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Introduction

Self-organization is a fundamental widespread process occurring in morphogene-
sis, wound healing and population dynamics. For example, in embryology, cell-cell
interactions play a key role in tissue formation and cell aggregation prior to the
formation of structures, such as skeletal elements in the limb, or skin organ forma-
tion, such as hair, teeth and feathers. In wound healing, cells respond to external
guidance cues, as well as orientation cues from each other, to move into a wound
and effect its closure. In populations, aggregation may be essential for shelter,
reproduction, safety, etc, or to resist starvation conditions.

Recent advances in biotechnology have led to a great increase in experimental
data on the biochemical and mechanical aspects of cell-cell interactions and math-
ematical modelling has a crucial role to play in providing a theoretical framework
in which to interpret this data, as well as investigating the potential of hypothe-
sized interactions to account for experimental observations. In this way, modelling
can help elucidate the underlying processes involved in aggregation phenomena. In
turn, there is the need to develop more sophisticated mathematical modelling, and
analytical and computational techniques to account for the detailed observations
at the cellular level. Phenomenological models, such as those of reaction-diffusion
type, which have played an essential role in understanding processes at a gross
level, have to be replaced by more detailed models to reflect the complexity of the
underlying processes.

This Chapter contains four contributions which illustrate a number of dif-
ferent types of interactions that can lead to self-organization in cell populations.
The interactions can be due purely to cell-cell contact cues, or can be mediated
through substances secreted by cells which effect the motion of other cells. The
papers also illustrate a number of different modelling strategies, ranging from pure
continuum models, to hybrid models with discrete, stochastic, or cellular automa-
tfon components.

The paper by Mogilner, Deutsch & Cook (IIL.1) reviews a number of recently
proposed models by the authors which try to capture different aspects of the gen-
eral problem of spatio-angular self-organization of cells by mutual interaction and
successive (gradual or abrupt) alignment. The authors briefly present their mod-
elling approach and simulation/analysis results for a common class of stochastic
diffusion/migration processes with interactions, each elucidating a different level
of approximation by a nonlinear evolution system. An integro-partial-differential
equation system is presented in which the independent variables are space and ori-
entation angle (as well as time). Linear stability analysis reveals the possibility that
model simulations can lead to simultaneous spatial aggregation of cells and align-
ment. This type of model can be analysed using the orientation tensor approach



172 Philip K. Maini

which approximates the full system by a system of reaction-diffusion-advection
equations. It is shown that the model can exhibit total alignment. Finally, a
stochastic model is considered using a lattice-gas cellular automaton approach.

The paper by Stevens & Schweitzer (111.2) models a very different type of cell-
cell interaction, namely that of trail following wherein certain biological species,
for example myxobacteria, can interact by laying down a substance that changes
the substratum on which the bacteria are moving, thus influencing the motion of
other bacteria. The model is based on a reinforced random walk description of cells
moving on a two-dimensional lattice. The direction of motion is influenced by the
concentration of the substance the cell experiences. Computer simulations of the
model are presented, showing clustering, swarming and cell streaming. It is shown
that this discrete interacting particle model can be approximated by a continuous
model which can also exhibit the phenomena of blow-up and collapse.

A composite contribution follows (II1.3), modelling cell streaming and ag-
gregation in the slime mould Dictyostelium discoideum. Here, amoebae secrete the
chemoattractant, cAMP, and aggregate under appropriate conditions. Three differ-
ent approaches to modelling cell movement and chemical dynamics are presented
together with simulations demonstrating that each model can account for the
experimentally-observed phenomenon of cell streaming. At first, Dallon & Othmer
describe a discrete-continuum model in which the chemoattractant concentration
is modelled as a continuum field, while the amoebae are considered as discrete
sources and sinks of the chemical. Model assumptions also include the adapta-
tion of the cAMP signalling pathway. Simulations show spontaneous generation of
spiral waves.

The model of Van Oss, Panfilov & Hogeweg is also of a hybrid discrete-
continuum form but differs from that of Dallon & Othmer as it uses the model
of Martiel & Goldbeter for cAMP relay and incorporates cAMP secretion and
degradation via a discrete description of the amoebae. Analysis of the model shows
the importance of the turnover rate of intracellular cAMP for cell streaming.

