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Abstract:
The centralissuein developmentis theformationof spatialpatternsof cells in theearlyembryo.Themechanismswhich generatethesepatterns

areunknown.Herewe describethenew Oster—Murraymechanochemicalapproachto theproblem,theelementsof which areexperimentallywell
documented.By wayof illustration we deriveone of thebasicmodelsfrom first principlesand apply it to a varietyof problemsof currentinterest
andresearch.We specificallydiscusstheformationof skinorganpatterns,suchasfeatherandscalegerms,cartilagecondensationsin thedeveloping
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1. Introduction and background biology

Developmentof spatial patternand form is one of the central issuesin embryologyandis included
under the general name of morphogenesis.Pattern generationmodels are grouped together as
morphogeneticmodels.Thesemodelsprovidethe embryologistwith possiblescenariosas to how, and
often when, patternis laid down and how the embryonic form might be created.Although genes
control patternformationgeneticssaysnothingaboutthe actualmechanismsinvolved nor howthe vast
rangeof patternand form that we see evolvesfrom a homogeneousmassof dividing cells.

Broadly speakingthe two prevailingviews of patterngenerationthat havedominatedthe thinkingof
embryologistsin the pastfew yearsarethe long standingTuring (1952)chemicalpre-patternapproach
and the morerecentmechanochemicalapproachdevelopedby G.F. Osterand J.D. Murray and their
colleagues[for example,Murray et al. 1983,Osteret al. 1983,Murray andOster1984a,b, Osteret al.
1985]. Generaldescriptionshavebeengiven by MurrayandMaini [1986]and OsterandMurray [1988].

Turing’s theory [1952]of morphogenesisinvolveshypotheticalchemicals,morphogens,which react
anddiffuse in sucha way that if thekineticshavecertainpropertiesandthe diffusion coefficientsof the
chemicalsare not all the samethensteadystate heterogeneousspatial patternsin chemicalconcen-
trationscan evolve from initial randomperturbationsabouthomogeneoussteadystates.Morphogenesis
thenproceedsby the cells reactingto the chemicalprepatternand differentiating accordingto some
bauplan [Wolpert 1969, 1981]. Turing’s theory has stimulated a large amount of research,both
theoreticaland experimental.Suchreactiondiffusion modelshavebeenwidelystudiedandappliedto a
variety of biological problems: see,for example[Murray 1977, 1981,Meinhardt1982] andthe bookby
Murray [1988]. The books by Fife [1979], Smoller [1983] and Britton [1986]give mathematical
treatmentsof reaction diffusion systems.The dramatic Belousov—Zhabotinskiireaction is the best
knownreactionwhich will generatesteadystateconcentrationpatterns.Thebook of articleseditedby
Field andBurger [1985]gives a good overview of this fascinatingreaction.

In this paper we shall describethe comparativelynew Oster—Murraymechanochemicalapproach,
which directly bringsforcesandknownpropertiesof biological tissueinto theprocessof morphogenetic
pattern formation, and apply it to several specific developmentalproblemsof current widespread
interestin embryology.

The two approachesare basically quite different. In the chemical prepatternapproach,pattern
formation and morphogenesistakes place sequentially.First the chemical concentrationpattern is
formed,thenthe cells “readout” this patternandthe variouscell differentiations,cell movement,and
so on, follow from the chemical blueprint. So, in this approachmorphogenesisis essentiallya slave
processwhich is determinedoncethe chemicalpatternhasbeenestablished.Mechanicalshapingof
form whichoccursduring embryogenesisis not addressedin thechemicaltheoryof morphogenesis.The
continuing elusivenessof the chemicalmorphogensis also proving a considerabledrawbackin the
acceptanceof such atheoryof morphogenesis.There is, however,no questionbut that chemicalsplay
important roles in embryogenesis.

In the mechanochemicalapproach,pattern formation and morphogenesisis consideredto go on
simultaneouslyas a single process.An importantaspectof this approachis that the modelsassociated
with it areformulatedin termsof measurablequantitiessuchascell densities,forces,tissuedeformation
and so on. This focusesattention on the morphogeneticprocessitself and is more amenableto
experimentalinvestigation.The principal useof anytheoryis in its predictionsand, eventhougheach
theory might be able to createsimilar patterns,they are mainly distinguishedby the different
experimentsthey suggest.
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A telling point in favour of simultaneousdevelopmentis thatsuchmechanismshavethe potentialfor
self-correction.Embryonic developmentis usually a very stableprocesswith the embryo capableof
adjusting to many outside disturbances.The processwherebya prepatternexists and then mor-
phogenesistakesplace is effectively an openloop system.Thesearepotentiallyunstableprocessesand
makeit difficult for the embryoto makethe necessarycorrectiveadjustmentsasdevelopmentproceeds.

Herewe shall discussmorphogeneticprocesseswhichinvolve coordinatedmovementor patterningof
populationsof cells.Thetwo typesof earlyembryoniccellsweshall beconcernedwith arefibroblast,or
dermal or mesenchymal,cells and epidermal, or epithelial, cells. Fibroblast cells are capable of
independentmovement,due to long finger-like protrusionscalled filopodia or lamellapodiawhich grab
onto adhesivesites on a tissueor externalsubstratumand pull themselvesalong: spatialaggregation
patternsin theseappearasspatialvariationsin cell numberdensity.Epidermalcells,on the otherhand,
in generaldo not movebut arepackedtogetherin sheetsand spatial patternsin their populationare
manifestedby cell deformations.A notableexceptionis in the processof woundhealingwhich is oneof
the applicationswe discussin Section 6.

We first considermesenchymal(fibroblast) cell patternformationin earlyembryogenesis.In animal
developmentthe basicbody planis moreor lesslaid downin the first few weeks.It is during thiscrucial
earlyperiod that we expectpatternandform generatingmechanisms,suchas weproposehere,to be
operative.All of the modelswe describearefirmly basedon macroscopicexperimentallymeasurable
variablesand on generallyacceptedpropertiesof embryoniccells.

In the following sectionwe showhow the modelsare derivedand how a variety of effectscan be
incorporatedif indicatedfrom subsequentexperiments.We shouldperhapsaddherethat thesemodels
pose numerousunsolved mathematical,both analytical and numerical, and biological modelling
problems.

2. Mechanicalmodelsfor mesenchymalmorphogenesis

Severalfactorsaffect the movementof embryoniccells within a tissuesubstratumwhich is madeup
of extracellularmatrix (ECM). For example,(i) convection, wherecells maymove passivelyon the
ECM, due to the forces exertedon the ECM by other cells; (ii) contact guidance,in which the
substratumon which cells crawl suggestsa preferreddirection; (iii) contactinhibition by cells,whereby
a high densityof neighbouringcells inhibits motion; (iv) haptotaxis,which we describebelow, where
the cells move up an adhesivegradient; (v) diffusion, wherethe cells move randomly but generally
down a cell densitygradient; (vi) galvanotaxis,wheremovementfrom the field generatedby electric
potentials, which are known to exist in embryos, provides a preferreddirection of motion; (vii)
chemotaxis,wherebya chemical gradient can direct cell motion both up and down a concentration
gradient.Theseeffects are all well documentedfrom experiment.

