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1 Introduction

In this chapter, we consider some analytic properties of Teichmüller spaces,
in particular those of infinite dimension. The Bers embedding maps the Te-
ichmüller space T (M) of a hyperbolic Riemann surface M biholomorphically
onto a subset of a Banach space Q(M) of holomorphic quadratic differentials.
If M is of non-exceptional analytic type, then the dimension of T (M) is finite if
and only if the dimension of Q(M) is finite if and only if M is of finite analytic
type, that is, M is a compact Riemann surface of genus g with n punctures,
where 2g + n ≥ 5. In this case Q(M) is a finite dimensional vector space over
C and is therefore reflexive.

Via the Bers embedding, it can be shown that the cotangent space of T (M)
at the base-point [0] can be identified with the Bergman space A1(M), the pre-
dual of Q(M). In the finite dimensional case, A1(M) = Q(M). However, when
M is of infinite analytic type, it is no longer true that A1(M) is reflexive, and
so A1(M) 6= Q(M).

The problem of classifying biholomorphic maps between Teichmüller spaces
can be reduced, via consideration of the Kobayashi and Teichmüller metrics,
to a problem of classifying isometries between the cotangent spaces of the
corresponding Riemann surfaces. The infinite dimensional case requires more
machinery because the Bergman spaces of Riemann surfaces of infinite analytic
type are not reflexive.

We will show that if there is a surjective C-linear isometry between A1(M)
and A1(N), then the Riemann surfaces M and N , assumed to be of non-
exceptional type, are conformally equivalent. Note that we do not assume that
the Riemann surfaces M and N are even homeomorphic. This result implies
that every biholomorphic map between Teichmüller spaces T (M) and T (N) is
induced by a quasiconformal mapping between M and N , and therefore the
automorphism group of T (M) is equal to the mapping class group of M .

We also prove a counterpoint to the above result on isometries of Bergman
spaces. Namely, if M and N are any two Riemann surfaces of infinite analytic
type, then the corresponding Bergman spaces will be isomorphic. This then
implies that the Teichmüller spaces of any two Riemann surfaces of infinite
analytic type are locally bi-Lipschitz equivalent.

The chapter ends with some open problems that have arisen as a result of
work in this area.
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2 Quasiconformal mappings and Teichmüller spaces

2.1 Quasiconformality

A map g : (a, b)→ C is absolutely continuous on the interval (a, b) if

g(x) =
∫ x

a

h(t) dt+ g(a)

for x ∈ (a, b) and h ∈ L1
loc(a, b), the space of locally integrable functions. If g

is absolutely continuous, then it is differentiable almost everywhere and g′ = h
almost everywhere.

Let Ω be a plane domain, f : Ω → f(Ω) ⊂ C and let a rectangle R ⊂ Ω
have sides parallel to the x and y axes. We say that f is absolutely continuous
on lines (ACL) on R if f is absolutely continuous on almost every horizontal
and vertical line in R. The map f is ACL on Ω if f is ACL on every rectangle
R ⊂ Ω.

Definition 2.1. A homeomorphism f : Ω→ f(Ω) is K-quasiconformal if and
only if the following holds:

(i) f is ACL on Ω,
(ii) |fz| ≤ k|fz| almost everywhere in Ω, where k = (K − 1)/(K + 1).

In particular, f is conformal if and only if f is 1-quasiconformal. There are
equivalent definitions of quasiconformality, see [7].

Example. The ACL condition is certainly necessary, as we will show here.
Let C be the Cantor set on (0, 1) so that every x ∈ C can be written as

x =
∞∑

i=1

2 · 3−ni

for some subset {ni} of Z+. The Cantor function F : (0, 1)→ (0, 1) is defined
by setting

F (x) =
∞∑

i=1

2−ni

for x ∈ C, and extended to the whole of (0, 1) be requiring that F be monoton-
ically increasing. Since F is constant on connected components of the comple-
ment of C, F is differentiable almost everywhere, with derivative 0, but is not
differentiable at points of C. Now define the function f : (0, 1)×(−∞,∞)→ C
given by

f(x+ iy) = F (x) + x+ iy.

Now, F (x) + x is a homeomorphism of (0, 1) onto (0, 2), and so f is a homeo-
morphism, which is differentiable almost everywhere, and in fact fz = 0 almost
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everywhere. However f cannot be conformal on (0, 1) × (−∞,∞) because it
is not differentiable at any point of C × (−∞,∞). Moreover, f cannot be
quasiconformal, because if it was, then it would have to be 1-quasiconformal
and hence conformal. In conclusion, if f : Ω → f(Ω) is a homeomorphism,
differentiable almost everywhere and fz = 0 almost everywhere, then this does
not imply that f is conformal or quasiconformal.

Quasiconformality can also be defined for maps between Riemann surfaces,
and note that in this chapter we are assuming that all our Riemann surfaces are
hyperbolic, that is, they have the unit disk D as the universal cover. The map
f : M → N is said to be K-quasiconformal at p ∈ M if there are coordinate
charts (Up, πp) on M and (Uf(p), πf(p)) on N such that πf(p) ◦ f ◦ π−1

p is a
K-quasiconformal mapping whose domain is the plane domain πp(Up). The
mapping f is then said to be K-quasiconformal if it is K-quasiconformal at
all p ∈M . Note that this definition is independent of the choice of coordinate
chart, since the transition maps are conformal.

Let µ be a measurable (−1, 1)-form on a Riemann surface M with

|µ(p)| ≤ k < 1

for almost all p ∈M , so µ ∈ B(M), the open unit ball of L∞(M). Such a µ is
called a Beltrami differential. The Beltrami differential equation is

fz = µfz.

The solution f (sometimes denoted fµ) of the Beltrami differential equation is
a quasiconformal mapping, and all quasiconformal mappings arise in this way,
giving a correspondence between quasiconformal mappings and Beltrami dif-
ferentials. The solution fµ can be lifted to give a quasiconformal self-mapping
of D. If the lifted solution is normalized to fix three points of ∂D, then the
correspondence between quasiconformal mappings and Beltrami differentials
is one-to-one. See [7] for the proof of these statements.

2.2 Teichmüller space

Let F be the family of all quasiconformal self-mappings of D which are nor-
malised so that their extensions to ∂D fix 1,−1, i. From the solution of the
Beltrami differential equation, there is a one to one correspondence between F
and the open unit ball B of L∞(D). Now, we can put an equivalence relation
∼F on elements of F by declaring that f1 ∼F f2 if and only if the extensions
of f1 and f2 to ∂D agree on ∂D. Equivalently, two elements µ1 and µ2 of B
are related by ∼F if and only if the extensions of the normal solutions fµ1 and
fµ2 to ∂D agree on ∂D.

Definition 2.2. The set of equivalence classes of F under ∼F is called the
universal Teichmüller space T (D).
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The deformation space Def(M) of a Riemann surface M is the set of pairs
(N, f) where N is a Riemann surface, and f : M → N is a quasiconformal
map. For any plane domain Ω with its appropriate Riemann map f , we have
(Ω, f) ∈ Def(D). An equivalence relation ∼ can be defined on Def(M) by
requiring that (N1, f1) ∼ (N2, f2) if and only if

f1 ◦ f−1
2 : N2 → N1

is homotopic to a conformal map g : N2 → N1. Two maps f and g between
hyperbolic Riemann surfaces are homotopic if they can be lifted to mappings
of D which agree on ∂D.

Definition 2.3. The Teichmüller space T (M) of a Riemann surface M is
given by

Def(M)/ ∼ .