Hofer & Maini present a pure continuum model for Dictyostelium streaming
and aggregation. This model shows behaviour consistent with two key experimen-
tal observations — first, during aggregation in situ the frequency of cAMP spiral
waves increases while the speed of subsequent cAMP waves decreases; second, the
appearance of a cell-free zone in the spiral core in the presence of caffeine which is
thought to lower the excitability of the medium. This behaviour is also exhibited
by the discrete-continuum hybrid models.

Finally, the paper by Savill & Hogeweg (I11.4) considers a cellular automaton
model in which cells are attached to each other by energy bonds which can be
broken according to a certain probability function. By varying the key parameters,
the model can simulate engulfment, cell dispersal and cell sorting. By coupling this
model to a continuum model for chemical dynamics, it is shown that the composite
model exhibits a number of key features. In particular, it can simulate a number of
steps in the morphogenesis of Dictyostelium discoideum, including cell locomotion,
mound formation, slug crawling, and cell sorting.
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Models of Dictyostelium discoideum
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1 Introduction
Philip Maini & Thomas Héfer

Since its discovery in the 1940’s, the life cycle of the cellular slime mould Die-
tyostelium discoideum has attracted the interest of developmental biologists. It in-
volves a relatively simple transition from unicellular to multicellular organization.
Briefly, amoebae feed on bacteria in the soil and divide. Exhaustion of the food
supply triggers a developmental sequence which leads, via cell aggregation, to the
formation of a migrating slug-like “organism”. The slug eventually culminates into
a fruiting body, aiding the dispersal of spores from which, under favourable con-
ditions, new amoebae develop. To date a variety of species in different taxonomic
groups are known whose life cycles follow a similar pattern (Margulis & Schwartz
1988). Over the past fifty years, many of the molecular and cellular mechanisms
which are involved in cell aggregation, collective movement and differentiation
have been identified, and much work is devoted to the understanding of the inter-
action of these mechanisms in shaping Dictyostelium development. Mathematical
modelling has proved a useful tool with which to study these interactions on a
quantitative basis.

A typical aggregation sequence in Dictyostelium discoideum begins by the for-
mation of concentric and spiral concentration waves of the extracellular messenger
cyclic 3’5’-adenosine monophosphate (cAMP) which induce cell chemotaxis in pe-
riodic steps towards the aggregation centre (Alcantara & Monk 1974, Tomchik &
Devreotes 1981). The onset of multicellularity is marked by the establishment of a
branching pattern of cell streams in which direct cell-cell contacts are established.

The first attempt to develop a quantitative theory of slime mould aggregation
was made by Keller & Segel (1970). They proposed a system of two coupled partial
differential equations for the dynamics of the cell density, incorporating an advec-
tive chemotaxis term as suggested earlier by Patlak (1953), and for the change of
cAMP. The emergence of aggregation centres is linked to a chemotaxis-driven in-
stability in the model which leads to cell clustering. While this description appears
to be valid for Dictyostelium species without periodic chemoattractant waves, such
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as D. minutum and D. lacteum, the situation for Dictyostelium discoideum is now
known to be more complex. Cohen & Robertson (1971a) developed a rule-based
model of cAMP signal relay which accounted for its pulsatile wave-like character,
and they considered cell movement in a subsequent paper (Cohen & Robertson,
1971b). Nanjundiah (1973) carried out a stability analysis of the Keller-Segel sys-
tem on a circular domain with a signalling centre and found unstable “azimuthal”
modes which he linked to the occurrence of cell streaming. cAMP signalling and cell
movement was combined in the rule-based computer simulations of Dictyostelium
aggregation by Parnas & Segel (1977, 1978) and MacKay (1978). In particular,
the two-dimensional simulations by MacKay appear to be the first demonstration
of cell streaming in an aggregation model.

