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Abstract

In this paper, we solve two problems dealing with the homogenization of

random media. We show that a random quasiconformal mapping is close to an

affine mapping, while a circle packing of a random Delauney triangulation is

close to a conformal map, confirming a conjecture of K. Stephenson. We also

show that on a Riemann surface equipped with a conformal metric, a random

Delauney triangulation is close to being circle packed.

1 Introduction

1.1 Random quasiconformal mappings

Our model of a random quasiconformal mapping depends on a probability

measure λ on the unit disk D = {z ∈ C : |z| < 1}. For each cell in a square

grid in the complex plane, randomly assign a complex number in the unit

disk according to the measure λ. In other words, the values of the cells are

independent and identically distributed (i.i.d.) random variables with

P(# ∈ E) = λ(E), E ⊂ D measurable.
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The collection of these numbers defines a Beltrami coefficient µ(z) on C which

is constant on the cells of the grid.

We write wµ for the unique injective solution of the Beltrami equation

∂w(z) = µ(z)∂w(z) which fixes 0, 1,∞. If λ is supported on a compact subset

of the unit disk, the existence of wµ is guaranteed by the measurable Riemann

mapping theorem and wµ : C → C is a homeomorphism. In general, wµ(z)

exists and is unique by virtue of Kµ = 1+|µ|
1−|µ| being locally bounded, but may

not be surjective. We refer to wµ as a random quasiconformal mapping even

though it may not be a genuine quasiconformal mapping.

Our first main theorem says that if the mesh size δ > 0 is small, then with

high probability, wµ is close to an affine transformation Aλ = wµλ determined

by the measure λ. (Since an affine map has constant dilatation, µλ is a constant

with absolute value less than 1.)

Theorem 1.1. Suppose λ is a probability measure on the unit disk. For each

cell of a square grid in the plane of mesh size δ, randomly assign a complex

number in the unit disk according to the measure λ. There exists an affine

transformation Aλ such that for any compact set K ⊂ C and ε > 0, when

δ ≤ δ0(K, ε) is sufficiently small, ‖wµ −Aλ‖C(K) < ε holds with probability at

least 1− ε.

We do not know how to explicitly determine the affine map Aλ for general

λ. However, if λ respects the 90◦ symmetry of the model, then Aλ is the

identity mapping:

Corollary 1.2. If dλ(z) = dλ(−z), then Aλ(z) = z is the identity map.

Proof. Observe that wµ(iz)/wµ(i) is the normalized quasiconformal mapping

with dilatation −µ(iz). Since the square grid is invariant under multipli-

cation by i, the random quasiconformal maps wµ(iz)/wµ(i) and wµ(z) are

equally likely. Therefore, the affine transformation Aλ(z) satisfies the relation

Aλ(iz)/Aλ(i) = Aλ(z) which forces Aλ(z) = z.

In an unpublished manuscript [2], K. Astala, S. Rohde, E. Saksman and

T. Tao gave a different proof of Theorem 1.1 for random quasiconformal map-

pings with uniformly bounded distortion. A recent blog post [12] by T. Tao

gives a brief summary and a discussion of the results. The method of [2] is
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based on the homogenization of iterated singular integrals. By contrast, our

proof is more elementary: it is based on the geometric definition of quasicon-

formal mappings.

We first show that with high probability, a random quasiconformal map is

roughly quasiconformal, that is, it stretches the moduli of all rectangles whose

sides have length ≥ ε by a bounded amount. This uses a simple lemma about

percolation on the square grid that we have learned from a paper of P. Mathieu

[8] on random walk in random environments.

We then show that there exists an extremal direction such that with pos-

itive probability, the random quasiconformal map stretches moduli of squares

in that direction by approximately the maximal amount. We promote positive

probability to high probability by subdividing a square that is stretched by ap-

proximately the maximal amount into a large number of small squares. On one

hand, the moduli of the images of the small squares are independent random

variables since they are disjoint, while one the other hand, the extremality of

the big square forces all small squares to be extremal.

The above argument shows that there is a sequence of good scales δk →
0, such that with high probability, the random quasiconformal mapping wµ

constructed using the square grid of mesh size δk is close to an affine mapping

on any fixed compact subset of the plane. To show that all sufficiently small

scales are good, we use the following principle: if an orientation-preserving

homeomorphism is conformal off a random set of small measure, then it is

close to a conformal map.

1.2 Random Delauney triangulations

A circle packing P = {Ci} is a collection of circles in the plane with disjoint

interiors. The tangency pattern of P is an embedded graph in the plane whose

vertices are centers of circles in P and edges are line segments which connect

centers of tangent circles. The Koebe-Andreev-Thurston Circle Packing The-

orem [7, 13] says that any finite triangulation T of a topological disk admits a

maximal circle packing P =
⋃
Ci ⊂ D whose boundary circles are horocycles.

Furthermore, this maximal packing is unique up to Möbius transformations.

For a discrete set of points V in the plane, the Voronoi tessellation is a
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decomposition of the complex plane C =
⋃
Fx where Fx consists of all points

z ∈ C for which miny∈V |y−z| = |x−z|. Each Fx is a polygon, although it could

be unbounded. If the points in V are in general position, that is, if no three

points lie on a line and no four points lie on a circle, then one can define the

Delauney triangulation as the dual graph to the Voronoi tessellation. Namely,

its vertex set is V , and there is an edge between x and y if the intersection

Fx ∩ Fy is a line segment. Since the union of all triangles in a Delauney

triangulation is the convex hull of V , it is a topological disk.

Figure 1: A random Delauney triangulation and its circle packing.

Let Ω ⊂ C be a simply-connected domain bounded by C1 curve. Randomly

choose N ≥ 1 points in Ω with respect to Lebesgue measure. Due to technical

reasons, we also need to throw in �
√
N equally-spaced points on ∂Ω. The

random Delauney triangulation is defined as the union of the Delauney trian-

gles contained in Ω. Based on numerical experiments, Kenneth Stephenson

suggested that when N ≥ 1 is large, then with high probability, the maximal

circle packing of a random Delauney triangulation approximates a conformal

map ϕ : Ω→ D. In this paper, we prove this conjecture.

To be precise, fix two points z1, z2 ∈ Ω. For each i = 1, 2, let vi ∈ T be the

closest point to zi (in case of a tie, choose vi arbitrarily). Let P be the maximal

circle packing of T normalized so that Cv1 is centered at the origin while the

center of Cv2 lies on (0, 1). The circle packing map ϕP : carr T → carrP is the

piecewise linear map that takes points of T to centers of circles and is linear
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on triangles. Here, the carrier of a triangulation is simply the union of all the

triangles in the triangulation.

Theorem 1.3. Let Ω be a bounded simply-connected domain in the plane

with C1 boundary and ϕ : Ω → D be the conformal map with ϕ(z1) = 0 and

0 < ϕ(z2) < 1. Consider the random Delauney triangulation with N points.

For any compact set K ⊂ Ω and ε > 0, when N ≥ N0(K, ε) is sufficiently

large, ‖ϕP − ϕ‖C(K) < ε holds with probability at least 1− ε.

The above theorem remains true if the random set of points is generated

using a Poisson point process of high intensity.

The proof of Theorem 1.3 is similar to that of Theorem 1.1 in that most

of the work goes into showing that with high probability, the circle packing

map ϕP is roughly quasiconformal. One first shows that with high probability,

the discrete modulus of every rectangle R ⊂ Ω whose sides have length ≥ ε

is bounded from above and below. The discrete modulus is simple to analyze

since it only depends on the combinatorics of the Delauney triangulation in

R. In general, the discrete and continuous moduli of ϕP(R) are unrelated,

however, if the triangulation in question has bounded valence, the two notions

of modulus agree up to a multiplicative constant. While a random Delauney

triangulation may have vertices of arbitrarily large valence, they are quite rare

and can be “avoided” using a percolation argument.

At this point, we are presented with a second difficulty. In the setting of

random quasiconformal mappings, the modulus of wµ(R) only depends on the

Beltrami coefficient on R, however, in a circle packing, the modulus of ϕP(R)

also depends on the behaviour of the triangulation outside of R. However,

if all circles in the packing have small radii, then by a fundamental result of

He and Schramm [5], ModϕP(R) is determined by the combinatorics of the

triangulation in R up to small error which tends to 0 as the radii of the circles

in the packing shrink.

Remark. Let Σ be a compact Riemann surface of genus g ≥ 2. Consider the

random Delauney triangulation on Σ with respect to the hyperbolic metric.

According to [11, Proposition 9.1], the maximal circle packing will live on a

Riemann surface ΣP homeomorphic to Σ, however, the complex structure may

be different. Using the methods of this paper, one can show that when the

5



number of points N is large, then with high probability, the Riemann surface

ΣP is close to Σ in the Teichmüller space Tg of Riemann surfaces of genus g,

and furthermore, the mapping ϕP is uniformly close to the Teichmüller map

from Σ→ ΣP .