The base-point of T (M) is the Teichmüller class of the identity mapping.
This definition agrees with the definition of universal Teichmüller space. To
see this, first note that since all the quasiconformal images of D are conformally
equivalent, only the normalized quasiconformal self-mappings fµ of D need be
considered. Then fµ2 ◦ (fµ1)−1 is homotopic to a conformal map if and only
if fµ2 ◦ (fµ1)−1 is the identity mapping on ∂D. Therefore fµ1 agrees with fµ2

on ∂D, which is precisely the definition for fµ1 and fµ2 to determine the same
point of universal Teichmüller space.

As in the considerations for the universal Teichmüller space, T (M) can
be considered as a space of Beltrami differentials under the corresponding
equivalence relation. The base-point of T (M) is the Teichmüller class of 0 ∈
B(M). Given a Beltrami differential µ on a Riemann surface M , µ lifts to a
Beltrami differential µ̃ on D which satisfies

µ̃ = (µ̃ ◦ g) g
′

g′

for every g in the covering group of M . We write fµ for the quasiconformal
mapping of the plane which has the complex dilatation µ̃ on D, and 0 on D∗,
where D∗ = C \ D. Note that D∗ is the image of D under the reflection in ∂D
given by z 7→ 1/z for z ∈ D.

Theorem 2.4. The following are equivalent:
(i) The Beltrami differentials µ and ν on the Riemann surface M are equiv-

alent under ∼,
(ii) fµ|∂D = fν |∂D,
(iii) fµ|D∗ = fν |D∗ .
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2.3 Teichmüller metric

For [f0], [g0] ∈ T (M), we can define the Teichmüller distance

dT ([f0], [g0]) =
1
2

inf logKg◦f−1 (2.1)

where the infimum is taken over all maps f and g in the Teichmüller classes of
f0 and g0 respectively, and where Kf is the maximal dilatation of f . We write
dT instead of dT (M) for brevity where it is clear which Teichmüller space [f ]
and [g] are in. We can replace inf by min in (2.1) and dT is in fact a metric.
For the details, we refer to [7].

The Teichmüller metric on B(M) is given by

dB(µ, ν) =
1
2

log
1 + ||(µ− ν)/(1− µν)||∞
1− ||(µ− ν)/(1− µν)||∞

,

for µ, ν ∈ B(M). The Teichmüller metric dT can be expressed as the quotient
of dB ,

dT ([µ0], [ν0]) =
1
2

inf
µ∈[µ0],ν∈[ν0]

log
1 + ||(µ− ν)/(1− µν)||∞
1− ||(µ− ν)/(1− µν)||∞

,

for [µ0], [ν0] ∈ T (M).

2.4 Schwarzian derivatives and quadratic differentials

If f is holomorphic in a domain Ω and f ′(z) 6= 0 in Ω, then the Schwarzian
derivative of f is

Sf =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

. (2.2)

If also f(z) 6= 0 in Ω, then a direct computation shows

Sf (z) = S1/f (z)

and this formula shows how to define the Schwarzian derivative of a meromor-
phic function at simple poles. Thus the Schwarzian derivative can be defined
for locally injective meromorphic functions, and Sf is itself holomorphic. Let

A(z) =
az + b

cz + d

be a Möbius transformation, then differentiating gives

A′′(z)
A′(z)

= − 2c
cz + d
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and (
A′′(z)
A′(z)

)′
=

2c2

(cz + d)2

from which we see that

SA = 0.

Conversely, starting with the equation Sf = 0 and setting g = f ′′/f ′, then
(2.2) gives g′ = g2/2. Solving this differential equation shows that every
solution of Sf = 0 is a Möbius transformation. Schwarzian derivatives satisfy
the composition rule

Sf◦g = (Sf ◦ g)g′2 + Sg (2.3)

and so if g is a Möbius transformation and Sg = 0 then

Sf◦g = (Sf ◦ g)g′2. (2.4)

On the other hand, if f is a Möbius transformation, then

Sf◦g = Sg. (2.5)

To define the Schwarzian derivative at ∞, assume that f is locally injective
and meromorphic in a neighbourhood of ∞, then h(z) = f(1/z) is defined in
a neighbourhood of 0. Using (2.4),

z4Sh(z) = Sf (1/z)

and so we can define

Sf (∞) = lim
z→0

z4Sh(z)

and Sf is holomorphic at ∞. Thus the Schwarzian derivative can be defined
for a locally injective meromorphic function f on any domain Ω. The following
theorem shows that the Schwarzian derivative can be prescribed.

Theorem 2.5. Let g be a holomorphic function in a simply connected domain
Ω. Then there is a meromorphic function f in Ω such that

Sf = g

which is unique up to an arbitrary Möbius transformation.

See [7] for the proof. Let Q(M) be the space of holomorphic quadratic
differentials on a Riemann surface M equipped with the norm

||ϕ̃||Q(M) = sup
p∈M

ρ−2
M (p)|ϕ̃(p)|,

where ρM is the hyperbolic density on M , and noting that ρ−2
M |ϕ̃| is a function

on M , whereas |ϕ̃| is usually not. We will call Q(M) the Bers space, and
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||.||Q(M) the Bers norm. It is straightforward to see that Q(M) is a Banach
space.

Now let f1 and f2 be meromorphic functions on a domain Ω and also let
h : Ω′ → Ω be conformal. Using the invariance property (2.3),

Sf1◦h − Sf2◦h = (Sf1 ◦ h− Sg ◦ h)h′2.

Since the hyperbolic density is conformally invariant, ρΩ′ = (ρΩ ◦ h)|h′|, then
by writing w = h(z), we have the invariance formula

|Sf1(w)− Sf2(w)|
ρ2
Ω(w)

=
|Sf1◦h(z)− Sf2◦h(z)|

ρ2
Ω′(z)

.

In terms of the Bers norm, this is

||Sf1 − Sf2 ||Q(Ω) = ||Sf1◦h − Sf2◦h||Q(Ω′).

If f2 = h−1 is a conformal mapping of Ω, then

||Sf1 − Sf2 ||Q(Ω) = ||Sf1◦f−1
2
||Q(f2(Ω)).

In the special case of f1 being the identity,

||Sf2 ||Q(Ω) = ||Sf−1
2
||Q(f2(Ω)).

Lastly, if f2 = h−1 is a Möbius transformation, then

||Sf1 ||Q(Ω) = ||Sf1◦f−1
2
||Q(f2(Ω)),

which shows that ||Sf ||Q(Ω) is completely invariant with respect to Möbius
transformations.

Recalling the quasiconformal mappings fµ and fµ, we have that fµ|D∗ is a
conformal map, and the set of such maps characterizes T (M). If M ' D/G,
then for every g ∈ G, fµ ◦g ◦f−1

µ is a Möbius transformation. Therefore, using
the transformation rules (2.4) and (2.5), we have

Sfµ|D∗ = S(fµ◦g◦f−1
µ )◦fµ|D∗ = Sfµ◦g|D∗ = (Sfµ|D∗ ◦ g)g

′2.

This shows that the Schwarzian derivative is a quadratic differential for the
group G acting on D∗, and its projection is a holomorphic quadratic differential
on D∗/G, which is the mirror image of the Riemann surface M , denoted by
M∗.

