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Abstract. We study the distribution of geometrically and topologi-
cally nearly geodesic random surfaces in a closed hyperbolic 3-manifold
M. In particular, we describe PSL(2,R) invariant measures on the
Grassmann bundle G2(M) which arise as limits of random minimal sur-
faces. It is showed that if M contains at least one totally geodesic
subsurface then every topological limiting measure is totally scarring
(i.e. supported on the totally geodesic locus), while we prove that geo-
metrical limiting measures are never totally scarring.

1. Introduction

Fix a closed hyperbolic 3-manifold M. We begin by defining the notions
of geometrically and topologically random surfaces in M.

Definition 1.1. We let S denote the set of conjugacy classes of surface
subgroups of π1(M). For ϵ > 0, we let Sϵ denote the subset of S consisting
of conjugacy classes of quasifuchsian surface subgroups whose limit set is a
(1 + ϵ)-quasicircle.

The following well known proposition follows from the works of Uhlenbeck
[19] and Seppi [18].

Proposition 1.2. There exists a universal constant ϵ̂ > 0 such that when
ϵ < ϵ̂ there exists a unique minimal surface in the homotopy class defined by
Σ ∈ Sϵ, and this minimal surface is immersed in M.

Thus, when ϵ < ϵ̂ we can define the function AreaM : Sϵ → (0,∞) by
letting AreaM(Σ) be the area of the (unique) minimal surface in the cor-
responding homotopy class. In the remainder of the paper we assume that
ϵ < ϵ̂.

Definition 1.3. Let g ≥ 2, and T > 0. We set

Stop
ϵ (g) = {Σ ∈ Sϵ : g(Σ) ≤ g},

and
Sgeo
ϵ (T ) = {Σ ∈ Sϵ : AreaM(Σ) ≤ T},
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where g(Σ) denotes the genus. (To alleviate the notation we often write

Sϵ(g) instead of Stop
ϵ (g), and Sϵ(T ) instead of Sgeo

ϵ (T )).

A typical element of Sϵ(g) is called a topologically random surface, and
a typical element of Sϵ(T ) a geometrically random surface. The study of
topologically random surfaces was initiated by Kahn-Marković [8], while
the study of geometrically random ones was initiated by Calegari-Marques-
Neves [4], and Labourie [10].

1.1. The motivation. In the next subsection we define probability mea-
sures on the Grassmann bundle G2(M) which capture the distribution of
random surfaces. Topological and geometrical limiting measures inform our
knowledge regarding the distribution of random surfaces. Establishing the
uniqueness of such measures (or at least describing the range of such limits)
would tell us how a random surface distributes in M.

As observed in [10], the motivation for studying geometrical limiting mea-
sures comes from the classical case dealing with the limiting measures arising
as limits (when T → ∞) of measures supported on closed geodesics of length
at most T > 0. It was proved by Bowen and Margulis that in this case the
limiting measure is unique and equal to the corresponding Liouville mea-
sure on the tangent bundle of M. The motivation for studying topological
limiting measures is clear.

1.2. Invariant limiting measures. Let G2(M) denote the Grassmann
bundle (the 2-plane bundle) over M. We begin by explaining how each
Σ ∈ Sϵ yields a probability measure on G2(M). Let f : SΣ → M be the mini-
mal immersion representing the homotopy class of Σ (here SΣ is the Riemann
surface determined by the requirement that f is conformal and harmonic).
Since f is an immersion, we have the induced map f : SΣ → G2(M) (to
simplify the notation, we use the same letter to denote both maps). Let mS

denote the hyperbolic area measure on SΣ normalised to be a probability
measure. We define the pushforward measure

(1) µ(Σ) = f∗mS

on the Grassmann bundle G2(M).

Remark 1. One can define another probability measure µ1(Σ) on G2(M)
using the induced area form on the subsurface f(S). Unless the minimal
surface f(S) is totally geodesic, the measure µ1(Σ) may not be the same
as µ(Σ). However, when ϵ is small the minimal map f is uniformly locally
close to a Möbius map. Thus, the distance between the probability measures
µ(Σ) and µ1(Σ) uniformly tends to zero when ϵ→ 0, which means that the
limiting measures we define below do not depend whether we use µ(Σ) or
µ1(Σ) to define them.
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Definition 1.4. We say that a probability measure µtopϵ on G2(M) is an
ϵ-topological limiting measure if there exists a sequence gn → ∞ such that

µtopϵ = lim
gn→∞

1

|Sϵ(gn)|
∑

Σ∈Sϵ(gn)

µ(Σ).

We say that a probability measure µgeoϵ on G2(M) is an ϵ-geometrical limiting
measure if there exists a sequence Tn → ∞ such that

µgeoϵ = lim
Tn→∞

1

|Sϵ(Tn)|
∑

Σ∈Sϵ(Tn)

µ(Σ).

Definition 1.5. We say that a probability measure µtop on G2(M) is a
topological limiting measure if there exists a sequence ϵn → 0 such that

µtop = lim
n→∞

µtopϵn ,

where µtopϵn is some ϵn-topological limiting measure. Likewise, we say that a
probability measure µgeo on G2(M) is a geometrical limiting measure if there
exists a sequence ϵn → 0 such that

µgeo = lim
n→∞

µgeoϵn ,

where µgeoϵn is some ϵn-geometrical limiting measure.

1.3. The main results. Each topological or geometrical limiting measure
is invariant under the natural left PSL(2,R) action on G2(M). The classical
Ratner theorem says that each such measure is a linear combination of
the probability Liouville measure on G2(M), and the probability measures
supported on the images of totally geodesic surfaces in G2(M). In particular,
ifM does not contain a totally geodesic subsurface then there exists a unique
limiting measure (either topological or geometrical) and it is equal to the
Liouville measure on G2(M). Therefore, it remains to understand the case
when M contains totally geodesic subsurfaces.

Definition 1.6. Let µ denote a PSL(2,R)-invariant probability measure on
G2(M). Then by µL we denote its Liouville part. Moreover, we say that µ
is totally scarring if µL is the zero measure.

Theorem 1.7. Suppose M is a closed hyperbolic 3-manifold. There exists
a constant 0 < q such that if µgeo is a geometrical limiting measure then
q < |µgeoL |.

The previous theorem says that a geometrical limiting measure is never
totally scarring. The opposite is true for topological limiting measures as
the following theorem attests.

Theorem 1.8. If M is a closed hyperbolic 3-manifold with a totally geodesic
surface then every topological limiting measure is totally scarring.

We finish this subsection with two conjectures.
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Conjecture 1.9. Every geometrical limiting measure is Liouville.

Conjecture 1.10. Suppose that M is a closed hyperbolic 3-manifold with a
totally geodesic surface. Then every topological limiting measure is supported
on Hh0 where h0 = h0(M) is the genus of the totally geodesic surface of the
smallest genus in M.

Answering these two conjectures would complete the description of how
random surfaces distribute in M.

Remark 2. The proof of Theorem 1.8 should go through in any symmetric
space without many changes. The proof of Theorem 1.7 should likewise go
through given the analog of Rao’s theorem. Conjectures 1.9 and 1.10 should
presumably apply as well in this more general setting (see Kassel’s survey
article [9]).

Remark 3. Labourie [10] proved that the Liouville measure on G2(M) is
the limit of µfn for some sequence of ϵn-nearly geodesic minimal (possibly
disconnected) surfaces fn : Sn → M. Lowe and Neves [11] showed that
one can find such a sequence consisting of connected surfaces. Al Assal [1]
then proved that the same is true for any convex combination of invariant
probability measures on G2(M).

Remark 4. We expect both Theorem 1.7 and Theorem 1.8 to hold if instead
of conjugacy classes Sϵ one considers commensurability classes of (1 + ϵ)-
quasifuchsian sufraces in M.

1.4. The totally geodesic locus. We let H ⊂ G2(M) be the union of the
totally geodesic subsurfaces. For any h ∈ N, we let Hh ⊂ H be the union of
the totally geodesic subsurfaces of genus at most h, and let H′

h = H \ Hh.
We let h0(M) be the genus of the least genus totally geodesic surface in M.

Remark 5. In Theorem 1.8 we can prove the explicit estimate µtop(H′
h) ≤

1/(C log h) for large h, and constant C = C(M).

By the results of Margulis-Mohammadi [14], and Bader-Fisher-Miller-
Stover [2], we know that a non-arithmetic hyperbolic 3-manifold has at most
finitely many totally geodesic subsurfaces. We observe that in this case
H = Hh for some h.

1.5. Outline of the proof of Theorem 1.7. The proof of this theorem
follows readily from two key lemmas. In the first lemma (which is Lemma 3.2
below) we show that there exists a constant C1 > 0 such that a geometrically
random surface Σ ∈ Sϵ(T ) satisfies the bound

(2) 4π(g(Σ)− 1) ≥ (1 + C1ϵ
2)T

when ϵ is small enough. Here C1 is a constant which only depends on M
(and in particular it does not depend on ϵ or T ). Note that if Σ is a totally
geodesic surface of area T then 4π(g(Σ)− 1) = T . Therefore, the inequality
(2) shows that the genus of a geometrically random surface is significantly
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larger than the genus of a totally geodesic surface of the same area. This is
the key factor in the proof of Theorem 1.7, and the key difference between
geometrically and topologically random surfaces.

The second key lemma bounds from above the genus of a geometrically
random surface Σ ∈ Sϵ(T ) in terms of the percentage of its area which
concentrates near the totally geodesic locus Hh. In Lemma 3.3, for every
h ∈ N, and every ϵ < ϵ0(h), we establish the estimate

(3) 4π(g(S)− 1) ≤
(
1 + C2

(
1− |S(δ1(h), h)|

|S|

)
ϵ2
)
T.

Here f : S → M is the ϵ-nearly geodesic minimal surface representing the
class Σ, and S(δ1(h), h) is the subset of S such that f

(
S(δ1(h), h)

)
is close

to the geodesic locus Hh. Note that the constant C2 does not depend on h.
Combing the two lemmas yields the estimate

0 <
C1

C2
≤ |µgeoL |

which then proves Theorem 1.7.

1.6. Outline of the proof of Theorem 1.8. Before outlining the basic
idea of the proof we briefly recall the proof of the upper bound on the number
of homotopy classes of genus g surfaces in M. Let D be a finite cover of
G2(M) by open sets of sufficiently small diameter.

Given a π1-injective map f : S → M of a closed surface of genus g, we can
realize it as a pleated surface and find a bounded geometry triangulation of
S. We can then take a spanning tree τ̂ of the triangulation, along with a
set of another 2g distinguished edges, denoted by e(τ), so that the inclusion
of τ̂ ∪ e(τ) into S is surjective on H1 and hence on π1. For each vertex v
of τ , we choose D ∈ D such that f(v) ∈ D and denote D by ψ(v). We
thereby obtain a D-valued g-polygonalization consisting of the pair (τ, ψ)
where τ = (τ̂ , e(τ)) is a graph pair that we call a g-polygonalization because
it efficiently divides a genus g surface into polygons.

The point is that we can reconstruct the homotopy class of f from the
D-valued g-polygonalization, where we think of τ = (τ̂ , e(τ)) as an abstract
graph (with a cyclic ordering of the edges at each vertex), and hence as
purely combinatorial data. We then need only bound the number of possible
such data, and in that way we obtain the (Cg)2g upper bound in [8].

In this paper1 we refine this bound in the case where f is ϵ-nearly geodesic
and at least q of the induced measure f∗mS is away from H, to obtain a
bound of (cg)2g, where c ≡ c(q, ϵ) → 0 as ϵ → 0 and q > 0 remains fixed.
To do so we let D be a system of “wafer-thin disks” that efficiently cover
G2(M). Namely, a (two-dimensional) disk in M lifts to a disk in G2(M),
and each wafer-thin disk will be the thickening of such a disk in G2(M) by a
small orthogonal radius η to form an open set in G2(M). These wafer-thin

1In this introduction we assume that M is non-arithmetic so H = Hh for some h; the
proof in the general case is very similar.
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disks all have small volume, but travel between them is carefully restricted
for an ϵ-nearly geodesic surface (with ϵ small given η): if two points on such
a surface are at bounded distance, lying respectively in D0, D1 ∈ D, then
D0 and D1 are mutually compatible, and there are only a bounded number
of disks in D that are compatible with a given disk, where this bound is
independent of the choice of η > 0.

Then given a nearly geodesic f : S → M of genus g, we

(1) lift f to f : S → G2(M),

(2) find a bounded triangulation and spanning tree for S just as in [8],

(3) find our 2g distinguished edges so that at least qg of them are some
distance from H, and

(4) assign, as before, an element ψ(v) ∈ D to each vertex v so that f(v) ∈
ψ(v).

Our additional constraint in Step 3 on the choice of distinguished edges
implies that the endpoints of the qg edges (that are away fromH) are roughly
evenly distributed in G2(M), and hence with respect toD. (This follows from
Ratner’s theorem.) The small volume of each disk in D, combined with this
equidistribution, implies that only a small proportion of these endpoints can
be in any D ∈ D. So we obtain a D-valued g-polygonalization, along with
some constraint on how many v can satisfy ψ(v) = D for a given D ∈ D, and
for which the vertices of a given edge lie in mutually compatible elements of
D. We now need only bound the number of such combinatorial structures,
and these constraints are sufficient to obtain the desired bound of (cg)2g,
where c is small when ϵ is.

