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In many developing tissues, adjacent cells diverge in character so as to create a fine-grained pattern of
cells in contrasting states of differentiation. It has been proposed that such patterns can be generated
through lateral inhibition—a type of cell-cell interaction whereby a cell that adopts a particular fate
inhibits its immediate neighbours from doing likewise. Lateral inhibition is well documented in flies,
worms and vertebrates. In all of these organisms, the transmembrane proteins Notch and Delta (or their
homologues) have been identified as mediators of the interaction—Notch as receptor, Delta as its ligand
on adjacent cells. However, it is not clear under precisely what conditions the Delta–Notch mechanism
of lateral inhibition can generate the observed types of pattern, or indeed whether this mechanism is
capable of generating such patterns by itself. Here we construct and analyse a simple and general
mathematical model of such contact-mediated lateral inhibition. In accordance with experimental data,
the model postulates that receipt of inhibition (i.e. activation of Notch) diminishes the ability to deliver
inhibition (i.e. to produce active Delta). This gives rise to a feedback loop that can amplify differences
between adjacent cells. We investigate the pattern-forming potential and temporal behaviour of this
model both analytically and through numerical simulation. Inhomogeneities are self-amplifying and
develop without need of any other machinery, provided the feedback is sufficiently strong. For a wide
range of initial and boundary conditions, the model generates fine-grained patterns similar to those
observed in living systems.

7 Academic Press Limited

1. Introduction

In many developing tissues, both in animals and in
plants, a fine-grained mixture of different cell types is
generated through cell-cell interactions within a
population of cells that are initially equivalent in their
developmental potential (Greenwald & Rubin, 1992).
Somehow, a scattered subset of cells in the population
become singled out for one fate, while their immediate
neighbours are consigned to another. Studies in
insects and nematode worms, and more recently in
vertebrates, have revealed an evolutionarily con-

served mechanism by which this may come about in
animal tissues (Sternberg, 1993; Artavanis-Tsakonas
et al., 1995; Chitnis, 1995; Lewis, 1996). The
mechanism is based on lateral inhibition—a cell-cell
interaction whereby a cell heading for a particular
fate inhibits its neighbours from developing in the
same way (Goriely et al., 1991; Heitzler & Simpson,
1991). In the developing nervous system, for example,
it has been found that nascent neural cells inhibit their
neighbours from becoming committed to a neural
fate. In this way, adjacent cells are forced to develop
differently.

Genes that mediate lateral inhibition are identifi-
able by a striking and characteristic mutant
phenotype: when they are defective, lateral inhibition
fails, and all the cells in the initial population develop

§Author to whom correspondence should be addressed.
E-mail: nmonk.maths.ox.ac.uk
*Current address: Imperial Cancer Research Fund, Vertebrate

Development Lab., 44 Lincoln’s Inn Fields, London WC2A 3PX.

429



. .  E T A L .430

in the same way, corresponding to the fate of an
isolated cell. This default fate—the neural fate, in the
case of developing nervous tissue—is termed the
primary fate; that of cells that suffer lateral inhibition
is called the secondary fate (Sternberg, 1993). Early
studies focused on the neuroectoderm of the
Drosophila embryo, where failure of lateral inhibition
leads to vast overproduction of neurons at the
expense of epidermal cells (Lehmann et al., 1983;
Campos-Ortega, 1993). Genes identified as respon-
sible for lateral inhibition in this system were thus
termed ‘‘neurogenic genes’’; but it has become clear
that the same genes mediate lateral inhibition in a
similar way in a great variety of other tissues, both
neural and non-neural, both in invertebrates and in
vertebrates. Examples range from the gut epithelium
of the fly (Tepass & Hartenstein, 1995) and the gonad
of the nematode worm (Wilkinson et al., 1994) to the
retina of the chicken (Austin et al., 1995) and the
neural plate of the frog (Chitnis et al., 1995). In some
cases, the initial population of equivalent cells within
which lateral inhibition operates is small—about six
cells for a proneural cluster in the neuroectoderm of
Drosophila (Skeath & Carroll, 1992)—and lateral
inhibition singles out just one cell within it for the
primary fate; in other cases, such as the Drosophila
endoderm (Tepass & Hartenstein, 1995), the initial
population is large and lateral inhibition singles out
many cells within it, each surrounded by a halo of
inhibition, creating a fine-grained spacing pattern.

In either case, lateral inhibition, as outlined above,
explains why the neighbours of a cell that is singled
out for the primary fate do not adopt that same fate
themselves. But can it also explain how the cell that
adopts the primary fate becomes singled out in the
first place? Or does one have to postulate some other,
additional machinery to initiate cell diversification
within the original population of equivalent cells? In
this paper we explore the proposition that lateral
inhibition by itself is sufficient, provided that it is
regulated in an appropriate way. The form of the
required regulation is simple: the more intense the
inhibition a cell receives, the weaker its ability to
deliver inhibition must become. This results in a
feedback: the more inhibition a cell delivers to its
neighbours, the less inhibition it receives back from
them, and the more it is consequently able to deliver.
The suggestion is that, as a result, any initial slight
difference between the neighbours will become
self-amplifying, generating a full-blown spatial pat-
tern of inhomogeneity. This mechanism, which we
shall call lateral inhibition with feedback, has been
proposed in several experimental contexts (Goriely
et al., 1991; Heitzler & Simpson, 1991; Sternberg,

1993) and is supported by evidence that inhibition
received does indeed diminish the ability to deliver
inhibition (Wilkinson et al., 1994; Heitzler et al.,
1996). But formal proof that the mechanism will do
what it is proposed to do is still lacking, and so far
as we know there has not been any mathematical
analysis of its expected temporal behaviour or spatial
pattern-forming capabilities.

Advances in knowledge of the underlying biochem-
istry allow us to formulate these problems in terms of
specific molecules. Many of the molecules that
implement lateral inhibition with feedback have been
identified as products of specific neurogenic genes. In
particular, extensive genetic and biochemical studies
have identified the product of the neurogenic gene
Notch (and its homologues in organisms other than
the fly) as the receptor for lateral inhibition, and the
product of the neurogenic gene Delta (and its
homologues) as the corresponding ligand, expressed
in the cell delivering inhibition (reviewed in
Artavanis-Tsakonas et al., 1995; Muskavitch, 1994).
Both Notch and Delta are transmembrane proteins.
The details of the way in which Delta binding leads
to activation of Notch remain unclear, but there is
increasing evidence to suggest that binding of Delta
in the membrane of one cell to Notch in the
membrane of another activates Notch by triggering
cleavage of its intracellular domain (Lieber et al.,
1993; Jarriault et al., 1995; reviewed in Lewis, 1996).
Alternatively, Delta binding could activate Notch in
some other way. Whatever the precise nature and
result of the Delta–Notch interaction, it seems clear
that Notch activation stimulates production of
proteins of the Enhancer-of-split (E(spl)) family,
which in turn are thought to inhibit both commitment
to the primary fate and production of Delta activity
(reviewed in Lewis, 1996).