While these earlier rule-based models largely relied on phenomenological ob-
servations on the aggregation dynamics, the elucidation of the molecular mecha-
nisms of the cAMP signalling dynamics since the 1980’s (e.g. Devreotes 1989 and
references therein) was accompanied by the development of mechanistic models of
cAMP signalling. The models incorporate the detailed biochemical dynamics of
both the activation and desensitization of the adenylate cyclase pathway by bind-
ing of extracellular cAMP to its surface receptors, and concentrate in detail on the
temporal aspects of signalling as revealed by experiments on stirred cell suspen-
sions. The models essentially differ with respect to the presumed mechanisms of
cAMP-induced desensitization. These include receptor phosphorylation (Martiel
& Goldbeter 1987), desensitization through inhibition of adenylate cyclase via ex-
ternal calcium influx (Rapp et al. 1985, Othmer et al. 1985, Monk & Othmer 1989)
and G-protein mediated desensitization (Tang & Othmer 1994, Goldbeter 1996).
Although these and other mechanisms have been implicated by experiments, the
question of which of these play the dominant role in situ remains a source of con-
troversy. It is not unlikely that multiple mechanisms operate concomitantly (Van
Haastert et al. 1992). Current evidence suggests that the G-protein mechanism is
the primary one.

Incorporation of diffusion of extracellular cAMP into these models yields a
description of the signalling dynamics in a stationary cell layer, which turns out
to be a valid approximation for the situation at the beginning of aggregation
(Tyson et al. 1989, Monk & Othmer 1990, Tang & Othmer 1995). With the help
of these reaction-diffusion models, the experimentally observed cAMP waves have
been characterized as a particular case of chemical wave patterns in so-called
excitable media (Tyson & Murray 1989). However, the signalling models neglect
cell movement and thus can not describe the actual aggregation process and in
particular cell streaming.

This contribution consists of three models that couple cell movement with
the chemical dynamics leading to cell streaming. The models of Dallon & Othmer
(Sect. 2) and Van Oss et al. (Sect. 3) consider cells as discrete entities responding to
a continuum field of chemoattractant concentration. Hofer & Maini (Sect. 4) model
the cell distribution as a continuous density, coupled with the chemical dynamics.
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2 A discrete cell model with adaptive signalling
John C. Dallon and Hans G. Othmer

In this section we describe a model in which Dictyostelium discoideum cells are
treated as discrete points that detect and respond to the continuum field of the
chemoattractant. This model, details of which can be found in Dallon & Othmer
(1996) (I hereafter), is comprised of two main parts: (i) the mechanism for signal
transduction and cAMP relay response, and (ii) the cell movement rules. The
transduction of the extracellular cAMP signal into the intracellular signal is based
on the G-protein model developed in Tang & Othmer (1994, 1995), and the reader
is referred to those papers for details. The equations for the intracellular dynamics

of the i*" cell can be written as a system of the form
dw! P
— = G'(w', ws), (1)
dr

where ws(x,T) is proportional to extracellular cAMP, the components 'u..';j-, j =
1,---,4, represent intracellular quantities in the signal transduction and cAMP
production steps, and w' is a vector of these four internal variables for the it" cell.
When the cells are treated as discrete points the evolution of extracellular cAMP
is governed by the partial differential equation

Ows(x,T)

or

— A2 ) ws(x,7)
1V ws(x, 7) L oy

N
+3 T2 5(x ~ %) (sr(wf;) . ’Y?M——) L@

Ws (X, T) + %6
Here x; denotes the position of the i'" cell, the first term represents diffusion of
cAMP, the second represents the degradation of cAMP by extracellular phospho-
diesterase, and the summation represents the localized sources and sinks of cAMP
at the cells. The precise definitions of the variables and the parameter values can
be found in Tang & Othmer (1995).

The second part of the model involves the cell movement rules, the following
two of which are common to most of the simulations. They are (i) the cell moves
in the direction of the gradient of cAMP when the motion is started; (ii) the cell
moves at a speed of 30 microns per minute (Alcantara & Monk 1974). Various
rules for initiating movement and determining its duration were explored.

As we show in I, formal rules based on a fixed duration of movement can
produce aggregation. However, if the duration is too short aggregation does not
occur, but by adding other mechanisms such as directional persistence the problem
can be corrected. For example, when the duration is set at 20 seconds, which is
the experimentally observed turning time (Futrelle et al. 1982), the cells do not
aggregate successfully. By adding cell polarization (Varnum-Finney et al. 1987) or
a memory of recently encountered gradients, the aggregation patterns are restored.
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Figure 1: Aggregation patterns which formed with a pacemaking region at the centre
and different rules for the duration of movement. Cells move for 100 seconds (a), 500
seconds (b), and according to an internal variable (c). In (d) the direction of movement
is randomly perturbed by up to 90 degrees from the direction of the local gradient. All
simulations are shown at 150 minutes. Eqn. 2 is solved using an Alternating Direction
Implicit method with the intercellular variables lagged in time. The domain is 1 cm by
1 em with 200 grid points in each direction. The number of cells used was 10089, each
weighted by 16, which corresponds to a volumetric density of about 0.2.