On the other hand, since H ̸= ∅, the Müller-Puchta [15] estimate implies
that the number of totally geodesic surfaces in M of genus g < g grows
as (Cg)2g. (These are all just covers of a component of H.) We can now
compare this to the number of nearly geodesic surfaces where a definite part
of the area lies away from H, and see that the latter number is much smaller
than the former. Thus the only significant contributors to the measure for a
topologically random nearly geodesic surface of genus at most g are surfaces
where most of their area lies close to H. This implies Theorem 1.8.

1.7. How to read this paper. After Section 2 the paper is divided into two
halves; the first half proves Theorem 1.7, and the second half proves Theorem
1.8. Section 2 provides some preliminaries and background, including a
smoothing lemma and isoperimetric theorem for subsurfaces of a hyperbolic
surface. After Section 2, the two halves can be read in either order, starting
with Sections 3 or 12. Both halves have a top-down structure, so the main
theorems are proven in one section assuming one or more lemmas, which are
then proven in the subsequent sections.
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2. Preliminaries

Once and for all we fix a closed hyperbolic 3-manifold M. In this section
we discuss the Grassmann bundle of M, and define and discuss elementary
properties of ϵ-nearly geodesic minimal surfaces and how they relate to the
totally geodesic locus H in M. In particular, we fix two constants δ0(h) and
δ1(h) which capture the geometry of the locus Hh in M and its interaction
with nearly isometric minimal maps.

2.1. Notation and conventions. If we define a constant without speci-
fying what it depends on, it means that it only depends on M. If X is a
hyperbolic manifold (which in this paper is either a surface or a 3-manifold)
then dX denotes the hyperbolic distance on X. We use |Y | to denote the hy-
perbolic area of a subset Y ⊂ X, and |α| the hyperbolic length of a smooth
curve α ⊂ X. Furthermore, Br(x) denotes the ball of radius r centred at x,
and Nr(Y ) the r-neighbourhood of a set Y .

2.2. The Grassmann bundle. The Grassmann bundle G2(M) is the 2-
plane bundle over M. A point in G2(M) is a pair (x,Π) where x ∈ M,
and Π < TxM a 2-plane. The universal cover of G2(M) is G2(H3). By
ξ : G2(M) → M we denote the obvious fibration. The Levi-Civita connection
on TM induces a connection on G2(M) and hence a canonical complement
in TG2(M) to the fibers of Tξ : TG2(M) → TM. The standard Riemannian
metric ⟨, ⟩G on G2(M) is characterised by the following properties:

(1) within each fibre ⟨, ⟩G coincides with the usual Riemannian metric on

G3
2 = RP 2,

(2) the map ξ is a Riemannian submersion, and

(3) the fibres described in (1) are orthogonal to their canonical comple-
ments.

These properties imply that the canonical complement to the fiber at each
point of TG2(M) is mapped isometrically by Tξ; this in turn implies that
the lift of a path in M to G2(M) by parallel transport (with some starting
2-plane at the initial point) is an isometric lift.

Obviously the lift of this metric to G2(H3) is invariant under the action by
Isom(H3), and agrees with the hyperbolic metric on totally geodesic planes
in G2(H3). Moreover, for each (x1,Π1), (x2,Π2) ∈ G2(H3), we have

dH3(x1, x2) ≤ dG
(
(x1,Π1), (x2,Π2)

)
.

2.3. The geodesic locus. Given h ∈ N, we let Hh ⊂ G2(M) denote the
union of totally geodesic surfaces of genus at most h. We refer to Hh as

the totally geodesic locus of M of level h. By H̃h ⊂ G2(H3) we denote the
preimage of Hh by the covering from G2(H3) to G2(M). We observe that

each connected component of H̃h is a geodesic plane.

Proposition 2.1. There exists δ0(h) > 0 such that

• |Nδ0(h)(Hh)| ≤ 1
2 |G2(M)| and
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• dG(P1, P2) ≥ 10δ0(h) when P1 and P2 are two different components of

H̃h.

Remark 6. In particular, the geometry of the components of Nδ0(h)(Hh)
depends only on δ0(h) and the geometry of the components of Hh.

Proof. The first property of δ0(h) holds because Hh is a closed subset of
G2(M) of measure 0. The second property follows from the fact that Hh has
finitely many components, each of which is compact. □

2.4. Nearly geodesic minimal maps. We begin with a definition.

Definition 2.2. We say that f : S → M is an ϵ-nearly geodesic minimal
map if:

(1) S is a closed hyperbolic surface,

(2) f is a minimal map,

(3) f∗ : π1(S) → π1(M) is a quasifuchsian surface subgroup whose limit set
is a (1 + ϵ)-quasicircle.

Since every ϵ-nearly geodesic minimal map f : S → M is an immersion
assuming ϵ is small, the induced map f : S → G2(M) is well defined. We
now define the subset of the minimal surface which is close to the geodesic
locus Hh.

Definition 2.3. Let f : S → M be an ϵ-nearly geodesic minimal map. For
δ > 0, we let

S(δ, h) = {p ∈ S : dG(f(p),Hh) < δ}.
Next, we observe that ϵ-nearly geodesic minimal maps are nearly locally

isometric, meaning that the restriction of f to any ball of a bounded radius
is close to an actual isometry. The following proposition readily follows from
the compactness principle for minimal maps which is stated as Theorem 2.5
in [6].

Proposition 2.4. For every η > 0 there exists a constant ϵ(η) > 0 with
the following properties. Let f : S → M be a ϵ-nearly geodesic minimal
map where ϵ < ϵ(η), and let ι : B10(x0) → M be a local isometry such
that ι(x0) = f(x0) as points in G2(M). Then dG(ι(x), f(x)) < η for every
x ∈ B10(x0).

We finish the section by proving the following proposition relating sets
S(δ, h) for different values of δ.

Proposition 2.5. For all δ > 0, and h ∈ N, there exists δ′ = δ′(δ, h) > 0
and ϵ0 = ϵ0(δ, h) > 0 such that for every ϵ-minimal surface f : S → M,

(4) N10

(
S(δ′, h)

)
⊂ S(δ, h)

assuming ϵ < ϵ0.

Remark 7. For future reference, we define δ1(h) = δ′(δ0(h), h), and ϵ0(h) =
ϵ0(δ0(h), h).
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Remark 8. We could actually make δ′ and ϵ0 independent of h, but in our
context δ will depend on h, so we state and prove the proposition in its
current form.

Proof. The proof is by contradiction. Fix δ > 0, and h ∈ N, and assume that
for each n ∈ N there exists ϵn-nearly geodesic minimal map fn : Sn → M,
where ϵn → 0, and sequences of points xn, yn ∈ Sn, such that

(5) dG
(
fn(xn),Hh

)
≥ δ, dG

(
fn(yn),Hh

)
≤ 1

n
,

and

(6) dSn(xn, yn) ≤ 10.

From (5) we find that fn(xn) → (x,Π) /∈ Hh, and fn(yn) → (y,Π′) ∈ Hh.
Combining (6) with the assumption ϵn → 0, and by applying Proposition
2.4, we conclude that there exists a totally geodesic plane P ⊂ G2(M) which
contains both (x,Π) and (y,Π′). This implies that (x,Π) ∈ Hh. This
contradiction proves the proposition. □

2.5. A smoothing lemma for subsets of S. Here’s a simple version of
the Vitali Covering Lemma that will suffice in this paper:

Lemma 2.6. Suppose X is a totally bounded metric space (e.g. a subset
of a compact metric space), and r > 0. Then we can find points x1, . . . xm
such that the balls Br(xi) are pairwise disjoint, and X ⊂ ⋃

iB2r(xi).

Proof. Since X is totally bounded, there is a finite set x1, . . . , xm such that
the Br(xi) are pairwise disjoint, and this set cannot be extended to a larger
one with the same property. Take any x ∈ X; there must be an xi such that
Br(xi) ∩Br(x) is nonempty, and then x ∈ B2r(xi). □

We can use 2.6 to prove a smoothing lemma for subsurfaces of a closed
hyperbolic surface S:

Lemma 2.7. Suppose R ⊂ S. Then we can find R′ with piecewise smooth
boundary such that R ⊂ R′ ⊂ N1(R), and |∂R′| ≤ 25|N1(∂R)|.
Proof. In what follows, for any r > 0, we let |∂Br| = 2π sinh r denote
the perimeter of a hyperbolic ball in H2 of radius r, and we let |Br| =
2π(cosh r − 1) denote its area. We will estimate some of these values with
whole numbers.

By Lemma 2.6 we can find x1, . . . , xm ∈ ∂R such that the B1/2(xi) are
pairwise disjoint, but ∂R ⊂ Q, where Q :=

⋃
iB1(xi). We let R′ = R

⋃
Q,

and observe that R ⊂ R′ ⊂ N1(R), ∂R
′ ⊂ ∂Q and Q ⊂ N1(∂R). Moreover

(7) |∂Q| ≤ m|∂B1|.
If y ∈ B1(x), then B1/2(x) ⊂ B3/2(y). From the disjointness of the B1/2(xi)
we then infer that any y ∈ Q can lie in B1(xi) for at most⌊ |B3/2|

|B1/2|

⌋
= 10
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values of i. We then have

(8) m|B1| ≤ 10|Q| ≤ 10|N1(∂R)|;
combining (7) and (8), we obtain

(9) |∂Q| ≤ 10
|∂B1|
|B1|

|N1(∂R)| ≤ 25|N1(∂R)|,

as required. □

2.6. An isoperimetric inequality. Recall the classical hyperbolic isoperi-
metric inequality proved by Schmidt [17].

Theorem 2.8. For any r > 0, any region enclosed by a curve at length
2π sinh r has area at most 2π(cosh r − 1).

These functions of r are of course the perimeter and area of a hyperbolic
disk of radius r. Since cosh r− sinh r < 1 for any r > 0 we immediately have

Theorem 2.9. If Q ⊂ H2 is a domain then |Q| ≤ |∂Q|.
We can use this to prove the following

Lemma 2.10. Suppose β0 and β1 are two disjoint homotopic curves on a
hyperbolic surface S that together bound a compact annular region A. Then

(10) |A| ≤ |β0|+ |β1|.
Proof. Draw a simple smooth arc γ in A connecting β0 to β1. Then A \ γ
is connected and simply connected, and the universal cover of A in H2 is
an infinite concatenation of closures of A \ γ; the area of n of consecutive
regions is n|A|, and the perimeter of this concatenation of n consecutive
regions is 2|γ| + n(|β0| + |β1|). Letting n → ∞ and applying Theorem 2.9,
we obtain (10). □

We can now easily prove the fundamental estimate of this subsection.

Proposition 2.11. Let S be a hyperbolic surface, and supposed we are given
a closed geodesic α ⊂ S, and a closed smooth simple curve β ⊂ S homotopic
to α. Let Q ⊂ S be the (possibly disconnected) domain bounded by the two
curves. Then |Q| ≤ |β|.
Proof. First, we can approximate β with simple smooth curves such that
the intersection α ∩ β is a finite set. In the rest of the proof we assume this
to be the case. We have two cases.
Case 1. Suppose α and β intersect each other. Then Q is a disjoint union
of simply connected domains Q1, ..., Qk. Each Qi is bounded by segments
αi and βi of α and β respectively, and no two distinct βi’s intersect. We can
double Qi over αi to obtain 2|Qi| ≤ 2|βi| and hence

(11) |Qi| ≤ |βi|
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by Theorem 2.9. Summing (11) over all i, we obtain

(12) |Q| =
k∑

i=1

|Qi| ≤
k∑

i=1

|βi| ≤ |β|.

Case 2. Suppose α∩β = ∅. Then Q ⊂ S is an embedded annulus. Doubling
Q over α and applying Lemma 2.10, we obtain the desired result. □

Suppose R ⊂ S is a subsurface (with smooth boundary) of a closed hy-
perbolic surface S. Let Ω ⊂ S be convex core of U . That is, Ω is the surface
with geodesic boundary obtained by filling in the holes (contractible com-
ponents of the complement) of R, and replacing each boundary curve of R
with its geodesic representative.

Proposition 2.12. Suppose R ⊂ S is subsurface (with smooth boundary)
of a closed hyperbolic surface S, and let Ω be its convex core. Then

|Ω| − |∂R| ≤ |R| ≤ |Ω|+ |∂R|.
Proof. As above we may assume that ∂R ∩ ∂Ω is a finite set. Denote by
β1, ..., βm the connected components of ∂R. Suppose βi bounds a simply
connected domain Qi. Then |Qi| ≤ |βi| by Theorem 2.9.

Suppose now that βi is homotopic to a closed geodesic αi, and denote
by Qi the union of all domains whose boundary is contained in αi ∪ βi.
Then, |Qi| ≤ |βi| by Proposition 2.11. Summing up these inequalities over
i = 1, ..,m proves the proposition. □

3. The main lemmas and the proof of Theorem 1.7

The proof of Theorem 1.7 is built on two lemmas which we state next.
We close the section with the proof of theorem assuming the lemmas.

3.1. Genera of geometrically random surfaces. The first lemma es-
timates from below the genus of a geometrically random surface. Before
stating the lemma we adopt the following definition.

Definition 3.1.

Sϵ(T,C) = {Σ ∈ Sϵ(T ) : 4π(g(Σ)− 1) ≥ (1 + Cϵ2)AreaM(Σ)}.
Lemma 3.2. There exists a constant C > 0 so that

lim
T→∞

|Sϵ(T,C)|
|Sϵ(T )|

= 1

when ϵ is sufficiently small.

Remark 9. If Σ is a totally geodesic surface of area T then 4π(g(Σ)− 1) =
T . Therefore, the previous lemma shows that the genus of a geometrically
random surface is significantly larger than the genus of a totally geodesic
surface of the same area. This is the key factor in the proof of Theorem 1.7.
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area T

genus g

g − 1 = T
4π

g − 1 = (1 + C2ε
2) T4π

g − 1 = (1 + C2
1ε

2) T4π

Sε(T,C2)

Sε(T )

Figure 1.