2.5 Bers embedding and complex structure on
Teichmüller space

We have the mapping

µ 7→ Sfµ|D∗
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which maps the open unit ball B(M) of L∞(M) into the space of quadratic
differentials Q(M∗). This induces a mapping

λM : T (M)→ Q(M∗), (2.6)

which is called the Bers embedding. The first thing to note is that if two
holomorphic functions f1 and f2 on D∗ have the same Schwarzian derivative,
then by Theorem 2.5, one is equal to the other post-composed by a Möbius
transformation. Now since both functions are normalized at 3 points, then f1
and f2 must be identical on D∗, and therefore determine the same Teichmüller
class. This shows that the mapping λM is one-to-one onto its image. Further,
the image of T (M) under λM is open in Q(M∗), the proof of which can be
found in [7].

In fact, µ 7→ Sfµ|D∗ is a holomorphic map from B(M) into Q(M∗). For a
given µ ∈ B(M), write

Gµ = {fµ ◦ g ◦ (fµ)−1 : g ∈ G},

where M ' D/G, and Mµ ' D/Gµ is a Riemann surface which is quasicon-
formally equivalent to M . Let α̃µ : B(M) → B(Mµ) be the mapping given
by

f α̃µ(ν) = fν ◦ (fµ)−1

or, by writing out in full,

α̃µ(ν) =

(
ν − µ
1− µν

(
fµ

z

|fµ
z |

)2
)
◦ (fµ)−1.

The function α̃µ maps B(M) bijectively onto B(Mµ), and it follows that α̃µ is
holomorphic. Note that the induced mapping αµ, given by αµ([ν]) = [α̃µ(ν)]
is a bijective isometry of T (M) onto T (Mµ). For µ ∈ B(M) and ν ∈ B(Mµ)
we write

Λµ(ν) = Sfν |D∗ . (2.7)

This mapping of B(Mµ) into Q((Mµ)∗) is holomorphic. Now, in the ball

Bµ(0, 1/2) = {ϕ ∈ Q((Mµ)∗) : ||ϕ||Q < 2},

the mapping (2.7) has a section σµ : Bµ(0, 2) → B(Mµ). We see that σµ

is holomorphic. Let π be the canonical projection of B(M) onto T (M), and
let λ and λµ be the Bers embeddings of T (M) and T (Mµ), respectively, into
Q(M∗) and Q((Mµ)∗). The collection

{Vµ = (π ◦ (α̃µ)−1 ◦ σµ)(Bµ(0, 1/2)) : µ ∈ B(M)}

is an open covering of T (M). Indeed, Vµ is the pre-image of Bµ(0, 1/2) under
the homeomorphism hµ = λµ ◦ αµ of T (M) onto Q((Mµ)∗).
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Theorem 2.6. The atlas

{(Vµ, hµ) : µ ∈ B(M)} (2.8)

defines a complex structure on Teichmüller space T (M). The Bers embedding
[µ]→ Sfµ|D∗ of T (M) into Q(M∗) is holomorphic with respect to this structure.

Proof. Choose two elements µ1, µ2 ∈ B(M) such that Vµ1 ∩ Vµ2 is non-empty.
In hµ1(Vµ1 ∩ Vµ2), we have

hµ2 ◦ h−1
µ1

= Λµ2 ◦ α̃µ2 ◦ (α̃µ1)
−1 ◦ σµ1 .

We know that all the mappings on the right hand side of this equation are
holomorphic, and so hµ2 ◦ h−1

µ1
is holomorphic. Switching µ1 and µ2 in this

calculation shows that hµ2 ◦ h−1
µ1

is biholomorphic, and so (2.8) defines a com-
plex structure for T (M). To show that the Bers embedding is holomorphic,
we have to show that λ ◦ h−1

µ is holomorphic in Bµ(0, 1/2). Now,

λ ◦ h−1
µ = Λ ◦ (α̃µ)−1 ◦ σµ

and since all the mappings on the right hand side are holomorphic, then λ◦h−1
µ

must also be holomorphic.

A Riemann surface M is said to be of finite analytic type if it is a com-
pact Riemann surface of genus g with a finite number n of punctures. It has
exceptional type if 2g + n < 5. All non-hyperbolic Riemann surfaces have
exceptional type.

If M is of finite analytic type, then Q(M) can be identified with its pre-
dual space A1(M), the subset of L1(M) consisting of holomorphic quadratic
differentials on M with finite norm

||ϕ||1 =
∫

M

|ϕ|,

for ϕ ∈ A1(M). The Banach space A1(M) is called the Bergman space. In
fact, every linear functional on A1(M), L : A1(M)→ C has the form

L(ϕ) =
∫

M

ρ−2
M ψϕ

for some ψ ∈ Q(M), and L ≡ 0 if and only if ψ ≡ 0. et M̃ be a compact
Riemann surface of genus g ≥ 0 and let E be a finite, possibly empty, subset of
M̃ which contains exactly n ≥ 0 points. We assume that 2g+n ≥ 5, so that the
Riemann surface M = M̃ \E has non-exceptional finite type. Each ϕ ∈ A1(M)
can be regarded as a quadratic differential on M̃ which is holomorphic except
for isolated singularities at the points of M . The integrability of ϕ implies
that the singularities of ϕ are either removable or simple poles, so A1(M) is
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the space of meromorphic quadratic differentials on M̃ whose poles, if any, are
simple and belong to E.

Proposition 2.7. If M = M̃ \ E as above, then the dimension of A1(M) is
3g − 3 + n ≥ 2. If x ∈ E, then some ϕ ∈ A1(M) has a pole at x.

The Riemann surface M is of infinite analytic type if M has infinite genus
or an infinite number of punctures. If M is of infinite analytic type, then the
dimension of A1(M) is infinite. For example, if M has an infinite number of
punctures at the points (zn) for n = 1, 2, ..., then there exist functions fn, each
of which have a simple pole at zn, and which are linearly independent. This
points us in the direction of the following result, proved in [9].

Theorem 2.8. A Riemann surface M is of finite analytic type if and only if
the dimension of A1(M) is finite.

If the dimension of A1(M) is infinite, then A1(M) is a proper subset of
Q(M). Therefore, via the Bers embedding, the dimension of the Teichmüller
space T (M) is infinite if and only if M is not of finite analytic type.

3 Biholomorphic maps between Teichmüller spaces

In this section, we will classify biholomorphic maps between Teichmüller spaces
by reducing the problem to the cotangent space. That is, all surjective linear
isometries between Bergman spaces of Riemann surfaces of non-exceptional
type are geometric, which in particular implies that the two Riemann surfaces
are conformally related.

3.1 Kobayashi metric

Let X be any connected complex Banach manifold, and let H(D, X) be the
set of all holomorphic maps from D into X. The Kobayashi function δX :
X ×X → [0,+∞] is

δX(x, y) = inf {ρD(0, t) : f(0) = x, f(t) = y for some f ∈ H(D, X)} ,

provided the set of such maps is non-empty, and +∞ otherwise. If X and Y
are connected complex Banach manifolds and f : X → Y is holomorphic, then

δY (f(x1), f(x2)) ≤ δX(x1, x2),

for all x1, x2 ∈ X, and with equality if f is biholomorphic.
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Definition 3.1. The Kobayashi pseudo-metric σX on X is the largest pseudo-
metric on X such that

σX(x, y) ≤ δX(x, y), (3.1)

for all x, y ∈ X. If δX is a metric, as it will be in our cases, then σX is a
metric and σX and δX are equal.

Note that when we say σX is the largest pseudo-metric, we mean that if
dX is any other pseudo-metric which satisfies (3.1), then

dX(x, y) ≤ σX(x, y)

for all x, y ∈ X. The Kobayashi pseudo-metric is the largest metric under
which holomorphic mappings are distance decreasing.