Remark. One may alternatively uniformize a random Delauney triangulation

T by thinking of each triangle in T as an equilateral one. More precisely,

one builds a Riemann surface S out of equilateral triangles which has the

same adjacency relations as T . Our arguments show that when the number of

Delauney points is large, the piecewise conformal map from S to T is close to

a conformal map. We leave the details to the interested reader.

1.3 Random walk in random environments

For comparison, we mention some results about random walk in random en-

vironments. Let λ be a probability measure on (0,∞). For each edge in the

square grid Z2, randomly choose its conductance according to λ. Let Sn be

the random walk in Z2 which starts at the origin, and at each step, the walker

moves from a vertex x to an adjacent vertex y ∼ x with probability

c(x, y)∑
z∼x c(x, z)

.

In 2004, Sidoravicius and Sznitman [10] showed that if the conductances are

uniformly bounded away from zero and infinity, then Sn/
√
n converges to

Brownian motion, as in the unweighted case. Several years later, P. Mathieu

[8] and M. Biskup and T. Prescott [4] independently showed the convergence of

simple random walk to Brownian motion when the conductances are allowed to

get arbitrarily close to zero. For a survey on the random conductance model,

see [3].

The model of random quasiconformal maps can be interpreted as a contin-

uous analogue of simple random walk in random media where one simulates

Brownian motion in a random environment: in each cell of the square grid,

Brownian motion is to be stretched in some direction depending on the dilata-

tion. Essentially, this process simulates the image of Brownian motion under

the quasiconformal map. This has been studied by Osada [9] under the name
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of homogenization of diffusing processes, although he only discussed the case

of bounded distortion.

2 Moduli of curve families

By a conformal rectangle R, we mean a Jordan domain in the plane with

four marked boundary points. In this paper, all conformal rectangles will be

marked , i.e. equipped with a distinguished pair of opposite sides. The Schwarz-

Cristoffel formula provides a conformal map from R onto a geometric rectangle

[0,m] × [0, 1]. If one insists that the marked sides of R are mapped onto the

vertical sides of [0,m] × [0, 1], then the number m ∈ (0,∞) is determined

uniquely. The number m := ModR is known as the modulus of R.

Given a geometric rectangle R, we denote the length of its marked sides

by `1(R) and the length of the unmarked sides by `2(R). Then, ModR =

`2(R)/`1(R). We denote the side length of a square S by `(S). Any square

has modulus 1.

Similarly, any doubly-connected domain A ⊂ C can be mapped onto a

round annulus {z : r < |z| < R}. The modulus of the doubly-connected

domain A is defined as ModA := 1
2π log R

r . It is well known that two doubly-

connected domains are conformally equivalent if and only if their moduli co-

incide.

To estimate moduli of conformal rectangles and doubly-connected domains,

one uses moduli of curve families. We will work with two notions of moduli of

curves: a discrete one and a continuous one.

In the continuous setting, a metric ρ(z) is a non-negative measurable func-

tion defined on a domain Ω ⊂ C. One can use ρ(z) to measure lengths of

rectifiable curves:

`ρ(γ) =

∫
γ
ρ(z)|dz|.

The total area of ρ is defined as

A(ρ) =

∫
Ω
ρ(z)2|dz|2.

As usual, |dz| denotes 1-dimensional Lebesgue measure while |dz|2 denotes

2-dimensional Lebesgue measure.
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A metric is said to be admissible for a family of rectifiable curves Γ con-

tained in Ω if the length of every curve γ ∈ Γ is at least 1. The modulus of the

curve family Γ is defined as

Mod Γ := inf
ρ
A(ρ),

where the infimum is taken over all admissible metrics ρ. If one finds a con-

formal metric ρ such that `ρ(γ) ≥ L for any γ ∈ Γ, then Mod Γ ≤ A(ρ)/L2.

The notions of modulus of a conformal rectangle and the modulus of a

doubly-connected domain are special cases of the above construction: for a

conformal rectangle R, let Γ↔ be the family of curves connecting the distin-

guished pair of opposite sides of R and Γl denote the conjugate family which

connects the other pair of opposite sides. Then, ModR = Mod Γl and

Mod Γ↔ ·Mod Γl = 1. (2.1)

The modulus of a doubly-connected domain A is equal to the modulus of the

family of curves that separate the two boundary components.

For compact sets E,F ⊂ C, the Hausdorff distance d(E,F ) is defined as

the minimal number t ≥ 0 such that any point of E is within t of some point

of F and vice versa. To define the Hausdorff distance between two conformal

rectangles, one also needs to make sure that the marked sides line up.

It is easy to see that modulus of a conformal rectangle varies continuously

in the Hausdorff topology. The following lemma says that the modulus of the

image of a conformal rectangle under a quasiconformal map does not change

much under small perturbations:

Lemma 2.1. Suppose f : C → C is a K-quasiconformal mapping and S,S′

are two squares in the plane. For any ε > 0, there exists a δ = δ(ε,K) > 0,

so that if the relative Hausdorff distance d(S,S′)/`(S) < δ, then |Mod f(S′)−
Mod f(S)| < ε.

In the discrete setting, a metric ρ(v) is a function on the vertices of a planar

graph G. The area of ρ is defined as

A(ρ) =
∑
v∈G

ρ(v)2.
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A path γ = 〈x0, x1, x2, . . . , xn〉 is a collection of vertices such that xi ∼ xi+1

are connected by an edge. One can use ρ to measure lengths of paths:

`ρ(γ) =
∑
v∈γ

ρ(v).

The notions of admissibility and discrete modulus are defined as in the con-

tinuous case. By a combinatorial rectangle R, we mean a topological rectangle

enclosed by a finite collection of edges of G, and four vertices of G have been

marked on ∂R.

3 Roughly quasiconformal maps

According to the geometric definition of quasiconformality, an orientation-

preserving homeomorphism f : U → C is quasiconformal if it distorts moduli

of rectangles in U by a bounded amount. It is well known that one can test

quasiconformality by looking at round annuli of modulus 1
2π log 2 or at rectan-

gles of modulus 10. For convenience of the reader, we recall the proofs.

Lemma 3.1. Suppose an orientation-preserving homeomorphism f : U → C
distorts moduli of all annuli A = A(z, r, 2r) ⊂ U by a bounded amount:

(1/K) ·ModA ≤ Mod f(A) ≤ K ·ModA . (3.1)

Then, f is K ′ quasiconformal, where K ′ depends on K.

In the proof below, we will use the following standard estimate: suppose F

is a compact connected set (e.g. an interval) contained in a simply-connected

domain Ω. If Mod(Ω \ F ) ≥ m is bounded from below, then

dist(∂Ω, F ) ≥ c diamF,

for some c > 0 which depends only on m > 0.

Proof. We will show that f satisfies the following quasisymmetry condition:

there exists a constant C = C(K) > 0 such that

sup|z−x|=2r |f(z)− f(x)|
inf |z−x|=2r |f(z)− f(x)|

≤ C, whenever B(x, 4r) ⊂ U. (3.2)
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Once we show (3.2), the lemma follows from the equivalence of quasiconfor-

mality and quasisymmetry, e.g. see [1, Theorerm 3.4.1].

Suppose |y−x| = r and |z−x| = 2r. Consider the annulus A = A(x, r, 2r).

Since f(A) separates f(x), f(y) from f(z) and Mod f(A) is bounded from

below, we have

|f(z)− f(y)| ≥ c |f(y)− f(x)|,

|f(z)− f(x)| ≥ c |f(y)− f(x)|,

for some constant c > 0 which depends only on K. It follows that

inf
|z−x|=2r

|f(z)− f(x)| ≥ c sup
|y−x|=r

|f(y)− f(x)|. (3.3)

For the reverse inequality, note that if y is the midpoint of x and z then we

also have

|f(x)− f(y)| ≥ c |f(y)− f(z)|,

in which case,

sup
|z−x|=2r

|f(z)− f(x)| ≤ sup
|z−x|=2r

{
|f(z)− f(y)|+ |f(y)− f(x)|

}
(3.4)

≤ (1 + c−1) sup
|y−x|=r

|f(y)− f(x)|. (3.5)

Putting (3.3) and (3.5) together completes the proof.

Corollary 3.2. Under the assumptions of Lemma 3.1, there exist constants

C1, C2 > 0 and 0 < α < β, depending only on K, such that

C1

∣∣∣∣z − xy − x

∣∣∣∣α ≤ ∣∣∣∣f(z)− f(x)

f(y)− f(x)

∣∣∣∣ ≤ C2

∣∣∣∣z − xy − x

∣∣∣∣β, (3.6)

whenever |y − x| < |z − x| and B(x, 2|z − x|) ⊂ U .

Sketch of proof. Let r = |y − x|, R = |z − x| and m = blog(R/r)c. The upper

bound in (3.6) follows after applying (3.5) m+ 1 times, while the lower bound

follows from

Mod f
(
A(x, r,R)

)
≥

m−1∑
j=0

Mod f
(
A(x, 2jr, 2j+1r)

)
≥ m

K
· 1

2π
log 2

and the fact that f
(
B(x, 2r)

)
is essentially round, cf. (3.2).
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Lemma 3.3. Suppose an orientation-preserving homeomorphism f : U →
C distorts moduli of all rectangles with aspect ratio 10 contained in U by a

bounded amount:

(1/K) ·ModR ≤ Mod f(R) ≤ K ·ModR . (3.7)

Then, f is K ′ quasiconformal, where K ′ depends on K.