To put this into context, we refer to Figure 1 which (schematically) shows
the distribution of minimal surfaces by their area and genus. The key fea-
tures of this plot are as follows:

• All surfaces lie on or above the g − 1 = T
4π line (which is the locus

of the totally geodesic surfaces of genus g). This immediately follows
from the Gauss-Bonnet formula (and from the formula for the Gaussian
curvature of a minimal surface).

• All surfaces lie below the g − 1 = (1 + C2
1ϵ

2) T
4π line. This follows from

Seppi’s curvature estimate (Theorem 8.1), where C1 is the constant
from that theorem.

• Kahn–Marković’s upper bound [8] tells us that the count density of sur-
faces increases superexponentially with their genus (but depends much
more weakly on their area); moreover Müller–Puchta’s lower bound [15]
tells us that this superexponential growth can be observed even among
the covers of a single surface (which have constant ratio of g − 1 to
area).

• From this it is not hard to deduce that the subset Sϵ(T,C2) (where C2

is the constant of Lemma 3.2) dominates the count of Sϵ, as long as it is
nonempty. Verifying this latter condition (Proposition 4.1) is the most
substantial part of the proof.

3.2. Nearly geodesic minimal surfaces and the totally geodesic lo-
cus. The second key lemma bounds from above the genus of an ϵ-nearly
geodesic minimal surface which concentrates too much on the totally geo-
desic locus H. Recall the constant δ1(h) (see the remark after Proposition
2.5).



RANDOM SURFACES 13

Lemma 3.3. There exist constants C > 0, and ϵ0(h) > 0, such that for
every Σ ∈ Sϵ(T ), the inequality

(13) 4π(g(S)− 1) ≤
(
1 + C

(
1− |S(δ1(h), h))|

|S|

)
ϵ2
)
T

holds for every h ∈ N assuming ϵ < ϵ0(h). Here f : S → M is the ϵ-nearly
geodesic minimal surface in the class Σ.

3.3. Proof of Theorem 1.7. Let µgeoϵ be an ϵ-geometrical limiting measure
on G2(M). That is, there exists a sequence Tn → ∞ such that

µgeoϵ = lim
Tn→∞

1

|Sϵ(Tn)|
∑

Σ∈Sϵ(Tn)

µ(Σ)

(recall that µ(Σ) is the push forward of the hyperbolic area measure from
S to G2(M)). Let C1 be the constant from Lemma 3.2. Then

(14) µgeoϵ = lim
Tn→∞

1

|Sϵ(Tn, C1)|
∑

Σ∈Sϵ(Tn,C1)

µ(Σ).

Let Σ ∈ Sϵ(Tn, C1) and denote by f : S → M the minimal surface rep-
resenting Σ. Let h ∈ N, and denote by C2 and ϵ0(h) the constants from
Lemma 3.3. Applying Lemma 3.3 to Σ yields the inequality

(15)
|S(δ1(h), h))|

|S| ≤ 1− C1

C2
< 1

assuming ϵ < ϵ0(h).
In turn, the inequality (15) yields the estimate

µ(Σ)
(
Nδ1(h)(Hh)

)
≤ |S(δ1(h), h)|

|S| < 1− C1

C2

for every Σ ∈ Sϵ(Tn, C) assuming ϵ < ϵ0(h). Combining this with (14) gives
the estimate

µgeoϵ

(
Nδ1(h)(Hh)

)
≤ 1− C1

C2

for every ϵ-geometrical limiting measure on G2(M) when ϵ < ϵ0(h). In turn,
this shows that

(16) µgeo
(
Nδ1(h)(Hh)

)
≤ 1− C1

C2

for every geometrical limiting measure µgeo on G2(M). We observe that (16)
holds for every h ∈ N, and that the constant on the right hand side does
not depend on h. Define q = C1

C2
, and note that q only depends on M. Then

(16) implies
µgeo(Hh) ≤ 1− q.

Since Hh is an increasing sequence of sets, we have

µgeo(H) ≤ lim
h→∞

µgeo(Hh) ≤ 1− q.

Thus, q ≤ |µgeoL |, and the proof is complete.
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4. Genera of geometrically random surfaces I

The proof of Lemma 3.2 occupies Sections 4 to 7. The proof is carried
out in Section 5, by combining two contrasting statements:

• Proposition 5.1, which gives an upper bound on the rate of growth of
the complement of Sϵ(T,C), and easily follows from Kahn–Marković’s
upper bound [8];

• and Proposition 5.2, which gives a lower bound on the rate of growth
of Sϵ(T,C) itself. We obtain this bound in Section 6, just by counting
the covers of a single element of Sϵ(T0, C) (using Müller–Puchta’s lower
bound [15]).

However, this last argument relies on Sϵ(T,C) being nonempty:

Proposition 4.1. There exists a universal constant C > 0 such that for
each small enough ϵ there exists T = T (ϵ) so that Sϵ(T,C) ̸= ∅.

The goal of this section is to prove Proposition 4.1. To do so, we need to
construct a surface satisfying the defining inequality (2) of Sϵ(T,C). This
is done in two steps:

• First, we use a recent result of Rao [16] to reduce it to the simpler
problem of finding a “model” surface that satisfies (a stronger version
of) that inequality, but which exists independently of M.

• The existence of such a “model surface” is the content of Proposi-
tion 4.2. We construct it in Section 7, essentially by hand.

4.1. The model quasifuchsian manifold. Recall that a quasifuchsian 3-
manifold is K-quasifuchsian if its limit set is a K-quasicircle. The following
proposition is proved in Section 7.

Proposition 4.2. There exists a universal constant C > 0 with the following
property. For every small enough ϵ > 0 there exists a (1 + ϵ)-quasifuchsian
manifold N of genus two such that

(17) T ≤ 4π

1 + Cϵ2
,

where T is the area of the minimal surface homotopic to N .

4.2. Rao’s theorem. In [16] Rao proved a version of the Ehrenpreis con-
jecture for quasifuchsian manifolds of genus two. We state it in a form that
is convenient for our purposes.

Theorem 4.3. Let M be a closed 3-manifold, and let η > 0. Then given
any quasifuchsian 3-manifold N0 of genus two, we can find:

• a finite cover N → N0,

• a map F : N → M which is locally (1 + η)-bilipschitz.



RANDOM SURFACES 15

4.3. Proof of Proposition 4.1. Let N0 be the quasifuchsian manifold,
and C0 the constant, from Proposition 4.2. We choose N0 so it is a (1 + ϵ

2)-
quasifuchsian manifold. Let g0 : R0 → N0 be the minimal surface homotopy
equivalent to N0 (here R0 is a Riemann surface of genus two). Then from
(17) we get

(18) AreaM(g0(R0)) ≤
4π

1 + C0ϵ2
.

Set η = ϵ3. We apply Theorem 4.3 and get the corresponding finite cover
N → N0, and the (1+η)-bilipschitz map F : N → M. Let g : R→ N be the
lift of the map g0 : R0 → N0, where R is the corresponding cover R → R0.
Then g : R→ N is the minimal surface homotopy equivalent to N , and from
(18) we get

(19) AreaM(g(R)) ≤ 4π(g(R)− 1)

1 + C0ϵ2
.

On the other hand, consider the composition F ◦ g : R → M. Note that
the quasifuchsian group (F ◦ g)∗ : π1(R) → π1(M) is (1 + ϵ)-quasifuchsian
when η is small enough. Moreover, since F is (1 + η)-bilipschitz we have

AreaM
(
(F ◦ g)(R)

)
≤ (1 + η)2Area(g(R)).

Combining this with (19) we get

(20) AreaM
(
(F ◦ g)(R)

)
≤ (1 + η)2

4π(g(R)− 1)

1 + C0ϵ2
.

Since η = ϵ3 we get

(1 + η)2

1 + C0ϵ2
=

(1 + ϵ3)2

1 + C0ϵ2
≤ 1

1 + C1ϵ2

when ϵ is small enough and C1 =
C0
2 . Replacing this into (20) gives

AreaM
(
(F ◦ g)(R)

)
≤ 4π(g(R)− 1)

1 + C1ϵ2
.

Let Σ be the homotopy class of F ◦ g : R → M. Since AreaM(Σ) ≤
AreaM

(
(F ◦ g)(R)

)
, we get

AreaM(Σ) ≤ 4π(g(Σ)− 1)

1 + C1ϵ2
.

Thus, Σ ∈ Sϵ(T,C1), and the proposition is proved.

5. Genera of geometrically random surfaces II

In this section we prove Lemma 3.2 assuming the following two proposi-
tions which we prove in the next section.
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Proposition 5.1. There exists a constant α > 0 such that for every C > 0
the inequality

|Sϵ(T )| − |Sϵ(T,C)| ≤ (αr)2r

holds, where

r = r(T,C) =
(1 + Cϵ2)T

4π
+ 2.

Proposition 5.2. There exist constants β,C0 > 0 such that for every ϵ
small enough there exists T0 = T0(ϵ) so that the inequality

(βs)2s ≤ |Sϵ(T,C0)|
holds for every large enough T . Here

s = s(T,C0) =
(1 + C0ϵ

2)(T − T0)

4π
.

5.1. Proof of Lemma 3.2. Let 0 < C1 < C0, where C0 is the constant
from Proposition 5.2. In the remainder of the proof we show

(21) lim
T→∞

|Sϵ

(
T,C1

)
|

|Sϵ(T )|
= 1

which proves the lemma.
We have

(22)
|Sϵ(T )| − |Sϵ(T,C1)|

|Sϵ(T )|
≤ (αr)2r

(βs)2s

where we used the above propositions to estimate the numerator and de-
nominator respectively. Here r = r(T,C1), and s = s(T,C0). Replacing the
values of r(T,C1) and s(T,C0) from the statements of the propositions, we
get

lim
T→∞

r(T,C1)

s(T,C0)
=

(1 + C1ϵ
2)

(1 + C0ϵ2)
< 1

because C1 < C0. But this implies that the right hand side of the inequality
(22) tends to 0 when T → ∞ which proves (21).

6. Genera of geometrically random surfaces III

We prove the two propositions from the previous section.

6.1. Proof of Proposition 5.1. The proof is based on the counting result
by Kahn-Marković [8] which states that there exists α > 0 such that the
number of homotopy classes of all surfaces of genus at most g in M is
smaller than (αg)2g. In particular this enables us to bound the number of
ϵ-quasifuchsian surfaces of genus at most g. That is, we have

(23) |Sϵ(g)| ≤ (αg)2g,

where we recall that Sϵ(g) is the set of classes in Sϵ of genus at most g.
Now, from the definition of the set Sϵ(T,C) we derive the inclusion

(Sϵ(T ) \ Sϵ(T,C)) ⊂ Sϵ(g)
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where

g =

⌈
(1 + Cϵ2)T

4π

⌉
+ 1 ≤ (1 + Cϵ2)T

4π
+ 2 = r(T,C).

Combining this with (23) yields

|Sϵ(T )| − |Sϵ(T,C)| ≤ |Sϵ(g)| ≤ (αg)2g ≤ (αr)2r,

which proves the proposition.

6.2. Proof of Proposition 5.2. The proof of this proposition is based on
Proposition 4.1 and the counting result by Müller-Puchta [15] (see also [8])
that the number of different degree n covers of a closed hyperbolic surface
is at least (βgn)

2gn , for every n large enough, and for some β > 0 depending
on the surface. Here gn denotes the genus of the covering surface of degree
n.

Fix ϵ which is small enough so that Proposition 4.1 holds. Let Σ0 ∈
Sϵ(T0), where T0 = T (ϵ), denote the class from Proposition 4.1. From the
definition of Sϵ(T0, C0) we get

(24)
(1 + C0ϵ

2)T0
4π

+ 1 ≤ g(Σ0)

where C0 is the constant from Proposition 4.1.
Let Σ be a degree n cover of Σ0. Then Σ ∈ Sϵ(nT0, C0), and the genus

of Σ is given by g(Σ) = n(g(Σ0)− 1) + 1. Therefore by Müller-Puchta, for
large n we have

(25) (βgn)
2gn ≤ |Sϵ(nT0, C0)|

where gn = n(g(Σ0)− 1) + 1.
Let T be large, and n an integer such that nT0 ≤ T ≤ (n + 1)T0. Then

from (25) we get

(26) (βgn)
2gn ≤ |Sϵ(nT0, C0)| ≤ |Sϵ(T,C0)|.

From (24) we find

(1 + C0ϵ
2)nT0

4π
≤ n

(
g(Σ0)− 1

)
= gn − 1,

implying that

s(T,C0) =
(1 + C0ϵ

2)(T − T0)

4π
≤ (1 + C0ϵ

2)nT0
4π

≤ gn

where we used the fact that T − T0 ≤ nT0. Replacing this into (26) proves
the proposition.

7. The model quasifuchsian manifold of genus two

In this section we construct the model quasifuchsian manifold from Propo-
sition 4.2.
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7.1. Complex earthquakes. Let R denote a hyperbolic Riemann surface
and suppose (Λ, µ) is a measured lamination. This means that Λ is a lami-
nation on R, and µ a complex valued transverse measure. Let G < Isom(H2)
be the Fuchsian group such that R ≈ H2/G. Recall the complex earthquake
developing map E(Λ,µ) : H2 → H3. This map is equivariant with respect to

G, and it induces a homomorphism e : G→ Isom(H3).
The norm ||µ|| is the supremum of the total measure of |µ| over all trans-

verse intervals of length one. Assuming ||µ|| is small enough, it follows
that the homomorphism e : G → Isom(H3) is quasifuchsian, that is the im-
age group e(G) is quasifuchsian. The following quantitative version of this
claim is well known (for example, see Lemma 4.14 in [5]).