Example 1. IfX is C or Ĉ, then the linear maps fn(z) = nz, together with
their inverses, from D into X show that δX ≡ 0. Hence σX ≡ 0. Furthermore,
if X is a torus or the punctured plane C \ {0}, then there is a covering map
π from C onto X. Since π is a contraction in the respective pseudo-metrics,
σX ≡ 0.

Example 2. Let X be a hyperbolic Riemann surface, that is, it has D as its
universal cover. If π is the covering map from D ontoX, then π ∈ H(D, X) and
so is a contraction in the corresponding Kobayashi pseudo-metrics. However,
every f ∈ H(D, X) lifts to a map f̃ ∈ H(D,D) such that f = π ◦ g. Thus δX
is equal to the quotient pseudo-metric on X with respect to the covering map
π and the hyperbolic metric on D. That is, δX coincides with the hyperbolic
metric on X. Since δX is a pseudo-metric, σX = δX and so the Kobayashi
pseudo-metric is equal to the hyperbolic metric on X.

Example 3. Let B be the unit ball in a complex Banach manifold X and
pick x ∈ B. The linear function f(t) = tx/||x|| maps the unit disk D into the
unit ball B and maps ||x|| to x and 0 to 0. Therefore

σB(0, x) ≤ σD(0, ||x||).

However, via the Hahn-Banach Theorem, there exists a continuous linear func-
tional L on X such that L(x) = ||x|| and ||L|| = 1. Thus L maps B into the
unit disk D and so

σD(0, ||x||) ≤ σB(0, x).

The definition of the hyperbolic metric on D leads to

σB(0, x) =
1
2

tanh−1 ||x||.

Proposition 3.2. For all µ, ν ∈ B(M), we have

δB(M)(µ, ν) = dB(M)(µ, ν).
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Proof. We can assume that µ 6= ν. First we also assume that µ = 0. Suppose
that f ∈ H(D, B(M)), f(0) = 0 and f(t) = ν for some t ∈ D. By the Schwarz
Lemma,

|t| ≥ ||f(t)||∞ = ||ν||∞.

Taking the infimum over all such f ,

δB(M)(0, ν) ≥ ρD(0, ||ν||∞ = dB(M)(0, ν).

Choose the function f(t) = tν/||ν||∞ and observe that

δB(M)(0, ν) ≤ ρD(0, ||ν||∞) = dB(M)(0, ν)

since f(||ν||∞) = ν. Now if µ 6= 0, observe that the function f : B(M) →
L∞(M) defined by

f(λ) =
µ− λ
1− µλ

is a holomorphic map of B(M) onto itself. Therefore

δB(M)(µ, ν) = δB(M)(f(µ), f(ν)) = dB(M)(0, f(ν)) = dB(M)(µ, ν).

As we have seen, the Teichmüller metric on B(M) induces a quotient metric
on T (M):

dT ([µ], [ν]) = inf
{
dB(M)(µ0, ν0) : µ0, ν0 ∈ B(M), µ0 ∈ [µ], ν0 ∈ [ν]

}
,

for all [µ], [ν] ∈ T (M). We can now prove Royden’s theorem on the equality
of Teichmüller and Kobayashi metrics on T (M), proved in [16].

Theorem 3.3. The Teichmüller and Kobayashi metrics on T (M) coincide,
that is,

dT ([µ], [ν]) = δT (M)([µ], [ν]).

Proof. Fix [µ], [ν] ∈ T (M). We have

δT (M)([µ], [ν]) ≤ inf
{
δB(M)(µ0, ν0) : µ0 ∈ [µ], ν0 ∈ [ν]

}
.

Hence by Proposition 3.2,

δT (M)([µ], [ν]) ≤ dT ([µ], [ν]).

For the opposite inequality, choose f ∈ H(D, T (M)) such that f(0) = [µ] and
f(t) = [ν] for some t ∈ D. Using a theorem of Slodkowski (see [4]), we can
write π ◦ g = f with

g ∈ H(D, B(M)).



14 Alastair Fletcher and Vladimir Markovic

Using Proposition 3.2,

ρD(0, t) ≥ dB(M)(g(0), g(t)) ≥ dT (π(g(0)), π(g(t))) = dT ([µ], [ν]).

Taking the infimum over all such f , we obtain

δT (M)([µ], [ν]) ≥ dT ([µ], [ν]).

Corollary 3.4. Let M and N be two hyperbolic Riemann surfaces. Then every
biholomorphic map between T (M) and T (N) preserves Teichmüller distances.

3.2 The infinitesimal Teichmüller metric

Due to Corollary 3.4, investigating biholomorphic self-mappings of T (M) re-
duces to the study of biholomorphic Teichmüller isometries. Now, biholomor-
phic Teichmüller isometries preserve the infinitesimal Teichmüller metric, as
we will see below.

Recall the Bers embedding (2.6) of T (M) into Q(M∗), where M∗ is the
mirror image of M . For the rest of this chapter, we will for brevity (and to
avoid confusion with our notation for Banach duals) write Q(M) instead of
Q(M∗) and A1(M) for A1(M∗), but bear in mind that the Bers embedding
maps T (M) onto a subset of the Bers space of the mirror image of M . Via
the Bers embedding, we can regard Q(M) as the tangent space to T (M) at its
base-point [0] (where 0 ∈ B(M)). Further, we can define an isomorphism θ of
Q(M) onto the Banach dual (A1(M))∗ of A1(M) via

θ(ϕ)(f) =
∫

M

ρ−2
M ϕ(z)f(z) dx dy,

for ϕ ∈ Q(M) and f ∈ A1(M) and where ρM is the hyperbolic density on M .
This was proved by Bers in [1]. We can therefore identify (A1(M))∗ with the
tangent space to T (M) at its base-point. This identifies the cotangent space
with A1(M) in the finite dimensional case, since then A1(M) is reflexive.
Further, the standard norm

||L|| = sup{|L(f)| : f ∈ A1(M), ||f ||1 ≤ 1},

for L ∈ (A1(M))∗, on (A1(M))∗ is exactly the infinitesimal Teichmüller metric
for tangent vectors at the base-point of T (M).

3.3 Isometries of Bergman spaces

Let M and N be two hyperbolic Riemann surfaces and let f : T (M)→ T (N)
be a biholomorphic map that sends base-point to base-point. We have seen
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that the derivative of f at the base-point of T (M) is a C-linear isometry
of (A1(M))∗ onto (A1(N))∗. In the finite dimensional case, we immediately
have that the adjoint of that derivative is a C-linear isometry of A1(N) onto
A1(M). However, in the infinite dimensional case, we need to use a theorem
of Earle and Gardiner’s, see [2], which says that if there is an invertible C-
linear isometry F : (A1(M))∗ → (A1(N))∗, then there is always an invertible
C-linear isometry L : A1(N) → A1(M) which is the adjoint of F . In this
way, we pass from biholomorphic maps between Teichmüller spaces to linear
isometries between Bergman spaces.

There are two obvious types of isometries between A1(N) and A1(M). The
map ϕ 7→ θϕ is an isometry of A1(M) onto itself whenever θ ∈ C has |θ| = 1.
Also, if α is a conformal map of M onto N , each ϕ ∈ A1(N) can be pulled
back to a quadratic differential α∗(ϕ) on A1(M), and the map ϕ 7→ α∗(ϕ) is
an isometry.