Proof. We follow the argument from Hinkkanen’s paper [6]. Let A denote the

standard annulus {z : 1 < |z| < 2} of modulus 1
2π log 2. Consider the following

collection of 8 rectangles of modulus 10:

P0 = e2πi/8
(
[1, 1.3]× [−1.5, 1, 5]

)
, Pj = e2πi(j/4) ·P0,

Q0 = [0.5, 2.5]× [−0.1, 0.1], Qj = e2πi(j/4) ·Q0,

with j = 0, 1, 2, 3. A brief inspection of Figure 9.4 shows that if γ is a curve

that connects the boundary components of A, then γ contains a crossing which

joins a pair of opposite sides of some Pj or Qj .

Figure 2: The rectangles Pj and Qj.

An arbitrary round annulus of modulus 1
2π log 2 in U can be expressed as

the image of A under a complex-linear map L(z) = az+b. By assumption, for

each j = 0, 1, 2, 3, we can find a metric ρ∗L(Pj)
of area≤ 10K which is admissible
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for f
(
Γl(L(Pj))

)
and a metric ρ∗L(Qj)

of area ≤ 10K which is admissible for

f
(
Γl(L(Qj))

)
. Since the metric

ρ∗L(A) =
3∑
j=0

ρ∗L(Pj)
+

3∑
j=0

ρ∗L(Qj)

has area at most 82 · 10K = 640K and is admissible for the family of curves

that connect the boundary components of f(L(A)), Mod f(L(A)) ≥ 1
640K is

bounded from below by a definite constant (depending on K).

Finding an upper bound for Mod f(L(A)) amounts to constructing a met-

ric which is admissible for the family of curves which separate the boundary

components of f(L(A)). Since this only requires one rectangle, e.g. L(Q0),

Mod f(L(A)) ≤ 10K.

Remark. Strangely enough, it is not known whether an orientation-preserving

homeomorphism f : U → V which distorts moduli of squares by a bounded

amount must be quasiconformal. However, if f is known to be differentiable

almost everywhere, then by examining the behaviour of f near points of differ-

entiability, it is easy to see that f is K quasiconformal if and only if it distorts

moduli of squares in U by at most K.

Let R(ε) denote the set of rectangles in the plane whose sides have length

at least ε. For a bounded domain U ⊂ C, let RU (ε) denote the collection

of rectangles in R(ε) that are compactly contained in U . We say that an

orientation-preserving homeomorphism f : U → V is (K, ε) roughly quasicon-

formal if

(1/K) ·ModR ≤ Mod f(R) ≤ K ·ModR, R ∈ RU (ε),

for some K ≥ 1. We have the following compactness criterion for families of

roughly quasiconformal maps:

Lemma 3.4. Let U ⊂ C be a domain in the complex plane containing 0, 1.

Suppose fn : U → C is a sequence of (K, εn) roughly quasiconformal maps with

εn → 0 as n → ∞. Assume that fn(0) = 0, fn(1) = 1 for each n. Then the

sequence {fn} is uniformly equicontinuous on compact subsets of U and any

subsequential limit is an L(K) quasiconformal homeomorphism.
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Proof. The proof of Lemma 3.3 shows that fn distorts the moduli of annuli

A(z, r, 2r) ⊂ U by a bounded amount, provided that r ≥ 5εn and B(z, 4r) ⊂ U .

The proof of Corollary 3.2 shows that fn satisfies (3.6) whenever

5εn ≤ |y − x| ≤ |z − x| ≤
dist(x, ∂U)

2
.

In view of the normalization fn(0) = 0, fn(1) = 1, we see that if two points

x, y ∈ U are close to each other, then their images under fn are close to each

other, and conversely, if two points are far apart, their images under fn re-

main far apart. In other words, any subsequential limit f is a homeomorphism.

Since Mod fn
(
A(z, r, 2r)

)
→ Mod f

(
A(z, r, 2r)

)
, f distorts the moduli of an-

nuli A(z, r, 2r) ⊂ U by a bounded amount, and is therefore quasiconformal by

Lemma 3.1.

For future reference, we define the following collections of squares:

• Let S(ε) denote the set of squares in the plane with side length between

ε and 1. For a bounded domain U ⊂ C, let SU (ε) denote the collection

of squares in S(ε) that are compactly contained in U .

• For 0 < ε ≤ 1, let S ′(ε) denote the set of squares in the plane that belong

to one of the grids e2πi(k/n) ·jεZ2, 1 ≤ j, k ≤ n where n = d1/εe. If U is a

bounded domain, the collection S ′U (ε) of squares compactly contained in

U is finite. By construction,
⋃
ε>0 S ′U (ε) is dense in the set of all squares

contained in U of diameter at most 1.

4 A lemma on percolation

In this section, we present a lemma on percolation which will allow us to

control the moduli of images of rectangles under an orientation-preserving

homeomorphism that is quasiconformal off a random set of small measure.

Consider the infinite square grid Z2. Fix the percolation parameter 0 <

r < 1. In the discrete setting, we colour vertices of Z2 in two colours: we

colour a vertex yellow with probability r and blue with probability 1− r. For

two points x, y ∈ Z2, we define their combinatorial distance dZ2(x, y) as the
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minimal length of a path

x0, x1, x2, . . . , xn, x0 = x, xn = y,

where xi ∼ xi+1 are adjacent vertices. By the Pythagorean theorem, the

combinatorial distance is within a factor of
√

2 of the Euclidean distance. We

are more interested in the chemical distance dchem(x, y) which minimizes the

number of blue vertices along paths that connect x to y. The following lemma

says that if the points x, y are at macroscopic distance from one another, then

the chemical distance is also equivalent to the Euclidean distance:

Lemma 4.1. There exists a universal constant 0 < r0 < 1/2 so that if the

percolation parameter 0 < r < r0, then with probability ≥ 1 − 1/N2, for two

points x, y ∈ [−N,N ]× [−N,N ] with |x− y| ≥ logN ,

9

10
· dZ2(x, y) ≤ dchem(x, y) ≤ dZ2(x, y).

Proof. The number of non-self intersecting paths in [−N,N ] × [−N,N ] of

length L is bounded above by (2N + 1)2 · 4L since there are (2N + 1)2 choices

for the initial vertex and at most four choices for each following vertex. Since

the probability that a fixed path of length L contains at least L/10 yellow

vertices is at most

L∑
j=dL/10e

(
L

j

)
rj(1− r)L−j ≤ 2L

L∑
j=dL/10e

rj ≤ 2L+1 · rL/10,

the probability that some path of length L ≥ logN contains at least L/10

yellow vertices is bounded above by∑
L≥logN

(2N + 1)24L · 2L+1rL/10 ≤ 2(2N + 1)2
∑

L≥logN

(8r1/10)L.

A simple computation shows that the last quantity is at most 1/N2 provided

r is small enough: if α := 8r1/10 < 1/2, then∑
L≥logN

(8r1/10)L =
∑

L≥logN

αL ≤ 2αlogN = 2N logα,

so the lemma holds if α < e−4.
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In the continuous setting, one independently colours each cell of Z2 either

blue or yellow: yellow with probability r and blue with probability 1− r. The

Euclidean distance minimizes the length of a rectifiable curve that connects two

given points in the plane. The continuous analogue of the chemical distance is

defined by instead minimizing the part of the length that is contained in the

blue squares.

Lemma 4.2. There exists a universal constant 0 < r0 < 1/2 so that if the

percolation parameter 0 < r < r0 is sufficiently small, then with probability

≥ 1− 1/N2, for two points x, y ∈ [−N,N ]× [−N,N ] with |x− y| ≥
√

2 logN ,

their continuous chemical distance is comparable to the Euclidean distance:

1

2
· |x− y| ≤ |x− y|chem ≤ |x− y|.

Proof. When computing the continuous chemical distance, it suffices to take

the infimum over paths which enter yellow squares at most once and the path

within any yellow square is a line segment. We deduce the continuous case

from the discrete case. If a continuous path γ has length L ≥
√

2 logN , then

the length of its discrete itinerary (with loops removed) is at least logN . With

high probability, at most L/10 of these squares will be yellow, and therefore,

the total length of γ in the yellow squares is at most (L/10)
√

2 < L/2. In this

case, the total length of γ in the blue squares is at least L/2.

Modifications. (i) By making r0 > 0 sufficiently small, one can replace 9/10

and 1/2 in the lemmas above with arbitrary constants less than 1, while the

factor
√

2 in
√

2 logN can be removed.

(ii) The proof of Lemma 4.1 applies to any graph with . N2 vertices of

bounded valence.