Theorem 7.1. There exist universal constants C, a > 0 such that the group
e(G) is (1 + C||µ||)-quasifuchsian when ||µ|| ≤ a. Here R is any hyperbolic
surface, and (Λ, µ) any measured lamination on R.

7.2. Bending along a closed geodesic. Now fix some closed Riemann
surface of genus two. We name it R. Fix a simple closed geodesic γ ⊂ R,
and let Λ be the lamination whose only leaf is γ. Given t > 0, we let µt
be the transverse measure on Λ whose weight on γ is equal to ti (here i is
the imaginary unit). By et : G → Isom(H3) we denote the corresponding
homomorphism induced by the measured lamination (Λ, µt).

Let D1 = ||µ1||. Then ||µt|| = tD1. From Theorem 7.1 we get that when
t is small enough, the group et(G) is a (1 + C1D1t)-quasifuchsian group of
genus two (here C1 denotes the constant from Theorem 7.1). Let Nt denote
the quasifuchsian manifold corresponding to et(G). We have proved the
following claim.

Claim 7.2. There exists a constant C > 0 such that the quasifuchsian
manifold Nt is a (1 + Ct)-quasifuchsian manifold.

It remains to estimate the area of the minimal surface homotopic to Nt.

7.3. The area of the minimal surface in Nt. To prove Proposition 4.2
we need to find a suitable upper bound on the area of the minimal surface in
Nt. We obtain such a bound by producing an explicit surface (not necessarily
minimal) homotopic to Nt, and estimating its area from above.

One obvious surface homotopic to Nt is the pleated surface Rt ⊂ Nt.
Let Et : R → Nt be the induced pleating map. The map Et is locally an
isometry, except at γ where it bends the surface R by the angle t. Set
Et(R) = Rt. Then the area of Rt is given by

(27) AreaNt(Rt) = 4π.

Therefore, to prove the lemma we need to find a surface of smaller area than
Rt. We do that by bevelling the surface Rt near the geodesic Et(γ) ⊂ Nt.

Fix α, β ⊂ R which are equidistant, and embedded, lines either side of
the geodesic γ. By U ⊂ R we denote the annulus (embedded in R) bounded
by α and β. The annulus U is foliated by geodesic segments {sx}x∈γ , where



RANDOM SURFACES 19

Et(sx)

Ft(sx) = rx,t

Et(γ)

Et(α) = Ft(α) Et(β) = Ft(β)

t

Et(x)

Figure 2. The hyperbolic bevel Ft(U) associated to the hy-
perbolic dihedral angle Et(U).

each sx intersects γ orthogonally at x, and the endpoints of sx are on α and
β respectively.

Define a new map Ft : R → Nt as follows. We let Ft = Et away from the
annulus U . On U , we define Ft so it maps the segment sx onto the geodesic
segment rx,t which has the same endpoints as the piecewise geodesic arc
Et(sx). Let St = Ft(R). We show that the area of St admits the required
upper bound.

Let Vt = Ft(U). Then Vt is a hyperbolic bevel which is placed to make a
triangular shape together with the sloping surface Et(U) (see Figure 2). Let

d0 = |sx|
2 , and dt =

|rx,t|
2 (obviously d0 and dt do not depend on the choice

of x ∈ γ). From the hyperbolic law of sines we compute

(28) sinh(dt) = cos

(
t

2

)
sinh(d0).

Moreover, using elementary hyperbolic geometry we compute the hyperbolic
areas of U and Vt, and get
(29)
AreaM

(
Et(U)

)
= 2|γ| sinh(d0), AreaNt(Vt) = 2|γ| tanh(dt) cosh(d0).

We have

AreaNt(St) = AreaNt(Rt)− (AreaM
(
Et(U)

)
−AreaNt(Vt))

= 4π − 2|γ|
(
sinh(d0)− tanh(dt) cosh(d0)

)
= 4π

(
1− C1

(
1− tanh(dt) coth(d0)

))
where C1 =

2|γ| sinh(d0)
4π . Then

AreaNt(St) ≤
4π

1 + C1

(
1− tanh(dt) coth(d0)

) .
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But from (28) we derive dt ≤ d0 − C2t
2 for some C2 > 0, which gives

C3t
2 ≤ (1− tanh(dt) coth(d0)) for some C3 > 0. Thus,

AreaNt(St) ≤
4π

1 + C1C3t2
.

Therefore we have proved the following claim (note that the minimal surface
homotopy equivalent to Nt minimises the area in its homotopy class).

Claim 7.3. There exists a constant C > 0 such that if Tt denotes the area
of the minimal surface homotopic to Nt, then for every small enough t we
have

Tt ≤
4π

1 + Ct2
.

Combining this with Claim 7.2 proves Proposition 4.2.

8. Local and global properties of minimal maps

The proof of Lemma 3.3 occupies Sections 8 to 11. We roughly outline
the idea of the proof. As usual, f : S → M denotes an ϵ-nearly geodesic
minimal surface. The application of the Gauss-Bonnet formula yields

4π(g(S)− 1) =

∫
S

(1 + λ2(x)) dAσ ≤

1 +
2

|S|

∫
S

λ2(x) dA

T,

where T is the area of the minimal surface f(S), and λ(x) the principal
curvature at the point f(x). Thus, to prove the lemma it suffices to prove
the bound

(30)
2

|S|

∫
S

λ2(x) dA ≤ C

(
1− |S(δ1(h), h))|

|S|

)
ϵ2.

The two main ingredients in proving this bound are as follows:

• Seppi’s universality estimate |λ(x)| ≤ C1ϵ (see Theorem 8.1 below).

• Each connected component of S(δ1(h), h) has a rigid convex core Ω (see
Definition 10.1 below). This implies that for x ∈ int(Ω) the relation
|λ(x)| = o(1)ϵ holds, where o(1) → 0 when dS(x, ∂Ω) → ∞.

The purpose of the next three sections is to prove Lemma 10.2 which esti-
mates the integral of λ2 over rigid subsurfaces. The proof of Lemma 3.3 is
completed in Section 11.

8.1. Global bound on principal curvatures. Let f : S → M be an ϵ-

nearly geodesic minimal surface. By f̃ : H2 → H3 we denote its lift (here
we identify H2 and H3 with the universal covers of S and M respectively).

Clearly f̃ is a quasiisometry (because it is a developing map of a quasifuch-
sian representation). But we need a more quantitative version of this which
we derive first. Then we recall the basic properties of the distance function

between S̃ and any totally geodesic plane P ⊂ H3. These results are used
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in the next two sections where we obtain an upper bound on the principal
curvature of S on its subsurfaces which are rigid.

Let λ : S → [0,∞) be the non-negative eigenvalue of the shape operator
corresponding to the minimal map f : S → M. The significance of the
function λ is that the principal curvatures of a minimal surface f(S) at the
point f(x) are equal to λ(x) and −λ(x) respectively. The following global
estimate was shown by Seppi [18].

Theorem 8.1. There exists a universal constant C such that

(31) ||λ||∞ ≤ Cϵ

for every ϵ-nearly geodesic minimal surface f : S → M when ϵ is small
enough.

The first corollary we derive from this theorem concerns the quasigeodesic

properties of the minimal map f̃ .

Proposition 8.2. There exists a constant C > 0 such that if α ⊂ H2

is any geodesic, and β ⊂ H3 the geodesic with the same endpoints as the

quasigeodesic f̃(α), then f̃(α) ⊂ NCϵ(β).

Proof. Let x ∈ α. Then the infinitesimal bending of the curve f̃(α) at the

point f̃(x) is bounded above by the maximum of principal curvatures at

f̃(x) which is equal to λ(x). Let C1 denote the constant from Theorem

8.1. Then the infinitesimal bending of the curve f̃(α) at all of its points is
bounded above by C1ϵ.

Let g : α → f̃(α) be the path-length reparametrization of the quasi-

geodesic f̃(α). From Lemma 4.4 in [5] we conclude that g(α) ⊂ NC2ϵ(β)
which proves the proposition. □

8.2. The induced metric on S. Denote by σ2(z)|dz|2 the conformal met-
ric on S obtained by pulling back the hyperbolic metric from M by the
minimal map f (here z is a local complex parameter on S). The Gauss
curvature of this metric σ is equal to −(1 + λ2). Let ρ2(z)|dz|2 denote the
density of the hyperbolic metric on S. Recall the Ahlfors estimate:

(32)
ρ2(z)

1 + λ2(x)
≤ σ2(x) ≤ ρ2(z).

The following is an immediate corollary of (32).

Proposition 8.3. Let ϕ : H2 → R be any function, and let ∇σϕ and ∆σϕ
denote respectively the gradient and the laplacian of ϕ with respect to the lift
of the metric σ to H2. Then

|∇ϕ| ≤ |∇σϕ| ≤ 2|∇ϕ|,
and

|∆ϕ| ≤ |∆σϕ| ≤ 2|∆ϕ|,
assuming ϵ is small enough.
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Remark 10. Here, and in the rest of the paper, ∇ϕ, ∆ϕ denote the gradient
and the laplacian of ϕ with respect to the hyperbolic metric.

8.3. The distance function. Seppi also obtained local estimates on λ
which we utilise below. Let P ⊂ H3 be a geodesic plane and define the
function u : H2 → R by

(33) u(x) = sinh(dM(f̃(x), P )).

Here dM(f̃(x), P ) is the signed distance from the point f̃(x) to the plane
P . A significant property of minimal surfaces is that the distance function
u satisfies the second order elliptic PDE

(34) ∆σu = 2u

on H2 (for example see [18]).
For a function ϕ : H2 → R, we let

||ϕ||C0(Br(x)) = max{|ϕ(y)| : y ∈ Br(x)}.
The following local estimates were established in [18] by applying the stan-
dard Schauder theory to the formula (34).

Proposition 8.4. There exists a constant C > 0 such that for every x ∈ H2

the inequalities
|∇u(x)| ≤ C||u||C0(B1(x)),

and

λ(x) ≤
C||u||C0(B1(x))√

1− C||u2||C0(B1(x))

,

hold when ϵ is small enough.

Remark 11. Cleary, the second estimate makes sense only when ||u||C0(B1(x))

is small enough so that C||u2||C0(B1(x)) < 1.

Proof. The first estimate is a special case of the formula (27) in [18], while
the second one is the estimate (32) from [18]. □

9. An auxiliary function

The purpose of this section is to establish some basic properties of the
auxiliary function v : H2 → [0,∞) defined as the averaging of the square of
the distance function u from the previous section. The auxiliary function v
is used in the proof of Lemma 10.2 in the next section.

9.1. The square of the distance function. With a view towards appli-
cations that follow, we consider the square u2. The advantage of considering
the function u2 is that it is non-negative and subharmonic.

Proposition 9.1. The inequality

(35) 0 ≤ u2 ≤ ∆u2

holds on H2.
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Proof. Computing the laplacian of u2 in terms of the function u yields the
inequality

2u∆σu ≤ ∆σu
2,

which together with (34) yields the estimate

4u2 ≤ ∆σu
2.

Applying Proposition 8.3 we get ∆σu
2 ≤ 2∆u2 when ϵ is small enough.

Replacing this in the previous displayed inequality proves that 2u2 ≤ ∆u2

which in turn proves the proposition. □

The fact that u2 is subharmonic enables us to control the (local) supre-
mum norm of u2 in terms of its (local) L1 norm.

Proposition 9.2. For every x ∈ H2, the inequality

(36) ||u2||C0(B1(x)) ≤
∫

B2(x)

u2(y) dA

holds, where dA is the hyperbolic area form.

Proof. Let y ∈ B1(x). Since ∆u2 ≥ 0, the Mean Value Theorem yields the
estimate

u2(y) ≤ 1

|B1(y)|

∫
B1(y)

u2(z) dA(z).

From |B1(y)| > 1, we get

1

|B1(y)|

∫
B1(y)

u2(z) dA(z) ≤
∫

B1(y)

u2(z) dA(z) ≤
∫

B2(x)

u2(z) dA(z),

where in the last inequality we used the fact thatB1(y) ⊂ B2(x) for every y ∈
B1(x). This together with the mean value estimate proves the proposition.

□

On the other hand, computing ∇u2 in terms of u, and applying Proposi-
tion 8.4, yields the following proposition.

Proposition 9.3. There exist constants C, η > 0 such that assuming ϵ is
small enough, for every x ∈ H2 the inequality

(37) |∇u2(x)| ≤ C||u2||C0(B1(x))

holds. Moreover, if ||u2||C0(B1(x)) < η, then

(38) λ2(x) ≤ C||u2||C0(B1(x)).

Proof. Let C1 be the constant from Proposition 8.4. Since ∇u2 = 2u∇u, it
follows that (37) holds for C = 2C2

1 . On the other hand, if ||u2||C0(B1(x)) <
1

4C2
1
, then (38) follows from the second inequality in Proposition 8.4 by

letting C = 2C2
1 . Thus, the proposition holds for C = 2C2

1 , and η = 1
4C2

1
.

□
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9.2. The averaging function and its properties. For x ∈ H2, we set

v(x) =

∫
B2(x)

u2(y) dA(y).

The following propositions list important properties of the function v.

Proposition 9.4. The inequality

(39) 0 ≤ v ≤ ∆v

holds on H2.

Proof. Since the hyperbolic laplacian ∆ is invariant under the isometries of
H2 it follows that ∫

B2(x)

∆u2(y) dA = ∆v(x).

