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Abstract. This is a survey on the good pants construction and its applica-

tions.

The good pants technology is a systematic method that has been developed
during the past few years to produce surface subgroups in cocompact lattices of
PSL2(C) or PSL2(R) using frame flow. The PSL2(C) case leads to a proof of the
Surface Subgroup Conjecture, which plays a fundamental role in the resolution of
the Virtual Haken Conjecture about 3-manifold topology, and the PSL2(R) case
leads to a proof of the Ehrenpreis Conjecture on Riemann surfaces. Prior to the
work of Jeremy Kahn and Vladimir Markovic, Lewis Bowen first attempted to build
surface subgroups by assembling pants subgroups using horocycle flow. This article
is intended to guide the readers to these constructions due to Jeremy Kahn and
Vladimir Markovic, and survey on some applications of their construction after-
wards due to Yi Liu, Hongbin Sun, Ursula Hamenstädt and others.

1. Good pants and nice gluing

For any cocompact lattice of PSL2(C) or PSL2(R), any surface subgroup result-
ing from the Kahn–Markovic construction can be thought of as the subgroup π1(S)
corresponding to a π1-injectively immersed subsurface S of the quotient orbifold
M of the underlying symmetric spaces H3 or H2 by the lattice. This allows us
to discuss the construction from the perspective of hyperbolic geometry. In this
section, we set up the general framework of the construction.

Without loss of generality, we may pass to a sublattice of finite index, and assume
hereafter that M is a closed orientable hyperbolic manifold of dimension 3 or 2.
The construction can be performed for any positive constant ε. It gives rise to a
closed orientable subsurface S of the closed hyperbolic orbifold M that is (1 + ε)-
bilipschitz equivalent to a finite cover of a model surface S0(R), as we describe in
the following. The positive parameter R can be chosen arbitrarily as long as R is
sufficiently large depending on ε and the lattice, and S0(R) has a defining pants
decomposition which lifts to be a pants decomposition of the finite cover.

The model surface S0(R) is an orientable closed surface of genus 2, equipped
with a hyperbolic structure described in term of a pants decomposition and its
Fenchel–Nielsen parameters. For any positive constant R, a disk with two cone
points of order 3 can be endowed with a unique hyperbolic structure to become a
hyperbolic 2-orbifold with boundary length R. The unique planar surface cover of
minimal degree of this 2-orbifold is a hyperbolic pair of pants Π(R) with cuff length
R which is symmetric under an isometric action of the 3-cyclic group. Take two
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oppositely oriented copies of the hyperbolic pair of pants, Π(R) and Π̄(R). We glue
Π(R) and Π̄(R) by identifying their cuffs accordingly, but modify the gluing by a
twist of length 1 along each identified curve in the direction induced from boundary
of the pants. Note that there is no ambiguity for the twisting direction since the
induced direction from Π(R) and Π̄(R) are opposite to each other. The resulting
hyperbolic surface is denoted as S0(R).

For universally large R, the injectivity radius of S0(R) is bounded uniformly
from 0. It follows that the hyperbolic structure of S0(R) stays in a compact subset
of the moduli space of hyperbolic structures on the underlying topological surface.
For any finite cover S̃0(R) of S0(R) to which the pants decomposition lifts, S̃0(R)
can be constructed by taking copies of the model pants and assembling according to
the model gluing. The constant 1 twist in the gluing guarantees that the hyperbolic
structure of S̃0(R) does not vary significantly under slight perturbation of the cuff
length and the twist parameter of the gluing. The intuition leads to the following
notion of good pants and nice gluing.

Let M be a closed orientable hyperbolic manifold of dimension 3 or 2. A π1-
injectively immersed pair of pants Π in M can be homotoped so that the cuffs are
mutually distinct geodesically immersed curves. Fix a seam decomposition of Π
into two hexagons along three arcs, called seams, which join mutually distinct pairs
of cuffs. We may further homotope the immersion so that the seams are geodesic
of the shortest length. Assuming that none of the seams degenerate to a point, the
seams are perpendicular to the cuffs at all the endpoints, and the two hexagons are
in fact isometric to each other. The inward unit tangent vectors of the seams at
their endpoints are called feets of the seams on the cuffs. Therefore, the immersed
pair of pants Π has six feets, each cuff carrying a pair of feets as unit normal vectors
at an antipodal pair of points. We say that Π is (R, ε)-good if the length of each
cuff of Π is approximately R up to error ε, and if the parallel transportation of a
foot on each cuff to the antipodal point along the cuff is approximately the other
foot up to error (ε / 2), measured in the canonical metric on the unit vector bundle
of M . Note that the second condition is automatically satisfied if M has dimension
2.