(iii) Fix an odd integer m ≥ 1. As before, colour a cell yellow with prob-

ability r and blue with probability 1 − r. We call a cell � deep blue if every

cell �̂ ⊂ m� is blue, where m� denotes the square with the same center as

� and side length m · `(�). We claim that there exists a universal constant

r0(m) such that if the percolation parameter r < r0(m), then the total length

that a continuous path spends in the deep blue squares is at least |x − y|/2,

provided that the distance between the endpoints |x− y| ≥
√

2 logN .
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To prove the discrete version of the claim, note that if there is a path x =

x0, x1, x2, . . . , xn = y which contains more than L/10 vertices that are not deep

blue, then there exists a chain x = x′0, x
′
1, x
′
2, . . . , x

′
n = y with dZ2(x′j , x

′
j+1) =

O(m), 0 ≤ j ≤ n − 1 which contains more than L/10 yellow vertices. More

precisely, the chain x′0, x
′
1, x
′
2, . . . , x

′
n is formed by replacing each non-deep blue

vertex xj by a yellow vertex x′j with dZ2(xj , x
′
j) = O(m). The discrete case

now follows from modification (ii). As before, the continuous case may be

obtained from the discrete case.

(iv) We can slightly weaken the independence assumption when deciding

to colour a cell blue or yellow: it is enough to require that the colours of any

finite collection of cells �1,�2, . . . ,�n with dZ2(�i,�j) ≥ m, i 6= j are chosen

independently. To see the discrete version of the statement, observe that if a

path of length L contains & L yellow vertices, then it contains an m-separated

set of & L/m2 yellow vertices. Again, the continuous case follows from the

discrete case.

5 Approximate conformality

In this section, we run percolation with parameter r on S1 = [−1, 1]× [−1, 1]

with mesh size δ = 1/N . The following lemma says that if an orientation-

preserving homeomorphism is conformal outside a random set of small mea-

sure, then it is close to a conformal map:

Lemma 5.1. For any ε > 0, there exist r0, N0 so that if r < r0 and N > N0,

then with probability at least 1−ε, any orientation-preserving homeomorphism

f : S1 → C that is conformal on the blue squares satisfies

1− ε < Mod f(S) < 1 + ε, ∀S ∈ SS1(ε).

Proof. Recall that SS1(ε) denotes the collection of squares compactly con-

tained in S1 with `(S) ≥ ε. To a square S ∈ SS1(ε), we associate the metric

ρS = χB∩S where B is the union of the blue squares. To estimate Mod f(S),

we use the conformal metric

ρ∗S(w) =
1

|(f−1)′(w)|
· χf(B∩S)(w), w ∈ f(S).
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By construction, A(ρ∗S) = A(ρS) ≤ `(S)2. By modification (i) of Lemma 4.2,

for any η > 0, with probability at least 1 − ε, the inequality `ρ∗S(f(γ)) =

`ρS(γ) ≥ (1−η)`(S) holds for any curve γ ∈ Γl(S) and any square S ∈ SS1(ε),

as long as N > N0 is sufficiently large and r < r0 is sufficiently small. Since

the metric 1
(1−η)`(S) · ρ

∗
S is admissible for Γl(f(S)),

Mod f(S) ≤ 1

(1− η)2
, ∀S ∈ SS1(ε).

By working with the horizontal path family Γ↔(S), we get the complementary

estimate

Mod f(S) ≥ (1− η)2, ∀S ∈ SS1(ε).

It remains to choose η = ε/3.

We say that an orientation-preserving homeomorphism f : S1 → C is ε-

close to linear on � if

‖f − L�‖C(3�) ≤ ε · a�`(�) (5.1)

for some complex-linear map L�(z) = a�z + b�.

In practice, f will be close to conformal on η−1�, where η > 0 is small,

from which the condition (5.1) follows from Koebe’s distortion theorem.

Lemma 5.2. For any ε > 0, there exist r0, N0 so that if r < r0 and N > N0,

then with probability at least 1−ε, any orientation-preserving homeomorphism

f : S1 → C that is ε-close to linear on the blue squares satisfies

1− ε < Mod f(S) < 1 + ε, ∀S ∈ SS1(ε).

Proof. Let B denote the union of the blue cells. By assumption, f takes a

blue cell � approximately to �∗ := a� ·�+ b� :

(1− 2ε)�∗ ⊂ f(�) ⊂ (1 + 2ε)�∗.

Given a square S ∈ SS1(ε), define ρS = χB∩S and

ρ∗S = χf(S)

∑
�⊂B

ρ∗� = χf(S)

∑
�⊂B

1

a�
· χ(1+4ε)�∗ .
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By design, ρS is a metric on S while ρ∗S is a metric on f(S). Since the set

where different (1 + 4ε)�∗ overlap has area O(ε) and only four (1 + 4ε)�∗ can

overlap at a time,

A(ρ∗S) ≤ 1 + C1ε, (5.2)

where C1 is a universal constant.

By modification (i) of Lemma 4.2, when N > N0 is large and r < r0 is

small, with probability ≥ 1− ε,

`ρS(γ) ≥ (1− ε)`(S), γ ∈ Γl(S).

We claim that

`ρ∗S(f(γ)) ≥ (1− ε)`(S), γ ∈ Γl(S). (5.3)

We can straighten a curve γ : [a, b] → S with respect to the grid δZ2 by

replacing each connected component of γ ∩� with a line segment. In general,

the straightened curve γ may be composed of infinitely many segments. To

prove the claim, it suffices to show that

`ρ∗S(f(γ)) ≥ `ρS(γ). (5.4)

Examine a connected component γj of γ∩�. Since the ρ∗� length of f(γj) is at

least 1/a� times the distance between the endpoints, `ρ∗�(f(γj)) ≥ `ρ�(γj) −
2ε `(�). This is close to what we want, however, the errors 2ε `(�) can accu-

mulate.

We now slightly modify the definition of γ to resolve this issue. Given a

cell � ⊂ δZ2, consider the set

Θ(�) :=
{
t ∈ [a, b] : f(γ(t)) ∈ (1 + 4ε)�∗

}
.

For a connected component [t1, t2] ⊂ Θ(�), record the first entry and last exit

times τ1, τ2 of f(γ(t)) in f(�). We refer to γ([τ1, τ2]) as an excursion of γ in �.

Each excursion can slightly protrude outside of � and there could be several

excursions through a single cell.

Let γ be the curve obtained from γ by straightening all the excursions

(in order of parametrization). With the updated definition, γ is composed of

finitely many segments and (5.4) holds since the defect 2ε `(�) is covered by

`ρ∗�

(
f(γ([t1, τ1]))

)
+ `ρ∗�

(
f(γ([τ2, t2]))

)
.
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The estimates (5.2) and (5.3) show that Mod f(S) ≤ 1+Cε where C > 0 is

a universal constant. Working with the horizontal path family Γ↔(S) in place

of Γl(S) gives the lower bound.

6 Homogenization of quasiconformal maps

In this section, we prove a variant of Theorem 1.1 where the dilatation is

randomized on a bounded open set Ω ⊂ C.

Theorem 6.1. Let Ω ⊂ B(0, R) be a bounded open set in the plane whose

boundary has zero measure. Consider the square grid in the plane of mesh size

δ > 0. For each square of side length δ compactly contained in Ω, select µ

according to the measure λ. Outside of the δ-approximation of Ω, set µ = µ0,

where µ0 is a fixed Beltrami coefficient on the plane with ‖µ0‖∞ < 1. For any

ε > 0,

P
[

sup
z∈B(0,R)

∣∣∣wµ(z)− wµλ·χΩδ
+µ0·χC\Ωδ (z)

∣∣∣ < ε

]
→ 1, as δ → 0,

where µλ is a constant that depends only on λ.

6.1 Rough quasiconformality

By the results of Section 4, random quasiconformal mappings are roughly

quasiconformal:

Lemma 6.2. For any ε > 0, when the mesh size δ < δ0(ε) is sufficiently

small, the probability that wµ is (K, ε) roughly quasiconformal on B(0, 2R) is

at least 1− ε.

Proof. Choose 0 < k1 < 1 so that

‖µ0‖∞ ≤ k1, λ
(
{z : k1 < |z| < 1}

)
< r0,

where r0 is the constant from Lemma 4.2. Colour a cell � in δZ2 blue if

|µ(�)| ≤ k1 and yellow otherwise. Let B denote the union of the blue squares.

We will show the lemma holds with K = 4K1 where K1 = 1+k1
1−k1

.
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Recall that RB(0,2R)(ε) denotes the collection of rectangles compactly con-

tained in B(0, 2R) whose sides have length at least ε. To a rectangle R ∈
RB(0,2R)(ε), associate the metric ρR = χB∩R.

Claim. When the mesh size δ < δ0(ε) is sufficiently small, the inequality

`ρR(γ) ≥ `1(R)/2 (6.1)

holds with probability at least 1−ε, for any curve γ ∈ Γl(R) and any rectangle

R ∈ RB(0,2R)(ε).

Proof. Let x and y be the endpoints of the curve γ. Since x and y lie on

opposite horizontal sides of R, |x− y| ≥ `1(R).