Because the cAMP signal a cell sees is very rough, the cell may move away from
the aggregation centre, and our simulations indicate that the cell must commit to
a direction for a sufficient length of time to aggregate successfully.

These formal rules based on a fixed duration of movement ignore some es-
sential biological facts. For example, if the profile of the cAMP wave is altered
the 100 second rule used in Fig. 1a will certainly not be applicable. A detailed
model of how a cell chooses the direction of motion and the length of a “run” is
not available, nor would it be feasible to use such a model at present. However
we have developed more realistic rules based on internal variables as follows. It
is known (see I) that cAMP activates the cGMP pathway via G-proteins in addi-
tion to activating the cAMP production pathway (Newell et al. 1990). It is also
known that cGMP is near the beginning of the chemotactic response pathway and
that ¢cGMP production adapts to the cAMP stimulus on a time scale of about
30 seconds. If cGMP adapts then downstream components will also adapt except
in unusual circumstances, perhaps on a longer time scale. Thus we assume that
there is a downstream “motion controller”, the identity of which is not known.
However, it must be used in such a way that the cell moves only when cAMP is
increasing, for it is known that cells only move in the rising phase of the cAMP
wave. In the absence of detailed information about the controller dynamics, we
used as a stand-in a quantity in the cAMP pathway that has the appropriate time
course. This mechanism is biologically more realistic than the ad hoc rules and it
gives results which match very well with experimental results (cf. Fig. 1c). This
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rule shows how a cell can respond to temporally-increasing cAMP levels by pred-
icating motion on a threshold of an intracellular variable. Our simulations agree
with the conclusion reached by Soll et al. (1993), that cells seem to orient during
the beginning of the wave of cAMP and then move in a relatively blind fashion.
We also show in I that aggregation is very robust under the combination of our
signal transduction mechanism and the movement rule is based on an internal
variable. For example, Fig. 1d shows that successful aggregation can occur as long
as the cells choose their direction within the correct half space determined by the
gradient and a line orthogonal to it. Our simulation indicates that many strategies
can lead to successful aggregation.

This model also gives insight into the occurrence of target pattern waves vs.
spiral waves. In particular we have found that spiral waves can arise spontaneously
at higher densities when cells are initially distributed randomly, and that they
may coexist with target patterns. This is in agreement with the results of recent
laboratory experiments (Lee et al. 1996).

Finally, the simulations give a compelling argument that the mechanisms
which are relevant in stream formation are finite amplitude instabilities. There are
many factors involved in stream formation including random density variations,
random cell parameter variations and variations in cell speeds. Each of these have
a host of consequences which contribute to stream formation.

Acknowledgements This research was partially supported by NIH Grant #29123
and a grant of computer time from the Utah Center for High Performance Com-
puting.

3 Streams and spirals in a discrete cell model
of Dictyostelium aggregation
Catelijne Van Oss, Alexandre Panfilov, Paulien Hogeweg

We have modelled the aggregation of Dictyostelium discoideum (Dd) considering
the Dd cells as discrete points that move in a continuous cAMP field (Van Oss
et al. 1996). In the model, the process of cAMP production is described by the
Martiel-Goldbeter (MG) equations for cAMP relay (Martiel & Goldbeter 1987,
Tyson et al. 1989). Discrete cells are added to the MG equations in the following
way. The position of cell i in space is given by R:(t) = (z;,y:). By using the delta
function §(7 — R;), where ¥ = (z,y), we can write down the equations governing



198 Maini et al.

cAMP production as follows:

%

[—ﬂhm+fﬂﬂﬂ—pﬂéfﬁ—ﬁd

a3 Y BIS 5(F— B
eigr = %)~ pl Y 8(F - Ry) 3)
a : . N 2y

iy + > 2 ~y — .
where fi(y) = 552 fy(7) = Lisleey, (p,9) = MEXLY = £ o7 1) is the
fraction of active cAMP receptors, 3(7,t) is intracellular cAMP, ~(7,t) is extra-

cellular cAMP and N is the number of cells. Chemotaxis can be written as:

dR; S e
o = KV (Y 5 (4)

The parameter u=0 if one of the following conditions is satisfied:

1. p < 0.7. In other words, to explain the fact that amoebae do not respond to
cAMP gradients in the back of the cAMP wave, we assume that the chemo-
tactic apparatus becomes desensitized as a result of prolonged cAMP/., stim-
ulation.