An immersed oriented subsurface S of M is said to be (R, ε)-panted if it has a
decomposition along simple closed curves into pairs of pants, and the immersion
restricted to each pair of pants is (R, ε)-good. In general, S is not necessarily π1-
injective since we have not controlled the gluing. We say that S is constructed
from the (R, ε)-good pants by an (R, ε)-nice gluing, if for each decomposition curve
c shared by pairs of pants P and P ′, the parallel transportation of distance 1 along
c of any foot of P on c, in the direction induced from P , is approximately opposite
to a foot of P ′ up to error (ε /R).

Theorem 1.1. Let M be a closed orientable hyperbolic manifold of dimension 3
or 2. The following statement holds for any small positive constant ε depending on
M and sufficiently large positive constant R depending on ε and M .

Suppose that S is an immersed closed (R, ε)-panted subsurface of M constructed
by an (R, ε)-nice gluing. Then S is π1-injective and geometrically finite. Further-
more, S can be homotoped so that with respect to the path-induced metric, S is
K(ε)-bilipshitz equivalent to a finite cover of the model surface S0(R), where K(t)
is a positive function depending on M such that K(t)→ 1 as t→ 0.
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See [Kahn–Markovic 2014, Theorem 2.1] and [Kahn–Markovic 2012, Theorem
2.1].

The construction of Kahn and Markovic produces closed subsurfaces of M by
gluing a finite collection of good pants in a nice fashion. Theorem 1.1 describes
the geometry of the resulting subsurfaces. To find a finite collection of good pants
that admits a nice gluing is the difficult part of their construction, which can be
reformulated as a problem of linear programing regarding measures of good pants.

Denote by ΠR,ε the collection of the homotopy classes of oriented (R, ε)-good
pants of M . Any finite collection of (R, ε)-good pants can be recorded by a counting
measure over the set ΠR,ε. Denote by ΓR,ε the collection of the homotopy classes
of (R, ε)-good curves of M , namely, geodesically immersed oriented loops of M of
length approximately R and monodromy approximately trivial, up to error ε. There
is a natural boundary operator between Borel measures over the sets of good pants
and good curves:

∂ : M(ΠR,ε)→M(ΓR,ε),

which takes the atomic measure supported over any good pants Π to the sum of
atomic measures supported over the cuffs of Π. The boundary operator ∂ can be
lifted to an operator ranged in Borel measures over unit normal vectors on good
curves:

∂] : M(ΠR,ε)→M(N (ΓR,ε)),

which takes the atomic measure supported over Π to the sum of atomic measures
supported over its feet. The space N (ΓR,ε) is the disjoint union of unit normal
vector bundles N (γ) over good curves γ. To encode the model gluing, denote by

A1 : N (ΓR,ε)→ N (ΓR,ε)

the map that takes any unit normal vector n on a good curve γ to the parallel
transportation of −n along the orientation-reversal γ̄ of distance 1.

Recall that over a metric spaceX, for any positive constant δ, two Borel measures
µ, µ′ are said to be δ-equivalent if µ(E) ≤ µ′(Nhdδ(E)) holds for all Borel subsets E
of X and if µ(X) = µ′(X). Being δ-equivalent is a reflexive and symmetric relation
which is invariant under rescaling the measures by the same factor. We speak of
approximately equivalent measures over N (ΓR,ε) with respect to its canonically
induced metric.

Problem 1.2. Find a probability measure µ ∈ M(ΠR,ε) such that ∂]µ is (ε /R)-

equivalent to (A1)∗∂
]µ on N (ΓR,ε).