In this paper we develop a simple mathematical
model to investigate the pattern-forming potential of
a system in which lateral inhibition with feedback is
mediated by Delta–Notch signalling between adjacent
cells. We make only minimal assumptions about the
specific details of the biochemical machinery in-
volved. Analytical results and numerical simulations
show that, provided the feedback is sufficiently strong
(in a sense that we make mathematically precise),
differences between neighbouring cells will indeed be
self-amplifying, leading to fine-grained spatial pat-
terns of the expected type: cells with high levels of
Delta activity and low levels of Notch activation
(corresponding to the primary fate) will arise,
scattered amongst cells with low Delta activity levels
and high Notch activation levels (corresponding to
the secondary fate). A simple parameter change—for
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example, in the lifetime of activated Notch or Delta
protein—can switch the system from a condition in
which the homogeneous condition, with all cells
inhibiting one another, is stable to small pertur-
bations, to one in which it is unstable and will amplify
small inhomogeneities leading to a spatial pattern of
primary fate and secondary fate cells. Less obviously,
a system that satisfies the criterion for instability but
starts off approximately homogeneous in its spatial
pattern may often move towards a spatially
homogeneous unstable equilibrium, in which all cells
inhibit one another, before developing a spatially
inhomogeneous pattern of primary fate and sec-
ondary fate cells.

The model presented here provides a simple and
versatile framework in which to investigate the effects,
not only of lateral inhibition, but also of other
mechanisms that may collaborate with the lateral
inhibition machinery to control patterns of differen-
tiation. In Section 2 we present our model and give
the assumptions it embodies. Section 3 contains
analytical and numerical results for the model, with
details of the analysis given in Appendices A and B.
In Appendix A, we analyse the two-cell (or period 2)
system, which gives important understanding of the
behaviour of the model. Appendix B contains an
extension of the linear analysis developed by Turing
(1952) for systems of discrete cells. It allows us to
predict the patterns that emerge on one- and
two-dimensional infinite domains from small pertur-
bations about the uniform steady state. In Section 4,
we discuss the nature and results of our model and
biological evidence surrounding the mechanism
of Delta–Notch mediated lateral inhibition. The
main conclusions of our modelling are presented in
Section 5.

2. The Model

We model Delta–Notch signalling in terms of a
system of cells each of which is characterised at any
instant by just two parameters: the level of Notch
activation, N, reflecting the intensity of the inhibition
the cell experiences, and the level of Delta activity, D,
reflecting the intensity of the inhibitory signal that it
delivers to its neighbours. For present purposes, the
details of the biochemistry do not matter greatly, and
there is some freedom in how we interpret N and D.
N, for example, could be taken to stand for the
quantity of ‘‘activated Notch’’ protein in the cell,
meaning the quantity of the active intracellular Notch
fragment, if we suppose Notch activation to occur
through proteolytic cleavage; or it could be
interpreted to mean the amount of the inhibitory

transcription factors of the E(spl) family that are
present as a result of Notch activation, or simply the
quantity of Notch–Delta complexes formed by
binding of Notch to its activating ligand Delta.

Our model embodies the following assumptions:

(1) Cells interact through Delta–Notch signalling
only with cells with which they are in direct
contact.

(2) The rate of production of Notch activity is an
increasing function of the level of Delta activity
in neighbouring cells.

(3) The rate of production of Delta activity is a
decreasing function of the level of activated
Notch in the same cell.

(4) Production of Notch and Delta activity is
balanced by decay, described by simple exponen-
tial decay with fixed rate constants.

(5) The level of activated Notch in a cell determines
the cell’s fate: low levels lead to adoption of the
primary fate, high levels to adoption of the
secondary fate.

These postulates result in a feedback loop between
adjacent cells, illustrated in Fig. 1. Denoting the levels
of Notch and Delta activity in cell P by NP and DP

respectively, we write

d(NP /N0)
dt

=F(D� P /D0)− mNP /N0,

d(DP /D0)
dt

=G(NP /N0)− rDP /D0, (1)

where t=time, F:[0,a)4 [0,a) is a continuous
increasing function, G: [0,a)4 [0,a) is a continuous
decreasing function. We define fMF/m and gMG/r;
then N0 and D0 are typical levels of Notch and Delta
activity respectively, chosen such that f and g are of
order 1. m and r are positive constants—the rate
constants (inverse lifetimes) for decay of Notch

F. 1. Diagrammatic representation of the effective feedback
loop between Notch and Delta in neighbouring cells. Details of the
Notch signalling pathway are omitted for clarity. Key: Delta;

Notch.
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F. 2. The labelling scheme used for cells in linear and
two-dimensional arrays.

the relative time-scales over which the levels of Notch
and Delta activity vary.

We neglect cell division. This is justified by the fact
that in practice, cell cycle times are significantly
greater than the time taken for the Delta–Notch
mediated fate decision (Hartenstein & Posakony,
1990).

3. Results

   - 

Since the Delta–Notch interaction is local, the
analysis of a system consisting of just two cells gives
valuable insight into the behaviour of the feedback
mechanism in more extensive arrays of cells.
Furthermore, the two-cell system with periodic
boundary conditions is equivalent to an infinite line
of cells in which alternate cells are identical. The
details of this analysis are presented in Appendix A.
The main conclusions are as follows:

(1) The homogeneous steady state is unstable if the
feedback is sufficiently strong. There always exists
exactly one homogeneous steady state
(n1 = n2 = n*, d1 = d2 = d*), in which the levels of
Delta and Notch activity are the same in both
cells. The linear stability (i.e. stability to small
perturbations) of this state is determined by the
strength of the feedback between the cells, which
is determined by the functional forms of f and g.
Specifically, with periodic boundary conditions
the homogeneous steady state becomes unstable
when

f '(d*)g'(n*)Q −1, (3)

where ' denotes differentiation. Similar relations
are obtained with fixed boundary conditions.
Clearly, a shift in the biochemical parameters
underlying the model—for example, a change in
the ratio of decay and production rates of Notch
or Delta activities—can switch the system from a
condition in which the homogeneous steady state
is linearly stable to one in which it is not.