2. 6’7(7’"’, t) < 6, where @ is a threshold value preventing motion towards very
small gradients.

3. Ri(t + At) = Rj(t + At), i = 1,...,N;i # j, where At is the time step of
the simulations. Two cells cannot be at the same position at the same time.

Otherwise, p=1.

The results show that the parameter ¢;, which is inversely proportional to the
turnover rate of internal cAMP, is important for the spatial pattern that arises.
Cell streams do not form at the experimentally determined parameter setting used
by Martiel & Goldbeter (1987) and Tyson et al. (1989) (Fig. 2a). However, if ¢; is
decreased, streams do form (Fig. 2b). The smaller the value of £;, the faster the
streams form and the more pronounced they are, culminating in the case where ¢;
is so small that 3 can be assumed to be at quasi steady state and (1) reduces to
two equations for p and « (“the two-variable model”). In the simulations in which
no streams were formed (¢; is high), the speed of the cAMP wave does not depend
on the cell density. Interestingly, the decrease in £; leads, in addition to stream
formation, to a dependence of the cAMP wave speed on cell density: wave speed
is high at high density and wvice versa. Our hypothesis is that this dependence
of wave speed on cell density is the underlying mechanism for stream formation
(for further details see Van Oss et al. 1996). This view is supported by Vasiev et
al. (1994), who showed that cell streaming in their (much more simplified) model



Figure 2: Aggregation in the model defined by Eqns. 3 & 4, (a) £,=0.019 and (b)
£;=0.0038. Time = 200 min. Cells are shown in black. Initially, cells are randomly dis-
tributed on a circular domain, stimulation occurs by periodically raising « in the centre
of the field, period 8.3 min. To integrate the explicit Euler method is used, space step
0.01 and time step 0.001 (space scale 4.5 mm, time scale 8.3 min), field size is 200 x 200
meshpoints ~ 1 x 1 cm?, boundary conditions are zero Dirichlet. The number of cells is
1.8-:10%, ¢=10, §,=950, 5,=0.05, A\;=10"3, A\;=2.4, k=18.5, £,=0.002, L, =10, L,=5-10"2,
D=0.01, =1.

of Dd aggregation is due to the density-dependent wave speed. Experiments of
Siegert & Weijer (reported in Van Oss et al. 1996) on the aggregation phase of
Dd show that the speed of the cAMP wave at high cell density is higher than at
low density, indicating that wave speed is indeed dependent on cell density. The
stability analysis of the cell distribution carried out by Hofer & Maini (see Sect. 4)
is derived from a two-variable caricature of Eqn. 3 which does not contain the
parameter ;. An interesting open question concerns the role of ¢; in the stability
criterion if a similar analysis was made of Eqn. 3.

Besides aggregation due to concentric waves, we also studied aggregation due
to a spiral wave. Simulations (using the two-variable model) show that the spiral
wave behaviour depends strongly on the initial cell distribution and shows a great
amount of variability. The spiral wanders or anchors, sometimes breaks up and
forms several spirals or a double-armed spiral, or an empty (no cells present) core
is formed around which the spiral rotates. This diverse behaviour of the spiral
wave, which is also observed experimentally (Durston 1973, 1974) is due to the
continuously changing excitable medium, which is caused by chemotaxis. During
aggregation, the increasing cell density (and thus increasing excitability) in the
aggregation centre leads to the experimentally often observed (Gross et al. 1976,
Siegert & Weijer 1989) decrease in spiral wave period.