Definition 3.5. If M and N are Riemann surfaces, then a surjective linear
isometry T : A1(M) → A1(N) is called geometric if there exists a conformal
map α : M → N and a complex number θ with |θ| = 1 such that

T−1(ϕ) = θ(ϕ ◦ α)α′2,

for every ϕ ∈ A1(N).

Theorem 3.6. Suppose that M and N are Riemann surfaces which are of non-
exceptional finite type and that T : A1(M) → A1(N) is a surjective complex-
linear isometry. Then T is geometric.

Royden proved Theorem 3.6 in [16] in the case where M and N are com-
pact and hyperbolic, and his method was extended to Riemann surfaces of
non-exceptional finite type, even though M and N are not assumed to be
homeomorphic, by Earle and Kra in [3] and Lakic in [12]. Some further spe-
cial cases of Theorem 3.6 were proved by Matsuzaki in [13]. Markovic proved
3.6 in full generality, that is, for the infinite analytic type case, in [14]. As in
[5], we will use the methods of [14] to prove Theorem 3.6 in the finite analytic
case, which gives a good indication of the methods used, without going into
the technical detail required for the general case.

Let M̃ be a compact Riemann surface of genus g ≥ 0 and let E be a finite,
possibly empty, subset of M̃ which contains exactly n ≥ 0 points. We assume
that 2g+n ≥ 5, so that the Riemann surface M = M̃ \E has non-exceptional
finite type.

We will consider projective embeddings of M̃ associated with A1(M). Let
k be a positive integer, and let Pk be the k-dimensional complex projective
space. Each point (z0, ..., zk) ∈ Ck+1\{0} determines a point [(z0, ..., zk)] ∈ Pk.
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The formula

π0(z1, ..., zk) = [(1, z1, ..., zk)]

defines a holomorphic map of Ck onto a dense open subset of Pk.
Let M(M̃) be the field of meromorphic functions on M̃ . For any divisor

D on M̃ , we define OD(M̃) to be the complex vector space of all functions in
M(M̃), including the zero function, that are multiples of the divisor −D, that
is

OD(M̃) = {f ∈M(M̃) : ordx(f) ≥ −D(x),∀x ∈ M̃}.

Proposition 3.7. Let M = M̃ \ E as above, and let ϕ0, ..., ϕk be a basis for
A1(M). Set fj = ϕj/ϕ0, for j = 1, ..., k and set

M0 = M̃ \ {x ∈ M̃ : some fj has a pole at x}.

Let F : M0 → Ck be the holomorphic map F = (f1, ..., fk). There is a unique
holomorphic embedding Φ : M̃ → Pk such that

Φ(x) = π0(F (x)),

for all x ∈M0.

Proof. Consider the divisor D = (ϕ0) + χE on M̃ . Clearly, A1(M) is the set
of meromorphic quadratic differentials ϕ = fϕ0 such that f ∈ OD(M̃).

Again, deg(D) ≥ 2g + 1. Since the functions 1, f1, ..., fk are a basis for
OD(M̃), we can conclude the map

x 7→ [(1, f1(x), ..., fk(x))],

for x ∈ M̃ , when interpreted appropriately at the poles of the fj , defines a
holomorphic embedding of M̃ into Pk.

Corollary 3.8. The map F defined above is a homeomorphism of M0 onto a
closed subset of Ck.

Proof. Since F is holomorphic on M0, it is continuous. Since Φ−1 ◦ π0 ◦ F is
the identity map of M0 to itself, F is a homeomorphism. To see that F (M0)
is a closed set, consider a sequence (xn) in M0 such that F (xn) converges to
z = (z1, ..., zk) in Ck. We may assume that xn converges to some point x̃ ∈ M̃ .
Then fj(x̃) = zj 6=∞ for j = 1, ..., k and so x̃ ∈M0 and z = F (x̃).

Definition 3.9. Suppose that f1, ..., fn are µ-measurable functions on X and
that g1, ..., gn are ν-measurable functions on Y . Writing F = (f1, ..., fn) and
G = (g1, ..., gn), which we consider as Cn valued functions, then F and G are
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equimeasurable if

µ(F−1(E)) = ν(G−1(E))

for every Borel set E ⊂ C.

The following theorem on a condition for equimeasurability and the previ-
ous lemmas are due to Rudin in [17].

Theorem 3.10. Let 0 < p < ∞, p 6= 2, 4, 6, ..., n ∈ N, and let µ and ν
be measures on measurable spaces X and Y respectively. If for 1 ≤ i ≤ n,
fi ∈ Lp(µ) and gi ∈ Lp(ν), and∫

X

|1 + z1f1 + ...+ znfn|p dµ =
∫

Y

|1 + z1g1 + ...zngn|p dν

for all (z1, ..., zn) ∈ Cn, then (f1, ..., fn) and (g1, ..., gn) are equimeasurable.

We are now in a position to prove Theorem 3.6 for the finite analytic case.

Proof of Theorem 3.6. We will prove this theorem in the case where the given
Riemann surfaces M and N are the complements of finite sets in compact
Riemann surfaces M̃ and Ñ . Again, for the proof in full generality, see [14].
Note that we do not assume M̃ and Ñ have the same genus.

Let ϕ0, ..., ϕk be a basis for A1(M), and define M0 and the map

F = (f1, ..., fk)

as in the previous proposition. Set ψj = T (ϕj) for j = 0, ..., k. Since

T : A1(M)→ A1(N)

is a surjective C-linear isometry, ψ0, ..., ψk is a basis forA1(N). Set gj = ψj/ψ0,
for j = 1, ..., k, and set

N0 = Ñ \ {y ∈ Ñ : some gj has a pole at y}.

Let G : N0 → Ck be the holomorphic embedding map G = (g1, ..., gk). By
Proposition 3.10, there is a holomorphic embedding Ψ : Ñ → Pk such that
Ψ = π0 ◦G on N0.

Let µ and ν be the finite positive Borel measures on M0 and N0 defined by

µ(A) =
∫

A

|ϕ0|

for all Borel sets A ⊂M0, and

ν(B) =
∫

B

|ψ0|
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for all Borel sets B ⊂ N0. Since T is a C-linear isometry, we have∫
M0

1 +
k∑

j=1

λjfj

 dµ =
∫

M

ϕ0 +
k∑

j=1

λjϕj

 =

∫
N

ψ0 +
k∑

j=1

λjψj

 =
∫

N0

1 +
k∑

j=1

λjgj

 dν,
for all (λ1, ..., λk) ∈ Ck. Therefore, the maps F and G, and the measures µ
and ν satisfy Rudin’s equimeasurability condition, Theorem 3.10. Applying
this to the closed subset F (M0) of Ck, we obtain

||ϕ0|| =
∫

M0

|ϕ0| = µ(M0) = ν(G−1(F (M0)))

=
∫

G−1(F (M0))

|ψ0| ≤
∫

N0

|ψ0| = ||ψ0||.

Since ||ψ0|| = ||ϕ0||, the weak inequality here is actually an equality, and
then G−1(F (M0)) has full measure in N0. Since it is a closed subset of N0,
G−1(F (M0)) equals N0, and G(N0) is contained in F (M0).

Similarly, applying the equimeasurability condition of Theorem 3.7 to the
set G(N0), we find that F (M0) is a subset of G(N0). Therefore the sets F (M0)
and G(N0) are equal, and so are their images under the map π0 from Ck to Pk.
Now π0(F (M0)) = Φ(M0) is dense in the compact set Φ(M̃), and π0(G(N0))
is dense in the compact set Ψ(Ñ), and so the sets Φ(M̃) and Ψ(Ñ) are equal.