(2) When the homogeneous steady state is unstable, the
system has a pair of inhomogeneous steady states.
When the above instability condition is satisfied,
perturbations of the homogeneous steady state
are self-amplifying, and the system will diverge
from the homogeneous steady state. In fact,
whenever the homogeneous steady state is
linearly unstable, there exists a pair of hetero-
geneous steady states, in general stable, such that

and Delta activity respectively. m is thus a measure of
the speed of response of levels of Notch activity to
changes in Delta activity, while r is a measure of the
speed of response of levels of Delta activity to changes
in Notch activity. D� P denotes the mean of the levels
of Delta activity in the cells adjacent to cell P. Thus,
for a line of cells indexed by a single number j,
D� j =(Dj−1 +Dj+1) /2. More generally,

D� P =
1
r

s
P'

DP',

where the sum is taken over the immediate neighbours
of cell P, and r is the total number of such neighbours
(see Fig. 2 for specific cell labelling schemes). f(D� P /D0)
is the equilibrium value of NP /N0 when D� P is held
fixed; likewise, g(NP /N0) is the equilibrium value of
DP /D0 when NP is held fixed. mf(D� P /D0) can be
interpreted as the rate of production of Notch activity
in cell P; thus f(D� P /D0) can be regarded as the amount
of Notch activity produced in a time equal to the
mean lifetime of Notch activity. Similarly, rg(NP /N0)
can be interpreted as the rate of production of Delta
activity in cell P, and g(NP /N0) can be regarded as the
amount of Delta activity produced in a time equal to
the mean lifetime of Delta activity.

The system (1) can be cast in non-dimensional form
by setting nP =NP /N0, dP =DP /D0, t= mt, and
v= r/m. Letting ˙ denote d/dt, (1) becomes:

ṅP = f(d� P )− nP ,

d� P = v{g(nP )− dP}, (2)

for each cell P. v is the ratio of the decay rates of
Delta and Notch activities, and is thus a measure of
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one cell has high Notch activity and low Delta
activity, while the other has high Delta activity
and low Notch activity.

The behaviour of the system is easiest to see in the
limiting cases where v is either very large (so that d
adjusts very rapidly compared to n) or very small (so
that n adjusts very rapidly compared to d). In these
cases, the four-dimensional phase space of the full
system reduces approximately to two-dimensions.
Fig. A2 (Appendix A) illustrates the time evolution of
the system in these limits. It is also possible to
visualise the dynamics of the system when levels of
Notch and Delta activity are roughly equal in the two
cells. When this is so, two-dimensional phase portraits
can be constructed at each instant, showing the rates
of change of the differences in Notch and Delta
activities between the cells at that instant. These
‘‘instantaneous phase portraits’’, together with ana-
lytical results on the growth rate of the differences in
activities between the cells, give a qualitative picture
of the behaviour of the two-cell system near
homogeneity (see Appendix A and Fig. A3).

 

For systems consisting of more than two cells, we
investigate the behaviour of the system numerically.
For this purpose, we solve the non-dimensional
equations (2) using a Runge-Kutta-Merson method
implemented by the NAG routine D02BBF. We take
f and g to be of the form:

f(x)=
xk

a+ xk, g(x)=
1

1+ bxh, (4)

for xe 0, with a, bq 0 and k, he 1. The boundary
conditions used are either zero Delta activity on the
boundary (representing lack of Delta activity in cells
outside the domain) or periodic (representing a
periodic pattern on an infinite domain). Initial levels
of Notch and Delta activity are taken as almost
homogeneous and relatively high (i.e. nP (0) and dP (0)
are close to one for all cells P).

The parameter values used to generate the
illustrations below are:

a=0.01, b=100, v=1, k= h=2. (5)

Simulations using these parameters exhibit represen-
tative behaviour of the system (2) when hetero-
geneous steady states exist. With these parameters,
the homogeneous steady state of the two-cell (or
period 2) system is linearly unstable, and there is a
pair of heterogeneous steady states (see above and
Appendix A). Simulations using other parameter

values yield similar results to those shown here (data
not shown).

Line of cells

We first consider a linear array of m cells with
boundary conditions d0 = dm+1 =0. Typical results
for the case m=2 are shown in Fig. 3. The levels of
Notch and Delta activity in the two cells remain
similar until they approach the (unstable) homo-
geneous steady state levels, after which they diverge
to the (stable) heterogeneous steady states. When
equilibrium has been attained, Cell 1 has a low level
of Notch activity and hence adopts the primary fate,
while Cell 2 has a high level of Notch activity and
adopts the secondary fate. In simulations using
parameters for which the system (2) has only one
(homogeneous) steady state, the levels of Notch and
Delta activity in both cells converge towards this
steady state (data not shown).

When there are many cells in a line, the default
pattern appears to be one of alternating high and low
levels of Notch activity. This pattern often emerges
close to the boundaries at first and then spreads
inwards, although it sometimes simultaneously
develops in the middle of the domain, independently
of the boundary conditions. Our numerical simu-
lations reveal that the detailed time evolution to the
final alternating pattern depends more strongly on the
initial conditions than the boundary conditions.
Defects can occur in this alternating pattern, where
two adjacent cells have similar high levels of Notch
activity, but in all the one-dimensional simulations we
have carried out, we have never seen two neighbour-
ing cells with low levels of Notch activity. This finding
is in concordance with the experimental result that
primary fate cells are always separated by at least one
secondary fate cell when lateral inhibition is
operative, while secondary fate cells are often found
in contact (see, for example, Sternberg, 1993). An
example is shown in Fig. 4, with 70 cells.

Simulations such as those shown in Figs 3 and 4
highlight another interesting feature of the system.
Suppose the system starts off in a state that is not a
steady state, but is spatially more or less homo-
geneous. This corresponds to the biologically
interesting case where the cells are initially equivalent.
Suppose, moreover, that the instability criterion (3) is
satisfied, so that the homogeneous steady state is
unstable. Then for some plausible forms of the
functions f and g, spatial perturbations will initially
decay or grow only slowly compared with other
changes in the system. In this way, the system can
closely approach the homogeneous steady state
before developing significant spatial inhomogeneity.
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A qualitative understanding of this phenomenon,
which can be clearly seen in Fig. 4, can be gained from
an analysis of the instantaneous rate of change of
perturbations about homogeneity. The analysis for
the two-cell system is presented in Appendix A.

Two-dimensional array of hexagonal cells

The qualitative nature of patterns of cell fate on a
two-dimensional array can be characterised by the
ratio of the number of cells adopting the secondary
fate to the number of cells adopting the primary fate.
On an infinite domain of hexagonal cells, periodic
steady state solutions of (2) exist in which cells
adopting the two fates form a regular pattern with a
ratio of 2, 3, 4, 5 or 6. Examples of these patterns are
illustrated in Fig. 5.

A pattern like that in Fig. 5(b) can be obtained on
a 7×7 array of hexagonal cells with zero boundary
conditions. Similar patterns, but with defects, can
emerge on 8×8 arrays of cells [see Fig. 6(a)].

We have found that the boundary conditions can
exert a major influence on the patterns formed in such
small domains. Hence we have investigated the

patterns formed on 6×6 or 7×7 arrays of
hexagonal cells with periodic boundary conditions.
This enables us to consider periodic patterns on an
infinite domain.