200 Maini et al.

4 A continuum model of slime mould aggregation
Thomas Hoéfer and Philip K. Maini

It is intuitively clear that the dynamics of the cell distribution and of cAMP sig-
nalling are closely coupled: cell movement is induced by the cAMP waves, while
cells themselves act as sources for extracellular cAMP and also for its degrading en-
zyme, phosphodiesterase; hence they also act as cAMP sinks. Thus a model of the
aggregation process must 1. include a description of (chemotactic) cell movement
and the resulting dynamics of the cell distribution, and 2. extend the model of the
cAMP dynamics to the case of spatially and temporally varying cAMP sources.
Recently, this problem has been tackled in two different ways. The first approach
consists in modelling discrete cells equipped with cAMP-dependent movement
rules and coupled to a finite-difference approximation for the continuous cAMP
dynamics (Dallon & Othmer 1996, Van Oss et al. 1996, Kessler & Levine 1993). In
a second approach, the cell distribution is approximated by a continuous density,
resulting in a system of coupled partial differential equations for the cell density
and the cAMP dynamics. (Vasiev et al. 1994, Hofer et al. 1995a,b). Hofer et al.
(1995a) propose the following continuum model of the aggregation process

% = V. (uVn— x(v)nVu) (5)
o~ MO ()~ (6(n) +8)fa(w)] + V2u (6)
D = gt ()1 ) Y

where n, u and v denote cell density, extracellular cAMP concentration and fraction
of active cAMP receptors, respectively. The cell density dynamics (Eqn. 5) include
random cell movement with a cell diffusion coefficient p, and chemotactic drift
in gradients of cAMP. The magnitude of the chemotactic response is assumed
to depend on the cellular sensitivity towards cAMP, measured by the fraction of
active cAMP receptors per cell. Accordingly, the chemotactic coefficient is taken to
be of the form x(v) = xov™/(N™ +v™), m > 1 (Hofer et al. 1994). The following
functional forms are used for the rates of cAMP synthesis and degradation per
cell: fi(u,v) = (bv +v?)(a + u?)/(1 + u?), and fa(u) = du. These are somewhat
simplified versions of the kinetic terms derived by Martiel & Goldbeter (1987). The
cell density dependence of the local rates of synthesis and degradation is reflected
in the factor ¢(n) = n/(1 — pn/(K +n)). Similarly, the rate functions of receptor
desensitization and resensitization are simplified expressions of the corresponding
terms in the Martiel-Goldbeter model, g; (u) = kiu, and go(u) = k».

This relatively simple continuum model yields a good description of the key
features of the aggregation process. A typical aggregation sequence is shown in
Fig. 3. Linear stability analysis predicts the break-up of the initially homogeneous
cell density distribution perpendicular to the direction of wave propagation on
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(a)

Figure 3: Spatio-temporal evolution of (a) cell density, and (b) cAMP concentration in
a numerical simulation of system (5)—(7). The dimensional domain size is 6.5 mm x 6.5
mm, and snapshots are taken at the times indicated. Initial conditions were chosen to
be a plane wavefront with a free end at the centre of the domain and homogeneous cell
density (1.0) with a random perturbation between —0.075 and 0.075 added at every mesh
point. Boundary conditions are zero-flux. Parameter values: A = 70.0, a = 0.014, b = 0.2,
p=07 K =80,d=0.0234, § =011, ky = ks =25, p =0.01, N = 1.2, xo = 0.5,
A =10.72, and m = 10.0.
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a characteristic length scale, causing the formation of a branching cell stream
pattern, cf. Hofer et al. (1995b). Detailed computational studies (unpublished)
confirm the prediction of the growth of a small-amplitude pattern in cell density
in a quantitative fashion. The linear analysis of a model caricature gives an explicit
instability criterion which is typical of a chemotaxis-driven instability.

The evolving cell density pattern feeds back into the cAMP wave dynamics, as
wave propagation speed depends on cell density. This can explain two apparently
unconnected experimental observations (Hofer et al. 1995a,b). First, the model
reproduces the experimentally observed decrease in cAMP wave propagation speed
and the concomitant increase in wave frequency as a cAMP spiral evolves with
time. Second, the model predicts the formation of closed cell loops in the centre of
a spiral wave pattern at low excitability of the medium. The formation of central
cell loops has indeed been induced by the application of caffeine, which lowers
excitability by interfering with the adenylate cyclase pathway (e.g. Steinbock &
Miiller 1995).
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