The model field equationsencapsulatethe key featureswhich affect cell movementwithin its
extracellularenvironment.We shallnot includeall of the effectsjust mentionedbut it will be clearhow
theycan be incorporatedandtheir effect quantified.The subsequentanalysisof the field equationswill
show how regularpatternedaggregatesof cells comeabout. In sections4 and5 weshalldescribetwo
real applicationsof the model, namely to the highly organisedpatternson skin suchas the primordia
which becomefeathersand scales,andthe condensationof cells which presagethe cartilagepatternin
developinglimbs.
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The basicmechanicalmodelhingeson two key experimentallydeterminedpropertiesof mesenchy-
mat cells in vitro: (i) cells migratewithin a tissuesubstratummadeup of fibrous extracellularmatrix,
the ECM, and othercells; (ii) cells can generatelarge traction forces[Harris et al. 1981]. The basic
mechanismmodelsthe mechanicalinteractionbetweenthe motile cells andthe viscoelasticsubstratum,
within which they move.

Mesenchymalcells move by exerting forces on their surroundings,consisting of the viscoelastic
fibrous ECM and the surface of other cells. They use their cellular protrusions,the filopodia or
lamellapodia,which stretchout from the cell in all directions,to grip whateveris availableandpull. As
thecells movethroughthe ECM theydeformit by virtueof their tractionforces.Thesedeformationsin
the ECM induceanisotropyeffects whichin turn affect thecell motion.Analysisof modelsincorporat-
ing thesevarious effects show that coordination of such effects result in spatially organisedcell
aggregations.The basicmodel is essentiallythat proposedby Murray et al. [1983],Murray and Oster
[1984a,b], with a detailedbiological descriptionby Osteret al. [1983].

The model, a continuumone, consistsof three equationsgoverning (i) the equationfor the cell
populationdensity, (ii) the mechanicalbalanceof the forcesbetweenthe cells andthe ECM and (iii)
the conservationlaw governingthe ECM. Let n(r, t) andp(r, t) denoterespectivelythecell density(the
number of cells per unit volume) and ECM densityat position r and time t. Denoteby u(r, t) the
displacementvectorof the ECM, thatis, a materialpoint in the matrix initially atposition r undergoes
a displacementto r + u. We derive forms for eachof theseequationsin turn.

2.1. Cell equation

This takesthe generalform

ônIôt=—V.J+M, (1)

whereJ is the flux of cells, that is, the numbercrossinga unit areain unit time, andM is the mitotic or
cell proliferationrate.For simplicity we shall takealogistic form for the cell growth,namelyrn(N — n)
wherer is the linear proliferative rate andN is the maximumcell densityin the absenceof anyother
effects. We include in I someof the factorsmentionedabovewhich affect cell motion.

Convection.With u(r, t) the displacementvectorof the ECM the convectiveflux contributionJ~is

J~—nôu/ôt. (2)

Herethe velocity of deformationof the matrix is ôuIdt andthe amountof cells transportedis simplyn
times this velocity.

Randomdispersal. Cells tend to disperserandomly when in a homogeneousisotropic medium.
Classicaldiffusion contributesa flux term — D1Vn, which modelsthe randommotion in whichthe cells
respondto local variationsin the cell densityandtendto movedown the densitygradient.This results
in the usual diffusion contribution D1V

2n to the cell equationand representslocal, or short range
randommotion.

In developingembryosthe cell densitiesarerelatively high and classicaldiffusion, which applies to
dilute systemsis not, perhaps,sufficiently accurate.The long filopodia extendedby the cells can sense
densityvariationsbeyondtheir nearestneighboursandso we must includeanonlocaleffecton diffusive
dispersalsincethe cellssensemoredistantdensities.The appropriateform of the diffusion contribution
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can be derivedfrom a Landau—Ginsbergapproach[seeCohenand Murray 1981]. The flux of cells in

this situationis modelledby
= —D1Vn + D2V(V

2n), (3)

whereD
1 >0 is the usualFickian diffusion coefficientandD2 >0 is the long rangediffusion coefficient.

The long rangecontributiongives rise to a biharmonicterm in eq. (1) and hasa stabilising effect if
D2 >0. We can see this immediately if we considerthe long range diffusion equation,obtainedby
substitutingeq. (3) into eq. (1) and omitting the mitotic term M, to get

8n/~t= —VJd = D1V
2n — D

2V
4n.

If we look for solutionsof the form

n(r, t)cx:exp[o.t+ikr],

wherek is the wavevectorand substituteinto the last equationwe get the dispersionrelation

o= —D~k”— D
1k

2<0

for all wavenumbersk(= kI). So n—~ 0 as t—~ ~ which implies n = 0 is stable.If the biharmonic term
hadD

2 <0, n = 0 would be unstablefor wavenumbersk
2> — D

1ID2. To accountfor contactguidance,
the diffusion coefficientsmaybe functionsof the straintensore(=~[Vu+ VuT], whereT denotesthe
transpose).Here howeverwe shall takethem to be constants.

Haptotaxisor Mechanotaxis.The tractionexertedby the cells on the matrix generatesgradientsin
the matrix densityp(r, t). We associatethe densityof matrix with the densityof adhesivesitesfor the
cell lamellapodiato get a hold of. Cells free to movein an adhesivegradient tendto moveup it since
theycan get astrongergrip on the densermatrix. This resultsin a netflux of cells up the gradientwhich
gives the haptotacticflux as

Jh = anVp, (4)

wherea>0.
The cell equation(1), with the flux contributionsto J from eqs. (2)—(4) anda logistic form for the

mitosisM, becomes

9nI~t= —V~(rn9uI~t)+ V [D1Vn— D2V(V
2n)] (convection+ diffusion)

—V (anVp) + rn(N — n) (haptotaxis+ mitosis), (5)

whereD
1, D2, a, r andN arepositive parameters.

We havenot includedgalvanotaxisandchemotaxisin eq. (5) but we can easilydeducewhatsucha
contributionwould look like. For example,if 4 is the electricpotentialthenthe galvanotacticflux can
be written as

Jg=gnV4i, (6a)
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wherethe parameterg >0. If cells respondedto achemoattractantc, chemotacticflux would be

Jchem = n~Vc, (6b)

wherex(c) is a function of the attractant.Thereareotherrefinementswhich could alsobe included;see
for example[Murray 1988].

Althougheq. (5) is clearlynot the most generalpossibleit sufficesto showwhat can be expectedin
more realisticmodel mechanismsfor biological patterngeneration.

The analysisof suchmodels allows us to comparethe variouseffects as to their patternformation
potentialand henceto comeup with the simplestrealisticsystemwhichcan generatepatternandwhich
is experimentallytestable.

2.2. Cell—matrixmechanicalinteractionequation

The compositionof the fibrous extracellularmatrix, theECM, within whichthe cellsmoveis complex
and moreover, its constituentschange as developmentproceeds.Here we are interested in the
mechanicalinteractionbetweenthe cells and the matrix. As the mechanicaldeformationsaresmall a
reasonablefirst approximationis to considerthe compositematerialof cells plus matrix to bemodelled
as a linear, isotropicviscoelasticcontinuumwith stresstensoru(r, t).