On a 6×6 array, patterns with periods 1, 2, 3 or
6 in i and j are possible. It is the period 3 pattern,
illustrated in Fig. 5(a), that emerges when the
parameters are given by (5) and the levels of Notch
and Delta activity are all close to one initially. A 7×7
array with periodic boundary conditions should
favour the period 7 pattern in Fig. 5(c), but with the
parameters in (5) and fairly homogeneous initial
conditions, the default pattern still appears to be 5(a),
with a secondary to primary fate ratio of two [see
Fig. 6(b)]. Pattern 5(c) can, however, be achieved by
using initial conditions that are biased towards it.

     

For small domains, boundary conditions and the
number of cells in the domain can have a major effect
on the emergent pattern of cell fates. In general, the
steady-state levels become apparent first near the
boundary, and then spread inwards. However, for

F. 3. A typical solution of (2) with two cells and zero boundary conditions. Parameters used are given in (5), and three steady states
exist. Initial conditions are: n1(0)=1, d1(0)=1, n2(0)=0.99, d2(0)=0.99.
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F. 4. Graphs showing the level of Notch activity in a line of 70 cells at successive times; t=0, 5, 15, 30. (By t=30, the levels of Notch
and Delta activity have almost reached equilibrium.) Parameters used are as in (5). Initial conditions for nj are shown in the top graph
(t=0), and dj(0)=1 for 1E jE 70.

certain values of the model parameters and initial
conditions, the pattern forms simultaneously across
the whole domain. The model therefore exhibits
behaviour characteristic of both sequential and
simultaneous pattern formation (see Oster, 1988).
There appears to be a characteristic ‘‘default’’ pattern

of alternating cell fates (in one-dimension), or of the
type shown in Fig. 5(a) (in two-dimensions), which
forms quickly if it is compatible with the boundary
conditions; defects in the pattern form (more slowly)
when the default pattern is not compatible with the
boundary conditions.
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The values of the parameters a, b, k and h
determine the existence, precise values and stability of
the steady states. When eqns (2) have only one steady
state, the default pattern of cell fates is one in which
all cells uniformly adopt an intermediate state of
mutual inhibition. When the equations allow several
alternative steady states, the choice of final pattern
from among these possibilities is influenced by v and
by the initial conditions, even though these do not
affect the existence, location or stability of the steady
states (see Appendix A). Increasing the values of k, h
and/or v reduces the time taken for the final pattern
to emerge.

   

 

The numerical simulations described in the
previous section were performed using a particular
choice of functional forms for f and g. We have
performed simulations with a range of biologically-
plausible combinations of model parameters, bound-
ary values and (roughly homogeneous) initial data;

F. 6. Diagram showing the steady-state pattern of primary and
secondary fates in an (a) 8×8 and (b) 7×7 array of hexagonal
cells. Black cells will adopt the primary fate, white cells the
secondary fate. Parameters used are as in (5). Boundary conditions:
(a) dlj =0 for l, j=0 or 9; (b) periodic. Initial conditions: nlj (0) and
dlj (0) have arbitrary values between 0.95 and 1.0.

F. 5. Examples of periodic steady-state patterns of cells
adopting the primary fate (black: low Notch activity) and
secondary fate (white; high Notch activity), on a two-dimensional
lattice.

the patterns of cell fate that are obtained are
qualitatively the same as the examples shown here.
This strongly suggests that the types of pattern that
emerge from the system (2) are insensitive to the
precise values of the model parameters, provided that
heterogeneous steady states exist.

To investigate this proposition further, we have
performed a linear analysis of perturbations about the
homogeneous steady state to deduce the pattern
forming capabilities of an infinite system of discrete
cells described by eqns (2). The formalism we use is
an extension of that used by Turing (1952) to analyse
the linear stability of the homogeneous steady state in
a coupled system of discrete cells. However, it is
important to note that while the mathematical
techniques used are similar, the actual patterning
mechanism we are considering is different from the
diffusion-driven instability investigated by Turing.
This discrete approach is well-suited to analysing
systems in which values of variables change abruptly
from one cell to the next. The behaviour of the system
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in the neighbourhood of the homogeneous steady
state is particularly significant, given our findings that
the levels of Notch and Delta activity in an initially
roughly homogeneous population of cells often tend
to the homogeneous steady state levels before
diverging to their final (heterogeneous) equilibrium
levels (see Figs. 3, 4, A2 and Appendix A).

We thus consider an array of cells which are all
initially near the homogeneous steady state. To
investigate the patterns that emerge from pertur-
bations about this steady state, we linearise the system
(2) about this state, and study the growth of
inhomogeneities in the levels of Notch and Delta
activity starting from the homogeneous values. On
the assumption that these early spatial distributions
of Notch and Delta activity determine the final
pattern attained, this analysis enables the patterns
that result from initial conditions near the homo-
geneous steady state to be determined. The details of
this analysis for one- and two-dimensional arrays of
cells are contained in Appendix B.

The results confirm and extend the results of the
numerical simulations. For a one-dimensional array
of cells, the analysis predicts that the default pattern
of cell fates will be the period 2 pattern in which
alternate cells adopt opposite fates. For a large
two-dimensional array of hexagonal cells, the
predicted pattern has three different cell states,
although two of these can be identical (see Fig B1).
Thus, the predicted patterns are in agreement with
those obtained from the numerical simulations of the
system. It is important to note, however, that specific
forms for the functions f and g are not assumed in the
analysis, and that it thus constitutes a generalisation
of our numerical results. Our model is thus robust, in
the sense that the final pattern of cell fates that
emerges does not depend on the specific forms of f
and g (and therefore on specific biochemical
parameters), provided that the feedback between cells
is strong enough.

4. Discussion

We have investigated the pattern-forming potential
of a dynamical model of Delta–Notch intercellular
signalling, based on a feedback loop that acts to
amplify differences in the levels of activity of Notch
and Delta between adjacent cells. Numerical simu-
lations show that this system is capable of generating
coherent patterns of Notch and Delta activity from
random initial data. For a wide range of initial
conditions and parameter values, a pattern character-
istic of the action of short-range lateral inhibition

emerges; cells in which levels of Notch activation are
low are surrounded by cells with a high level of Notch
activation. Cells with low levels of Notch activity (and
hence high levels of Delta activity) are not found
next to each other. This is in concordance with
experimental findings on the spatial distribution of
cells adopting primary and secondary fates. By an
extension to infinite one- and two-dimensional
domains of the linear analysis used by Turing (1952),
we have analysed the emergence of patterns for
generic forms of the interaction between Notch and
Delta. This analysis complements and confirms the
numerical results.

The feedback loop on which the model presented
here is based has two major components. Firstly,
adjacent cells interact through Delta–Notch signalling
in such a way that the rate of increase of Notch
activity in a cell is an increasing function of the
amount of Delta signalling received from all adjacent
cells. Secondly, the rate of increase of Delta activity
in a cell is a decreasing function of the level of Notch
activity in that cell.