Combining this with Proposition 9.1 yields (39). □

Proposition 9.5. There exists C > 0 such that

(40) |∇v(x)| ≤ C||u2||C0(B3(x))

for every x ∈ H2 assuming ϵ is small enough.

Proof. Let x1 ∈ H2 be such that dH2(x, x1) < 1. We can choose an isometry
Q of H2 such that Q(x) = x1, and so that

(41) max
y∈B2(x)

dH2(y,Q(y)) ≤ LdH2(x, x1)

for some universal constant L > 0. Then

|v(x1)− v(x)| ≤
∫

B2(x)

|u2(Q(y))− u2(y)| dA(y)

≤ (1 + o(1))

∫
B2(x)

|∇u2(y)|dH2(Q(y), y) dA(y),

where o(1) → 0 when x1 → x. Combining this with (41) gives

|v(x1)− v(x)|
d(x, x1)

≤ L

∫
B2(x)

|∇u2(y)| dA(y),

which yields
|∇v(x)| ≤ L max

y∈B2(x)
|∇u2(y)|.

Combining this with (37) proves (39). □

Proposition 9.6. There exist C, η > 0 such that when ϵ is small enough
the estimate

(42) λ2(x) ≤ Cv(x)

holds for every x ∈ H2 assuming ||u2||C0(B1(x)) < η.
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Proof. Applying first (38), and then (36), we get

λ2(x) ≤ C||u2||C0(B1(x)) ≤ C

∫
B2(x)

u2(y) dA = Cv(x),

which proves (42).
□

10. Rigid subsurfaces of a minimal surface

Let Ω ⊂ S be a subsurface with geodesic boundary. In this section we
show that if the lift of f(Ω) to H3 is closely aligned with a geodesic plane
P ⊂ H3, then the size of the integral of the principal curvature is controlled
by the length of the boundary of Ω. This is the content of Lemma 10.2
which plays the key part in the proof of Lemma 3.3.

Definition 10.1. Let f : S → M be a minimal map, and Ω ⊂ S an essential
subsurface with geodesic boundary. We say that Ω is f -rigid if

• there exists D > 0,

• there exists a geodesic plane P ⊂ H3,

such that dM(f̃(x), P ) < D for every point x ∈ Ω̃. Here Ω̃ is a connected
component of the lift of Ω to the universal cover H2.

Lemma 10.2. There exists C > 0 such that for every ϵ-nearly geodesic
subsurface the estimate

(43)

∫
Ω

λ2 dA ≤ C|∂Ω|ϵ2

holds providing that Ω is f -rigid, and ϵ is small enough.

10.1. Rigid subsurfaces are ϵ rigid. In Definition 10.1 we assume that

the minimal subsurface f̃(Ω̃) is D away from a geodesic plane P . The
purpose of this subsection is to promote D to ϵ, meaning that if we assume

that f̃(Ω̃) is D away from P , then it is actually Cϵ away from P .
Let G < π1(S) be a subgroup corresponding to the subsurface Ω ⊂ S.

Then f∗(G) < π1(M) < PSL(2,C). Let Ω̃ be the component of the lift
of Ω which is invariant under f∗(G). Since Ω is f -rigid, it follows that the
plane P is invariant under the group f∗(G). This implies that the function

u : Ω̃ → R defined by (33) is equivariant and therefore well defined on Ω.

Proposition 10.3. There exists C > 0 such that

(44) ||u2||C0(Ω) ≤ Cϵ2

when ϵ is small enough.

Proof. Since Ω is a subsurface with geodesic boundary, it follows that Ω is
equal to its convex core. Suppose first that α is a geodesic which is entirely

contained in Ω̃. Let β ⊂ H3 be the geodesic with the same endpoints as
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f̃(α). Since Ω is f -rigid it follows that β is a finite distance away from
the plane P . But then β ⊂ P since P is a geodesic plane. On the other
hand, from Proposition 8.2 we have that dM(f(α), β) ≤ C1ϵ, where C1 is
the constant from Proposition 8.2. Therefore, we derived the inequality

dM(f(x), P ) ≤ C1ϵ

for every x ∈ α. But sinh(C1ϵ) ≤ 2C1ϵ for ϵ small enough. Thus, the
inequality

|u2(x)| ≤ Cϵ2, x ∈ α,

holds for C = 4C2
1 . Note that ∂Ω̃ consists of geodesics which are entirely

contained in Ω̃. Thus, we get

|u2(x)| ≤ Cϵ2, x ∈ ∂Ω̃.

On the other hand, we know that u2 is subharmonic. Since Ω is f -rigid we

know that u2 is a bounded function on Ω̃. Therefore, (44) follows from the
last inequality and the generalised maximum principle.

□

10.2. Proof of Lemma 10.2. We start by defining

Ω′ = {x ∈ Ω : dΩ(x, ∂Ω) ≥ 3}.
Observe that there exists a universal constant L such that

(45) |Ω \ Ω′| ≤ L|∂Ω|,
and

(46) |∂Ω′| ≤ L|∂Ω|.
Furthermore, without loss of generality we may assume that ∂Ω′ is a union
of finitely many smooth curves (the point is that Ω′ can be approximated
by such domains).

We first estimate the integral on the left hand side of (43) over Ω \ Ω′.
Let C0 be the constant from Theorem 8.1. Then from (45) we get

(47)

∫
Ω\Ω′

λ2 dA ≤ C0|Ω \ Ω′|ϵ2 ≤ C0L|∂Ω|ϵ2.

It remains to estimate this integral over Ω′ which we do in the remainder of
the proof.

Let n be the inward-pointing unit normal vector field on the boundary
∂Ω′. Green’s formula gives

(48)

∫
Ω′

∆v dA =

∫
∂Ω′

∂v

∂n
dl,

where dl is the hyperbolic length form.
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Firstly, let C1, and η1, be the constants from Proposition 9.6. When
x ∈ Ω′, then B1(x) ⊂ Ω. Thus, by (44) the inequality

||u2||C0(Ω) ≤ η1

holds when ϵ is small enough. Then from Proposition 9.6 we derive the
inequality

(49) λ2(x) ≤ C1v(x), x ∈ Ω′.

Combining this with the fact that v ≤ ∆v, we obtain the inequality

(50)

∫
Ω′

λ2 dA ≤ C1

∫
Ω′

∆v dA

assuming ϵ is small enough.
On the other hand, let C2 be the constant from Proposition 9.5. Then∫

∂Ω′

∂v

∂n
dl ≤

∫
∂Ω′

|∇v| dl ≤ max
x∈∂Ω′

|∇v(x)||∂Ω′|

(51)

≤ C2||u2||C0(Ω)|∂Ω′| ≤ C2C3|∂Ω′|ϵ2

where C3 is the constant from Proposition 10.3. Replacing (50) and (51) in
the Green’s formula (48) proves∫

Ω′

λ2 dA ≤ C1C2C3|∂Ω′|ϵ2 ≤ LC1C2C3|∂Ω|ϵ2

where we applied (46) in the last inequality. Together with (47) this gives∫
Ω

λ2 dA ≤ L(C0 + C1C2C3)|∂Ω′|ϵ2.

This proves the lemma by letting C = L(C0 + C1C2C3).

11. Proof of Lemma 3.3

11.1. Smoothing out the boundary of S(δ1(h), h). In the remainder of
this section we fix h ∈ N. To alleviate the notation we let δ0 = δ0(h),
δ1 = δ1(h), and ϵ0 = ϵ0(h) (see Remark 7).

Proposition 11.1. Let f : S → M be any ϵ-nearly geodesic minimal surface.
There exists a (possibly disconnected) subsurface R ⊂ S (with piecewise
smooth boundary) with the following properties:

(1) S(δ1, h) ⊂ R ⊂ S(δ0, h),

(2) |∂R| ≤ 25
(
|S| − |S(δ1, h)|

)
,

assuming ϵ < ϵ0.



28 KAHN, MARKOVIĆ, AND SMILGA

Proof. We apply Lemma 2.7 to S(δ0, h) to obtain R such that

S(δ1, h) ⊂ R ⊂ N1(S(δ1, h)) ⊂ S(δ0, h),

and

|∂R| ≤ 25|N1(∂S(δ0, h))| ≤ 25
(
|S| − |S(δ1, h)|

)
. □

11.2. The endgame. Let R1, ..., Rk be the connected components of R. By
Ωi ⊂ S we denote the convex core of Ri. In other words, Ωi is the subsurface
whose boundary curves are geodesics homotopic to the homotopically non-
trivial components of ∂Ri.

Proposition 11.2. Each Ωi is f -rigid.

Proof. Let R̃i be a component of the lift of Ri to H2. Then there exists a

component Ω̃i of the lift of Ω such that every point on Ω̃i is at most distance

D1 > 0 away from R̃i. On the other hand, since Ri ⊂ S(δ0, h) it follows from

Proposition 2.1 that for each point p ∈ R̃i there exists a unique connected

component of H̃ which is δ0 away from f̃(x). Since R̃i is connected, this

component is the same for all x ∈ R̃i, and we conclude that there exists

a geodesic plane Pi ⊂ H3 such that every point on R̃i is δ0 away from Pi.

Thus, every point on Ω̃i is (D1 + δ0) away from Pi and we are done. □

We apply the Gauss-Bonnet formula and get

4π(g(S)− 1) =

∫
S

(1 + λ2(x)) dAσ =

∫
S

dAσ +

∫
S

λ2(x) dAσ ≤

(52)

≤ Areaσ(S)

1 +
2

|S|

∫
S

λ2(x) dA

 ,

where in the last inequality we used the inequality (32) which implies that
1
2dA ≤ dAσ ≤ dA when ϵ is small enough. It remains to find a suitable
upper bound for the last term in (52).

Let C1 and C2 be the constants from Lemma 10.2 and Theorem 8.1 re-
spectively. Then∫

S

λ2(x) dA =

k∑
i=1

∫
Ωi

λ2(x) dA+

∫
S\Ω

λ2(x) dA

≤ C1

k∑
i=1

|∂Ωi|ϵ2 + C2
2 |S \ Ω|ϵ2
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where Ω = Ω1 ∪ · · · ∪ Ωk. Since
∑k

i=1 |∂Ωi| ≤ |∂R|, from the previous
inequality we get∫

S

λ2(x) dA ≤ C1|∂R|ϵ2 + C2
2

(
|S| − |Ω|

)
ϵ2

≤ C1|∂R|ϵ2 + C2
2

(
(|S| − |R|) +

∣∣|R| − |Ω|
∣∣) ϵ2

≤ C1|∂R|ϵ2 + C2
2 ((|S| − |S(δ1, h)|) + |∂R|) ϵ2,

where in the last inequality we used the fact that S(δ1, h) ⊂ R, and also
Proposition 2.12 to estimate

∣∣|R| − |Ω|
∣∣.

Let C3 = 25 be the constant from Proposition 11.1. We now use the
estimate |∂R| ≤ C3(|S| − |S(δ1, h)|), and get∫
S

λ2(x) dA ≤ C1C3

(
|S| − |S(δ1, h)|

)
ϵ2 + C2

2

((
|S| − |S(δ1, h)|

)
+ C3

(
|S| − |S(δ1, h)|

))
ϵ2

=
(
C1C3 + C2

2 + C2
2C3

)(
|S| − |S(δ1, h)|

)
ϵ2.

Thus,
1

|S|

∫
S

λ2(x) dA ≤ C4

(
1− |S(δ1, h)|

|S|

)
ϵ2.

Replacing this back into (52) we get

4π(g(S)− 1) ≤ Areaσ(S)

(
1 + 2C4

(
1− |S(δ1, h)|

|S|

)
ϵ2
)
,

and the lemma is proved.

12. The proof of Theorem 1.8

We start by defining the set of minimal surfaces which have a definite
part of their area located outside a δ0 ≡ δ0(h) neighbourhood of the locus
Hh of totally geodesic surfaces of genus at most h. (We remind the reader
that δ0 was defined in Section 2.3.)

We remind the reader of our standing assumption that ϵ ≤ ϵ̂, where
ϵ̂ > 0 is the universal constant from Proposition 1.2. This ensures that each
conjugacy class Σ ∈ Sϵ corresponds to a unique minimal surface.

To simplify our constructions we will work mostly with one genus at a
time; accordingly we let Sϵ(g) ⊂ Sϵ(g) be the surfaces with exactly genus g,
so that

Sϵ(g) =
⋃
g≤g

Sϵ(g).

The reader should not be overly concerned with this abuse of notation,
because after this section we will talk only about Sϵ(g).

Definition 12.1. Let 0 ≤ q ≤ 1. We say Σ ∈ Sϵ(g, h, q) ⊂ Sϵ(g) if

|S(δ0, h)|
|S| ≤ 1− q



30 KAHN, MARKOVIĆ, AND SMILGA

where f : S → M is the ϵ-nearly geodesic minimal map representing the class
Σ.

We also define Sϵ(g, h, q) in analogy to Sϵ(g), so that

Sϵ(g, h, q) =
⋃
g≤g

Sϵ(g, h, q).

In the remainder of this section we prove Theorem 1.8 assuming the fol-
lowing lemma, which will be proven in Section 14 after the introduction and
discussion in Section 13.

Lemma 12.2. For all q > 0 and c > 0, there exists h and ϵ0 = ϵ0(q, c) such
that

(53) lim
g→∞

|Sϵ(g, h, q)|
(cg)2g

= 0

for every ϵ < ϵ0.

The reader can easily verify that this implies the unboldfaced version:

Corollary 12.3. For all q > 0 and c > 0, there exists h and ϵ0 = ϵ0(q, c)
such that

(54) lim
g→∞

|Sϵ(g, h, q)|
(cg)2g

= 0

for every ϵ < ϵ0.