The time scaleof embryonicmotionsduring developmentis very long (hours)andthespatialscaleis
very small (lessthana few millimetres). We can thus ignore inertial effectsin the mechanicalequation
for the cell—ECM interaction(we arein a smallReynoldsnumberregime)andtakethe tractionforces
generatedby the cells to bein mechanicalequilibriumwith theviscoelasticrestoringforcesdevelopedin
the matrix and any externalforces present.The mechanicalcell—matrix equationis then [see, for
example,Landauand Lifshitz 1970]

V~r+pF=0 (7)

whereF is the externalforce (perunit matrix density) actingon the matrix anda is the stresstensor.
Considerfirst the stresstensora. It consistsof contributionsfrom the ECM andthe cells andwe write

0 =
0ECM + 0ceII (8)

The usualexpressionfor a linear viscoelasticmaterial [LandauandLifshitz 1970]gives the stress—strain
constitutiverelation as

0ECM = [~t
1e, + p.20M + E’[r + v’OI] (viscous+ elastic),

where

E’=EI(l+tt), v’=tt/(1—2v). (10)

Here the subscriptt denotespartial differentiationwith respectto time, I is the unit tensor,i-~p2 are
the shearandbulk viscositiesof the ECM, ~ and0 arerespectivelythe straintensoranddilationdefined
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by

E=~(Vu+VuT), 0=V~u (11)

andE and v are the Young’smodulusand Poissonratio respectively.
Fibrousmaterialsarealsocharacterisedby nonlocalelastic interactionssincethe fibres can transmit

stressbetweenpointsin the ECM quite far apart.By argumentsanalogousto thosewhich leadto the
biharmonicterm in the cell equation(5) we shouldincludelong rangeeffectsin the elasticstressfor the
compositematerial. We could also introduceanisotropyby having a 0-dependencefor E and v but,
again,do not do so here.

Now considerthe contributionto the stresstensorfrom thecell tractions,that is 0ceI1~The morecells
thereare the greaterthe traction force. There is, however,experimentalevidenceindicating cell—cell
contactinhibition with the tractionforce decreasingfor largeenoughcell densities.This can be simply
modelledby assumingthat the cell tractionforces r(n) per unit massof matrix initially increasewith n
but eventuallydecreasewith n for largeenoughn. Here we simply choose

r(n) = rnl(1 + An2), (12)

where T [dyne cm/gm] is a measureof the traction force generatedby a cell and A >0. Typical
experimentalvalues for T are of the order of i03 dyneI ~rmof cell edge,which is a very substantial
force [Harris et al. 1981].

As the filopodia, with which the cells attach to the ECM, extend beyond their immediate
neighbourood,it is againreasonableto includeanonlocaleffect analogousto the long rangediffusion
effect we included in the cell equation.We thustake the contribution 0ceII to the stresstensorto be

2 —1 2
0cell = T(l + An ) n(p+ yV p)I, (13)

wherey >0 is the measureof the nonlocallong-rangecell—ECM interaction.The long rangeeffects
hereare moreimportant thanthe long rangediffusion effect in the cell equation.

Finally consider the body force F in eq. (7). With the applicationsdiscussedbelow, the matrix
material is attachedto a substratumof underlyingtissueby what can perhapsbe bestdescribedas kinds
of guy ropes. We model theserestrainingforcesas body forcesper unit matrix densityproportionalto
the displacementof the matrix from its unstrainedpositionand thustake

F=—su, (14)

wheres > 0 is an elasticparametercharacterisingthe substrateattachments.
Thus the force equationwe take for the mechanicalequilibrium betweenthe cells andthe ECM is

eq. (7), with eqs. (8)—(14), which gives

V~[p~r
1+ /22011 + E’(r + v’OI) + Tn(1 + An

2)’(p + yV2p)I] — spu= 0, (15)

(viscous+ elastic+ cell traction+ externalforces)

whereE’ and v’ are definedby eq. (10).
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2.3. Matrix conservationequation

The conservationequationfor the matrix material,p(r, t), is

ôph9t+ V~(p iluIdt) 0, (16)

that is, the matrix only movesby convection.At certaintimesthe cells secretematrix, but not with the
applicationswe shall be discussingsowe omit it here.

Equations (5), (15) and (16) constitute the field equationsfor our model pattern formation
mechanismfor fibroblast cells. The model involves13 parameters,namely D1, D2, a, r, N, i-~/22’ T, A,
y, s, E and ii, all of which are in principle measurableand some of which are currently being
investigatedexperimentally.

To assessthe relativeimportanceof the variouseffectswe nondimensionalizethe equations.We use
generallength andtime scalesL and T, typical cell andmatrix densitiesN andp0 and set

r*=rIL, t*=t/T, n*n/N, u*=uIL, p*=pIpo,

V*=LV, 0*=0, E~E, y*7IL
2 r*rNT,

s*=5p
0L

2(1+p)/E A*=AN2, r*=rpoN(1+v)IE, (17)

a*=ap
0TIL

2, /2~’=~(l+v)/TE, i=1,2,

= D
1T/L

2, D~= D
5TIL

4.

Dependingon what time and length scaleswe are particularly concernedwith we can reduce the
parameterset further.For example,if wechooseT asthe mitotic time 1 I rN, thenr* = 1: thismeanswe
areinterestedin the evolutionof patternon the mitotic time scale.Alternatively we could chooseT so
that y~= 1 or = 1 for i = 1 or 2. Similarly we can choosearelevantlengthscaleandfurther reduce
the numberof groupings.

The model mechanismis thus, on droppingthe asterisksfor notationalsimplicity,

n
1 = D1V

2n— D
2V

4n —V• (anVp)—V~(nu
1)+ rn(1 — n), (18)

V~{(/21E, + /22V) + (~+ i/O!) + [rnl(1 + An
2)](p + yV2p)I} = spu, (19)

p
1+V(pu1)=0. (20)

Although the modelsystemis analytically formidablethe model’sconceptualframeworkis quite clear,
as illustrated in fig. 2.1.

This model doesnot includeall the effects that might be relevant,howeverit sufficesto showhow
such realistic modelscan be constructed.One of the major roles of such modelling and subsequent
analysisis to indicate just what featuresare essentialfor patternformation. Although the following
linear analysis can be carried out for the full systemwe simply want to demonstratethe pattern
formation potential and so look at a simple version of the model (18—20) in which we set various
parametersto zero.
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cell tractions

celltton

Fig. 2.1. Conceptualframework for the mechanicalmodels. Cell tractionsplay a central role in orchestratingpattern formation.

3. Simple model: linear analysis, dispersion relation and pattern formation potential

To model spatial aspectsobservedin embryonicdevelopmentthe basicsystem(18—20) must admit
spatiallyinhomogeneoussolutions.There is little hope,atthis stage,of finding usefulanalyticsolutions
to such nonlinearsystems.However,much of the patternformationpotentialis predictedby a linear
analysisaboutuniform steadystatesolutions.Suchpredictionsmustbe backedup by a nonlineartheory
or by numericalsimulationsif finite amplitudestructuresfar from homogeneityare required.

Let us considera particularly simple version of (18—20) by taking diffusion and haptotaxisto be
negligible,that is D1 = D2 = a = 0. Furtherconsiderthesituationwith no cell proliferationso r = 0 and
where,for illustrative purposesonly, there is no cell—cell inhibition so A = 0. In this situationthe
one-dimensionalversion of the model mechanismbecomes

n, + (nu1)~= 0,

+ u~+ [rn(p + yp~~)]~= spu, (21)

p1 + (pu1)~= 0,

where /2 = + p2 and we have rescaled p., r and s by E(1 + ii). The implication of the simple
conservationequationfor n is that the cells aresimply convectedby the matrix. This is believedto be
the major transportprocess.