The formulation of this model for lateral inhibition
in terms of specific molecules, Notch and Delta, is
motivated by a range of genetic and molecular data.
These have established that Delta and Notch are
essential parts of a mechanism mediating lateral
inhibition (Lehmann et al., 1983); that both are
transmembrane proteins (Wharton et al., 1985; Kidd
et al., 1986; Vässin et al., 1987; Kopczynski et al.,
1988); that Notch functions as a receptor in this
cell-cell interaction (Heitzler & Simpson, 1991, 1993;
Artavanis-Tsakonas et al., 1995); and that Delta is a
ligand for Notch such that Delta–Notch binding leads
to activation of the Notch signalling pathway (Fehon
et al., 1990; Heitzler & Simpson, 1991; Rebay et al.,
1993; Lieber et al., 1993; Struhl et al., 1993). It has
been convincingly shown, moreover, that activation
of the Notch signalling pathway in a cell leads to
repression of Delta signalling from that cell (Heitzler
& Simpson, 1991, 1993; Heitzler et al., 1996),
providing the feedback that plays an essential part in
our model. The details of the mechanism of this
repression remain uncertain, although there is
evidence that transcriptional regulation is involved,
operating via Suppressor of Hairless (Fortini &
Artavanis-Tsakonas, 1994; Schweisguth, 1995), prod-
ucts of the Enhancer of split complex (Jennings et al.,
1995; Heitzler et al., 1996) and products of the
achaete-scute complex (Heitzler et al., 1996; Hinz
et al., 1994; Kunisch et al., 1994). There is increasing
evidence that binding of Delta to Notch causes Notch
itself to be proteolytically cleaved, releasing an
intracellular fragment that moves into the nucleus
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and initiates the transcriptional cascade (Jarriault
et al., 1995; Lieber et al., 1993; Struhl et al., 1993).

Given that there are still uncertainties about the
control of Delta activity, we have avoided committing
ourselves to a specific detailed set of assumptions.
Instead, we have considered here a general math-
ematical form for the relationship between levels of
Notch and Delta activity in a cell. This is justified,
since our analytical results show that the qualitative
predictions of the model are insensitive to the exact
form of the relationship, provided that the feedback
is sufficiently strong. Indeed, since we make only
minimal assumptions about the details of the
feedback interaction between cells, our model is also
applicable to nearest-neighbour feedback interactions
between cells that are mediated by factors other than
Notch and Delta, provided that the feedback
mechanism satisfies the assumptions we have made.

5. Conclusions

The insensitivity of our model to the details of the
biochemistry allows us to draw general conclusions
about the pattern-forming potential of a Delta–Notch
feedback loop:

(1) The feedback loop is capable of generating spatial
patterns from random stochastic fluctuations in a
population of initially equivalent cells. Provided
that the feedback is strong enough, homo-
geneous states are unstable to small fluctuations.
No ‘‘prepattern’’ is required. Moreover, the
pattern of cell fates generated by the model is
robust.

(2) The feedback loop generates a ‘‘competition’’
between members of a population of initially
equivalent cells. The feedback loop amplifies
small stochastic differences between cells, creating
a situation in which each cell is either chiefly a
deliverer of inhibition (the primary fate) or chiefly
a recipient of inhibition (the secondary fate).
Because the eventual levels of Notch and Delta
activities in a cell are determined through
competitive signalling between neighbouring
cells, situations in which adjacent cells both adopt
the primary fate are avoided. In contrast, there is
no clear reason why such situations should not
occur if cells are singled out for the primary fate
by some prior, cell-autonomous mechanism
before lateral inhibition begins to operate (as has
sometimes been suggested—see, for example,
Artavanis-Tsakonas et al., 1995). However,
adjacent cells can both adopt the secondary fate,
since in this case the signalling between the cells

is very weak (see, for example, Fig. 4).
(3) The form of feedback loop considered here can

account only for fine-grained patterns of cell
specialisation. Our model postulates that inter-
actions occur only between nearest neighbour
cells. Such short-range inhibition does indeed
appear to be operating in a number of cell fate
decisions [for example, in the Drosophila endo-
derm (Tepass & Hartenstein, 1995) and periph-
eral nervous system proneural clusters (Heitzler
& Simpson, 1991, 1993)] and our model accounts
well for these examples. However, the model is
unable to account for longer-range patterns
whose characteristic scale at the time of cell
determination is of the order of many cell
diameters.
Of course, if cell divisions ensue after the
fine-grained pattern has been set up, the final
pattern in the full-grown organism can show a
larger spacing. The pattern of microchaetae
(small bristles) in the Drosophila epidermis
probably arises in this way, as a result of
Delta–Notch-mediated lateral inhibition followed
by growth (Simpson, 1990). But where the scale of
the pattern at the time of cell determination is of
the order of many cell diameters, our arguments
imply that other mechanisms instead of, or in
addition to, the type of Delta–Notch signalling
considered here must be operating. For example,
in many cases, such as that of the macrochaetae
(large bristles) on a fly, these more widely-spaced
patterns represent a prior inhomogeneous pattern
of expression of proneural genes such as achaete
and scute (Skeath & Carroll, 1991).

Other models for the generation of lateral
inhibition-type patterns have been proposed pre-
viously. These fall into two general classes, based on
reaction-diffusion and “neural” mechanisms (Murray,
1993; Oster, 1988). We feel that a particular attraction
of the model presented here is that it is based on
well-defined and plausible assumptions about the
nature of the molecular factors involved. An added
advantage of our approach is that it is very well suited
to further extension, for example to include the effects
of other cell-autonomous and non-autonomous
factors on the Delta–Notch feedback loop. Factors
believed to interact with the Delta–Notch-mediated
lateral inhibition machinery include secreted mol-
ecules such as the Wingless protein (Couso &
Martı́nez Arias, 1994; González-Gaitán & Jäckle,
1995; Axelrod et al., 1996) and asymmetrically
localised intracellular determinants such as Numb
and Prospero (Doe & Spana, 1995). As the number
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of such factors increases, the complexity of the genetic
interactions between them makes it imperative to
consider quantitative models of their actions. The
model presented here provides a versatile framework
on which to base further, more extensive models.
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APPENDIX A

Analysis of the two-cell system

We consider the non-dimensional form (2) of the
basic equations

ṅP = f(d� P )− nP ,

d� P = v{g(nP )− dP}.

For a system consisting of two cells with periodic
boundary conditions, these become

ṅ1 = f(d2)− n1, d� 1 = v{g(n1)− d1},

ṅ2 = f(d1)− n2, d� 2 = v{g(n2)− d2}, (A.1)

where the subscripts correspond to cells 1 and 2.

    

Steady states of the system (6) are given by:

(n*1 , d*1 , n*2 , d*2 )= (n*1 , g(n*1 ), n*2 , g(n*2 )),

where n*1 and n*2 are fixed points of fgfg with
n*1 = fg(n*2 ) and n*2 = fg(n*1 ).