Combining Corollary 12.3 with the Müller-Puchta result we derive the
following proposition.

Proposition 12.4. For every 0 < q ≤ 1, there exists h such that we have

lim
g→∞

|Sϵ(g, h, q)|
|Sϵ(g)|

= 0,

when ϵ is small enough.

Proof. We are assuming (throughout the paper) that M contains a totally
geodesic surface; we denote by Σ0 ∈ Sϵ(g0) the corresponding conjugacy
class (here g0 = g(Σ0)). By the counting result by Müller-Puchta [15], there
exists β > 0 such that the number of different degree n covers of Σ0 is at
least (βgn)

2gn , where gn = (n(g0 − 1) + 1) is the genus of degree n covering
surface.

Suppose g is large, and let n be an integer such that gn ≤ g ≤ gn+1. Then

(βgn)
2gn ≤ |Sϵ(gn)| ≤ |Sϵ(g)|.

Since gn ≥ (g − g0), we derive the estimate

(55) (β(g − g0))
2(g−g0) ≤ |Sϵ(g)|.

Let c < β in Corollary 12.3. Then using (55) and (54), we get

lim sup
g→∞

|Sϵ(g, q)|
|Sϵ(g)|

≤ lim sup
g→∞

(cg)2g

(β(g − g0))2(g−g0)
= 0
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when ϵ < ϵ0(q, c). This proves the proposition. □

Let µtopϵ be an ϵ-topological limiting measure on G2(M). That is, there
exists a sequence gn → ∞ such that

µtopϵ = lim
gn→∞

1

|Sϵ(gn)|
∑

Σ∈Sϵ(gn)

µ(Σ)

(recall that µ(Σ) is the pushforward of the hyperbolic area measure from S

to G2(M)). Let µtop be a limit of the µtopϵ as ϵ→ 0. We then have

µtop = µH + µL

where µH is supported in H, and µL is a multiple of the Liouville measure.
We will assume that µL is nonzero and obtain a contradiction.

We choose q = |µL|/4 and choose h > 0 to satisfy Propostion 12.4 with
this value of q.

We set

Ŝϵ(gn, h, q) = Sϵ(gn) \ Sϵ(gn, h, q).

Then from Proposition 12.4 we conclude that

(56) µtopϵ = lim
gn→∞

1

|Ŝϵ(gn, h, q)|
∑

Σ∈Ŝϵ(gn,h,q)

µ(Σ).

Let Σ ∈ Ŝϵ(gn, h, q), and denote by f : S → M the minimal surface repre-
senting Σ. Then

(57) 1− q ≤ |S(δ0, h)|
|S| .

The inequality (57) yields the estimate

1− q ≤ µ(Σ)
(
Nδ0(H)

)
for every Σ ∈ Ŝϵ(gn, h, q). Combining this with (56) gives the estimate

1− q ≤ µtopϵ (Nδ0(H))

for every ϵ-topological limiting measure on G2(M). In turn, this shows that

(58) 1− q ≤ µtop(Nδ0(H))

for every topological limiting measure µtop on G2(M).
On the other hand, by the first property of δ in Propostion 2.1, taking

our particular limiting measure µtop = µH + µL, we have

µtop
(
H \Nδ0(H)

)
≥ µL

(
G2(M) \ Nδ0(H)

)
≥ 1

2
µL(G2(M)) = 2q > q.

This and (58) are a contradiction.
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13. From geometry to combinatorial data

In this section we describe a set of allowable combinatorial data records,
such that for any ϵ-nearly geodesic f : S → M, we can produce such a data
record, and also reconstruct f from the data. This reduces the upper bound
on S(ϵ,g, h) to an upper bound on the number of allowable data records,
and this bound is provided in Section 14.

13.1. The original construction and count. We begin with a summary
of the proof of the upper bound in [8]. While there is nothing mathematically
new in this subsection, it contains lemmas and definitions that will be used
in the remainder of the paper.

In the setting of [8], we also have a closed hyperbolic 3-manifold M, and
we let S(g) denote the set of conjugacy classes of genus g surface subgroups
of π1(M). We say that a π1-injective map f : S → g represents Σ ∈ S(g)
if Σ = [f∗π1(S)] (where [f ] is the homotopy class of f), and observe that
for each Σ ∈ S(g), there is a closed hyperbolic surface S of genus g and a
pleated surface (and hence 1-Lipshitz) map f : S → M that represents Σ.

The upper bound in [8] then goes as follows.

Theorem 13.1. There exists C = C(M) such that |S(g)| ≤ (Cg)2g.

To prove Theorem 13.1, we begin by proving the following theorem, which
appears as (or follows immediately from) Lemma 2.1 of [8]. Let rM denote
the injectivity radius of M.

Theorem 13.2. There exists an L ≡ L(rM) such that any closed hyperbolic
surface S of injectivity radius at least rM/2 has a geodesic triangulation such
that

• the edges have length at most min(1, rM/20),

• there are at most Lg(S) vertices

• each vertex has degree at most L, and

• there are no more than L vertices in any ball of radius 1 in S.

We will fix such an L ≡ L(rM) ≡ L(M) and call such a triangulation a
bounded geometry triangulation.

In Section 2.2 of [8] we also prove the following:

Lemma 13.3. Let S be a closed hyperbolic surface of genus g and let σ be
a graph embedded in S. Then we can find (τ̂ , e(τ)) where

(1) τ̂ is a spanning tree for σ,

(2) e(τ) is an additional set of 2g “distinguished” edges of σ, and

(3) the inclusion of τ̂ ∪ e(τ) into S is π1-surjective.

We call τ ≡ (τ̂ , e(τ)) an effective graph pair for S, and let τ = τ̂ ∪ e(τ).
We observe that Property 3 is implied by the inclusion being surjective on
H1, and implies that S \ τ is a union of disjoint polygons.
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We can now abstract out the properties of an effective graph pair of a
surface of genus g. We say that τ = (τ̂ , e(τ)) is an (abstract) graph pair if
τ̂ is an (abstract) tree, and e(τ) an additional set of edges whose endpoints
are vertices of τ̂ . We call τ̂ the spanning tree of τ , and e(τ) the distinguished
edges of τ , and let τ = τ̂ ∪ e(τ).
Definition 13.4. We say that a graph pair τ = (τ̂ , e(τ)) is a g-polygonalization
if:

(1) the set e(τ) has exactly 2g elements,

(2) the graph τ is equipped with a cyclic ordering of edges round each vertex,

(3) the ribbon graph R(τ) is a surface of genus g.

We furthermore say that a g-polygonalization τ is L-bounded if τ has at
most Lg vertices, and each vertex has degree at most L.

Remark 12. Recall that the ribbon graph R(τ) is obtained by thickening
the edges of the graph τ . In particular, R(τ) is a surface with (polygonal)
boundary; we can then add polygons to this boundary to form a closed
surface. So we can reconstruct our surface (with an effective graph pair)
from the abstract g-polygonalization. Moreover, if a g-polygonalization is
embedded into a closed surface of genus g (so as to preserve the cyclic order-
ing around the vertices), then the complementary components are polygons,
canonically associated to the boundary components of R(τ).

In [8] we then choose a cover D of M (with small open balls), and use it
to turn the effective graph pair into combinatorial data. Accordingly, given
D, we have the following definition.

Definition 13.5. We say that the pair (τ , ψ) is a D-valued g-polygonalization
if τ is a g-polygonalization, and ψ : V (τ) → D a map (colouring). Here V (τ)
is the set of vertices of τ .

We denote the set of all D-valued L(M)-bounded g-polygonalizations by
T g
D (where L(M) is given by Theorem 13.2).

Definition 13.6. Suppose that Σ ∈ S(g). We say that Σ is compatible with
(τ, ψ) ∈ T g

D if there exists a 2-Lipschitz map f : S → M representing Σ and
an associated embedding b : τ → S such that b(τ) has bounded geometry and
f(b(v)) ∈ ψ(v) for all v ∈ V (τ) ⊂ S.

Given any Σ ∈ S(g), we can find a pleated surface map f : S → M
representing Σ, find a bounded geometry triangulation of S by Theorem
13.2, and then find an effective graph pair τ for S by applying Lemma 13.3
to this triangulation. We can then define a labelling ψ : V (τ) → D by letting
ψ(v) be any D ∈ D that contains f(v); the result is an element of T g

D that
is compatible with Σ.

We then observe the following, which was essentially shown in Section 2
of [8].
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Proposition 13.7. Suppose

max
D∈D

diamD ≤ rM
10
.

Then each (τ, ψ) ∈ T g
D is compatible with at most one Σ ∈ Sϵ(g).

Remark 13. Although each (τ, ψ) ∈ T g
D is compatible with at most one Σ,

a given Σ can be compatible with many pairs (τ, ψ) ∈ T g
D .

Proof of Proposition 13.7. Suppose, for i = 1, 2, that fi : Si → M is an
ϵ-nearly geodesic minimal map, and (τ, ψ) a D-polygonalization which is
compatible with each fi, and let bi : τ → Si, i = 1, 2 be an associated
embedding (for the compatibility with fi). As observed in Remark 12, the
complementary components to the images of the bi are polygons, so we can
find a homeomorphism h : S1 → S2 such that h ◦ b1 = b2. Moreover, for
every v ∈ V (τ), the points f1(b1(v)) and f2(h(b1(v)) belong to a common
D ∈ D. Then by Lemma 2.4 in [12], the maps f1 and f2 ◦ h are homotopic.
Thus, they determine the same conjugacy class Σ ∈ Sϵ(g). □

Since every Σ ∈ S(g) is compatible with at least one (τ , ψ), and each
(τ , ψ) is compatible with at most one Σ, it follows that

(59) |S(g)| ≤ |T g
D |.

A simple combinatorial argument then shows that |T g
D | ≤ (CMg)2g, which

completes the proof of Theorem 13.1.

13.2. The new ingredients. We now introduce the refinements needed to
prove Lemma 12.2. First, we must choose a cover D, not of M, but of
G2(M). Moreover, it must be a cover with wafer-thin disks, which we now
make precise.

Let (y,Π) ∈ G2(M). We define the set Hullr,ϵ(y,Π) ⊂ G2(M), called the
(r, ϵ)-hull of (y,Π), by letting

Hullr,ϵ(y,Π) =
⋃
f

f
(
Br(x)

)
,

where (f, x) varies over all ϵ-nearly geodesic maps f : S → M with x ∈ S
and f(x) = (y,Π). We define the (r, ϵ)-hull of a subset D ⊂ G2(M) by

Hullr,ϵ(D) =
⋃

(y,Π)∈D

Hullr,ϵ(y,Π).

Definition 13.8. We say that sets D1, D2 ⊂ G2(M) are mutually ϵ-accessible
if Hull1,ϵ(D1) ∩D2 ̸= ∅.

The existence of our desired cover D is summarized in the following, which
we will prove in Section 16.

Lemma 13.9. There exists C ≡ C13.9(rM) ∈ N such that for all c > 0 there
exists h ∈ N such that for all δ > 0, there exist ϵ > 0 and a finite open
covering D of G2(M), with the following properties for all D ∈ D:
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(1) diamM

(
ξ(D)

)
≤ rM

10 ,

(2) there are at most C elements of D that are mutually ϵ-accessible with
D,

(3) if D ̸⊂ Nδ(Hh) and f : S → M is an ϵ-nearly geodesic minimal map,

then µf (Hull1,ϵ(D)) ≤ c.

A finite covering D satisfying the conditions of the lemma is called a
(c, δ)-covering. The crucial new property is Property 3; when Hh = H,
this follows from D being a wafer-thin neighborhood of some Pr(p) that is
disjoint from H. Here Pr(p) ⊂ G2(M) denotes the geodesic disc of radius r
that is tangent to the pointed plane p at 0.

We can naturally relate the properties of a cover D (such as the one given
in Lemma 13.9) to properties of a compatible D-labeled triangulation.

Proposition 13.10. Suppose f : S → M is an ϵ-nearly geodesic minimal
map, τ is a bounded geometry graph on S (e.g. a subgraph of a bounded
geometry triangulation), D is a cover of G2(M), and ψ : V (τ) → D satisfies
f(v) ∈ ψ(v) for all v ∈ V (τ). Then

(1) if v1 and v2 are two vertices connected by an edge from τ , then ψ(v1), ψ(v2) ∈
D are mutually ϵ-accessible.

(2) for any D ∈ D, we have

|VD| ≤ 4πLgµf (Hull1,ϵ(D)),

where VD is the set of vertices of τ that are mapped by ψ to D.

Proof. For Statement 1, let Di = ψ(vi), so f(vi) ∈ Di, for i = 1, 2. Since
dS(v1, v2) ≤ 1 it follows that Hull1,ϵ(D1) ∩ D2 ̸= ∅. Therefore D1 and D2

are mutually ϵ-accessible.
Let us now prove Statement 2 for a given D ∈ D. We have

(60)
⋃

v∈VD

f
(
B1(v)

)
⊂ Hull1,ϵ(D).

Set
XD =

⋃
v∈VD(τ)

B1(v).

Then (60) implies

(61) |XD| ≤ µf (Hull1,ϵ(D))|S|.
On the other hand, we know the number of vertices of τ in any ball of

radius 1 is at most L. Therefore every point x ∈ XD belongs to at most L
different balls B1(v), v ∈ VD. We conclude

|VD| ≤ L|XD| ≤ Lc|S| ≤ 4πcLg,

where c := µf (Hull1,ϵ(D)). □

The second new ingredient needed to prove Lemma 12.2 is the following
refinement of Lemma 13.3, which we will prove in Section 15.
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Lemma 13.11. For every h ∈ N and 0 < q ≤ 1 there exists δ ≡ δ13.11(h, q) >
0 and ϵ0 > 0 with the following properties. Suppose f : S → M is the min-
imal map representing Σ ∈ Sϵ(g, h, q). Then we can find an effective graph
pair (τ̂ , e(τ)) for S such that qg of the edges in e(τ) lie outside of S(δ, h).

