carried out by Perelson et al. [1986], viz,

anlot=D,3°nlox* — 3/dx (nduldt) — adléox (ndpldx) (28)
319x{ ud*uldxat + duldx + [tn/(1+ An®))(p + y3’pldx*)} = sup , (29)
dplat+ dldx (pduldt)=0. (30)

They particularly addressed the problem of mode selection in models with many parameters, and
proposed a simple scheme for determining parameter sets to isolate and “‘grow” a specific wavelength
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pattern. Figure 4.2a shows a typical steady state pattern of cell aggregations (the papillae), ECM
density variations and matrix displacement. As we would expect intuitively, the cell aggregations are in
phase with the ECM density variations p, and both are out of phase with the ECM displacement u. The
reason is that the cell aggregations pull the matrix towards the areas of higher cell density thus
stretching the matrix between them: fig. 4.1d illustrates what is going on physically.

Patterns of the type illustrated in fig. 4.1a occur only if the cell traction parameter is above a certain
critical value (see section 3). Thus a possible scenario for the formation of the pattern along the dorsal
midline is that there is a wave of initiation that sweeps down the column which could be related to
tissue age; in this case it is known (from in vitro experiments) that the cell traction parameter increases.
As the cells become stronger 7 passes through the critical value 7, and pattern in initiated.

Let us now consider the formation of the distinctive hexagonal two-dimensional pattern of papillae.
We described above how a wave of pattern initiation seems to spread out from the dorsal midline. This
means that the pattern of matrix strains set up by the initial row of papillae biases the formation of the
secondary condensations at positions displaced from the first line by half a wavelength. Figure 4.2b
shows the resulting numerical simulation: note how the patterns are out of phase with those in fig. 4.2a.
If we now look at figs. 4.1b,c we see how this scenario generates a regular hexagonal pattern in a
sequential way like a wave emanating from the central dorsal midline.

This “wave” is, however, not a wave in the usual sense since if the dermal layer is cut along a line
parallel to the dorsal midline the wave simply starts up again beyond the cut ab initio. This is consistent
with Davidson’s experimental observations [1983b].

The modelling here does not cast light on the controversy regarding the order of formation of
placodes and papillaec. However, since the traction forces generated by the dermal cells can be quite
large the model lends support to the view that the dermis controls the pattern even if it does not initiate
it. Current thinking tends towards the view that initiation requires tissue interaction between the dermis
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Fig. 4.2. Steady state solutions, for the cell density n, ECM density p and ECM displacement u, of the nonlinear one-dimensional mechanical model
(28-30). (a) Periodic boundary conditions were used and initial conditions were random perturbations about the uniform steady state n=p =1,
u=0. (b) Heterogeneous steady state solutions with the initial stress pattem in (a). Parameter values: D, =a =y =107, 1=0.12, = 1.65, s = 400,
u =1. Note that n and p are in phase and both out of phase with u.
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and epidermis. It is well known that mechanical deformations affect mitosis and so tissue interaction is a
natural effect to include in mechanical models: see also the discussion in Oster et al. [1983]. Nagorcka
et al. [1987] investigated a tissue interaction mechanism specifically with the complex patterns of scales
in mind.

5. Cartilage condensations in limb morphogenesis

The vertebrate limb is one of the most widely and easily studied developmental systems and such
studies have played a major role in embryology. Experimental evidence from amphibians suggests that
osmotic properties of the ECM may be important in morphogenesis. Hyaluronate is a principal
component of the ECM and can exist in a swollen osmotic state. As the condensation of chondrocytes
starts the cells secrete an enzyme, hyaluronidase, which degrades the hyaluronate. This could lead to
the osmotic collapse of the matrix thus bringing the cells into close enough contact to initiate active
contractions and thus generate cell aggregations. Cell motility is probably not important in this
scenario.

A mechanical model for generating the pattern of cell condensations which evolve in a developing
limb bud and which eventually becomes cartilage was first put forward by Murray et al. [1983] and
Oster et al. [1983]. A modification of the mechanical model to incorporate the above chemical aspects
and the added forces caused by osmotic pressure has been proposed and analysed by Oster et al. [1985].
They showed that such a mechanochemical model would generate similar chondrogenic patterning for
the developing limb to that obtained with the earlier mechanical model.