The uniform steadystatesolutionsof eq. (21) are

n=u=p=0; n=1,p=0,u=1; n=p=1,u0. (22)

The first two solutionsarenot relevantasp is zero. In fact thereis a generalsteadystaten = n1, p = p1,
u = 0 wheren1 andp1 areconstants.By suitablenondimensionalisationwe can take theseconstantsto
be 1. The linear stability of the third solution is found in the usualway by seekingsolutionsof (21)
linearizedabout this steadystate.We thus considern — 1, p — 1 andu to be smallandon substituting
into the nonlinearsystemand retainingonly linear terms in n — 1, p — 1 and u we get the following
linear system,wherefor algebraicconveniencewe havewritten n andp for n — 1 andp — 1 respectively:
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n1 + u~1 0,

+ u1~+ (Tn + rp + TYPxx)x= su, (23)

p1 + u~,= 0.

Now look for solutionsby setting

(n, p, u) exp[o-t + ikx], (24)

wherek is the wavenumberand0~is the linear growth factor. Substitutionof eq. (24) into (23) gives the
dispersionrelationo~= u(k

2) as

a(k2) = —b(k2)12p.k2,
(25)

b(k2)=yTk4+(1—2T)k2+s.

Spatiallyheterogeneoussolutionsof the linear systemarecharacterisedby a dispersiono-(k2) which
haso-(0) � 0 but which exhibits a rangeof unstablemodeswith o(k2)>0 for k2 ~ 0. All the solutions
(24) with thesek’s are then linearly unstableand grow exponentiallywith time. In the usual way we
expecttheseunstableheterogeneouslinear solutionsto evolve into finite amplitudespatially structured
solutions.

From eq. (25), if k2 = 0, the spatially homogeneouscase,b(0) = s>0 and so u(k2)<0 for small
enoughk. For o(k2)>0, to exist for at leastsomek2 ~ 0, requiresfrom the expressionfor b(k2) in eq.
(25), that for a rangeof k2, b(k2)<0; that is at least r>112. Since

bmin = s — (2r — 1)2/4yT,

we thus havea rangeof k2>0 whereo(k2)>0 if

r> r~= (1 + ys)+ [(1+ ~~)2 — 1]h/2. (26)

This definesa bifurcation surfacein (T, y, s) parameterspacewhereinthe homogeneoussteadystateis
unstableto spatialdisturbanceswith wavenumbers

k~<k2<k~,k~,k~={(2T—1)±[(27—1)2—4s’yr]112}/2’yr, (27)

whereT, y ands mustsatisfyeq. (26). Thereis afastestgrowinglinear mode,theonewith wavenumber
giving umax which predicts,usually only in one-dimensionalmodelswith randominitial conditions,the
ultimate nonlinearspatialpattern.

From the dispersionrelation (25), the only way a solutionwith o(k2)>0 can exist is if b(k2)<0,
which in turn relies on a large enoughcell traction r, given by eq. (26), to be precise.It is alsoclear
heuristicallyfrom the mechanismthat this hasto be the casesincethe cell traction forcesarethe only
contributionto the aggregativeprocessin the force—balanceequationin eq. (21). Typically valuesfor
the cell traction, in vitro are of the order of 10~N m1 of cell edge.

Wheneq. (26) is satisfiedthe dispersionrelation(25) is a typicalbasicdispersionrelation of the type
which initiatesspatial patterns:it is illustrated in fig. 3.1.
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unstable modes

Fig. 3.1. Behaviour of the dispersionrelation o(k
2), for the model (23). As thetraction, r, increasesabove a critical r~,given by eq. (26),

wavenumbersin the interval [k~,k~],given by eq. (27), go unstable.

The system(18—20) can display anastonishingrangeof dispersionrelationsdependingon the model
parameters.These havebeenanalysedby Murray and Oster[1984a].Figure 3.2 is only a selection
which demonstratesthe richness of dispersionrelation types wherein a range of wavenumbersare
linearly unstable.

The nonlinearsingularperturbationtechniquedevelopedby Maini andMurray [1988]can beusedon
mechanismswith such dispersionrelationsof the type illustrated in fig. 3.1. They also considered
two-dimensionalmechanismsand obtainedroll andhexagonalsolutions.The significanceof the latter
will be discussedin the following sectionon a biological applicationto skin organ morphogenesis.

Perhapsit should be mentioned here that the spectrumof spatial patternspossible with the
mechanism(18—20) and its numeroussimplifications is orders of magnitude greaterthan with a
reaction—diffusionsystem— eventhree-speciessystems.The implicationsof a paperby Penrose[1979]
indicatethat tensorsystemshavesolutionswith awider classof singularitiesthanvectorsystems.Since
the cell—matrix equation is a tensorequation, its solutions should thus include a wider class of
singularities than reaction—diffusionvector systems. Even with the linear systemsanalytical and
numericalstudieshaveonly just started.Another property of models such as (21) is that the final

__ _R1~_

O~kz ~ __

I I’~’

~ ~
o~ ~ ~ O~ kZ ___

h’5 1,.—k o~—/-_-\
I ‘_‘ kRio-

_______ 0 kZ 0 z

Fig. 3.2. Someexamplesof dispersionrelationso-(k
2), obtainedfrom the mechanicalmodel mechanism(18—20) on settingvariousparametersto

zero.Realistic modelsfor thosewith infinite lineargrowth mustbe treatedassingularperturbationproblems,with smallvaluesfor theappropriate
parametersin termswhich havebeenomitted so as to makethe linear growth finite althoughlarge.
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solution will dependon the initial conditions,that is, since cell density is conserved,different initial
conditions (and hencedifferent cell number) will give rise to different patterns.However, as the
random perturbationsare small, the differences in the final solution are also small. This seems
biologically realisticas no two patternsare exactlythe same.

In the following two sectionswe considertwo biologically important and widely studiedpattern
formation problemsusing mechanicalmodelsof patterngeneration.

4. Periodic patternsof feather germs

Generation of regular patternsoccurs in many situations in early embryogenesis.These are
particularlyevidentin skin organmorphogenesissuchas in theformationof featherandscaleprimordia
andarewidely studied[see,for example,Sengel1976,Davidson1983a,b]. Featherformationhasmuch
in common with scaleformation during the early developmentalphaseof primordia. Herewe shall
concentrateon feathergerm formation with particular referenceto the chick, and fowl in general.
Featherprimordial structuresare distributedacrossthe surfaceof the animalin a characteristicand
regular hexagonalfashion. The applicationof the Oster—Murraymechanicaltheory to feathergerm
primordiawas first put forwardby Murray etal. [1983]andOsteretal. [1983]andit is their scenariowe
describehere. We first presentthe biological backgroundwhich suggestsa mechanicalmodel.

Vertebrateskin consistsessentiallyof two layers; an epithelial epidermisoverlaysa much thicker
mesenchymaldermisandis separatedfrom it by a fibrous basallamina. In general,epithelialcells do
not move,but the epithelial layercan deform through buckling. Dermal cells are looselypackedand
motile andcan movearoundin the extracellularmatrix, the ECM, as we describedearlier.Theearliest
observabledevelopmentalstagesof featherand scalegermsbeginthe sameway. We shall concentrate
here on the initiation and subsequentappearanceof feather rudiments in the dorsal pteryla— the
featherforming region on the chick back.

In the chick the first feather rudimentsbecomevisible about 6 days after egg fertilization. Each
feather germ, or primordium, consistsof a thickeningof the epidermiswith one or more layers of
columnarcells,calleda placode,beneathwhich is anaggregationof dennal(mesenchymal)cells, called
a papilla.The dermalcondensationsarelargely the resultof cell migration,with localisedproliferation
playing a secondaryrole. Whether or not the placodesform prior to the dermal papillae is a
controversialissue. There is considerableexperimentalwork going on to determinethe order of
appearanceor, indeed, whetherthe epidermisand dermisinteractto producetheir patternssimulta-
neously. The dermis seemsto determinethe spatial patterning— as shown by epidermal—dermal
recombinationexperiments[Rawles 1963, Dhouailly 1975]. The model we discusshere is for the
formation of dermalpapillae. Subsequentdevelopment,however, is a coordinatedprocessinvolving
both the epidermaland dermal layers [Sengel1976,Wessells 1977].