13.3. Proportionately compatible polygonalizations. We now refine
our notion of a compatible D-valued g-polygonalization as follows. Given
any cover D of G2(M), we let D′

h,q be the D ∈ D which are not subsets of

Nδ(Hh), where δ = δ13.11(h, q).

Definition 13.12. Suppose that Σ ∈ Sϵ(g, h, q). We say that (τ , ψ) ∈ T g
D

is proportionately compatible with Σ if it is compatible with Σ and there are
at least qg edges in e(τ) whose endpoints are both mapped by ψ to elements
of D′

h,q.

This is a mouthful, but we have an immediate corollary to Lemma 13.11:

Proposition 13.13. For every h ∈ N and q > 0, there exists ϵ0 such that
for all ϵ < ϵ0, any D, and Σ ∈ Sϵ(g, h, q), there exists (τ , ψ) ∈ T g

D that is
proportionately compatible with Σ.

We say that (τ , ψ) ∈ T g
D is a (q, h,g, ϵ)-allowable D-valued polygonal-

ization if it is proportionately compatible with some Σ ∈ Sϵ(g, h, q), and
we denote by T g

D (ϵ, h, q) ⊂ T g
D the set of all (q, h,g, ϵ)-allowable D-valued

polygonalizations. Since every ϵ-nearly geodesic minimal map is 2-Lipshitz
for ϵ small enough, we can combine Proposition 13.7 and Proposition 13.13
to immediately conclude:

Proposition 13.14. For any D, the estimate

(62) |Sϵ(g, h, q)| ≤ |T g
D (ϵ, h, q)|

holds when ϵ < ϵ0(h, q).

We will show Lemma 12.2 in Section 14 by estimating the size of T g
D (ϵ, h, q)

for a suitable choice of D.

14. Counting allowable D-valued polygonalizations

Now suppose we are given c0 > 0 and q ∈ (0, 1]. We let h = h13.9(c0)
(so h is the h provided in 13.9 that depends on the c in 13.9, that we take
to be c0), and let δ = δ13.11(h, q), and then let ϵ0 and D be given (in terms
of c0 and δ) by Lemma 13.9, and take any ϵ < ϵ0. We will show that for
any c > 0, and an appropriate choice of c0, that |T g

D (ϵ, q, h)| = o((cg)2g) as
g → ∞, which implies Lemma 12.2.

We let D′ ⊂ D be those D ∈ D for which D ̸⊂ Nδ(Hh). Before computing
our upper bound for |T g

D (ϵ, q, h)|, we will summarize the properties of every
(τ, ψ) ∈ T g

D (ϵ, q, h).

(1) The graph τ has at most Lg vertices.

(2) The degree of every vertex of τ is at most L.
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(3) If v1 and v2 are two vertices connected by an edge from τ then ψ(v1), ψ(v2) ∈
D are mutually accessible.

(4) For every D ∈ D′, the number of vertices of τ which are mapped by ψ
to D is at most c1g, where c1 = 4πLc0.

(5) There are at least qg distinguished edges from the set e(τ) whose end-
points are mapped by ψ into D′.

Properties 1 and 2 follow from the definition of an allowable g-polygonalization.
Property 3 follows from Statement 1 in Proposition 13.10, and Property
4 follows from Property 3 of D, the definition of D′, and Statement 2 of
Proposition 13.10. Property 5 follows immediately from the definitions of
T g
D (ϵ, q, h) and D′.
We can obtain every D-valued g-polygonalization of bounded geometry

(τ, ψ) ∈ T g
D (ϵ, q, h) as follows:

• First choose a spanning tree τ̂ .

• Then chose a colouring ψ : V (τ̂) → D.

• Then add the 2g distinguished edges to the τ̂ .

• Then equip the graph τ with the cyclic ordering around each vertex.

Of course our choices will be constrained by Properties 1–5 listed above. Let
us write down the estimate that comes out from the description above:

(63) |T g
D (ϵ, q, h)| ≤ A1A2A3A4,

where

• A1 is the number of different trees T which agree with the tree τ̂ of
τ = (τ̂ , e) of some pair (τ , ψ) ∈ T g

D (ϵ, q, h),

• A2 is the (maximal) number of ways we can define the colouring ψ : V (τ̂) →
D for a fixed τ̂ (here τ̂ is a spanning tree of some pair (τ , ψ) ∈ T g

D (ϵ, q, h)),

• A3 is the (maximal) number of different pairs (τ , ψ) ∈ T g
D (ϵ, q, h) which

share the same spanning tree τ̂ and colouring ψ,

• A4 is the number of cyclic orderings of edges of τ .

14.1. Estimating A1, A2, A3, and A4. We will compute upper bounds
for A1, A2, A3, and A4 in turn.

The number of different unlabelled trees on n vertices is≤ C112
n, for some

universal constant C1 > 0 (for example see [8]). It follows from Property 1
that

A1 ≤ C112
Lg.

Next, we bound A2. Thus, we consider a fixed allowable tree τ̂ , and
estimate the number of allowable maps ψ : V (τ̂) → D. Choose a base
vertex v0 ∈ V (τ̂), and record τ̂ as a rooted tree. Then every vertex v ∈ V (τ̂)
(besides the base vertex) has a predecessor denoted by v′.

There are at most |D| choices for the value of ψ(v0). On the other hand,
if the value ψ(v′) has already been specified, then there are at most C2

possible values for ψ(v), where C2 = C13.9. This is because the open sets
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ψ(v), ψ(v′) ∈ D are mutually accessible by Property 3. We conclude that

there are at most C
|V (τ̂)|
2 ≤ CLg

2 ways of defining ψ on the set V (τ̂) \ {v0}.
Putting this all together yields the bound

A2 ≤ |D|CLg
2 .

We will now bound A3. We fix an allowable tree τ̂ , and an allowable
map ψ : V (τ̂) → D. By Properties 5 and 3, we can generate all (g, ϵ, h, q)-
allowable sets of distinguished edges e(τ) by generating a set e1 of ⌈qg⌉ edges
that connect two mutually accessible D’s in D′, and then generating a set
e2 of 2g − ⌈qg⌉ edges that connect mutually accessible D’s in D.

When we choose an edge in e1, there are |V (τ)| ways to choose the first
vertex v. By Property 3 above and Property 2 of D (from Lemma 13.9),
there are at most C2 ways to choose the label ψ(w) ∈ D′ of the second vertex
w, and by Property 4 above there are at most c1g choices for w given its
label. Therefore there are at most (|V (τ)|c1C2g)

⌈qg⌉ choices of sets e1 along

with an ordering of the edges, and hence at most (|V (τ)|c1C2g)
⌈qg⌉/⌈qg⌉!

ways of choosing the set e1. Similarly, but without any constraints on the
choice of the second vertex, there are (|V (τ)|2)2g−⌈qg⌉/(2g− ⌈qg⌉)! ways to
choose e2. We therefore have

A3 ≤
(
|V (τ)|c1C2g

)⌈qg⌉
(|V (τ)|2)2g−⌈qg⌉

⌈qg⌉!(2g − ⌈qg⌉)! ≤
(
c1C2Lg

2
)⌈qg⌉

(L2g2)2g−⌈qg⌉ 22g 42g

g2g

where we used the following estimates

|V (τ)| ≤ Lg
(g
4

)2g
< (2g)!

(a+ b)!

a!b!
≤ 2a+b.

Compiling like terms we get

A3 ≤ Cg
4 c

qg
1 g2g

for some constant C4 > 0.
It remains to bound A4. We easily find (as in [8])

A4 ≤
(
deg(τ)!

)|V (τ)| ≤ (L!)Lg.

Now, replacing these estimates in (63) we get

|T g
D (ϵ, q, h)| ≤ Cg

5 |D|cqg1 g2g

for some constant C5, and every small enough ϵ. Then for every c > 0, and
every fixed c1 > 0, we have

|T g
D (ϵ, q, h)|
(cg)2g

≤ Cg
5 |D|cqg1 g2g

(cg)2g
=

(
C5

(
1 + o(1)

)cq1
c2

)g

where o(1) is a function of g which tends to zero when g → ∞. Taking

c1 < (c2/C5)
1/q, we obtain the desired result.
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15. Proof of Lemma 13.11

In [8] the authors constructed a bounded geometry triangulation, and
then found an embedded graph pair and resultingD-valued polygonalization.
Here we assume that |S(δ0(h), h)| ≤ (1 − q)|S|, and use it to construct an
embedded graph pair with at least qg edges lying outside of S(δ), for some
δ that will depend only on Hh and q. We will first provide an upper bound
for the portion of H1(S) that is generated by S(δ), and then use that bound
when we build the graph pair. In what follows, we will assume we are given
a value of h and write δ0 for δ0(h) and S(δ) for S(δ, h).

15.1. The size of ∂S(δ). As usual, f : S → M denotes an ϵ-nearly geo-
desic minimal map. We first prove a version of Proposition 11.1 where the
resulting subsurface has small boundary compared to |S|.
Proposition 15.1. For any α > 0 there exist δ > 0, ϵ0 > 0, such that
for every ϵ-nearly geodesic minimal surface f : S → M (with ϵ < ϵ0), there
exists a subsurface R ⊂ S which satisfies

(1) N10(S(δ)) ⊂ R ⊂ S(δ0),

(2) |∂R| ≤ α|S|.
Proof. We let n = ⌈25/α⌉.

Inductively applying Proposition 2.5, we see that there exists ϵ0 = ϵ0(n) =
ϵ(α) and δ2n < δ2n−1 < · · · < δ1 < δ0, such that for every ϵ-nearly geodesic
minimal surface f : S → M with ϵ < ϵ0, we have N10(S(δk+1)) ⊂ S(δk) (for
0 ≤ k < 2n), and hence, for 0 < k < 2n,

(64) N10(∂(S(δk))) ⊂ S(δk−1) \ S(δk+1).

We show that the proposition holds for δ := δ2n and the ϵ0 we have chosen.
Notice that the sets S(δk−1) \ S(δk+1) are mutually disjoint for different

odd values of k. Since there are n such sets, at least one of them has the
area at most |S|/n. Thus we can choose l odd such that |S(δl−1)\S(δl+1)| ≤
|S|/n. By Lemma 2.7 (applied to S(δl)) and our choices of the δk, l, and α,
we can find R such that

N10(S(δ2n)) ⊂ S(δl) ⊂ R ⊂ S(δl−1) ⊂ S(δ0)

and

|∂R| ≤ 25|S|/n ≤ α|S|.
□

15.2. The homology of S(δ). Let S denote a closed hyperbolic surface.
By sys(S) we denote the length of shortest closed geodesic on S (note that
sys(S) = 2r(S)). If T ⊂ S is closed, we let b1(T → S) denote the dimension
of the image of H1(T ;R) in H1(S;R). If R ⊂ S is a subsurface we let
#Comp(∂R) denote the number of components of the boundary ∂R of R.
We begin with the following corollary of the Gauss-Bonnet theorem and the
isoperimetric inequality.
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Proposition 15.2. There exists a constant C > 0 with the following prop-
erties. Let S be a closed hyperbolic Riemann surface, and suppose R ⊊ S is
a subsurface with smooth boundary. Then

b1(R→ S) ≤ |R|+ |∂R|
2π

+#Comp(∂R)(65)

≤ |R|
2π

+
(
1 +

1

sys(S)

)
|∂R|.(66)

Proof. It suffices to prove (65) for each component of R, so we will assume
that R is connected. First suppose that R has geodesic boundary. By
Gauss-Bonnet we have

(67) b1(R→ S) = b1(R) = −χ(R) + 1 =
|R|
2π

+ 1 ≤ |R|
2π

+#Comp(R)

since ∂R is nonempty.
For the case of a general R, let Ω ⊂ S be convex core of R, i.e. the

surface with geodesic boundary obtained by filling in the holes (contractible
components of the complement) of R, and replacing each boundary curve
of R with its geodesic representative. (Note that we may have Ω ̸⊂ R.) On
one hand, by Proposition 2.12 we know that

(68) |Ω| ≤ |R|+ |∂R|.
On the other hand, b1(R → S) = b1(Ω → S) because filling in the holes
(and homotoping the boundary) does not change the image of H1 in H1(S).
Combining this with (67) and (68), we get

b1(R→ S) ≤ |Ω|
2π

+#Comp(∂Ω) ≤ |R|+ |∂R|
2π

+#Comp(∂R). □

Combining Proposition 15.1 and Proposition 15.2 enables us to estimate
the homology of S(δ).

Proposition 15.3. For every η > 0 there exist δ(η) > 0, ϵ0(η) > 0, such
that for every ϵ-nearly geodesic minimal surface f : S → M, assuming ϵ <
ϵ0(η), there is a subsurface (with smooth boundary) Rη ⊂ S for which

(1) N10(S(δ(η))) ⊂ Rη ⊂ S(δ0),

(2) b1(Rη → S) ≤ |Rη |
2π + η|S|.

Proof. Let α = η/(1 + 2/sys(M)), let δ(η) be the δ(α) from Proposition
15.1, and let ϵ0(η) be the minimum of ϵ0(α) given by Proposition 15.1 and
a universal ϵ1 given below.