Let h : Ñ → M̃ be the bijective holomorphic map Φ−1 ◦Ψ. The restriction
of h to N0 satisfies F ◦h = G and h(N0) = M0. From the definitions of F and
G, we obtain

T (ϕj)
T (ϕ0)

=
ψj

ψ0
= gj = fj ◦ h =

ϕj

ϕ0
◦ h =

h∗(ϕj)
h∗(ϕ0)

for j = 1, ..., k, and so

T (ϕ)
T (ϕ0)

=
h∗(ϕ)
h∗(ϕ0)

for all ϕ ∈ A1(M), where we write h∗(ϕ) for the pullback of ϕ by h. Let K
be any compact set in N0. Applying the equimeasurability condition to the
compact set G(K) in Ck, we obtain∫

K

|T (ϕ0)| =
∫

K

|ψ0| = ν(K) = µ(h(K)) =
∫

h(K)

|ϕ0| =
∫

K

|h∗(ϕ0)|.
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Since K is arbitrary, we must have |T (ϕ0)| = |h∗(ϕ0)| in N0, and hence in all
of Ñ . Therefore T (ϕ0) = eith∗(ϕ0) for some t ∈ R, and we see that

T (ϕ) = eith∗(ϕ), (3.2)

for all ϕ ∈ A1(M). To complete the proof, we need to show that h(N) = M .
By Proposition 3.7, N is the set of points in Ñ where every T (ϕ) is finite,
and h−1(M) is the set of points in Ñ where every h∗(ϕ) is finite. These sets
coincide by (3.2).

We have that every biholomorphic map between two Teichmüller spaces
T (M) and T (N) is induced by a quasiconformal map between M and N ,
unless one of them has exceptional type. The automorphism group of T (M),
denoted Aut(T (M)) is the group of all biholomorphic self-mappings of T (M).

Every quasiconformal mapping g : M → N induces a mapping ρg : T (M)→
T (N) given by

ρg([f ]) = [f ◦ g−1].

The mapping class group MC(M) is the group of all Teichmüller classes of
quasiconformal maps from the Riemann surface M onto itself. Further, every
g ∈MC(M) induces an automorphism ρg of T (M). Theorem 3.6 immediately
gives us the following result.

Theorem 3.11. If M is a Riemann surface of non-exceptional type, then

Aut(T (M)) = MC(M).

4 Local rigidity of Teichmüller spaces

In the previous section, we saw that a surjective linear isometry between the
Bergman spaces of two Riemann surfaces implies that the two Riemann sur-
faces are conformally equivalent. In this section, we will use a classical Banach
space result of Pelczynski [15] to prove a result of Fletcher [6] which shows
that when two Riemann surfaces M and N are of infinite analytic type, their
Bergman spaces will always be isomorphic. This then implies, via the Bers
embedding, that their Teichmüller spaces will be locally bi-Lipschitz equiva-
lent.

4.1 Projections on Banach spaces

Let A be two dimensional Lebesgue measure on the domain Ω ⊆ C. Then
L1(Ω) is the Banach space of measurable functions on Ω which have finite
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L1-norm given by

||f ||1 =
∫

Ω

|f(z)| dA(z) <∞,

for f ∈ L1(Ω). The Banach space A1(Ω) is the subset of L1(Ω) consisting of
holomorphic functions.

Lemma 4.1. Let Ω be a simply connected precompact subset of a Riemann
surface M . Then given ε > 0, there exists a projection P : L1(Ω) → L1(Ω)
such that ||P || < 1,

||P (f)− f || < ε,

for all f ∈ A1(Ω) satisfying ||f ||1 ≤ 1, and P (L1(Ω)) is isometric to (l1)n,
where (l1)n is the n-dimensional subspace of l1 with all terms except possibly
the first n being equal to 0.

Proof. We can for simplicity assume that Ω is a bounded simply connected
plane domain. Subdivide Ω into a finite number of subsets, Ω1, ...,Ωn. For a
given f ∈ L1(Ω), define λi to be

∫
Ωi
f . We have

n∑
i=1

|λi| =
n∑

i=1

∫
Ωi

f

 ≤ ∫
Ω

|f | <∞.

Define the map P : L1(Ω)→ L1(Ω) by

P (f) =
n∑

i=1

λi

m(Ωi)
1Ωi ,

where 1Ωi denotes the indicator function of Ωi, and m is the usual two di-
mensional Lebesgue measure of Ωi. The map P is clearly linear and bounded
(||P || ≤ 1 in fact), and also a projection, since P 2 = P .

We can define a map µ : P (L1(Ω))→ (l1)n given by

µ(P (f)) = (λ1, ..., λn, 0, ...).

Now, ||µ(P (f))||l1 =
∑n

i=1 |λi|. Also,

||P (f)||1 =
∫

Ω

|P (f)| =
∫

Ω


n∑

i=1

λi

m(Ωi)
1Ωi

 =
n∑

i=1

∫
Ωi

 λi

m(Ωi)

 =
n∑

i=1

|λi|

since the supports of 1Ωi are disjoint. Hence µ is isometric, and so P (L1(Ω))
is isometric to (l1)n.

We now have to show that we can find a fine enough subdivision of Ω so
that for the corresponding projection P , ||P (f) − f || < ε for f ∈ A1(Ω) with



Infinite dimensional Teichmüller spaces 21

||f ||1 ≤ 1. Since Ω is precompact in M ,

sup{|f(z)|}

is bounded, where the supremum is taken over all f ∈ A1(M) with ||f ||1 ≤ 1
and over all z ∈ Ω. This means that

Θ = {f |Ω : f ∈ A1(M), ||f ||1 ≤ 1}

is a normal family, and hence is equicontinuous, ie. for all f ∈ Θ and for
all ε > 0, there exists a δ > 0 such that if |z − z0| < δ, for z, z0 ∈ Ω, then
|f(z)− f(z0)| < ε.

If B(zi, δ) is a ball centred at zi of Euclidean radius δ, then for any holo-
morphic function f ,

1
m(B(zi, δ))

∫
B(zi,δ)

f = f(zi).

If now Ω is subdivided into Ω1, ...,Ωn, with each Ωi ⊂ B(zi, δ) for some zi,
and P is the projection corresponding to this subdivision, then∫

Ωi

|f − P (f)| ≤
∫

B(zi,δ)

|f(z)− f(zi)| < εm(B(z0, δ))

recalling that m(B(zi, δ)) is the area of B(zi, δ), and noting that the last
inequality follows from the equicontinuity of Θ. Hence∫

Ω

|f − P (f)| < εm(Ω)

and since we are assuming that m(Ω) is finite, and ε can be made as small as
wished, then we have the desired conclusion that ||P − I|| can be as small as
desired for P corresponding to a suitably fine subdivision of Ω.

Lemma 4.2. Let Y be a complemented subspace of a Banach space X, and
let T : Y → X be a linear operator satisfying

||T − I|Y || < ε. (4.1)

Then if ε is sufficiently small, T (Y ) is closed and complemented in X.

Proof. Let S = I|Y −T . Then ||S|| < ε. Let also PY : X → Y be a projection,
which is guaranteed to exist since Y is a complemented subspace of X. Then
we have

X = Im(PY )⊕ ker(PY ). (4.2)

Define S̃ : X → X by

S̃ = S ◦ PY .
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Then S̃ is an extension of S and

||S̃|| ≤ ||PY ||.||S||.