Davidson [1983a,b] demonstratesthat chick feather primordia appear sequentially.A central
column of dermalcells formson the dorsalpteiylaandsubsequentlybreaksup into a row of papillae.
As the papillae form, tension lines developjoining the cell aggregationcentres.With the above
mechanicalmodelsthisis consistentwith the cells trying to align the ECM. Now lateralrowsof papillae
form sequentiallybut theseare interdigitatedwith the papillaein the precedingrow: seefig. 4.1. These
lateralrows spreadout from the centralmidline almostlike awave of patterninitiation. Experimentsby
Davidson[1983]tendto confirm this wavetheory— laterwe show howtheseresultscan beexplainedby
our model andwe presentcorroborativenumericalresults.
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Fig. 4.1. (a) This showsthepredictedbreakupof a uniform distributionof mesenchymal(dermal)motilecells into regularcell condensationswith a
wavelengthdeterminedby theparametersof themodel mechanism(stage 1). Thesecell aggregationsaretheprimordial papillaefor feathersand
scales.(d) Vertical crosssectionqualitatively showingthefeathergermprimordia.Theplacodesin theepidermisareunderlainby thepapillaewhich
createthestressfield. (b) Subsequentaggregationsform laterally. Theprestressedstrainfield from thefirst line of condensationsinducesa biasso
that theneighbouringline of papillaeinterdigitatewith thefirst line (stage2).The resultingperiodic arrayis thushexagonal,thebasicunit of which
is illustrated in (c) (stage3). (e) The epidermalplacodepatternthat mirrors thedermalpattern.

Theseobservationssuggestthat it is reasonablefirst to modelthe patternformationprocessfor the
initial row of papillae by a one-dimensionalcolumn of cells and look for the conditionsfor spatial
instability which generatesa row of papillae. This is stage1 and is illustrated in fig. 4.la.

We haveseenin the previoussectionsthat eventhe simple mechanicalmodel (21) can generate
spatialpatternsas the cell tractionparameterr increasesbeyondsomecritical valuer~.At this valuea
modewith a specific wavenumberk~,that is, with wavelength21TIk~,first becomesunstableand a
spatial patternstartsto evolve: this generatesa regular patternof dermalpapillae.

Simulationsof the one-dimensionalversionof the following nonlinearmechanicalmodel, a simpler
versionof the morecomprehensivemodel (18—20), havebeencarriedout by Perelsonet al. [1986],viz,

ônIôt = D1c9
2n/ôx2— dI~x(nt9u/t9t) — aalax (n9pI~x), (28)

9ldx{p.d2u/oxat+ ~9uI~x+ [TnI(l + An2)](p + ya2pI~x2)}= sup, (29)

aplot+ oIax(pauldt)=0. (30)

They particularly addressedthe problem of mode selection in models with many parameters,and
proposeda simple schemefor determiningparametersetsto isolateand “grow” a specific wavelength
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pattern. Figure 4.2a shows a typical steady state patternof cell aggregations(the papillae), ECM
densityvariationsandmatrix displacement.As we would expectintuitively, the cell aggregationsarein
phasewith the ECM densityvariationsp, andboth areout of phasewith the ECM displacementu. The
reasonis that the cell aggregationspull the matrix towards the areasof higher cell density thus
stretchingthe matrix betweenthem: fig. 4.id illustrateswhat is going on physically.

Patternsof the typeillustratedin fig. 4.laoccuronly if the cell tractionparameteris abovea certain
critical value(seesection3). Thus a possiblescenariofor the formationof the patternalongthe dorsal
midline is that thereis a wave of initiation that sweepsdown the column which could be relatedto
tissueage;in this caseit is known(from in vitro experiments)that the cell tractionparameterincreases.
As the cells becomestrongerT passesthrough the critical value Tc and patternin initiated.

Let us now considerthe formationof the distinctive hexagonaltwo-dimensionalpatternof papillae.
We describedabovehow a waveof patterninitiation seemsto spreadout from thedorsalmidline. This
meansthat the patternof matrix strainsset up by the initial row of papillaebiasestheformationof the
secondarycondensationsat positionsdisplacedfrom the first line by half a wavelength.Figure 4.2b
showsthe resultingnumericalsimulation:notehowthe patternsareout of phasewith thosein fig. 4.2a.
If we now look at figs. 4.ib, c we see how this scenariogeneratesa regular hexagonalpatternin a
sequentialway like a wave emanatingfrom the centraldorsalmidline.

This “wave” is, however,not a wave in the usualsensesinceif the dermallayer is cut alonga line
parallelto the dorsalmidline the wave simply startsup againbeyondthe cutab initio. This is consistent
with Davidson’sexperimentalobservations[1983b].

The modelling here doesnot cast light on the controversyregarding the order of formation of
placodesand papillae. However, since the tractionforces generatedby the dermalcells can be quite
largethemodel lendssupportto theview thatthe dermiscontrolsthe patternevenif it doesnot initiate
it. Currentthinking tendstowardsthe view that initiation requirestissueinteractionbetweenthe dermis

xlO
t

_ H
x1O~~

_ H
Fig. 4.2. Steadystatesolutions,for thecell densityn, ECM densityp andECM displacementu, of thenonlinearone-dimensionalmechanicalmodel
(28—30). (a) Periodicboundaryconditions wereusedandinitial conditions wererandomperturbationsabout theuniform steadystaten = p = 1,
u = 0. (b) Heterogeneoussteadystatesolutionswith theinitial stresspatternin (a). Parametervalues:D

1 = a = y= 10~,A = 0.12, r = 1.65,s= 400.
= 1. Note thatn andp are in phaseandboth out of phasewith u.
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andepidermis.It is well knownthatmechanicaldeformationsaffectmitosisandso tissueinteractionis a
naturaleffect to includein mechanicalmodels:seealso the discussionin Osteret al. [1983].Nagorcka
et al. [1987]investigateda tissueinteractionmechanismspecificallywith the complexpatternsof scales
in mind.

5. Cartilage condensationsin limb morphogenesis

The vertebratelimb is one of the most widely and easilystudieddevelopmentalsystemsand such
studieshaveplayeda major role in embryology.Experimentalevidencefrom amphibianssuggeststhat
osmotic propertiesof the ECM may be important in morphogenesis.Hyaluronate is a principal
componentof the ECM andcan exist in a swollen osmoticstate.As the condensationof chondrocytes
starts the cells secretean enzyme,hyaluronidase,which degradesthe hyaluronate.This could leadto
the osmoticcollapseof the matrix thusbringing the cells into close enoughcontactto initiate active
contractionsand thus generatecell aggregations.Cell motility is probably not important in this
scenario.

A mechanicalmodelfor generatingthe patternof cell condensationswhich evolve in a developing
limb bud and which eventuallybecomescartilagewas first put forward by Murray et al. [1983]and
Osteret al. [1983].A modification of the mechanicalmodel to incorporatethe abovechemicalaspects
andthe addedforcescausedby osmoticpressurehasbeenproposedandanalysedby Osteretal. [1985].
They showedthat sucha mechanochemicalmodelwould generatesimilarchondrogenicpatterningfor
the developinglimb to that obtainedwith the earlier mechanicalmodel.