Suppose we are given f : S → M that is ϵ0(η)-nearly geodesic, with
ϵ0(η) ≤ ϵ0(α). Let R = R(α) be the surface from the statement of Proposi-
tion 15.1. First, from (66) we get

b1(R→ S) ≤ |R|
2π

+

(
1 +

1

sys(S)

)
|∂R| ≤ |R|

2π
+

(
1 +

2

sys(M)

)
|∂R|

(69)
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because sys(S) ≥ sys(M)/2 when ϵ0 ≤ ϵ1, where ϵ1 is a universal constant.
We now apply the estimate (2) from Proposition 15.1, and get

(70) |∂R| ≤ α|S|.

Putting together (69), (70), and the definition of α, we obtain Property
(2) of this proposition. Property 1 follows immediately from Property 1 of
Proposition 15.1. □

15.3. Proof of Lemma 13.11. Fix an ϵ-nearly geodesic minimal map
f : S → M. We may assume sys(M) ≤ 2sys(S). By Theorem 13.2 we
can find a bounded geometry triangulation T of S.

Let η = q
4π . Let R = Rη be the subsurface from Proposition 15.3, and

let δ ≡ δ(q, h) = δ(η). Then from (1) in Proposition 15.3 we get R ⊂ S(δ0)
which implies

(71) |R| ≤ (1− q)|S|.

We let T0 be the vertices and edges of T that lie entirely in R. We can
then extend T0 to a connected subgraph T1 of T that includes all the vertices
of T ; any minimal such extension will add no new cycles to those of T0, and
hence we’ll have b1(T1 → S) = b1(T0 → S). We observe that

b1(T1 → S) = b1(T0 → S) ≤ b1(R→ S)

≤ |R|
2π

+ η|S| ≤ (1− q)|S|
2π

+ η|S|

≤
(
(1− q) +

q

2

)
2(g − 1)

≤ (2− q)g.

Here we used (2) from Proposition 15.3 in the second inequality, (71) in the
third inequality, and the choice of η in the fourth. Thus, we have shown

(72) b1(T1 → S) ≤ (2− q)g.

We then let T̂ be a spanning tree for T1. Then, as in [8], we find a set e(T )

of 2g edges of T \ T̂ such that b1(e(T )∪ T̂ → S) = 2g. Let e0(T ) ⊂ e(T ) be

the edges that are contained in R. Then
(
T̂ ∪ e0(T )

)
⊂ T1, and by (72) we

have

|e0(T )| = b1(T̂ ∪ e0(T ) → S) ≤ b1(T1 → S) ≤ (2− q)g.

Letting e1(T ) be e(T ) \ e0(T ), we have

(73) |e1(T )| ≥ qg.

We now let τ̂ = T̂ , and e(τ) = e(T ). In light of (73) we have thus produced
a bounded geometry embedding of τ where at least qg distinguished edges
have the property required by the Lemma.
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16. Rescaled Riemannian metrics and a cover with wafer-thin
disks

16.1. A cover with wafer-thin disks. In this section we use a rescaling
of the Riemannian metric on G2(M) to construct the cover D needed for
Lemma 13.9.

We will write G2 when the given operation applies to both G2(M) and
G2(H3). In G2 we have already defined an invariant Riemannian metric which
we will just denote by ⟨, ⟩. We also have the tautological foliation F of G2 by
hyperbolic planes. This gives us an invariant splitting TG2 = TF ⊕TF⊥. If
v ∈ TG2, we say that v respects the splitting if v ∈ TF∪TF⊥. If v0, v1 ∈ TG2

respect the splitting, we let m(v0, v1) be the number of i ∈ {0, 1} such that
vi ∈ TF⊥. We now define ⟨, ⟩η by

⟨v, w⟩η = η−m(v,w) ⟨v, w⟩
whenever v and w respect the splitting. Thus the norm of a vector in TF
is unchanged, while the norm of a vector in TF⊥ is rescaled by η−1. We
call this Riemannian metric (and associated point-pair metric dη) the η-
metric. We note that ⟨v, w⟩η and dη(p, q) are both nondecreasing functions

of η. We let Bη
r (p) be the r-ball in the η-metric around a pointed plane p.

We let |Bη
r (p)|η denote the volume of this ball in the η-metric (when it is

embedded), and we observe that

(74) |Bη
r (p)| = η3|Bη

r (p)|η,
where the left-hand side is the volume of the same ball in the original metric.

We can prove the following lemma with a simple compactness argument.

Lemma 16.1. For any r < r′ and η > 0, there exists ϵ such that for p ∈ G2,

(75) Hullr,ϵ(p) ⊂ Bη
r′(p),

and hence, for sufficiently small ϵ ≡ ϵ(r0, r1, r
′),

(76) Hullr0,ϵ(B
η
r1(p)) ⊂ Bη

r′(p)

whenever r′ > r0 + r1.

Proof. The second statement follows from the first, so we will just prove the
first. Because of the homogeneity, we can assume that p is at the origin of
H3. Suppose that for a given r < r′ and η, there is no ϵ. Then we have⋂

ϵ>0Hullr,ϵ(p) ̸⊂ Bη
r′(p), because Hullr,ϵ(p) is nested as ϵ decreases to 0, and

has compact closure. On the other hand,⋂
ϵ>0

Hullr,ϵ(p) = Pr(p) ⊂ Bη
r′(p). □

The following lemma may seem obvious, but requires a little thought to
prove, so the proof is included.

Lemma 16.2. For any R, δ > 0 there exists an η0 > 0 such that Bη
r (p) ⊂

Nδ(Pr(p)) for all r ≤ R and η ≤ η0.
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Proof. We work in G2(H3); it is then a simple matter to conclude the same
for G2(M).

For a sufficiently small u, we can form the radius u orthogonal hyper-disk
V to Pr(p) at p with the exponential map (for the standard metric) applied
to the orthogonal complement to the tangent subspace in G2(M) of Pr(p).
We can define a projection π to V on every hyperbolic plane in G2(H3) that
intersects V (where we project each plane to its intersection with V ). We
then let B′ = BR(p) ∩ π−1(V ). We observe that, by compactness of B′,
there exists α > 0 such that ∥w∥ ≥ α ∥Dπ(w)∥ for every vector w based at
a point in B′ and orthogonal to F . Then for any path γ in B′, we have

(77) lη(γ) ≥
α

η
l(π(γ)).

Therefore2 any path γ starting at p of length at most R lies in B′ when
η < αu/R, and π(γ) then has length at most ηR/α. So for η sufficiently
small, every point in Bη

R(p) is connected to p by a path of length R that lies
in the preimage by π of a small ball around p in V . This must then lie in
Nδ(PR(p))

3.
For r ∈ [δ,R] we can apply the same reasoning, and obtain a uniform η0

by compactness. For r < δ, we can take η0 = 1. □

We now proceed to constructing the desired cover D with balls in the
η-metric. We first observe

Lemma 16.3. The sectional curvatures of ⟨, ⟩η are uniformly bounded for

η ∈ (0, 1].

Corollary 16.4. There are functions c(r) and C(r) such that for all η ∈
(0, 1] and r > 0,

(78) c(r) ≤ |Bη
r (p)|η ≤ C(r).

The proofs of Lemma 16.3 and Corollary 16.4 involve a modicum of Rie-
mannian geometry and are deferred until Section 16.2.

Corollary 16.5. For any r,R ∈ R+, there is an N ≡ N(r,R) such that for
all η ∈ (0, 1], any R-ball in the η-metric contains at most N disjoint r-balls
(in the η-metric).

Proof. We let N(r,R) = C(R)/c(r) where C and c are taken from Corollary
16.4. □

We can now easily prove the main estimate for this section:

Theorem 16.6. For all r,R ∈ R+, there is an N ∈ Z+ such that for all
η ∈ (0, 1], there is a finite set F ⊂ G2(M) such that G2(M) ⊂ ⋃

p∈F B
η
r (p),

and every point of G2(M) lies in Bη
R(p) for at most N distinct p ∈ F .

2By “continuous induction”
3Because the hyperbolic planes in G2(H3) are locally length-minimizing.
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Proof. Given r,R and η, by Lemma 2.6, we can find a finite set F ⊂ G2(M)
such that Br/2(p) for p ∈ F are mutually disjoint, and G2(M) ⊂ ⋃

p∈F B
η
r (p).

For any q ∈ G2(M), if q ∈ Bη
R(p), then Br/2(p) ⊂ BR+r(q). Therefore q

lies in Bη
R(p) for at most N(r/2, r+R) distinct p ∈ F , where N(·, ·) is given

by Corollary 16.5. □

Equipped with this theorem we can now prove Lemma 13.9.

Proof of Lemma 13.9. We take r ∈ (0, 1] such that diam ξ(Br(p)) ≤ rM/10,
and let R = 4. We then let C13.9 = N16.6(r,R). We then observe that for
any η > 0 we can apply Theorem 16.6 to obtain a finite cover D by disks
of the form Bη

r (p) (for p in a finite set F ) that satisfies Properties 1 and
2 of Lemma 13.9 for ϵ sufficiently small. Property 1 is immediate. To see
Property 2, suppose that

(79) Hull1,ϵ(B
η
r (p)) ∩Bη

r (q) ̸= ∅.
Since Hull1,ϵ(B

η
r (p)) ⊂ Bη

3 (p) for ϵ sufficiently small, (79) implies that
Bη

r (q) ⊂ Bη
4 (p). But the conclusion of Theorem 16.6 is that this can happen,

given p ∈ F , for at most C values of q in F .
So now we need only find h ∈ N, η > 0, and ϵ > 0 that satisfy Property

3. Given c, we let h = ⌈2/c⌉. We then claim that for D = Bη
r (p) ̸⊂ Nδ(Hh),

and f : S → M an ϵ-nearly geodesic map, we will have µf (Hull1,ϵ(D)) ≤ c
for η and ϵ sufficiently small given δ > 0 (and independent of p).

Note that Hull1,ϵ(B
η
r (p)) ⊂ Bη

2 (p) when ϵ is sufficiently small given η (we
can always choose ϵ after η), and, assume, for the sake of contradiction, that
there is a δ > 0 and sequences ηn → 0, pn ∈ G2(M) \Nδ(Hh), and ϵn-nearly
geodesic maps fn : Sn → M, where ϵn → 0, such that

µfn(B
ηn
2 (pn)) ≥ c.

Passing to a subsequence, we may assume that µfn → µ and pn → p with

p /∈ Hh; by Lemma 16.2, Bηn
2 (pn) → P2(p) in the Hausdorff metric. Letting

P = P2(p) we then have

(80) µ(P ) ≥ c.

Since µ is PSL(2,R) invariant, by Ratner’s theorem we can write µ = µHh
+

µH′
h
+ µL, where µHh

and µH′
h
are supported on Hh and H′

h respectively,

and µL is a multiple of the Liouville measure. Since p /∈ Hh, we must have
P ∩Hh = ∅, and hence

(81) µHh
(P ) = 0.

We also have

(82) µL(P ) = 0

because P is infinitely thin. Finally, letting |P | = 2π(cosh 2 − 1) < 8π be
the area of the hyperbolic disk of radius 2, we have

(83) µH′
h
(P ) ≤ |P |

4πh
< 2/h ≤ c
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because P can only intersect one totally geodesic surface in H′
h, and it repre-

sents at most the given fraction of the total area of that surface. Combining
(81), (82), and (83), we obtain µ(D) < c, a contradiction. □

16.2. Estimates of curvature and volume for the η-metric. We ob-
serve that around every point p of G2 we can find an orthonormal basis (ei)
of vector fields in TG2 of a neighborhood U of p that respect the splitting.
(This basis will not actually be invariant under the isometry group of H3,
but this will not be a problem.) We then define the structure functions αijk

by αijk = ⟨[ei, ej ], ek⟩. Because ⟨ei, ej⟩ = δij is constant, the Koszul formula
for ⟨∇eiej , ek⟩ will just be a sum and difference of the αijk. It then follows

that the curvature tensor Rijkl is bounded when the αijk are, and then the
sectional curvatures are as well.

So, we take eηi = ei for ei ∈ TF , and eηi = ηei for ei ∈ TF⊥, so that
(eηi ) is an invariant orthonormal basis for the η-metric (and respects the
splitting). We let αη

ijk be the corresponding structure constants. We then

observe (letting m(i, j) = m(ei, ej))

(1) αη
ijk = 0 when ei, ej ∈ TF , and ek ∈ TF⊥,

(2) αη
ijk = ηm(i,j)−1αijk when ek ∈ TF⊥, and

(3) αη
ijk = ηm(i,j)αijk when ek ∈ TF .

Hence the exponent for η is non-negative whenever αijk is non-zero. This
completes the proof of Lemma 16.3.

Corollary 16.4 follows immediately from Lemma 16.3 and the following
comparison theorem (see Corollary 3 in Section 11.9 of the book [3]).

Theorem 16.7. Suppose all sectional curvatures have absolute value less
than or equal to K. Then the volume of any r-ball Br(p) satisfies

|Br(p)| ≤ V (r,−K),

and also, for r < π/K,
|Br(p)| ≥ V (r,K),

where V (r,K) denotes the volume of the r-ball in constant curvature K.

Theorem 16.7 is an immediate corollary to the Rauch comparison theo-
rem. More precisely, Theorem 16.7 follows from the analogous comparison
theorem for r-spheres in the two metrics; this in turn follows from the anal-
ogous comparison between the volume forms of the Riemannian metrics on
the r-spheres in the natural coordinates (parametrized by the unit spheres
in the tangent spaces at the centers of the balls). The comparison of the
volume forms follows from the comparison of the norms, and this is literally
a special case of the Rauch comparison theorem.
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