A solution to Problem 1.2 implies a nontrivial integral measure inM(ΠR,ε) with
the same property, which gives rise to the finite collection of oriented (R, ε)-good
pants. It turns out that these (R, ε)-good pants can be glued along common cuffs
in an (R, ε)-nice fashion to create an immersed oriented closed subsurface of M ,
which meets the requirement of Theorem 1.1. To solve Problem 1.2, one needs to
understand the statistics of good pants and the distribution of feet on good curves.
The solutions to Problem 1.2 for cocompact lattices of PSL2(C) and PSL2(R)
lead to affirmative answers to the Surface Subgroup Conjecture and the Ehrenpreis
Conjecture respectively.
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2. The Ehrenpreis Conjecture

For cocompact lattices of PSL2(R), the problem of good pants construction can
be resolved through dynamics of hyperbolic surfaces. In this section, we give an
introduction to the proof of the Ehrenpreis Conjecture [Kahn–Markovic 2014], as
an illustration how the exponential mixing property of the geodesic flow makes the
construction possible.

Let S1 and S2 be two closed Riemann surfaces of the same genus. The Ehren-
preis Conjecture asserts that for any positive constant ε, there exists a (1 + ε)-
quasiconformal map f : S′1 → S′2 between some finite covers of S1 and S2 accord-
ingly. Leon Ehrenpreis verified the case of genus 1 and proposed the conjecture for
genus at least 2, [Ehrenpreis 1970]. In hyperbolic geometry, the conjecture can be
equivalently stated as two closed hyperbolic surfaces are virtually (1+ε)-bilipschitz
equivalent for any positive constant ε. There is no direct analog of the conjecture
in higher dimensions because two closed hyperbolic manifolds of dimension at least
3 are necessarily commensurable with each other if they are mutually virtually
quasi-isometric.

By Theorem 1.1, it suffices to find, for some large R, a finite cover S′i of Si that
can be constructed by (R, ε)-nicely gluing (R, ε)-good pants. Therefore, we need to
solve Problem 1.2 for cocompact lattices of PSL2(R). In this case, a solution can
be achieved through dynamics of the geodesic flow.

To illustrate the idea, let us first explain how to construct good curves and good
pants in an oriented closed hyperbolic surface M using the mixing property of the
geodesic flow.

Recall that the geodesic flow over an oriented closed hyperbolic surface M is a
one-parameter family of morphisms of the unit tangent vector bundle

gt : UT(M)→ UT(M)

which takes any unit tangent vector v at a point p of M to gt(v), the parallel
transportation of v along the unit-speed geodesic ray emanating from p in the
direction v for time t. The geodesic flow preserves the Liouville measure m of
UT(M), induced from the Haar measure of PSL2(R) by identifying UT(M) with
the left quotient π1(M) \PSL2(R). For any functions φ, ψ ∈ C∞(UT(M)) with
integral 1 over UT(M), the mixing property of the geodesic flow implies:∫

UT(M)

(g∗t φ)(v)ψ(v)dm(v)→ 1

2π2|χ(M)|
,

as t tends to +∞.
For any positive constant δ, we claim that the following Connection Principle

holds for sufficiently large L depending only on δ and the injectivity radius of
M . For any two unit vectors vp, vq at points p, q ∈ M respectively, there exists a
geodesic segment connecting p and q such that the initial and terminal directions
are approximately vp and vq respectively up to error δ. To this end, we may take
a C∞ function φ : PSL2(R) → [0,+∞) with integral 1 over PSL2(R), supported
in a δ′-neighborhood U of the identity. For sufficiently small δ′, the neighborhood
vp · U in UT(M) is isometric to U so there is an induced function φp over UT(M)
supported on vp · U defined by φp(vp · u) = φ(u). In a similar fashion we define φq
supported on vq · U . By the mixing property of the geodesic flow, the intersection
of (g∗Lφp)(vp · U) and vq · U is nonempty for sufficiently large L. In other words,
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there is a geodesic segment of which the initial and terminal direction vectors are
δ′-close to vp and vq, respectively. Thus the claim follows since we can choose δ′

sufficiently small, for instance, at most 10−2δ.
In order to construct an (R, ε)-good curve in M for a given ε and any sufficiently

large R, we apply the Connection Principle by taking p equal to q and vp equal
to vq. By choosing δ to be 10−1ε and a sufficiently large L to be R, we obtain a
geodesic segment with coincident endpoints p, which gives rise to a geodesic loop
γ by identifying the endpoint and free homotopy. It can be verified by elementary
estimation of hyperbolic geometry that γ is an (R, ε)-good curve. In order to con-
struct an (R, ε)-good pair of pants, we may attach a nearly perpendicular bisecting
arc α to γ as follows. Take a pair of antipodal points p, q on γ, and take unit normal
vectors np, nq at p, q by rotating the direction vectors of γ counterclockwise. By
the Connecting Principle, construct a geodesic segment α connecting p and q with
endpoint directions approximately np and −nq of length approximately R