The patternin developinglimb budswhich determinesthe final cartilagepatterns,which later ossify
into bones,involvesaggregationsof chondrocytecells, which are mesenchymalcells such as we have
beenconsidering.The basicevolutionof chondrocytepatternstakesplacesequentiallyasthe limb bud
grows, which it does from the distal end. Figure 5.1 gives an explanationof how, with geometryand
scaleas bifurcationparameters,chondrogenesiscould proceed.The actualsequenceof patternsfor the
developingchick limb is illustrated in fig. 5. ic. The detailedexplanationof the processbasedon a
mechanicalmechanismis the following.

As the limb bud grows, through cell proliferationat the distal end, the crosssectionof the tissue
domain,whichincludestheECM andmesenchymalcells, is approximatelycircular but with anelliptical
bias. Let us considerthis to be the two-dimensionaldomain for our mechanicalmodel with zero flux
boundaryconditionsfor the cells n and matrix p. The condition for u is an imposedrestrainingforce
which comesfrom the epidermis— the sleeve of the limb bud. We supposethat as the cells age the
traction increasesand eventuallypasses through the critical values i~. The detailed form of the
dispersionrelation is such that the first bifurcation producesa single central aggregationof cells
recruitedfrom the surroundingtissue.

The axial cell aggregationsareinfluencedby the cross-sectionalshapeas shownin fig. 5.la. As the
cells condenseinto a single aggregationthey generatea strongcentrally directedstressas in fig. 5. lb.
This radial stressdeforms the alreadyslightly elliptical crosssectionto makeit evenmore elliptical
whichin turninducesa bifurcationto two condensationsbecauseof the changedflatter geometryof the
crosssection.An aerofoil sectiongives rise to two condensationsof differentsize.

As distinct from chemicalprepatternmodelsmechanicalmodelsinfluencethe shapeof the domain
and can actuallyinduce the sequenceof bifurcationsshownin fig. 5.ic.
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Fig. 5.1. (a) The type of axial condensationis influencedby thecross-sectionalshapeof the limb. Initially a single condensation,path 1, will be
produced(for example, thehumerusin (c)). A more elliptical crosssectionallows two aggregationsto form, path2. An aerofoil-shapeddomain
producedunequalcondensations(forexample, theradiusandulnain (c)). In a long thin cylindertheaxialcondensationsform segmentalunits,path
3 (for example,thephalangesin (c)). (b) Thisshowshow themechanicalmechanisminfluencescross-sectionalform andhenceinducestherequired
sequenceof chondrogenicpatterns. As thecells form the central condensationtheir tractionsdeform thelimb to be more elliptical. At acritical
ellipticity the patternbifurcatesto two condensations.How threecondensationsareformedis importantandexplainedin thetext: refer alsoto fig.
5.2d. (c) The schematicbifurcation sequenceof chondrocyte(mesenchymal)cell aggregationswhich presagecartilageformationin thedeveloping
chick limb.

After a two-condensationstatehasbeenobtained,furthergrowth and flatteningcan generatethe
more distalpatterns.By the time the limb bud is sufficiently flat, cell tractionrecruitmenteffectively
isolates patterningof the digits. The domain can now be consideredlinear and subsequentgrowth
induceslongitudinalor segmentalbifurcationswith morecondensationssimply fitted in as the domain
increasesand we get the simple laying down of segments,for example,the phalangesin fig. 5.lc, as
predictedby fig. 5.la, path 3.
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The sequenceof cell patternbifurcationsneednotbe generatedby a changinggeometry;it can result
from a variation of otherparametersin the model. Also asymmetriccondensationscan result from a
spatialvariation or asymmetryin aparameteracrossthe limb cross-section.Thereis well-documented
experimentalevidencefor asymmetricproperties,which, of course,arereflectedin the differentbone
shapesand sizesin the limb suchas the radiusandulnain fig. 5. ic. Whatevertriggersthe bifurcations
as we move from the proximal to distal part of the limb the natural sequenceis from a single
condensationto two condensationsandthen to several.

Morphogeneticrules for cartilage morphogenesisin the limb
With a completelysymmetric geometryand tissue isotropy it is possible to move through the

bifurcation spaceof parametersfrom one aggregationto two to threeand so on. With the natural
anisotropyin embryologicaltissuesuchisotropy doesnot exist.The questionthenarisesas to how the
patternsequencefrom a double to a triple condensationis effected. During chondrogenesisthere
appearsto be little cell division, which implies that condensationsprincipally form throughrecruitment
of cells from neighbouringtissue.Thus, as the limb bud growsthe patternbifurcation thattakesplace
following abranchingbifurcation is as illustratedin fig. 5.2c. Figures 5.2a,b show the other two basic
condensationelementsin settingup a cell condensationpatternin adevelopinglimb. We believethat
for all practicalpurposesthe processgiving riseto triple bifurcationmustbethat in which onebranchof
the doublecondensationitself undergoesa branchingbifurcation.

If we now take the bifurcatingpatternelementsin figs. 5.2a—c as the threeallowabletypes of cell
condensationswe can seehow theycan beusedto constructany limb cartilagepattern.As anexample,
fig. 5.2e illustratesthis for the forelimb of a salamander.So, evenwithout consideringany specific
mechanism,we hypothesisean importantset of morphogeneticrules for the patterningsequenceof
cartilagein the developmentof the vertebratelimb. This hypothesis,encapsulatedin the theory put
forward by Murray et al. [1983]and Osteret al. [1983],hasrecently beenexploitedby Osteret al.
[1988]who presentextensiveexperimentalevidencefor its validity. They also discussaspectsof the
theory and its predictionswhich areof considerablepotentialimportancein evolutionarybiology.

We believe theserules aremodel independent,or ratherany model mechanismfor chondrogenic
patternformation must be capableof generatingsucha sequenceof bifurcatingpatterns.

A major role of theory in morphogenesisis to suggestpossibleexperimentsto distinguishbetween
different modelseach of which can generatethe appropriatesequenceof patternsobservedin limb
chondrogenesis.Mechanical models lend themselvesto experimental scrutiny more readily than
reactiondiffusion modelsbecauseof the elusivenessof chemicalmorphogens.

6. A mechanochemicalmodel for wound healing

The processof cutaneouswound healing often involves some degreeof wound contraction, the
movementof the woundboundaryand adjacentuninjured tissuetowardsthe woundcentre. In some
cases,contractioncan beadvantageousfor woundclosure;however,it cancreatefunctionalimpairment
(e.g.whencontractionoccursnearajoint) aswell as becosmeticallyunattractive(e.g. facialwounds)in
others.Experimentalinvestigationshavedemonstratedthat fibroblast cells repopulateawoundandare
responsiblefor contraction[Rudolph1979]. Thus,cutaneouswoundcontractionis clearlya physiologi-
cal processin which cell forcesareof greatimportance.The mechanochemicalmodelling approachnot
only providesa frameworkfor understandinghow eventsin wound healing are orchestratedsoas to
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Fig. 5.2. (a—c) The threebasictypesof cell condensationswhichgeneratecartilagepatternsin thedevelopingvertebratelimb. Thesearepostulated
as the morphogeneticrules for cartilagepatterngenerationfor all vertebratelimbs. (a) FocalcondensationF; (b) Branchingbifurcation B; (c)
SegmentationcondensationS. (d) Formation of morepatternsis by furtherbranchingor independentfoci. (e) An exampleof abranchingsequence
showinghow thecartilagepatternsin the limb of a salamandercan be built up from a sequenceof F, B andS bifurcations.

give rise to contraction,but also a predictive meansfor enhancingor mitigating contraction,as is
appropriatefor a particularwound. There is alsoconsiderableevidencethat cutaneouswoundhealing
can serveas a modelfor understandinga wholeclassof soft tissuepathologies,from fibrotic disorders
to generationof tumours [Seemayeret al. 1981].