The pattern in developing limb buds which determines the final cartilage patterns, which later ossify
into bones, involves aggregations of chondrocyte cells, which are mesenchymal cells such as we have
been considering. The basic evolution of chondrocyte patterns takes place sequentially as the limb bud
grows, which it does from the distal end. Figure 5.1 gives an explanation of how, with geometry and
scale as bifurcation parameters, chondrogenesis could proceed. The actual sequence of patterns for the
developing chick limb is illustrated in fig. 5.1c. The detailed explanation of the process based on a
mechanical mechanism is the following.

As the limb bud grows, through cell proliferation at the distal end, the cross section of the tissue
domain, which includes the ECM and mesenchymal cells, is approximately circular but with an elliptical
bias. Let us consider this to be the two-dimensional domain for our mechanical model with zero flux
boundary conditions for the cells # and matrix p. The condition for u is an imposed restraining force
which comes from the epidermis — the sleeve of the limb bud. We suppose that as the cells age the
traction increases and eventually passes through the critical values 7,. The detailed form of the
dispersion relation is such that the first bifurcation produces a single central aggregation of cells
recruited from the surrounding tissue.

The axial cell aggregations are influenced by the cross-sectional shape as shown in fig. 5.1a. As the
cells condense into a single aggregation they generate a strong centrally directed stress as in fig. 5.1b.
This radial stress deforms the already slightly elliptical cross section to make it even more elliptical
which in turn induces a bifurcation to two condensations because of the changed flatter geometry of the
cross section. An aerofoil section gives rise to two condensations of different size.

As distinct from chemical prepattern models mechanical models influence the shape of the domain
and can actually induce the sequence of bifurcations shown in fig. 5.1c.
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Fig. 5.1. (a) The type of axial condensation is influenced by the cross-sectional shape of the limb. Initially a single condensation, path 1, will be
produced (for example, the humerus in (c)). A more elliptical cross section allows two aggregations to form, path 2. An aerofoil-shaped domain
produced unequal condensations (for example, the radius and ulna in (c)). In a long thin cylinder the axial condensations form segmental units, path
3 (for example, the phalanges in (c)). (b) This shows how the mechanical mechanism influences cross-sectional form and hence induces the required
sequence of chondrogenic patterns. As the cells form the central condensation their tractions deform the limb to be more elliptical. At a critical
ellipticity the pattern bifurcates to two condensations. How three condensations are formed is important and explained in the text: refer also to fig.
5.2d. (c) The schematic bifurcation sequence of chondrocyte (mesenchymal) cell aggregations which presage cartilage formation in the developing
chick limb.

After a two-condensation state has been obtained, further growth and flattening can generate the
more distal patterns. By the time the limb bud is sufficiently flat, cell traction recruitment effectively
isolates patterning of the digits. The domain can now be considered linear and subsequent growth
induces longitudinal or segmental bifurcations with more condensations simply fitted in as the domain
increases and we get the simple laying down of segments, for example, the phalanges in fig. 5.1c, as
predicted by fig. 5.1a, path 3.
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The sequence of cell pattern bifurcations need not be generated by a changing geometry; it can result
from a variation of other parameters in the model. Also asymmetric condensations can result from a
spatial variation or asymmetry in a parameter across the limb cross-section. There is well-documented
experimental evidence for asymmetric properties, which, of course, are reflected in the different bone
shapes and sizes in the limb such as the radius and ulna in fig. 5.1c. Whatever triggers the bifurcations
as we move from the proximal to distal part of the limb the natural sequence is from a single
condensation to two condensations and then to several.