Since the ρR-length of a curve measures the amount of time it spends in

the blue squares, `ρR(γ) ≥ |x − y|chem. According to Lemma 4.2, we have

(1/2) · |x− y| ≤ |x− y|chem. Putting these estimates together gives

1

2
· `1(R) ≤ 1

2
· |x− y| ≤ |x− y|chem ≤ `ρR(γ),

which proves the claim.

We now finish the proof of Lemma 6.2. To estimate Modwµ(R), we define

the metric ρ∗R on wµ(R) by setting

ρ∗R(w) =
[
Jac(wµ)−1(w)

]1/2 · χwµ(B∩R)(w), w ∈ wµ(R).

By construction, A(ρ∗R) = A(ρR) ≤ `1(R)`2(R).

Since the restriction of wµ is K1 quasiconformal on each blue square,

`ρ∗R(wµ(γ)) ≥ (1/
√
K1) · `ρR(γ), γ ∈ Γl(R).

Combining this with (6.1), we get

`ρ∗R(wµ(γ)) ≥ `1(R)/(2
√
K1), γ ∈ Γl(R).

Since the metric 2
√
K1

`1(R) · ρ
∗
R is admissible for Γl(w

µ(R)),

Modwµ(R) ≤ 4K1

`1(R)2
· `1(R)`2(R) = 4K1 ModR .

The proof is complete.
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6.2 Searching for the optimal direction

We say that two squares S1,S2 have the same orientation if S2 = aS1 +b,

where a > 0 and b ∈ C. To motivate our proof of Theorem 6.1, note that a

complex-linear mapping of the plane preserves moduli of rectangles, while a

real-linear mapping A that is not complex-linear has an extremal direction:

the modulus of any geometric rectangle oriented in this direction is stretched

by K(A), while the modulus of any other rectangle is stretched by a strictly

smaller amount. More generally, a quasiconformal mapping ϕ has constant di-

latation µϕ = µA on Ω if and only if ϕ stretches moduli of rectangles pointing

in the A direction by K(A). In order to show that a random quasiconfor-

mal mapping behaves like A on Ω, we need a mechanism for identifying this

direction.

For a square S ⊂ Ω, look at the probability that Modwµ(S) > K and

take lim sup as δ → 0. Let K∗(S) be the infimum of K > 0 for which this

lim sup is 0. Thus K∗(S) measures the maximal effective distortion of S.

Maximizing K∗(S) over all squares S ⊂ Ω, we obtain the constant K∗ which

measures the maximal effective distortion of the model. As the product of the

moduli of the “horizontal” and “vertical” families of a conformal rectangle is

1, K∗ ≥ 1. Since with high probability, a random quasiconformal mapping is

roughly quasiconformal, K∗ is finite.

Lemma 6.3. (i) K∗(S) depends only on the orientation of S and not its side

length or location within Ω, or on the domain Ω ⊂ C.

(ii) For a square S, let Sθ denotes the square obtained by rotating S by eiθ

around its center. Let S be a square for which all Sθ, θ ∈ [0, 2π] are in Ω. The

function θ → K∗(Sθ) is continuous.

(iii) There exists θ∗ ∈ [0, 2π] such that for any ε > 0, there exists a constant

c(ε) > 0 and a sequence of scales δε,j → 0 for which

Pδε,j
(
Modwµ(Sθ∗) > K∗ − ε

)
> c(ε). (6.2)

Proof. If S,S′ ⊂ Ω are two squares with the same orientation, then the dis-

tribution of the random variable Modwµδ (S) is essentially the same as that of

Modwµδ′(S
′) with δ′ = δ · `(S′)/`(S), i.e.

∆(t) = P
(
Modwµδ (S) < t

)
− P

(
Modwµδ′(S

′) < t
)
,
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tends weakly to 0 as δ → 0. The reason that ∆(t) could be non-zero comes from

the slight discrepancy of how the δ and δ′ grids intersect S and S′, however,

by rough quasiconformality and Lemma 2.1, this discrepancy is essentially

negligible if the grids are very fine. This proves (i). The same circle of ideas

also show (ii) and (iii).

Let Aλ be the real-linear transformation with dilatation K∗ which stretches

all squares pointing in the Sθ∗ direction by K∗ and fixes the points 0, 1. We

denote the dilatation of Aλ by µλ. Our goal is to show that wµ is close to the

normalized quasiconformal map Φ with dilatation µλ on Ω and µ0 on C \ Ω

in C
(
B(0, R)

)
. Alternatively, we may show that f := A−1

λ ◦ w
µ is close to

A−1
λ ◦ Φ. We do this in a series of incremental improvements.

6.3 Existence of a good sequence of scales

We first promote positive probability to high probability in (6.2):

Lemma 6.4. There is a sequence of good scales δj → 0 such that

Pδj
(
Modwµ(Sθ∗) > K∗ − 1/j

)
> 1− 1/j. (6.3)

The proof rests on the following lemma:

Lemma 6.5. Suppose S is a square in the plane and ϕ : S → C is a K

quasiconformal map. For an integer n ≥ 1, divide S = S1 ∪ S2 ∪ · · · ∪ Sn2

into n2 squares of equal size. If Modϕ(Si) ≤ K0 for at least c · n2 of these

squares, then Modϕ(S) ≤ K1 for some constant K0 < K1 < K which depends

on K,K0, c but not on n.

Proof. Let x, y denote the coordinates pointing in the horizontal and vertical

directions of S respectively. Since any path in Γl(S) travels ≥ `(S) vertically,

the metric

ρ∗(w) =
1

`(S)
·
∣∣∣∣∂ϕ∂y (ϕ−1(w))

∣∣∣∣−1

, w ∈ ϕ(S),

is admissible for Γl(ϕ(S)). Since∣∣∣∣∂ϕ∂y
∣∣∣∣2 ≥ (1/K) · Jacϕ =⇒

∣∣∣∣∂ϕ∂y ◦ ϕ−1

∣∣∣∣−2

≤ K · Jacϕ−1, (6.4)
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Modϕ(S) ≤ A(ρ∗) ≤ K and equality holds if and only if ϕ is the extremal

stretch by K in the horizontal direction.

A compactness argument shows that if Modϕ(Si) ≤ K0, then (6.4) has a

definite defect on Si, i.e. A(ρ∗ · χϕ(Si)) ≤
(1−ε)K
n2 . If Modϕ(Si) ≤ K0 for a

definite proportion of the small squares Si, then A(ρ∗) is bounded away from

K. The proof is complete.

Proof of Lemma 6.4. If the lemma were false, there would exist constants

K0 < K∗ and c0 > 0 such that

Pδ
(
Modwµ(Sθ∗) < K0

)
≥ c0, for any δ > 0 sufficiently small. (6.5)

Assuming this, we will construct a sequence of quasiconformal maps ϕk with

the following properties:

(i) ϕk is (K, 1/k) roughly quasiconformal on B(0, 2R) where K is from

Lemma 6.2.

(ii) Modϕk(σ) ≤ K∗ + 1/k for all σ ∈ S ′Ω(1/k), where S ′Ω(1/k) is a finite

collection of squares in Ω of side length ≥ 1/k which was defined in

Section 3.

(iii) Modϕk(Sθ∗) > K∗ − ε > K1 > K0, where K1 is given by Lemma 6.5

with K = K∗ and c = c0/8.

(iv) For an integer n ≥ 1, divide Sθ∗ = S1 ∪ S2 ∪ · · · ∪ Sn2 into n2 squares of

equal size, where n is a positive integer that will be chosen below. For at

least (c0/8)n2 of these squares, Modϕk(Si) ≤ K0.

By (i), the sequence of mappings ϕk is precompact, (ii) implies that any

subsequential limit ϕ is K∗ quasiconformal, (iii) tells us that Modϕ(Sθ∗) ≥
K∗ − ε, while (iv) ensures that Modϕ(Si) < K0 for at least (c0/8)n2 of the

small squares Si. This contradicts Lemma 6.5.

To prove the lemma, it remains to verify that the random quasiconformal

mappings ϕk = wµ satisfy properties (i)-(iv) with positive probability. Clearly,

(iii) holds with probability ≥ c(ε) for the special scales δε,j from (6.2). Ac-

cording to Lemma 6.2, by requesting the mesh size δε,j(k) to be small, we can

ensure that the probability that ϕk is (K, 1/k) quasiconformal on B(0, 2R)
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exceeds 1 − c(ε)/4. Since the number of squares in S ′Ω(1/k) is finite, if δε,j(k)

is small, then

P
(

Modwµ(σ) ≤ K∗ + 1/k, ∀σ ∈ S ′Ω(1/k)
)
> 1− c(ε)/4. (6.6)

Discard ∼ 3n2/4 of the small squares Si so that the remaining squares are

a definite distance apart (and therefore the moduli of their images are inde-

pendent). By (6.5) and the law of large numbers, we can pick n sufficiently

large so that for arbitrarily small δ > 0, with probability at least 1 − c(ε)/4,

Modϕ(Si) ≤ K0 for at least (c0/2) · (n2/4) = (c0/8)n2 squares Si.