Woundcontractionoccursin the context of otherphasesof woundhealing whichmaybe influential
in the initiation andregulationof contraction[Clark 1985]. Inflammatorycells arebelievedto releasea
host of chemical stimuli for fibroblasts (e.g. growth factors and chemoattractants)that govern the
subsequentphasesof repair: biosynthesisof wound matrix followed by an extendedperiod of matrix
remodelling, which typically results in a densecollagenousscar. Contractionusually parallels the
biosyntheticphasewhen collagenand othermatrix macromoleculesreplacethe initial fibrin clot. The
close temporal relationshipof contractionwith inflammation and matrix biosynthesisprovides two
scenariosto be consideredwithin the basic mechanochemicalmodel.
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Unlike for the previousapplicationsof the model, thereare quantitativedataalreadyavailablefor
cutaneouswoundcontractionfor comparisonwith modelpredictions.In astudyby McGrathandSimon
[1983]addressingthe longstandingcontroversyof what typeof woundclosesfastest,theyobservedthat
the contractingphaseof “full thickness” dermalwounds on rats could be describedwith a simple
exponentialdependenceon time:

A=Af+(A0—Af)e~~,

whereA0 is the wound areawhencontractionbeginsandA~is the arearemainingafter contractionis
completed(areasarescaledto the excisedarea).The time constant,k, was found to be independentof
both the initial woundareaandwoundgeometryfor the limited casesstudied(6.25cm

2 and 12.54cm2
squaresand 12.54cm2 circles).

In addition to assessingthe model’s admissabilityof suchquantitativepredictions,it is necessaryto
considerwhat qualitative featuresrelevantto wound contractionshould be intrinsic to the model. A
ratherobviousone servesto constrainthe permissibleparameterspace:unwoundedskin shouldbe in
somesensestableto at leastsmallperturbations.Giventhe patternforming capabilitiesof the models
describedabove,thisis not a trivial consideration.This is addressedusinglinearstability analysisof the
uniform stateof the typeoutlined earlier.Other relevantfeaturesarenot as objective,but reflect the
typical outcomeof a wound: a rapid initial expansionof the wound followed by a longer periodof
contractionwith increasein collagencontent.

The basemodeluponwhich the two scenariosareconsideredassumesthatthe cellsmoveby random
dispersion and convection only and proliferate according to a logistic rate law. (Other modesof
fibroblast migration such as chemotaxisand contact guidance,although not consideredhere, are
generallybelievedto playa significant role in fibroblastrepopulationof a woundspace.Also thereare
many speculatedeffects of biochemical mediators on fibroblast behaviour, ranging from oxygen
concentrationmodulationof proliferation to inflammation-derivedgrowth factor-modulationof trac-
tion. The latter, a key elementis consideredin thefirst scenariohere.)The dermisis againassumedto
be a matrix adequatelydescribedby a linear, isotropic,viscoelasticstresstensormodified with the local
cell tractionalforce term.(Thusosmoticforceswhichdevelopin the woundspaceareneglectedhere,as
are any consequencesof matrix fibre anisotropywhich might develop during wound healing.)The
attachmentof the dermisto underlyinganatomicalfeaturesis modelledby the linearly elasticbody
force. Virtually all animalmodelsusedfor thestudyof woundhealingpossessthe panniculuscarnosus,
a skin organ underlyingthe dermiswhich is absentin humansand confersgreatmobility to animal
dermisrelativeto humandermisin responseto stress.This maybe accountedfor at the simplestlevel
by consideringthe elasticconstantassociatedwith underlyingattachmentof the skin, s, to besmalland
large respectively.The systemof equationsfor this basemodel takesthe form:

n
1 + V.(nu,) = D1V

2n + rn(1 — n), (31)

V~{p.
1e1 + p.2O~I+ E(r + i/O!) + TnpII(1+ An

2)}= spu, (32)

p,+V.(pu
1)ziO. (33)

The associateddimensionlessvariablesandparametersare the sameas in eq. (17).
The idealization of the initial stateof a wound is that u = 0 and p = 1 for all x in the,(infinite)
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domain,andthat insidesomeinitial wound boundary,Xb, n =0 while for all x outsidethe boundary,
n = 1. This implies that the woundmatrix (that is, fibrtn clot) is formedinstantaneouslyrelativeto the
contractionphaseand that it is devoid of fibroblasts, which are accurateassumptions[Clark 1985].
Further, it is assumedthat the mechanical propertiesof the wound matrix are the same as the
surroundingdermis,andthis remainstruefor thewoundmatrixfor all timesasit becomesmodifieddue
to cell biosynthesis.These are much less accurateassumptionsbut appropriategiven the complex
modificationsof the woundmatrix compositionthat occursduring woundhealing[Clark 1985,Weigelet
al. 1986].

Although it can be shown that this basemodel admits the occurrenceof a stablenonuniform
steady-stateevolving from the initial state,neitherthe qualitativefeaturesof sucha steady-statenor its
evolutionfrom the initial stateareconsistentwith thoseof a contractingwound. Thesedeficienciesare
remediedin both of the following scenarios.

In the first scenario,we assumefor simplicity that the inflammatory mediatorexists as a stable
concentrationgradient exponentially decreasingfrom the wound centre over the time-course of
contraction(modelsof inflammation providea basisfor extendingthis simple description[seeAlt and
Lauffenburger 1987]). There are various mechanismsby which this mediator could influence the
behaviouralpropertiesof fibroblasts. Experimentalevidenceindicatesthat fibroblasts transforminto
highly contractilemyofibroblastsneara wound dueto somemediator [Skalli and Gabianni1987] and
suggeststhat the traction parameter,T, should dependon mediatorconcentration,c, accordingto

T=r0{1+T~cI(1+c)}

where~ is a tractionenhancementcoefficient.c is takento havethe following dependenceon distance
x from the wound centre,

c = c0 exp[—x
2/u]

wherec
0 is the concentrationat the woundcentrescaledto theconcentrationfor half-maximaltraction

enhancementanda- is a parameterspecifyingthe spatial domainof influenceof the mediatorfrom the
woundcentre.

Assumingmatrix strainsaresufficiently smallwe can linearisethe conservationequationfor p in eq.
(33): in one spacedimension

p1+(u1)~=0~p=1—u~. (34)

If wefurtherassumethe cell densityin the steadystateis essentiallyn = n~= 1, whichis a solutionof
eq. (31), an approximationto the steady-stateprofile u5(x) is givenby substitutingfor p from eq. (34)
into eq. (32) to get

( r \ d
2u

5 — ( du~’\( drldx 35
~1- 1+A!d~~dx)~’ 1+A (

The solutionof eq. (35) givesthe final contractedstateof the woundmatrix displacement,u5, giventhe
persistentgradientof inflammatorymediator.The profiles obtainedin this manneragreewell with
thoseobtainedfrom numericalsolution of the full system of equations(31—33). An exampleof the
transientprofiles is given in fig. 6.1 for the caseof linear woundgeometry.
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Fig. 6.1. Numericalresultsfor thevariabletractioncaseof thewoundcontractionmodelfor linear geometry:(a) cell density,n; (b) displacementof
cell/matrix composite,u; (c) and matrix density,p, areplottedversusdistance,x, from thewoundcentrefor a seriesof timesafterwounding. The
imposedtractiongradientis indicatedby thedashedline (i~= 2.5, c

0 = 1). In (d) therelativewoundarea,a, is plotted asafunctionof time (a >1 is
associatedwith woundexpansion,a < 1 is associatedwith wound contraction).The straight line is the linear least squaresregressionline of a
transformedaccordingto the exponentialform suggestedby McGraw and Simon [19831.See text for further discussion.Parametervalues:
D1 =0.001,~r= 1, r = 1, s = 100, r~= 0.5, A = 1.5, cc = 0.4, where z = j.c~+ ~.c2,and~s,s and c0 areall scaledby 1 + V.