Morphogenetic rules for cartilage morphogenesis in the limb

With a completely symmetric geometry and tissue isotropy it is possible to move through the
bifurcation space of parameters from one aggregation to two to three and so on. With the natural
anisotropy in embryological tissue such isotropy does not exist. The question then arises as to how the
pattern sequence from a double to a triple condensation is effected. During chondrogenesis there
appears to be little cell division, which implies that condensations principally form through recruitment
of cells from neighbouring tissue. Thus, as the limb bud grows the pattern bifurcation that takes place
following a branching bifurcation is as illustrated in fig. 5.2c. Figures 5.2a, b show the other two basic
condensation elements in setting up a cell condensation pattern in a developing limb. We believe that
for all practical purposes the process giving rise to triple bifurcation must be that in which one branch of
the double condensation itself undergoes a branching bifurcation.

If we now take the bifurcating pattern elements in figs. 5.2a—c as the three allowable types of cell
condensations we can see how they can be used to construct any limb cartilage pattern. As an example,
fig. 5.2e illustrates this for the forelimb of a salamander. So, even without considering any specific
mechanism, we hypothesise an important set of morphogenetic rules for the patterning sequence of
cartilage in the development of the vertebrate limb. This hypothesis, encapsulated in the theory put
forward by Murray et al. [1983] and Oster et al. [1983], has recently been exploited by Oster et al.
[1988] who present extensive experimental evidence for its validity. They also discuss aspects of the
theory and its predictions which are of considerable potential importance in evolutionary biology.

We believe these rules are model independent, or rather any model mechanism for chondrogenic
pattern formation must be capable of generating such a sequence of bifurcating patterns.

A major role of theory in morphogenesis is to suggest possible experiments to distinguish between
different models each of which can generate the appropriate sequence of patterns observed in limb
chondrogenesis. Mechanical models lend themselves to experimental scrutiny more readily than
reaction diffusion models because of the elusiveness of chemical morphogens.

6. A mechanochemical model for wound healing

The process of cutaneous wound healing often involves some degree of wound contraction, the
movement of the wound boundary and adjacent uninjured tissue towards the wound centre. In some
cases, contraction can be advantageous for wound closure; however, it can create functional impairment
(e.g. when contraction occurs near a joint) as well as be cosmetically unattractive (e.g. facial wounds) in
others. Experimental investigations have demonstrated that fibroblast cells repopulate a wound and are
responsible for contraction [Rudolph 1979]. Thus, cutaneous wound contraction is clearly a physiologi-
cal process in which cell forces are of great importance. The mechanochemical modelling approach not
only provides a framework for understanding how events in wound healing are orchestrated so as to
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Fig. 5.2. (a—c) The three basic types of cell condensations which generate cartilage patterns in the developing vertebrate limb. These are postulated
as the morphogenetic rules for cartilage pattern generation for all vertebrate limbs. (a) Focal condensation F; (b) Branching bifurcation B; (c)
Segmentation condensation S. (d) Formation of more patterns is by further branching or independent foci. (¢) An example of a branching sequence
showing how the cartilage patterns in the limb of a salamander can be built up from a sequence of F, B and $S bifurcations.

give rise to contraction, but also a predictive means for enhancing or mitigating contraction, as is
appropriate for a particular wound. There is also considerable evidence that cutaneous wound healing
can serve as a model for understanding a whole class of soft tissue pathologies, from fibrotic disorders
to generation of tumours [Seemayer et al. 1981].

Wound contraction occurs in the context of other phases of wound healing which may be influential
in the initiation and regulation of contraction [Clark 1985]. Inflammatory cells are believed to release a
host of chemical stimuli for fibroblasts (e.g. growth factors and chemoattractants) that govern the
subsequent phases of repair: biosynthesis of wound matrix followed by an extended period of matrix
remodelling, which typically results in a dense collagenous scar. Contraction usually parallels the
biosynthetic phase when collagen and other matrix macromolecules replace the initial fibrin clot. The
close temporal relationship of contraction with inflammation and matrix biosynthesis provides two
scenarios to be considered within the basic mechanochemical model.
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Unlike for the previous applications of the model, there are quantitative data already available for
cutaneous wound contraction for comparison with model predictions. In a study by McGrath and Simon
[1983] addressing the longstanding controversy of what type of wound closes fastest, they observed that
the contracting phase of “full thickness” dermal wounds on rats could be described with a simple
exponential dependence on time:

A=A +(A,-A)e™,

where A, is the wound area when contraction begins and A, is the area remaining after contraction is
completed (areas are scaled to the excised area). The time constant, k, was found to be independent of
both the initial wound area and wound geometry for the limited cases studied (6.25 cm” and 12.54 cm®
squares and 12.54 cm” circles).