2 + log(2),

up to error 10−1ε. Attaching α to γ gives rise to a θ-shape graph, which is the spine
of a unique immersed pair of pants Π up to homotopy. It can be verified, again,
that Π is an (R, ε)-good pair of pants.

Now let us return to the original Problem 1.2 for cocompact lattices in PSL2(R).
The strategy is to solve the problem in two steps:

(1) Find a probability measure µ0 ∈ M(ΠR,ε) so that ∂]µ0 is nontrivial and
nearly evenly distributed over any (R, ε)-good curve γ, which means that
∂]µ0 is close to the Lebesgue measure on the unit normal bundle to γ.

(2) Resolve the small imbalance of boundary measures between oppositely ori-
ented (R, ε)-good curves by a small correction µφ ∈M(ΠR,ε).

Then a solution of Problem 1.2 is given by the normalization of µ0 + µφ. In the
example constructions above, we have not estimated the amount of good curves
and good pants in the hyperbolic surface M . The quantitative version can be
achieved by knowing the exponential mixing rate of the geodesic flow. Specifically,
the following theorems resolve the two steps.

To capture the imbalance of boundary measures, we introduce another boundary
operator:

∂∆ : M(ΠR,ε)→M(ΓR,ε),

by defining (∂∆µ)(γ) = max{0, (∂µ)+(γ) − (∂µ)−(γ̄)}. Note that the unit normal
vector bundle N (γ) for any (R, ε)-good curve γ has two components. Denote by
N+(γ) the unit normal vectors that form a special orthonormal frame with the unit
direction vectors of γ. For any measure µ ∈M(ΠR,ε), the restriction of the footed
boundary ∂]µ to any N (γ) is hence supported on N+(γ) (because ΠR,ε consists
of oriented good pants which have compatible orientation with the surface).

Theorem 2.1. For some universal constants q, C and polynomial P , the following
statement holds for any small ε depending on M and sufficiently large R depending
on ε and M .

There exists a probability measure µ0 ∈M(ΠR,ε) with ∂∆µ0 supported on ΓR, ε/2
(in fact, one may take µ0 to be the normalized counting measure on ΠR,ε). More-
over,

• for all γ ∈ ΓR,ε, the restriction of ∂]µ0 to N+(γ) is (P (R)e−qR)-equivalent
to (∂µ0)(γ) times the Lebesgue measure;
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• for all γ ∈ ΓR, ε/2, the value (∂µ0)(γ) is at least Ce−2R, and (∂∆µ0)(γ) is

at most P (R)e−(2+q)R.

Theorem 2.2. For any measure ν ∈ M(ΓR,ε) which is contained in the subspace
∂∆M(ΠR,ε), there exists a measure φ(ν) ∈ M(ΠR,ε) such that ∂∆φ(ν) equals ν,
and moreover,

‖φ(ν)‖ ≤ P (R)e−R‖ν‖,
where ‖ · ‖ is understood as the maximum value at individual (R, ε)-pants or (R, ε)-
curves.

See [Kahn–Markovic 2014, Theorems 3.1, 3.4, Lemma 3.3].
Starting with the measure µ0 ∈ M(ΠR,ε) of Theorem 2.1, we may construct a

correction term µφ ∈M(ΠR,ε) using Theorem 2.2, by defining µφ to be −φ(∂∆µ0)
where µ̄0 is the measure induced by the orientation reversion on ΠR,ε. It can be
verified that µ0 + µφ is (P (R)e−qR)-equivalent to the Lebesgue measure restricted
to any unit normal vector bundle N (γ), and that ∂∆(µ0 +µφ) vanishes. By taking
R sufficiently large, the normalization of µ0 + µφ provides a solution to Problem
1.2.