Since f, g: [0,a)4 [0,a) are continuous and fg is
monotonic decreasing, there exists x0 $ [0, fg(0)] such
that x0 = fg(x0), and x0 is the unique fixed point of fg.
Hence there is exactly one homogeneous steady state:

(n*1 , d*1 , n*2 , d*2 )= (x0, g(x0), x0, g(x0)).

There may also be one or more pairs of opposite
heterogeneous steady states. Suppose (x1, x2) is a
period 2 solution of the map zi+1 = fg(zi ). Then
x1 = fg(x2), x2 = fg(x1), and x1 $ x2, so this gives a
pair of heterogeneous steady states:

(n*1 , d*1 , n*2 , d*2 )=6(x1, g(x1), x2, g(x2)), or
(x2, g(x2), x1, g(x1)).

(A.2)

In particular, if f and g are continuously
differentiable on [0,a), then when ( fg)'(x0)Q −1,
where ' denotes differentiation, there must be at least
one period 2 solution (x1, x2) of the map zi+1 = fg(zi ).
If x1 Q x0 then x2 q x0. This can be seen intuitively
from Fig. A1. Provided f and g are smooth functions,
standard linear stability analysis shows that a steady
state (n*1 , d*1 , n*2 , d*2 ) is linearly stable if

MM( fgfg)'(n*1 )Q 1, but unstable if Mq 1. Even
when the steady state is linearly unstable, any
temporal oscillations decay.

For the homogeneous steady state (x0, g(x0),
x0, g(x0)),

M=( fg)'( fg(x0))·( fg)'(x0)= [( fg)'(x0)]2

and so the condition for linear instability reduces to
( fg)'(x0)Q −1. Thus, whenever the homogeneous
steady state is linearly unstable [i.e. ( fgfg)'(x0)q 1],
there exists a pair of heterogeneous steady states of
the form given in (A.1). The converse is not
necessarily true.

As a model for lateral inhibition, we are most
interested in the case where the homogeneous steady
state is unstable and there exists a pair of stable
heterogeneous steady states. If x1 Q x2, then the
steady state (x1, g(x1), x2, g(x2)) corresponds to cell 1
adopting the primary fate, (with a low level of Notch
activity), and cell 2 adopting the secondary fate. If the
feedback between Delta and Notch is weak, ( fgfg)'(x)
will be less than one for all x, and so the
homogeneous steady state will be the only steady
state. If the feedback is sufficiently strong [for
example, if ( fg)'(x0)Q −1], then there will exist
heterogeneous steady states, and initially equivalent
neighbouring cells may diverge to different fates.
Thus, the final pattern of cell fates that emerges from
random initial data depends on the strength of the
Delta–Notch feedback loop.

    �1

If levels of Notch activity respond to changes in
Delta activity much more rapidly than levels of Delta
activity respond to changes in Notch activity, then v
will be very small compared to one. In this case, phase
plane analysis can be used to study the long term
behaviour of the system (A.1).

On a slow timescale T= vt, dnj /dt= vdnj /
dTMvn'j =O(v), (for j=1, 2), after fast initial
transients. Hence we make the quasi-steady-state
assumption that

f(d2)− n1 =0, and f(d1)− n2 =0,

when T=O(1). Then the system (A.1) reduces to:

d'1 = gf(d2)− d1, d'2 = gf(d1)− d2,

for T=O(1), to lowest order in v.
Since gf is a monotonic decreasing function on

[0,a), there is always a homogeneous steady state
(d*1 , d*2 )= (g(x0), g(x0)), and there may also be pairs
of heterogeneous steady states. As in the previous
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section, a steady state (d*1 , d*2 ) is linearly stable if
MQ 1, where M=( fgfg)'(n*1 ), and n*1 = f(d*2 ).

The (d1, d2) phase plane is symmetric about the line
d1 = d2, which forms a separatrix, separating trajec-
tories in the region d1 Q d2 from those in the region
d1 q d2. When the homogeneous steady state
(g(x0), g(x0)) is a saddle point, this line is its stable
invariant manifold. Typical phase planes are sketched
in Fig. A2, where the forms in (4) are used for f and g.

Figure A2 shows that when v�1, it is the initial
values of d1 and d2 that determine which of the two
opposite heterogeneous steady states will be attained
eventually. An analogous analysis to that presented
here can be performed for v�1, in which case it is
found that it is the initial values of n1 and n2 that
determine the final state attained (data not shown).
These results suggest that there is a separatrix in the
full (n1, d1, n2, d2) phase space [i.e. that relating to

the solutions of the full system (A1)], the position
of which depends on v, separating those trajectories
which converge to (x1, g(x1), x2, g(x2)) from those
which converge to (x2, g(x2), x1, g(x1)). Consequently,
the final state to which solutions of the full system
settle would be determined by the parameter v, for
some sets of initial conditions. This is supported by
numerical results for the full system.

      -

 

To investigate the behaviour of small perturbations
about a general homogeneous state, consider the
two-cell system governed by (A1) and change to the
variables:

N=(n1 + n2)/2, D=(d1 + d2)/2,

x=(n1 − n2)/2, y=(d1 − d2)/2,

F. A1. Examples showing the existence of different numbers of steady states. In (a), the only steady state is the homogeneous one,
with n*1 = n*2 = x0. In (b), there are three steady states; the homogeneous one, and two opposite heterogeneous ones with n*1 = x1, n*2 = x2

or n*1 = x2, n*2 = x1. In (c), there are five steady states; the homogeneous one and two pairs of heterogeneous solutions; {n*1 , n*2 }= {x1,
x2} or {x'1 , x'2}. See text for details.
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F. A2. Phase planes for the two cell system when v�1. d� 1 =0 on the null cline d1 = gf(d2), and d� 2 =0 on d2 = gf(d1). In (a) there is
only one steady state, which is linearly stable since ( fg)'(x0)q −1. In (b) there are three steady states; the homogeneous one is an unstable
saddle point, while the two heterogeneous steady states are stable nodes. yi = g(xi ) for i=0, 1, 2.

where =x = and =y = are small. Then, to first order in x
and y,

N� = f(D)−N, D� = v(g(N)−D),

ẋ= − f '(D)y− x, ẏ= v(g'(N)x− y).

The equations for N and D decouple from those for
x and y, and can be solved (in principle) to give N
and D as functions of time. Let

f '(D)= r(t), vg'(N)= s(t).

From the initial postulates of our model, f '(D)e 0,
[D and g'(N)E 0, [N.

Setting

z=$xy%,
the linearised equations for x and y can be written as:

d
dt

(z)=H(t)z,

where

H(t)=$−1
s(t)

− r(t)
− v %.