In addition to assessing the model’s admissability of such quantitative predictions, it is necessary to
consider what qualitative features relevant to wound contraction should be intrinsic to the model. A
rather obvious one serves to constrain the permissible parameter space: unwounded skin should be in
some sense stable to at least small perturbations. Given the pattern forming capabilities of the models
described above, this is not a trivial consideration. This is addressed using linear stability analysis of the
uniform state of the type outlined earlier. Other relevant features are not as objective, but reflect the
typical outcome of a wound: a rapid initial expansion of the wound followed by a longer period of
contraction with increase in collagen content.

The base model upon which the two scenarios are considered assumes that the cells move by random
dispersion and convection only and proliferate according to a logistic rate law. (Other modes of
fibroblast migration such as chemotaxis and contact guidance, although not considered here, are
generally believed to play a significant role in fibroblast repopulation of a wound space. Also there are
many speculated effects of biochemical mediators on fibroblast behaviour, ranging from oxygen
concentration modulation of proliferation to inflammation-derived growth factor-modulation of trac-
tion. The latter, a key element is considered in the first scenario here.) The dermis is again assumed to
be a matrix adequately described by a linear, isotropic, viscoelastic stress tensor modified with the local
cell tractional force term. (Thus osmotic forces which develop in the wound space are neglected here, as
are any consequences of matrix fibre anisotropy which might develop during wound healing.) The
attachment of the dermis to underlying anatomical features is modelled by the linearly elastic body
force. Virtually all animal models used for the study of wound healing possess the panniculus carnosus,
a skin organ underlying the dermis which is absent in humans and confers great mobility to animal
dermis relative to human dermis in response to stress. This may be accounted for at the simplest level
by considering the elastic constant associated with underlying attachment of the skin, s, to be small and
large respectively. The system of equations for this base model takes the form:

n,+V-(nu)=DVn+r(l-n), (31)
V- {ue€ + w61+ E(e+ v'0l) + mnpl/(1+ An’)} = spu,, (32)
p,+V-(pu)=0. (33)

The associated dimensionless variables and parameters are the same as in eq. (17).
The idealization of the initial state of a wound is that u =0 and p =1 for all x in thes (infinite)
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domain, and that inside some initial wound boundary, x,, n =0 while for all x outside the boundary,
n = 1. This implies that the wound matrix (that is, fibrin clot) is formed instantaneously relative to the
contraction phase and that it is devoid of fibroblasts, which are accurate assumptions [Clark 1985].
Further, it is assumed that the mechanical properties of the wound matrix are the same as the
surrounding dermis, and this remains true for the wound matrix for all times as it becomes modified due
to cell biosynthesis. These are much less accurate assumptions but appropriate given the complex
modifications of the wound matrix composition that occurs during wound healing [Clark 1985, Weigel et
al. 1986].

Although it can be shown that this base model admits the occurrence of a stable nonuniform
steady-state evolving from the initial state, neither the qualitative features of such a steady-state nor its
evolution from the initial state are consistent with those of a contracting wound. These deficiencies are
remedied in both of the following scenarios.

In the first scenario, we assume for simplicity that the inflammatory mediator exists as a stable
concentration gradient exponentially decreasing from the wound centre over the time-course of
contraction (models of inflammation provide a basis for extending this simple description [see Alt and
Lauffenburger 1987]). There are various mechanisms by which this mediator could influence the
behavioural properties of fibroblasts. Experimental evidence indicates that fibroblasts transform into
highly contractile myofibroblasts near a wound due to some mediator [Skalli and Gabianni 1987] and
suggests that the traction parameter, 7, should depend on mediator concentration, ¢, according to

r=1{l+7c/(1+¢)}

where 7, is a traction enhancement coefficient. ¢ is taken to have the following dependence on distance
x from the wound centre,

¢ = c, exp[—x7/a]

where ¢, is the concentration at the wound centre scaled to the concentration for half-maximal traction
enhancement and o is a parameter specifying the spatial domain of influence of the mediator from the
wound centre.