Lemma 6.4 says that for the special sequence of scales δj → 0, with high

probability, Modwµ(Sθ∗) ≥ K∗ − 1/j. Since the collection of background

squares S ′Ω(1/j) is finite, with high probability, Modwµ(σ) ≤ K∗ + 1/j for all

σ ∈ S ′Ω(1/j), c.f. (ii). A compactness argument shows that wµ|Sθ∗ is close to

a quasiconformal mapping which has constant dilatation µλ = ∂Aλ
∂Aλ

on Sθ∗ . In

terms of f := A−1
λ ◦ w

µ, we have:

Lemma 6.6. There is a sequence of good scales δj → 0 such that the following

properties hold with probability > 1− 1/j:

(i) f is (KK∗, `(Sθ∗)/j) roughly quasiconformal on Sθ∗,

(ii) Mod f(σ) < 1 + 1/j for all σ ∈ S ′Sθ∗ (`(Sθ∗)/j),
(iii) Mod f(Sθ∗) > 1− 1/j.

Remark. From the scale invariance of the model, we know that if S ⊂ Ω has

the same orientation as Sθ∗ , then the scales

δ′j = `(S)/`(Sθ∗) · δj

are good for S.

6.4 Any sequence of scales is good

We now eliminate the need to use a subsequence of scales:

Lemma 6.7. For any square S ⊂ Ω and ε > 0, when the mesh size δ < δ0(ε,S)

is sufficiently small,

Pδ
(
1− ε < Mod f(S) < 1 + ε

)
> 1− ε.
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Proof. Let δj be a good scale from Lemma 6.6. We will use the goodness of

the scale δj to show that any scale 0 < δ < δj is also good.

To that end, fix an 0 < η < 1 and consider the grid eiθ
∗
βZ2 which consists

of squares of side length β = η · δ/δj · `(Sθ∗) that have the same orientation as

Sθ∗ . By the remark above, if δj is a good scale for Sθ∗ , then δ is a good scale

for squares of the form η−1� with � ∈ eiθ∗βZ2.

We colour a cell � ∈ eiθ∗βZ2 blue if (f, η−1�) satisfies conditions (i)–(iii)

of Lemma 6.6 and yellow otherwise. According to Lemma 6.6, the probability

that any given cell is blue is at least 1− 1/j. Even though the colours of the

cells are not independent, the colour of a cell only depends on the behaviour

of the Beltrami coefficient µ in η−1�, cf. modification (iv) of Lemma 4.2.

Since f is close to conformal on
{
η−1� : � blue

}
, by Koebe’s distortion

theorem, if η > 0 is small, then f is close to linear on the blue cells �. An

application of Lemma 5.2 completes the proof.

6.5 Conclusion of the proof

From here, it is now a simple matter to prove Theorem 6.1:

Proof of Theorem 6.1. As noted previously, to show that wµ is close to Φ, we

can instead show that f = A−1
λ ◦ w

µ is close to A−1
λ ◦ Φ. By Lemmas 6.2 and

6.7, for any ε > 0, if the mesh size δ < δ0(ε) is small, then with probability

≥ 1− ε,
f is (KK∗, ε) roughly quasiconformal on B(0, 2R), (6.7)

1− ε ≤ Mod f(σ) ≤ 1 + ε, ∀σ ∈ S ′Ω(ε). (6.8)

∂f

∂f
=

∂(A−1
λ ◦ w

µ)

∂(A−1
λ ◦ wµ)

=
∂(A−1

λ ◦ Φ)

∂(A−1
λ ◦ Φ)

, on C \ Ω. (6.9)

If the theorem were false, we would have a sequence of normalized quasicon-

formal mappings fn which satisfy the above conditions with ε = 1/n, but were

a definite distance away from A−1
λ ◦Φ in C

(
B(0, R)

)
. This is impossible since

A−1
λ ◦ Φ is the only possible limit of such a sequence.
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7 Random q.c. mappings on the plane

Let µ be a random Beltrami coefficient on the plane, constructed with help of

the probability measure λ. Since Kµ = 1+|µ|
1−|µ| is not bounded in general, one

may wonder if there is a homeomorphism wµ with dilatation µ which fixes the

points 0, 1,∞. Uniqueness follows from the fact that any two injective solutions

of the Beltrami equation ∂w(z) = µ(z)∂w(z) with the same dilatation differ

by a conformal automorphism of C.

For the existence, we only need Kµ to be locally bounded, although a priori,

the map wµ may not be surjective: for any R > 2, we can truncate µR =

µ · χB(0,R) and use the measurable Riemann mapping theorem to construct a

quasiconformal map wR with dilatation µR that fixes −1, 0, 1. Compactness

properties of quasiconformal maps allow us to extract a subsequential limit of

the wR as R→∞, yielding an injective map w : C→ Ĉ with dilatation µ. We

may post-compose w with a Möbius transformation to make it fix the points

0, 1,∞ instead.

To show that wµ is surjective almost surely, we choose 0 < k < 1 so that

λ
(
{z : k < |z| < 1}

)
< r0 where r0 is the constant from Lemma 4.2, and colour

a cell � in δZ2 yellow if |µ(�)| > k and blue otherwise. Since
∑∞

N=1(δ/N)2 <

∞, the Borel-Cantelli lemma shows thats almost surely, for all sufficiently large

N ≥ N0, wµ is (K, δ log(N/δ)) roughly quasiconformal on [−N,N ]× [−N,N ].

Since the moduli of infinitely many annuli wµ
(
A(0, N, 2N)

)
are bounded from

below, wµ is surjective.

Fix a ball B(0, R) with R > 2. We now show that when δ > 0 is suffi-

ciently small, then with probability at least 1 − ε, wµ(z) is within ε of the

affine mapping Aλ(z) on B(0, R). For any γ > 1, the compactness of roughly

quasiconformal mappings tells us that when the mesh size δ < δ0(R, ε, γ) is suf-

ficiently small, wµ|B(0,γR) is close to a quasiconformal map Φ : B(0, γR)→ C
with constant dilatation µλ. By requesting γ to be large and applying Koebe’s

distortion theorem, we see that (A−1
λ ◦ Φ)|B(0,R) is close to a complex-linear

map. Since A−1
λ ◦Φ fixes the points 0 and 1, it is close to the identity. Putting

this together, we see that wµ|B(0,R) is close to Aλ as desired.
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8 Moduli of rectangles in circle packings

For a combinatorial rectangle R in a circle packing, we have two different

notions of moduli for curves connecting the opposite sides of R : the dis-

crete modulus of the triangulation and the continuous modulus of the carrier.

In general, the two notions of modulus are unrelated, however, when P has

bounded geometry, the continuous modulus and the discrete modulus agree up

to a multiplicative constant.

This is facilitated by the Euclidean Ring Lemma [11, Lemma 8.2], which

says that for any N ≥ 3, there exists a constant 0 < c(N) < 1 such that

if C = B(v, r) is an interior circle in P whose degree is at most N , then

ri ≥ c(N) · r for any circle Ci = B(vi, ri) ∈ P tangent to C. Elementary

geometry shows that the polygon v1v2 . . . vn whose vertices are centers of circles

tangent to C contains the ball B
(
v, (1 + c(N)/2)r

)
.

Lemma 8.1. Let R be an interior combinatorial rectangle in a circle packing

P. Suppose ρd is a discrete metric defined on the vertices of the underlying

triangulation, which is supported on the set of vertices of degree at most N .

Let η = c(N)/2. Define a continuous metric by the formula

ρc(z) :=
1

η

∑
B(vi,ri)∈P

ρd(vi)

ri
· χB(vi,(1+η)ri)∩R(z). (8.1)

If ρd was admissible for the vertical curve family Γd
l in the discrete sense, then

ρc will be admissible for Γc
l in the continuous sense. Furthermore, the total

area of ρc is controlled by the total area of ρd: A(ρc) ≤ C(N)A(ρd).

Proof. The bound on the total area is clear since the sum defining ρc(z) has

at most 3 non-zero terms: if z lies in an interior triangle vivjvk, then only the

indices i, j, k can contribute to the sum (8.1). To check that `ρc(γ) ≥ 1 for

γ ∈ Γc
l, notice that as the sides of triangles in P are contained in

⋃
Ci, the

combinatorial progress that γ makes through the triangulation is recorded by

the collection of circles it visits. Since the ρc cost of entering or exiting the

influence of a circle is at least ρd(vi), the continuous length of γ exceeds its

discrete length.

To study the boundary behaviour of maximal circle packings, we need to

allow R to be an extended combinatorial rectangle. For a boundary circle

27



Ci = B(vi, ri) in P, we let v∗i denote the point of tangency between Ci and the

unit circle. We extend the underlying triangulation of P by adding edges from

vi to v∗i and from v∗i and v∗j if Cvi and Cvj are tangent. With this definition,

the extended “triangulation” also includes the quadrilaterals viv
∗
i v
∗
j vj . By an

extended combinatorial rectangle, we mean a combinatorial rectangle in the

extended triangulation. If P is a maximal circle packing, then the Euclidean

Ring Lemma also applies to boundary circles: one can see this by reflecting the

packing in the unit circle and adding inscribed circles to get a triangulation of

the sphere. We leave it to the reader to check that Lemma 8.1 also holds for

extended combinatorial rectangles.