Thus if ε < ||PY ||−1, we have ||S̃|| < 1. Now set

T̃ = I − S̃ : X → X,

so that

T̃ (x) = x− PY (x) + T (PY (x)) (4.3)

for x ∈ X. Then T̃ is an extension of T , and ||S̃|| < 1 implies that T̃ is
invertible and therefore a homeomorphism. Since T̃ is a homeomorphism, the
image of T̃ is closed and, furthermore, since Y is a closed subspace of X,
T (Y ) = T̃ (Y ) is closed. The fact that T (Y ) = T̃ (Y ) follows from (4.3). From
(4.2) and (4.3), it follows that T (Y ) is complementary to T̃ (ker(PY )) in T̃ (X).
Furthermore, we can rewrite (4.3) as

T̃ (x) = (I − PY )(x− T (PY (x))) + PY (T (PY (x))) (4.4)

for x ∈ X, where the first term on the right hand side of (4.4) is an element of
ker(PY ) and the second term on the right hand side of (4.4) is an element of
Y . From the hypothesis (4.1) and the fact that T is invertible, it follows that
T : Y → T (Y ) is invertible and PY : T (Y )→ Y is invertible so that the image
of PY ◦ T is the whole of Y . It then follows from (4.4) that the image of T̃ is
the whole of X and therefore T (Y ) is complemented in X.

4.2 Bergman kernels and projections on L1(M)

The Bergman kernel on D× D is given by

K(z, ζ) =
1

(1− zζ)4
,

Every hyperbolic Riemann surface M has the disk D as its universal cover,
that is, there is a Fuchsian covering group G such that M ' D/G. Let π : ω →
M be the covering map from a fundamental region ω of D/G to M , chosen
so that π is injective. Now, given such a covering group G, form the Poincaré
theta series given by

F (z, ζ) =
∑
γ∈G

K(γ(z), ζ)γ′(z)2.

Definition 4.3. Let M be a hyperbolic Riemann surface with covering group
G of D over M . The Bergman kernel function for M ×M is given by the
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projection of F to M . That is,

KM (π(z), π(ζ))π′(z)2π′(ζ)2 = F (z, ζ).

Lemma 4.4. The kernel function KM : M ×M → C defined above is holo-
morphic in the first argument, antiholomorphic in the second argument, and
satisfies the following properties, where p, q ∈M ,

(i) KM (p, q) = KM (q, p);

(ii) for every conformal f : M →M , KM (f(p), f(q))f ′(p)2f ′(q)2 = KM (p, q);

(iii)
∫

M
|KM (p, q)| dA(p) ≤ π

4 ρ
2
M (q), where A(p) is the area measure on M

in the p-coordinate;

(iv) for every ϕ ∈ A1(M),

ϕ(p) =
12
π

∫
M

ρ−2
M (q)KM (p, q)ϕ(q) dA(q),

where A(q) is the area measure on M in the q-coordinate;

(v) for each fixed q ∈M ,

sup
p∈M
|KM (p, q)|ρ−2

M (p) <∞.

Proof. We will just prove the third property since it will be used shortly. See
[6, 8] for more details. Let p = π(z) and q = π(ζ) for p, q ∈ M and z, ζ ∈ D.
We have ∫

M

|KM (p, q)| dA(p) =
∫

ω

|F (z, ζ)| dA(z)

where ω is a fundamental region for M in D,

=
∫

ω


∑
γ∈G

KD(γ(z), ζ)γ′(z)2

 dA(z) ≤
∑
γ∈G

∫
γ(ω)

|KD(z, ζ)| dA(z)

=
∫

D
|KD(z, ζ)| dA(z) ≤ π

4
ρ(z)2 =

π

4
ρM (p)2,

which completes the proof.

Define the linear map P : L1(M)→ A1(M) by

(P (ϕ))(µ) =
12
π

∫
M

ρ−2
M (q)KM (p, q)ϕ(q) dA(q) (4.5)

for p, q ∈M . For any ϕ ∈ L1(M), it is clear that the integral formula for P (ϕ)
means that P (ϕ) will be holomorphic, so the image of P is indeed A1(M).
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Theorem 4.5. There exists a bounded linear projection θ : L1(M)→ A1(M),
given by θ : ϕ 7→ P (ϕ) for ϕ ∈ L1(M).

Proof. The map θ is clearly linear, and bounded, since

||P (ϕ)||1 =
∫

M

|P (ϕ(p))|dA(p) =
12
π

∫
M

∫
M

ρ−2
M (q)KM (p, q)ϕ(q) dA(q)

 dA(p)

≤ 12
π

∫
M

(∫
M

|KM (p, q)| dA(p)
)
ρ−2

M (q)|ϕ(q)| dA(q)

by Fubini’s theorem, which we can apply by the fifth property in Lemma 4.4,
and then using the third property of Lemma 4.4 gives

||P (ϕ)||1 ≤ 3
∫

M

|ϕ(q)| dA(q)

Hence ||θ|| ≤ 3. The integral reproducing formula given in (4.5) shows that
θ|A1(M) is the identity, θ2 = θ, and so θ is a projection.

4.3 Isomorphisms of Bergman spaces

Let X1, X2, ... be Banach spaces with norms ||xi||i for i = 1, 2, ... and xi ∈ Xi.
Also let p > 0. Then the Banach space (X1 ⊕X2 ⊕ ...)p has elements of the
form (x1, x2, ...), for xi ∈ Xi, and norm given by

||(x1, x2, ...)||p =

( ∞∑
i=1

||xi||pi

)1/p

. (4.6)

Theorem 4.6. If M is a hyperbolic Riemann surface of infinite analytic type,
then A1(M) is isomorphic to the sequence space l1.

Proof. As discussed previously, we know that this theorem applies to all Rie-
mann surfaces where the dimension of A1(M) is infinite, for example, the plane
punctured at the integer lattice points, or an infinite genus surface.

We first subdivide M in an appropriate way. For every p ∈M , there exists
an open subset Up ⊂ M containing p, and a chart πp such that πp(Up) is a
disk in C and πp(p) = 0. Let Vp be an open simply connected set in M whose
closure is contained in Up, so that in particular πp(Vp) is a precompact subset
of πp(Up).

As p varies through M , (Vp)p∈M forms an open cover of M , and it is
possible to find a countable subset p1, p2, ... such that

M =
∞⋃

i=1

Vpi
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Now modify the subsets Vpi
to give a disjoint partition of M in the following

way: define M1 = Vp1 , and then inductively,

Mn = Vpn
\

(
n−1⋃
i=1

Vpi

)
.

L1(M)
R = ⊕iRi- ⊕iL

1(Mi)
P = ⊕iPi- ⊕iPi(L1(Mi)) = Λ

isometry- l1

A1(M)

θ

?
R - R(A1(M))

θ̃

?
T - ⊕iPi(Ri(A1(M)))

θ̂

?

Refer to the diagram above for the following definitions. Let Ri : L1(M)→
L1(Mi) be the restriction map given by Ri(f) = f |Mi , for f ∈ L1(M). Define
the operator R : L1(M)→ (L1(M1)⊕ L1(M2)⊕ ...)1 by

R(f) = (R1(f), R2(f), ...),

for f ∈ L1(M). The operator R is isometric, since

||R(f)||1 =
∞∑

i=1

||Ri(f)||1 =
∞∑

i=1

∫
Mi

|f | =
∫

M

|f | = ||f ||1,

using (4.6), and R is also clearly surjective. Now, given εi > 0, by Lemma 4.1,
we can find a projection Pi of L1(Mi) into itself such that ||Pi|| ≤ 1, Pi(L1(Mi))
is isometric to (l1)αi

for some αi ∈ Z+, and ||Pi(Ri(f))−Ri(f)||1 ≤ εi for all
f ∈ A1(M) with ||f || < 1.