We can thus draw ‘‘instantaneous phase portraits’’,
showing the rates of change of x and y at each instant
t. When f '(D) and g'(N) vary slowly relative to x and
y, these give an indication of the behaviour of x and
y over a short timescale. The phase portraits fall into
two classes, depending on the sign of f '(D)g'(N)+1.
Representative examples of these two classes are

shown in Fig. A3, in which the arrows indicate the
instantaneous rates of change of x and y.

From Fig. A3 it can be seen that a necessary
condition for both =x = and =y = to be growing in
magnitude at some instant is that

f '(D)g'(N)Q −1.

These instantaneous phase portraits can be used to
piece together a qualitative picture of the overall
behaviour of a system that is initially close to
homogeneity. Consider a two-cell system in which
levels of Delta and Notch activity are initially roughly
equal in the two cells, and are both high or both low.
Then if f and g are of the form given in (4),
f '(D)g'(N)+1 will initially be positive, and so the
instantaneous phase portrait will be of the form
shown in Fig. A3(a). Thus, any initial inhomogeneity
between the cells will tend to decrease, and the overall
behaviour of the system will be dominated by the
behaviour of N and D. These will tend towards their
steady state values, N* and D*, given by N*= x0

and D*= g(x0). As a consequence, the levels of Delta
and Notch activity in the cells will tend towards their
values at the homogeneous steady state.

However, as N and D change in this way, the value
of f '(D)g'(N)+1 steadily decreases. In terms of the
instantaneous phase portraits, the null clines (i.e. the
curves ẋ=0 and ẏ=0) move closer together until,
when f '(D)g'(N)+1=0, they eventually cross, and
the instantaneous phase portrait becomes of the form
shown in Fig. A3(b). Now inhomogeneities between
the cells can grow, and eventually become the
dominant factor in determining the behaviour of the



y

x

y = s(t)x/v

x = –r(t)y

(a) y

x

x = –r(t)y

y = s(t)x/v

(b)

     443

system. Behaviour of this kind is exhibited in the
simulation shown in Fig. 3.

It is important to note that since f '(D) and g'(N)
change with time, the (x, y) phase plane also changes
with time. In particular, the relative positions of the
null clines ẋ=0 and ẏ=0 are governed by the
sign of f '(D)g'(N)+1. Thus, in general, it is not
possible to determine the behaviour of perturb-
ations over long time scales from the instantaneous
phase portraits. However, we can determine con-
ditions on N and D under which the magnitude, =z=,
of all small perturbations from homogeneity will
decay. Now,

d
dt

(=z=2)= d
dt

(zTz)

= zT(HT +H)z= zTAz,

where

A=HT +H=$ −2
s− r

s− r
−2v%

is a real symmetric matrix. Thus A can be
diagonalised by a linear transformation of the form
z=Pu, where P is an orthogonal matrix of
eigenvectors of A. Therefore, if A has eigenvalues l+

and l−, we can write

d
dt

(=z=2)= uT $l+

0
0
l−%u

= l+u2
1 + l−u2

2 .

Hence, =z= decays if l2 Q 0, but can grow if A has a
positive eigenvalue. Since

l2 = −(1+ v)2z(1+ v)2 −4v+(r− s)2

and r− sq 0, the condition for all perturbations
from the homogeneous solution to be decaying (at a
given instant) is that

r− s= f '(D)− vg'(N)Q 2zv. (A.3)

Suppose that the initial conditions for the full system
are almost homogeneous, and are such that
f '(D)− vg'(N)Q 2zv initially, but that as time
proceeds f '(D)− vg'(N) increases above 2zv. Then
the levels of Notch and Delta in both cells will initially
tend towards the homogeneous steady state, with
perturbations about the homogeneous solution
decaying. Then, once f '(D)− vg'(N) exceeds 2zv,
some small perturbations will start to grow in
magnitude, and the system may diverge from the
homogeneous solution.

This result complements and extends those
obtained from the instantaneous phase portraits; the
phase portraits give an intuitive idea of the stability
of the homogeneous solution, while the analysis of =z=
gives a rigorous condition (A.3) for all small
perturbations about the homogeneous solution to be
decaying in magnitude. Condition (A.3) is more
restrictive than the condition f '(D)g'(N)q −1,
because some perturbations may be growing in
magnitude even when the instantaneous phase plane
is as in Fig. A3(a).

F. A3. ‘‘Instantaneous phase portraits’’, showing the behaviour of perturbations x and y at a given instant in time. In (a), r(t)s(t)q − v,
while in (b) r(t)s(t)Q − v, [where r(t)= f '(D) and s(t)= vg'(N)]. Note that =x = and =y = can both be increasing only when r(t)s(t)Q − v.
Arrows indicate the instantaneous rates of change of x and y. See text for details.
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A combination of the techniques used in this
section and those developed in Appendix B can be
used to analyse a system consisting of an infinite line
of cells. As for the two-cell case, there exist
perturbations about homogeneity which are growing
in magnitude in each cell (at a given instant), when
f '(D)− vg'(N)q 2zv. However, the magnitudes of
the perturbations in each cell have an upper bound
which is decreasing when (A.3) holds (results not
shown). This analysis predicts that for a long line of
cells, perturbations from homogeneity may transi-
ently decrease in magnitude even when the homo-
geneous steady state is unstable. An example of this
type of behaviour is shown in Fig. 4.

APPENDIX B

Analysis of Perturbations of the Homogeneous

Steady State

We consider the general non-dimensional form of
the basic equations given in (2):

ṅ= f(d� P )− nP ,

1
v

d� P = g(nP )− dP ,

for each cell P. We assume only that f, g:
[0, a)4 [0, a) are continuously differentiable, with
f monotonic increasing and g monotonic decreasing;
it is not necessary to consider specific forms for f and
g. Under these conditions there exists exactly one
homogeneous steady state, with nP = x0, dP = g(x0)
for all P.

Consider, now, an array of cells which are all
initially near the homogeneous steady state. We wish
to determine the patterns that emerge from pertur-
bations about this steady state. We assume that

=nP − x0=,=dP − g(x0)=�1, [P,

and linearise the system (2) about the homogeneous
steady state to determine the patterns of Notch and
Delta activity that develop as heterogeneity appears.
On the assumption that these early spatial distri-
butions of Notch and Delta activity determine the
final pattern attained, this analysis enables us to
determine all the patterns that can be formed by the
system (2), from initial conditions near the homo-
geneous steady state.

For the forms of f and g in (4), this analysis allows
us to consider the patterns emerging from any initial
conditions in which the cells are virtually equivalent,
since the analysis in Appendix A and the results of our
numerical simulations (see Section 3) show that

initially similar levels of Notch and Delta activity first
tend to the homogeneous steady state levels. If the
homogeneous steady state is unstable, the levels of
Notch and Delta activity in neighbouring cells then
diverge to their final heterogeneous steady-state
values.