The repopulation of the wound space by cells (that is fibroblasts) by random migration and
proliferationis seenin fig. 6.la to restorethe cell concentrationto that characteristicof the unwounded
dermis.The evolutionof the matrix to acontractedsteady-stateis apparentin fig. 6.lb. Associatedwith
the contractionis an increasein the matrix densityas seenin fig. 6. ic. Theplot of the woundareaover
timerelativeto the initial woundareain fig. 6. id, which is identicalto a plot of the “contractingphase”
as analysedby McGrathandSimon,suggeststhat the cell—matrix-mediatormechanismsof this scenario
can conspireto yield the empiricalexponentialdescriptionwhich theyobserved.The timeconstant,k,
calculatedfrom the numericalsimulation is independentof the initial wound area,in agreementwith
their findings, since the solutionsare obtainedfor dimensionlessvariableson an infinite domain. We
found that the analogoussimulationin cylindrical polar coordinatesgives approximatelythe samevalue
for k (1.00versus1.01),which is also in agreementwith McGrathand Simon’s [1983]relatedfinding
that k is independentof geometry.
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In the secondscenario,the basicmodel is modified to includea matrix biosynthesisterm,accounting
for the extensivedepositionof collagenandothermatrix macromoleculesby fibroblastsin the wound
region. Since the functional dependenceof this biosynthesisrate on n, u and p is not yet known, we
assumefor illustrative purposesherethat net rateof biosynthesisis proportionalto that of proliferation
(that is, biosynthesishas a logistic-type rate law, bn(1 — n)). A priori prediction of a contracted
steady-stateis moredifficult with this model scenario.An exampleof the numericalsolution of eqs.
(31—33) with the biosynthesisterm includedin eq. (33) is shownin fig. 6.2, againfor a linearwound. It
sharesmany similarities with the other scenario, including a contracted steady-statereasonably
describedwith an exponentialwhich is again independentof initial woundareaandapproximatelythe
samefor both linear andcircular woundgeometries(1.02 versus1.03).

There are many scenarioswhich can be consideredgiven the complexity of the wound healing
phenomenon.The mechanochemicalmodel offers a possibility of consideringthe effects of various
known andspeculatedresponsesanddermal/woundmatrix propertiesindividually aswell as collective-
ly. An improvedunderstandingof how theseeffects areinterrelatedcould leadto new possibilitiesfor
controlling wound contractionand optimizing the wound healing response.Such initial successis
encouragingfor future work in this areaandsuchstudiesare currentlyin progress.
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7. Other applicationsof mechanochemicalmodels

Therearemanypotentialapplicationswhich havenot yetbeenexaminedin depthor evennot at all.
Here we mention a few, but only very briefly.

(i) Postfertilizationwaveson eggs.Thesewavesareassociatedwith pairsof mechanicalandchemical
phenomenaobservedon the surfaceof many vertebrateeggs shortly after fertilization. The waves
effectively emanatefrom the spermentry point and sweepover the egg. A mechanicalmodel for the
egg surfacebasedon a contractilemachinery,similar to that involved in musclecontraction,wherein
thecontractionis intimately relatedto the calciumchemistryinvolved hasbeendevelopedandstudied
by Cheeret al. [1987]andLaneetal. [1987].In the latter paperanalyticalresultsareobtainedfor the
wave profiles of the mechanicaland chemicalwaves and the resultscomparewell qualitatively with
observations.

(ii) Animalcoatpatterns.Murray (1981)showedthat manyof the patternsobservedon mammalian
coatpatternscould be generatedwith a morphogenbasedreactiondiffusion mechanism.The patterns
thusgeneratedwereconsideredthe chemicalprepatternsto which the melanoblastcells, the precursors
of melanocytes,the pigmentformingcells respond.The evidencepresentedfor sucha theorywasbased
on observationalcomparisonsand on certain developmentalconstraintswhich are dictated by the
geometryandscaleof the animal’ssurfacewhenthe pre-patternis laid down. Thesemelanoblastcells
migrate from the neural crest early in development.Since the model discussedin section 2 deals
specifically with suchmigratory cells it is possibly directly applicableto patternsfound on mammalian
coats.In view of the evident richnessof patternswhichour mechanicalmodelscan generate,it is clear
that we can obtain not only similar patternsto thosefrom a reactiondiffusion mechanismbut others
which the latter cannotexhibit. -

(iii) Rejectionofartificial joints. Oneof the problemswith artificial hip joints is that the cementfor
fixing them inside the femur doesnot form a good bond with the living tissue. The conceptsusedin
settingup the cell motility mechanismssuggestthata way to effect a moresuitablebondmight beto try
andproducean adhesivewhichis sufficiently porousto allow movementof cells into it, by virtue of the
cell tractions.

8. Discussion

Therecan be no doubt thatmechanochemicalprocessesareinvolved in development.Themodelswe
havedescribedhererepresenta new approachandtheconceptssuggestthat mechanicalforcescouldbe
the principal guidingelementsin producingthe correctsequenceof tissuepatterningandshapeswhich
are found in the developingembryo. Whereasin reaction diffusion modelsa chemicalmorphogen
prepatternis setup, which is thenreadandinterpretedby the cell as required,in a mechanochemical
frameworkpatternformation andmorphogenesisareone and the same.

The modelssimply reflect the laws of mechanicsas appliedto tissuecells andtheir environmentand
are basedon known biological and biochemicalfacts: all of the parametersinvolved are in principle
measurable.

We should add that these models are first attempts, and considerablemathematicalanalysis is
requiredto investigatetheir potentialitiesto thefull. In turnthis will suggestmodelmodificationsin the
usualway of realistic biological modeling. At this stagethe analysishasonly just beenstartedbut is
sufficient to indicatea wealthof wide-rangingpatternsand mathematicallychallengingproblems.The
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modelshavealreadybeenapplied realisticallyto a variety of morphogeneticproblemsof currentmajor
interest. The resultsand basic ideashaveinitiated considerableexperimentalinvestigationand new
waysof looking at a wide spectrumof embryologicalproblems.

The emergenceof spatial patternin the embryois still unresolved.No mathematicalmodelcan take
into accountthe very complexphysical, chemicaland electricalprocessesinvolved in morphogenesis.
Every mathematicalmodel is a gross simplification of the actual processesinvolved. However, in
making such simplifications, one is trying to capturethe essentialmechanismsinvolved. The role of
mathematicalmodelsis to try to highlight the possibleinteractionsbetweenspecific biological processes
and to suggestrelevantexperiments.They havegeneratedand directeda greatdealof experimental
activity amongbiologists,andfrom this point of view, suchmodelsfor morphogenesisarefulfilling their
role.
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