Let

Λ = (P1(L1(M1))⊕ P2(L1(M2))⊕ ...)1,

a subspace of (L1(M1) ⊕ L1(M2) ⊕ ...)1. Since each Pi(L1(Mi)) is isometric
to (l1)αi

for some αi ∈ Z+, Λ is isometric to l1. Now we define the operator
T : R(A1(M))→ Λ by

T (R1(f), R2(f), ...) = (P1(R1(f)), P2(R2(f)), ...).

Since the dimension of A1(M) is infinite, R(A1(M)) must also be infinite
dimensional. We also have

||T (ξ)− ξ||1 ≤

( ∞∑
i=1

εi

)
||ξ||1

for ξ ∈ R(A1(M)), and so given ε > 0, it is possible to choose the (εi)i so that
||T (ξ)− ξ||1 < ε||ξ||1, for ξ ∈ R(A1(M)).
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There exists a bounded linear projection θ : L1(M) → A1(M) by The-
orem 4.5. Therefore, there is a bounded linear projection θ̃ : R(L1(M)) →
R(A1(M)), given by

θ̃(R1(f), R2(f), ...) = (R1(θ(f)), R2(θ(f)), ...)

which is clearly linear, bounded and satisfies θ̃2 = θ̃. Therefore R(A1(M))
is complemented in R(L1(M)). Thus, by Lemma 4.2, if ε is small enough,
T (R(A1(M))) is complemented in R(L1(M)) and, in particular, Λ. This fol-
lows since if W ⊂ Y is complemented in X, then there exists a projection
S : X → W , (Im(S)) ∩ Y is complemented in Y and so W is complemented
in Y . The projection from Λ onto T (R(A1(M))) is denoted in the diagram
above by θ̂.

If ε < 1, then ||T − I|| < 1, and Lemma 4.2 gives that T is thus invertible
and an isomorphism. By a classical result due to Pelczynski [15], every infinite
dimensional complemented subspace of l1 is isomorphic to l1, and so A1(M)
is isomorphic to l1.

By taking the Banach duals of the Banach spaces in the statement of The-
orem 4.6, we immediately get the following results.

Corollary 4.7. If M is a hyperbolic Riemann surface of infinite analytic type,
then Q(M) is isomorphic to the sequence space l∞, and we will denote this
isomrphism by α∗M .

Corollary 4.8. If M and N are two hyperbolic Riemann surfaces of infinite
analytic type, then A1(M) and A1(N) are isomorphic, and Q(M) and Q(N)
are isomorphic.

4.4 Local bi-Lipschitz equivalence of Teichmüller spaces

We have the following situation,

λM : T (M) ↪→ Q(M), α∗M : Q(M)→ l∞

where the image of the Bers embedding λM is contained in Q(M). Since
λM is a locally bi-Lipschitz mapping, there exists a neighbourhood, XM , of
the identity class in T (M) such that λM |XM

is bi-Lipschitz. Since α∗M is an
isomorphism, XM is mapped onto a neighbourhood of the origin of l∞ by
α∗M ◦ λM . If

YM = (α∗M ◦ λM )(XM ),

then XM and YM are bi-Lipschitz equivalent.
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Lemma 4.9. If M and N are two hyperbolic Riemann surfaces with infinite
dimensional Bergman spaces, then a neighbourhood of the identity class in
T (M) is bi-Lipschitz equivalent to a neighbourhood of the identity class in
T (N).

Proof. Consider the neighbourhoods of the identity class in the respective
Teichmüller spaces given by XM and XN , and consider their images in l∞

under the respective maps α∗M ◦ λM and α∗N ◦ λN , given by YM and YN .

T (M) λM−−→ Q(M)
α∗M−−→ l∞

α∗N←−− Q(N) λN←−− T (N).

The sets YM and YN are both open neighbourhoods of the origin in l∞, and
so Y := YM ∩ YN is also an open neighbourhood of the origin. Since α∗M ◦ λM

is a bi-Lipschitz mapping of XM , it has an inverse on Y , and

((α∗M ◦ λM )−1)(Y ) ⊆ XM

is an open neighbourhood of the origin in T (M).
Thus (α∗N ◦λN )◦ (α∗M ◦λM )−1 is a bi-Lipschitz mapping from a neighbour-

hood of the identity class in T (M), namely ((α∗M ◦λM )−1)(Y ), to a neighbour-
hood of the identity class in T (N), namely (α∗N ◦ λN )(Y ).

Theorem 4.10. If M and N are two hyperbolic Riemann surfaces with in-
finite dimensional Bergman spaces, then their Teichmüller spaces are locally
bi-Lipschitz equivalent.

Proof. Let M ' D/G, and identify T (M) with T (G). Recall that a chart for
the neighbourhood of the identity class in T (fµ ◦G ◦ (fµ)−1) is a chart for the
neighbourhood of [µ] in T (M). Thus charts for any [µ] ∈ T (M) and [ν] ∈ T (N)
correspond to charts for the respective identity classes in T (fµ ◦ Γ ◦ (fµ)−1)
and T (fν ◦ Γ1 ◦ (fν)−1).

Lemma 4.9 gives a bi-Lipschitz mapping between neighbourhoods of these
two identity classes, and hence we have a bi-Lipschitz mapping between neigh-
bourhoods of [µ] ∈ T (M) and [ν] ∈ T (N).

5 Open problems

If X and Y are connected complex Banach manifolds, then the Kobayashi
metrics on the respective spaces are the largest metrics for which holomorphic
maps between X and Y are distance decreasing. Conversely, the smallest
metric under which holomorphic mappings are distance decreasing is called
the Carathéodory metric. The Carathéodory distance on a connected complex
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Banach manifold X is

C(x, y) = sup
f∈H(D,X)

{ρD(0, t) : f(0) = x, f(t) = y},

for x, y ∈ X and where ρD is the hyperbolic metric on D.

Problem 5.1. We can define the Carathéodory metric on Teichmüller space
just as we did for the Kobayashi metric. The problem is, is the Carathéodory
metric equal to the Teichmüller metric (or, equivalently, the Kobayashi metric)
on Teichmüller space? Results in this direction can be found in [10, 11], where
it is shown that the Carathéodory and Teichmüller metrics coincide on abelian
Teichmüller disks.

Problem 5.2. Markovic’s proof of Theorem 3.6 in the general case, see [14],
involves how A1(M) separates points. That is, we say A1(M) separates p, q ∈
M if there exists ϕ ∈ A1(M) such that ϕ(p) = 0 and ϕ(q) 6= 0. If M is of
non-exceptional type, Markovic proves that the set of points E of M which are
not separated by A1(M) is discrete, which is enough to prove Theorem3.6. The
problem is, can E be shown to be empty?

Problem 5.3. Let I : D → T (M) be an isometry. If I is holomorphic and
the dimension of T (M) is finite, then the image of I is a Teichmüller disk.
The problem is, do all isometries from D into T (M), which are not necessarily
holomorphic, have a Teichmüller disk as their image?

Problem 5.4. Theorem 4.6 shows that there exists a constant CM depending
on M such that

||αM (ϕ)||l1
CM

≤ ||ϕ||1 ≤ CM ||αM (ϕ)||l1 , (5.1)

for all ϕ ∈ A1(M). Is there a universal constant C such that (5.1) holds, with
C replacing CM , independently of M?
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