9 Random Delauney triangulations

In this section, we prove Theorem 1.3 which says that a circle packing of a

random Delauney triangulation approximates a conformal map. For technical

reasons, it is preferable to use a slightly different construction of a random

Delauney triangulation where the Delauney points are chosen according to

a Poisson point process of high intensity. We recall the definition. For a

measurable set E ⊂ Ω, we denote its Euclidean area by A(E) and the number

of Poisson points contained in E by NE .

A Poisson point process of intensity λ produces a random collection of

points in Ω according to the following two axioms:

(1) For any measurable set E ⊂ Ω,

P(NE = n) = e−A(E)λ · (A(E)λ)n

n!
.

(2) If E1, E2, . . . , Ek are disjoint measurable sets, then NE1 , NE2 , . . . , NEk

are independent random variables.

From the uniqueness of the Poisson point process, it follows that the union

of two independent Poisson point processes is also a Poisson point process

and that the intensities add. The law of large numbers tells us that when the

intensity λ is large, then with high probability (w.h.p.) NE ∼ A(E)λ. In other

words, for any ε > 0, when λ ≥ λ0(ε,Ω) is sufficiently large, (1 − ε)A(E)λ ≤
NE ≤ (1 + ε)A(E)λ holds with probability ≥ 1− ε.

We will need the following estimate:
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Lemma 9.1. Suppose Ω ⊂ C is a bounded domain. For any 0 < ε < 1, when

λ ≥ λ0(ε,Ω) is sufficiently large, with probability at least 1− ε, the estimate

(1− ε) ·A(R)λ ≤ NR ≤ (1 + ε) ·A(R)λ

holds for every rectangle R ⊂ Ω whose sides have length at least ε.

Proof. Take δ = (1/20)ε2 and consider all cells in the square grid δZ2 which

intersect Ω. The lemma follows from the following two observations:

(i) By the law of large numbers, when λ is large, w.h.p.

(1− ε/3) ·A(�)λ ≤ N� ≤ (1 + ε/3) ·A(�)λ

for any cell � ∈ δZ2 that is completely contained in Ω, while the upper bound

holds for any � ∈ δZ2 that merely intersects Ω.

(ii) Given a rectangle R ⊂ Ω whose sides have length at least ε, let E1 be

the union of cells in δZ2 that are completely contained in R, and E2 be the

union of cells in δZ2 that have non-empty intersection with R. The area of

E2 \ E1 is bounded above by (ε/3) ·A(R).

One can deduce Theorem 1.3 for the original model where the number of

Delauney points is fixed by using the following simple observation: for any

ε > 0, when N is large, w.h.p. a collection of N random points is squeezed

between Poisson point processes with intensities N/A(Ω)− ε and N/A(Ω) + ε.

9.1 Basic properties of Delauney triangulations

The following lemma says that when the intensity is large, Delauney triangu-

lations tend to have short edges and exhaust Ω:

Lemma 9.2. Suppose Ω ⊂ C is a Jordan domain. For any ε > 0 and compact

set K ⊂ Ω, when λ ≥ λ0(ε,K,Ω) is sufficiently large, with probability at least

1− ε, we have:

(i) The length of any edge of T that intersects K is less than ε,

(ii) carr T ⊃ K.

Proof. Fix a real number δ > 0 with 3
√

2δ < dist(K, ∂Ω), and let Ωδ be the

union of all cells in δZ2 contained in Ω. When the intensity λ > 0 is large,

with probability ≥ 1− ε, every cell in Ωδ contains at least one point of T .
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Suppose v ∈ T is a Delauney point with dist(v, ∂Ω) > 2
√

2δ. We first

show that the Vorononi cell Fv ⊂ B(v,
√

2δ). To see this, note that if y ∈
∂B(v,

√
2δ), then y cannot lie in the same cell of the grid δZ2 as v. By

assumption, there is a Delauney point v′ 6= v in the cell that contains y.

As the cells of δZ2 have diameter
√

2δ, |v′ − y| ≤ |v − y|, which shows that

y /∈ IntFv. This proves the claim.

Let v1, v2, v3, . . . , vd ∈ T be the vertices connected to v by an edge, listed

in counter-clockwise order. Since the midpoint of the edge vvi lies on Fv ∩
Fvi , |v − vi| ≤ 2

√
2δ. In particular, the polygon v1v2 . . . vd is contained in

B(v, 2
√

2δ). Since any point in Fv belongs to one of the Delauney triangles

vvivi+1, Fv ⊂ carr T .

Finally, if dist(z, ∂Ω) > 3
√

2δ, then z is contained in a Voronoi cell Fv with

dist(v, ∂Ω) > 2
√

2δ, which means that z ∈ carr T .

A similar argument shows:

Lemma 9.3. Consider a 7× 7 square in the plane, which is naturally formed

from 49 unit squares. Suppose that each of these 49 unit squares contains a

vertex of the Delauney triangulation. Then each Delauney edge that passes

through the middle square is contained in the 7× 7 square.

Proof. Suppose e is an edge of the Delauney triangulation that connects the

vertices v1, v2 and passes through the middle 1× 1 square. If the lemma were

false, there would be a segment e ⊆ e of length 3 contained in the 7×7 square.

Let z be the midpoint of e. On one hand, since e ⊂ Fv1 ∪ Fv2 , the distance

from z to any Delauney vertex is at least min(|z− v1|, |z− v2|) ≥ 3/2. On the

other hand, since z is a point in the 7 × 7 square, it is located within
√

2 of

some vertex, which is a contradiction.

9.2 Rough quasiconformality

Let R be a rectangle compactly contained in Ω. Its exterior discrete approx-

imation Rd
+ consists of all vertices of T that either lie in R or are adjacent

to a vertex that lies in R. For each corner of R, mark the closest point in

T ∩ Rd
+. (In case of a tie, choose the marked points arbitrarily.) The four

marked points turn Rd
+ into a discrete combinatorial rectangle. In practice,
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Rd
+ is close to R : if R̃ is a slightly larger rectangle which contains R in its

interior, then for λ large, w.h.p. R ⊂ R+
d ⊂ R̃.

Lemma 9.4. For any ε > 0, when λ ≥ λ0(ε,Ω) is sufficiently large, the

probability that ϕP : Ω→ D is (K, ε) roughly quasiconformal on Ω is ≥ 1− ε.

Proof. Let R ∈ RΩ(ε) be a rectangle compactly contained in Ω whose sides

have length at least ε. Consider the square grid δZ2 with mesh size δ = C/
√
λ.

From the law of large numbers, we expect a cell � in δZ2 to contain roughly

C2 points from T . We colour a cell � in δZ2 blue if it contains between 1

and C3 points from T and yellow otherwise. We call � 7-deep blue if all cells

�̂ ⊂ 7� are blue and 13-deep blue if all cells �̂ ⊂ 13� are blue.

It is easy to see that any vertex of T in a deep blue cell has valence at most

49C3 since the Delauney edges emanating it from it are contained in 7�. By

making C > 0 large, we can ensure that the probability that a cell is blue is at

least 1− r0(13) where r0(13) is the constant from modification (iii) of Lemma

4.2.

Consider the discrete metric ρd = χB∩Rd
+

where B is the union of the

7-deep blue cells. By Lemma 9.1, if the intensity λ is large, then w.h.p.

A(ρd) =
∑
v

ρ2
d(v) ≤ NRd

+
≤ 2 · `1(R)`2(R)λ =

2C2

δ2
· `1(R)`2(R).

To estimate the ρd-length of a discrete path γd ∈ Γl(R
d
+), we view it as a

continuous piecewise-linear curve γ by connecting the vertices with line seg-

ments. According to modification (iii) of Lemma 4.2, when λ is sufficiently

large, w.h.p. every γ passes through at least b`1(R)/(2δ)c 13-deep blue cells.

By Lemma 9.3, if γ passes through a 13-deep blue cell �, γd must contain a

vertex in a 7-deep blue cell. We see that w.h.p. the ρd-length of every path in

Γl(R
d
+) is at least c · `1(R)/δ where c > 0 is a definite constant.

The above computations show that when the intensity is large, w.h.p. the

discrete modulus of Γl(R
d
+) is bounded above by a definite multiple of the

continuous modulus of Γl(R). Since ρd was supported on vertices of bounded

valence, Lemma 8.1 tells us that the continuous modulus of Γl(ϕP(Rd
+)) is

also bounded by a definite multiple of the continuous modulus of Γl(R). This

completes the proof.
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9.3 Interior conformality

The following lemma says that the radii of the interior circles are small when

the intensity λ is large:

Lemma 9.5. For any ε > 0 and subdomain Ω′ compactly contained in Ω, if

the intensity λ > λ0(ε,Ω′) is sufficiently large, then with probability at least

1− ε, the radii of all circles Cv ∈ P associated to Delauney points v ∈ Ω′ are

less than ε.