Assuming matrix strains are sufficiently small we can linearise the conservation equation for p in eq.
(33): in one space dimension

Pt (), =0 p=1-u,. (34)

If we further assume the cell density in the steady state is essentially » = n, =1, which is a solution of
eq. (31), an approximation to the steady-state profile u (x) is given by substituting for p from eq. (34)
into eq. (32) to get

r \ du ( du )( dr/dx)
T 2% (125 — ] 35
(1 1+ ) dx? 1 dx /\% T T (35)

The solution of eq. (35) gives the final contracted state of the wound matrix displacement, u, given the
persistent gradient of inflammatory mediator. The profiles obtained in this manner agree well with
those obtained from numerical solution of the full system of equations (31-33). An example of the
transient profiles is given in fig. 6.1 for the case of linear wound geometry.
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Fig. 6.1. Numerical results for the variable traction case of the wound contraction model for linear geometry: (a) cell density, n; (b) displacement of
cell/matrix composite, u; (c) and matrix density, p, are plotted versus distance, x, from the wound centre for a series of times after wounding. The
imposed traction gradient is indicated by the dashed line (7, =2.5, ¢, =1). In (d) the relative wound area, 4, is plotted as a function of time (a > 1is
associated with wound expansion, a <1 is associated with wound contraction). The straight line is the linear least squares regression line of a
transformed according to the exponential form suggested by McGraw and Simon [1983]. See text for further discussion. Parameter values:
D,=0.001, u=1,r=1,5=100, 7,=0.5, A=1.5, 0 =0.4, where u = p, + u,, and u, s and 7, are all scaled by 1+ ',

The repopulation of the wound space by cells (that is fibroblasts) by random migration and
proliferation is seen in fig. 6.1a to restore the cell concentration to that characteristic of the unwounded
dermis. The evolution of the matrix to a contracted steady-state is apparent in fig. 6.1b. Associated with
the contraction is an increase in the matrix density as seen in fig. 6.1c. The plot of the wound area over
time relative to the initial wound area in fig. 6.1d, which is identical to a plot of the “contracting phase”
as analysed by McGrath and Simon, suggests that the cell-matrix-mediator mechanisms of this scenario
can conspire to yield the empirical exponential description which they observed. The time constant, k,
calculated from the numerical simulation is independent of the initial wound area, in agreement with
their findings, since the solutions are obtained for dimensionless variables on an infinite domain. We
found that the analogous simulation in cylindrical polar coordinates gives approximately the same value
for k (1.00 versus 1.01), which is also in agreement with McGrath and Simon’s [1983] related finding
that k is independent of geometry.
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In the second scenario, the basic model is modified to include a matrix biosynthesis term, accounting
for the extensive deposition of collagen and other matrix macromolecules by fibroblasts in the wound
region. Since the functional dependence of this biosynthesis rate on n, u and p is not yet known, we
assume for illustrative purposes here that net rate of biosynthesis is proportional to that of proliferation
(that is, biosynthesis has a logistic-type rate law, bn(1—n)). A priori prediction of a contracted
steady-state is more difficult with this model scenario. An example of the numerical solution of egs.
(31-33) with the biosynthesis term included in eq. (33) is shown in fig. 6.2, again for a linear wound. It
shares many similarities with the other scenario, including a contracted steady-state reasonably
described with an exponential which is again independent of initial wound area and approximately the
same for both linear and circular wound geometries (1.02 versus 1.03).