- 

We consider an infinite domain, and look for a
pattern with period N(q1). For each j=1, 2, . . . , N,
we make a change of variables which will lead to the
decoupling of the system of 2N equations into pairs
of equations:

nj − x0 = s
N

s=1

jse2pisj/N,

dj − g(x0)= s
N

s=1

hse2pisj/N,

where, for 1E rEN,

jr =
1
N

s
N

j=1

(nj − x0)e−2pirj/N,

hr =
1
N

s
N

j=1

(dj − g(x0))e−2pirj/N. (B.1)

The system (2) can be linearised about the
homogeneous steady state to give:

d
dt

(nj − x0)

=
a
2

[(dj−1 − g(x0))+ (dj+1 − g(x0))]− (nj − x0),

d
dt

(dj − g(x0))= vb(nj − x0)− v(dj − g(x0)), (B.2)

where aMf '(g(x0)) and bMg'(x0). We assume that
aq 0q b. Using these equations, the expressions in
(B.1) yield

djr

dt
= a cos(2pr/N)hr − jr ,

dhr

dt
= vbjr − vhr .

This gives us a pair of linear equations with constant
coefficients for each r=1, 2, . . . , N. The equations
for different values of r are uncoupled. Standard
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analysis shows that the general solution to (B.2) is of
the form

$ nj − x0

dj − g(x0)%= s
a

N=1

s
N

s=1

e2pisj/N

×0$A+
s,N

B+
s,N%exp[l+

s,Nt]+$A−
s,N

B−
s,N%exp[l−

s,Nt]1,

where the l2
s,N and $A2

s,N

B2
s,N%

are the eigenvalues and eigenvectors of the matrix

$−1
vb

a cos(2ps/N)
− v %.

There are several points to note from this general
solution.

(1) If l2
s,N ( R then Re(l2

s,N )= − d(1+ v)/2Q 0, so
any temporal oscillations decay. Hence we do not
expect wave-like or temporally oscillating sol-
utions to dominate in the full nonlinear system.

(2) The homogeneous steady state nj = x0, dj = g(x0)
is linearly stable if and only if Re(l2

s,N )Q 0 [ s,
N; i.e. if and only if 1q =ab =, or

=( fg)'(x0)== =f '(g(x0))·g'(x0)=Q 1.

(3) The eigenvalues with the largest real part are

l+
N/2,N = 1

2 {−(1+ v)+z(1− v)2 −4vab},

where N is even (the eigenvalues corresponding to
odd N have smaller real parts). These are real
since abQ 0.

Hence the dominant pattern for large t is a
superposition of modes with even periodicity where
s/N=1/2. These modes have parallel eigenvectors, so
we find that

$ nj − x0

dj − g(x0)%0C(−1)j$AB%
exp$ t

2 6−(1+ v)+z(1− v)2 −4vab7%,

as t 4 +a, where

$AB%M&12 {−(1− v)+z(1− v)2 −4vab}

vb ',
and C is an arbitrary constant.

Our conclusions tie in well with the analysis of the
two-cell case and with the numerical simulations.
When ( fg)'(x0)Q −1, the homogeneous steady state
is unstable, and a spatially oscillating solution with
period 2 emerges, in which each cell has either a high
level of Notch activity and a low level of Delta activity
or vice versa. Adjacent cells have opposite fates. Small
perturbations grown exponentially, (without tem-
poral oscillations), on a time scale of order

2/{−(1+ v)+z(1− v)2 −4vab},

which is positive for abQ −1. This is in agreement
with the results of our numerical simulations.

-    

We linearise (2) and look for spatially-periodic
solutions of the form

nlj − x0 = s
N

s=1

s
M

r=1

jrse2pisj/N+2pirl/M,

dlj − g(x0)= s
N

s=1

s
M

r=1

hrse2pisj/N+2pirl/M, (B.3)

where, for 1E qEM and 1E pEN,

jqp =
1

MN
s
M

l=1

s
N

j=1

(nlj − x0)e−2pi(pj/N+ ql/M),

hqp =
1

MN
s
M

l=1

s
N

j=1

(dlj − g(x0))e−2pi(pj/N+ ql/M). (B.4)

Then,

djqp

dt
=

a
3

(cos(2p(q/M+ p/N))

+ cos(2pq/M)+ cos(2pp/N))hqp − jqp ,

dhqp

dt
= vbjqp − vhqp .

These equations can be solved in the same way as in
the one-dimensional array. Again, any temporal
oscillations decay. However, there are differences
between the two cases:
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(1) The homogeneous steady state is linearly stable
on a two-dimensional array of hexagonal cells if and
only if

=( fg)'(x0)== =ab =Q 2.

Thus, the homogeneous steady state is stable for
larger values of =ab = than in a one-dimensional array
of cells.
(2) The eigenvalues with largest real part are those
for which M and N are multiples of three, and
q/M= p/N=1/3 or q/M= p/N=2/3; i.e.

l+
M/3,N/3,M,N = l+

2M/3,2N/3,M,N

= 1
2 {−(1+ v)+z(1− v)2 −2vab}.

For large t, the solution of the linearised problem is
asymptotically like:

$ hlj − x0

dlj − g(x0)%0 {Ce2pi( j+ l)/3 +De4pi( j+ l)/3}

×$A	B%exp$ t
2

{−(1+ v)+z(1− v)2 −2vab}%,
(B.5)

where

$A	B%M$1
2 {−(1− v)+z(1− v)2 −2vab}

vb %,
and C, D are arbitrary constants.

This solution grows or decays exponentially on a
timescale of order

2/={−(1+ v)+z(1− v)2 −2vab}=,

F. B1. Generic pattern of Notch activity on an infinite
two-dimensional array of hexagonal cells, as predicted by linear
analysis. There may be one, two or three different cell types,
arranged as shown. Cells with the same degree of shading are of
the same type, but two or three of the types may be identical. The
pattern has periodicity 3 in j+ l (see Fig. 2 for cell labelling
scheme).

which is slower than in a one-dimensional array.
The main difference between (B.5) and the

analogous solutions in the one-dimensional array is in
the spatial variation. The dominant pattern has
periodicity 3 in j+ l, (rather than 2), and having a
linear combination of two independent spatial
oscillations allows a greater variety of patterns. The
generic pattern is illustrated in Fig. B1. There are
three types of cell (according to whether j+ l=0,1 or
2 mod 3), although two of these types may be
identical (if C=D, for example).

This analysis predicts that for a large two-dimen-
sional array of cells the generic pattern has periodicity
3 in j+ l. Thus pattern (a) in Fig. 5 (with a ratio of
secondary to primary fate cells of 2) would be
possible, but not patterns (b) and (c). Other patterns
may be possible with three different cell types, (as
illustrated in Fig. B1), but the linear analysis here
does not tell us which of these patterns emerges in the
full, nonlinear system.