Proof. We can surround a vertex v ∈ Ω′ by an annulus A = A(v, r, r′) ⊂ Ω′

of arbitrarily large modulus. When λ is large, w.h.p. all vertices adjacent to v

will lie inside B(v, r). Rough quasiconformality tells us that that the annulus

ϕP(A) will have large modulus. Since the image of ϕP(A) is contained in the

unit disk and surrounds Cv, the radius of Cv must be small.

By a deep theorem of He and Schramm [5, Theorem 1.1], we have:

Corollary 9.6. Let S be a square compactly contained in Ω and S̃ ⊂ Ω be

a slightly larger square with the same center as S. For any ε > 0, when the

intensity λ > λ0(ε,S, S̃) is sufficiently large, with probability at least 1− ε, the

modulus of ϕP(S) is determined by the Delauney triangulation on S̃ within ε

of its true value.

Since the model of random Delauney triangulations does not have a pre-

ferred direction, the arguments of Section 6 show:

Lemma 9.7. Let Ω′ be a subdomain compactly contained in Ω which contains

z1, z2. For any ε > 0, when the intensity λ > λ0(ε,Ω′,Ω) is sufficiently large,

with probability at least 1 − ε, the map ϕP is within ε of a conformal map

defined on Ω′.

9.4 Boundary behaviour

To complete the proof of Theorem 1.3, we need to show that if ∂Ω is C1, then

the image of the approximating conformal map is the unit disk:

Lemma 9.8. For any ε > 0, there exists an r > 0 so that when the intensity

λ > λ0(ε, r) is sufficiently large, with probability at least 1 − ε, the image of

Ωr = {z ∈ Ω : dist(z, ∂Ω) < r} under ϕP contains B(0, 1− ε).
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In particular, the above lemma implies that all circles in P have small radii,

not just ones confined to the interior. The proof is quite similar to Lemma

9.4, so we only give a sketch of the argument and allow the reader to work out

the details.

At this stage, it is important to use the modified random Delauney triangu-

lation where one adds �
√
A(Ω)λ equally-spaced points on ∂Ω. This ensures

that the diameters of the Delauney triangles near the boundary are O(1/
√
λ).

If we did not do this, the Delauney triangulation could have long thin triangles

of diameter O(1) which would lead to large circles in the packing.

In the proof of Lemma 9.8, we will need to decompose Ω into “cells” of

diameter comparable to δ and area comparable to δ2. As in Section 9.1, let

Ωδ be the union of all cells in δZ2 contained in Ω. To define a partition of Ω,

we need to distribute Ω \ Ωδ amongst the boundary cells of Ωδ. Since ∂Ω is

C1, for small δ, we can distribute the excess mass so that cells are connected

sets with the correct area and diameter.

Figure 3: If R has large modulus, then the diamϕP
(
B(ζ, 3r

2
)
)

is small.

Proof of Lemma 9.8. Since ∂Ω is C1, there exists a number ρ0 > 0 so that for

any boundary point ζ ∈ ∂Ω and 0 < ρ < ρ0, the intersection ∂B(ζ, ρ) ∩ Ω

consists of a single circular arc. Shrinking ρ if necessary, we may assume that

dist(z1, ∂Ω) ≥ ρ and dist(z2, ∂Ω) ≥ ρ.

For a point ζ ∈ ∂Ω, consider the conformal rectangle R = A(ζ, 2r, ρ/2)∩Ω

where the round sides contained in ∂A(ζ, 2r, ρ/2) have been marked. Since the

modulus of R can be made arbitrarily large by making r small, it is reasonable

to believe that w.h.p. its image ϕP(R) also has large modulus. Assuming this
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temporarily, we see that the diameter of ϕP
(
B(ζ, 3r

2 )
)

is small since ϕP(R)

separates ϕP
(
B(ζ, 3r

2 )
)

from Cv1 and Cv2 . The lemma follows since finitely

many balls B(ζi,
3r
2 ) cover Ω \ Ωr.

To estimate ModϕP(R), we follow the strategy from the proof of rough

quasiconformality (Lemma 9.4). Set δ = C/
√
λ as in Lemma 9.4. Since ∂Ω

is C1, we may partition Ω into cells of diameter comparable to δ and area

comparable to δ2 as described above. We colour each cell in Ω either blue or

yellow as in Lemma 9.4, that is, we colour a cell blue if it contains between 1

and C3 points of T and yellow otherwise. Consider the metric

ρd(v) =
1

|v − ζ|
· χB∩Rd

+
,

where B is the union of the deep blue cells and Rd
+ is the exterior discrete

approximation of R (which is now an extended combinatorial rectangle). We

claim that when the intensity λ is large, w.h.p.

A(ρd) . log
ρ

4r
· (1/δ)2, `ρd

(γ) & log
ρ

4r
· (1/δ), γ ∈ Γ↔(Rd

+).

The area estimate follows from the law of large numbers, while the length esti-

mate follows from modification (ii) of Lemma 4.1. These length-area estimates

imply that

Mod Γ↔(Rd
+) .

(
log

ρ

r

)−1

=⇒ Mod Γl(R
d
+) & log

ρ

r
.

Since ρd is supported on vertices of bounded valence, by Lemma 8.1,

Mod Γl(ϕP(R)) � Mod Γl(R
d
+) & log

ρ

r
.

as desired. The proof is complete.

A Weak convergence is not enough

It sounds plausible that if a sequence of Beltrami coefficients µn converges

weakly to µ, then the quasiconformal mappings wµn converge pointwise to

wµ. However, this is not true. For a counterexample, partition the plane into

vertical strips of width δ and assign µδ = 1/3 on odd-numbered strips and
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−1/3 on even-numbered strips. Clearly, the Beltrami coefficients µδ converge

weakly to 0 as δ → 0, however, the maps µδ converge to the affine stretch

in the horizontal direction by the factor (2 + 1
2)/2 = 5/4. Indeed, on each

even-numbered strip, the x-coordinate is stretched by a factor of 2, while in

each odd numbered strip, one contracts the x-coordinate by a factor of 2.

By the law of large numbers, if one randomly assigns the Beltrami coeffi-

cient to be ±1/3 on vertical strips, then the limit is also an affine stretch by a

factor of 5/4 in the x-coordinate.

References

[1] K. Astala, T. Iwaniec, G. J. Martin, Elliptic partial differential equations

and quasiconformal mappings in the plane, Princeton University Press,

2009.

[2] K. Astala, S. Rohde, E. Saksman, T. Tao, Homogenization of iterated sin-

gular integrals with applications to random quasiconformal maps, preprint,

2020. arXiv:2006.11602.

[3] M. Biskup, Recent progress on the Random Conductance Model , Probab.

Surveys 8 (2011), 294–373.

[4] M. Biskup, T. Prescott, Functional CLT for random walk among bounded

random conductances, Electron. J. Probab. 12 (2007), paper no. 49, 1323–

1348.

[5] Z-X. He, O. Schramm, On the convergence of circle packings to the Rie-

mann map, Invent. Math. 125 (1996), No. 2, 285-305.

[6] A. Hinkkanen, Rectangles and Quasiconformal Mappings, Math Z. 183

(1983), 539–545.

[7] P. Koebe, Kontaktprobleme der konformen Abbildung , Hirzel, 1936.

[8] P. Mathieu, Quenched invariance principles for random walks with random

conductances, J. Stat. Phys. 130 (2008), No. 5, 1025–1046.

[9] H. Osada, Homogenization of diffusion processes with random stationary

coefficients, In: Probability Theory and Mathematical Statistics, Tbilisi,

1982. Lecture Notes in Math. 1021, Springer, Berlin, 1983, pp. 507–517.

35

https://arxiv.org/abs/2006.11602


[10] V. Sidoravicius, A-S. Sznitman, Quenched invariance principles for walks

on clusters of percolation or among random conductances, Probab. Theory

Relat. Fields 129 (2004), Nov. 2, 219–244.

[11] K. Stephenson, Introduction to Circle Packing: The Theory of Discrete

Analytic Functions, Cambridge University Press, New York, 2005.

[12] T. Tao, Homogenization of iterated singular integrals with applications

to random quasiconformal maps, blog post published on 22/06/2020 at

https://terrytao.wordpress.com.

[13] W. P. Thurston, The geometry and topology of 3-manifolds, Princeton

lecture notes, 1978–1981.

36

https://terrytao.wordpress.com

	Introduction
	Random quasiconformal mappings
	Random Delauney triangulations
	Random walk in random environments

	Moduli of curve families
	Roughly quasiconformal maps
	A lemma on percolation
	Approximate conformality
	Homogenization of quasiconformal maps
	Rough quasiconformality
	Searching for the optimal direction
	Existence of a good sequence of scales
	Any sequence of scales is good
	Conclusion of the proof

	Random q.c. mappings on the plane
	Moduli of rectangles in circle packings
	Random Delauney triangulations
	Basic properties of Delauney triangulations
	Rough quasiconformality
	Interior conformality
	Boundary behaviour

	Appendix A. Weak convergence is not enough