There are many scenarios which can be considered given the complexity of the wound healing
phenomenon. The mechanochemical model offers a possibility of considering the effects of various
known and speculated responses and dermal/wound matrix properties individually as well as collective-
ly. An improved understanding of how these effects are interrelated could lead to new possibilities for
controlling wound contraction and optimizing the wound healing response. Such initial success is
encouraging for future work in this area and such studies are currently in progress.
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Fig. 6.2. (a—d) Numerical results for the matrix biosynthesis case of the wound contraction model for lincar geometry. The parameter values are the
same as those used in fig. 6.1 where a general description of this plot is given, except that 7,=0 and b= 1. See the text for further discussion.



82 J.D. Murray et al., Mechanochemical models of biological pattern formation
7. Other applications of mechanochemical models

There are many potential applications which have not yet been examined in depth or even not at all.
Here we mention a few, but only very briefly.

(i) Postfertilization waves on eggs. These waves are associated with pairs of mechanical and chemical
phenomena observed on the surface of many vertebrate eggs shortly after fertilization. The waves
effectively emanate from the sperm entry point and sweep over the egg. A mechanical model for the
egg surface based on a contractile machinery, similar to that involved in muscle contraction, wherein
the contraction is intimately related to the calcium chemistry involved has been developed and studied
by Cheer et al. [1987] and Lane et al. {1987]. In the latter paper analytical results are obtained for the
wave profiles of the mechanical and chemical waves and the results compare well qualitatively with
observations.

(ii) Animal coat patterns. Murray (1981) showed that many of the patterns observed on mammalian
coat patterns could be generated with a morphogen based reaction diffusion mechanism. The patterns
thus generated were considered the chemical prepatterns to which the melanoblast cells, the precursors
of melanocytes, the pigment forming cells respond. The evidence presented for such a theory was based
on observational comparisons and on certain developmental constraints which are dictated by the
geometry and scale of the animal’s surface when the pre-pattern is laid down. These melanoblast cells
migrate from the neural crest early in development. Since the model discussed in section 2 deals
specifically with such migratory cells it is possibly directly applicable to patterns found on mammalian
coats. In view of the evident richness of patterns which our mechanical models can generate, it is clear
that we can obtain not only similar patterns to those from a reaction diffusion mechanism but others
which the latter cannot exhibit. _

(iii) Rejection of artificial joints. One of the problems with artificial hip joints is that the cement for
fixing them inside the femur does not form a good bond with the living tissue. The concepts used in
setting up the cell motility mechanisms suggest that a way to effect a more suitable bond might be to try
and produce an adhesive which is sufficiently porous to allow movement of cells into it, by virtue of the
cell tractions.

8. Discussion

There can be no doubt that mechanochemical processes are involved in development. The models we
have described here represent a new approach and the concepts suggest that mechanical forces could be
the principal guiding elements in producing the correct sequence of tissue patterning and shapes which
are found in the developing embryo. Whereas in reaction diffusion models a chemical morphogen
prepattern is set up, which is then read and interpreted by the cell as required, in a mechanochemical
framework pattern formation and morphogenesis are one and the same.

The models simply reflect the laws of mechanics as applied to tissue cells and their environment and
are based on known biological and biochemical facts: all of the parameters involved are in principle
measurable.

We should add that these models are first attempts, and considerable mathematical analysis is
required to investigate their potentialities to the full. In turn this will suggest model modifications in the
usual way of realistic biological modeling. At this stage the analysis has only just been started but is
sufficient to indicate a wealth of wide-ranging patterns and mathematically challenging problems. The
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models have already been applied realistically to a variety of morphogenetic problems of current major
interest. The results and basic ideas have initiated considerable experimental investigation and new
ways of looking at a wide spectrum of embryological problems.

The emergence of spatial pattern in the embryo is still unresolved. No mathematical model can take
into account the very complex physical, chemical and electrical processes involved in morphogenesis.
Every mathematical model is a gross simplification of the actual processes involved. However, in
making such simplifications, one is trying to capture the essential mechanisms involved. The role of
mathematical models is to try to highlight the possible interactions between specific biological processes
and to suggest relevant experiments. They have generated and directed a great deal of experimental
activity among biologists, and from this point of view, such models for morphogenesis are fulfilling their
role.
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