To close the present section, we remark that from Theorem 2.2 one can develop
a quantitative good correction theory. The qualitative part of the theory is the
so-called Good Pants Homology, which has been generalized to the PSL2(C) case
as we discuss in the next section. The quantitative part of the theory refers to
the estimation of φ(ν) in Theorem 2.2. The estimation can be achieved through a
procedure called randomization that strengthens arguments involved the study of
Good Pants Homology.

3. Surface Subgroup Conjecture

Most techniques of the good pants construction in PSL2(R) find their counter-
parts in PSL2(C). In this section, we introduce the proof of the Surface Subgroup
Conjecture, which asserts that any cocompact lattice of PSL2(C) contains a sur-
face subgroup, [Kahn–Markovic 2012]. Then we discuss the generalization of the
qualitative good correction theory for PSL2(C), [Liu–Markovic 2014].

The Surface Subgroup Conjecture is related to the Virtual Haken Conjecture in
3-manifold topology. Essentially embedded subsurfaces of closed 3-manifolds are
important objects in 3-manifold topology. Such subsurfaces can be constructed
via topological methods when the fundamental group of the 3-manifold admits a
nontrivial splitting. As a potential approach to the Poincaré Conjecture, Friedhelm
Waldhausen conjectured in the 1960s that every closed 3-manifold with an infi-
nite fundamental group has a finite cover which contains an essentially embedded
subsurface, or in other words, is virtually Haken [Waldhausen 1968]. By the Ge-
ometrization Conjecture of William P. Thurston, confirmed by Grigori Perelman in
2003, Waldhausen’s Virtual Haken Conjecture can be reduced to the case of closed
hyperbolic 3-manifolds. Hence the Surface Subgroup Conjecture becomes a natural
first step towards Waldhausen’s conjecture. In general, a π1-injectively immersed
subsurface in a closed hyperbolic 3-manifold can be either geometrically infinite or
quasi-Fuchsian. The only currently known way to construct geometrically infinite
subsurfaces invokes the Sutured Manifold Hierarchy as well as the Virtual Special
Cubulation, [Agol 2008, Gabai 1983, Wise 2011]. In particular, it requires passage
to finite covers and offers no effective control on the geometry of the constructed
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subsurface. On the other hand, many arithmetic hyperbolic 3-manifolds are known
to contain immersed Fuchsian subsurfaces, and hyperbolic surface bundles are
known to contain immersed quasi-Fuchsian subsurfaces with arbitrarily thick hull,
[Cooper–Long–Reid 1997, Masters 2006]. The Virtual Haken Conjecture has been
proved by Ian Agol [Agol 2013] relying on [Kahn–Markovic 2012, Wise 2011].

The subsurfaces constructed through good pants techniques are π1-injectively
immersed and geometrically finite, as one can imply from Theorem 1.1. In fact,
one can produce these subsurfaces to be arbitrarily nearly totally geodesic, in the
sense that the limit set of a corresponding quasi-Fuchsian subgroup can be required
to be contained in any given neighborhood of a round circle in the ideal boundary of
H3. Once again, the task reduces to addressing Problem 1.2 for an oriented closed
hyperbolic 3-manifold M . However, this time the solution is even easier since we can
pass around the good correction theory. The PSL2(C) case was actually resolved
earlier than the PSL2(R) case.

The first modification to the previous argument for PSL2(R) is to employ the
frame flow on the special orthonormal frame bundle SO(M) instead of the geodesic
flow on the unit vector bundle UT(M). The reason is that good curves in closed hy-
perbolic 3-manifolds must be prescribed to have approximately trivial monodromy
besides approximately given length, and similarly, good pants must have small
bending in the normal direction. The mixing rate of the frame flow is known to be
exponential. A weak analog of Theorem 2.1 is the following:

Theorem 3.1. For some universal constants q and polynomial P , the following
statement holds for any positive constant ε and sufficiently large R depending only
on ε and M .

There exists a probability measure µ0 ∈ M(ΠR,ε) such that for all γ ∈ ΓR,ε,
the restriction of ∂]µ0 to N (γ) is (P (R)e−qR)-equivalent to (∂µ0)(γ) times the
Lebesgue measure.

See [Kahn–Markovic 2012, Theorem 3.4].
Denote by µ̄0 the measure induced by the orientation reversion on ΠR,ε. Then

the probability measure (µ0 + µ̄0) / 2 yields a solution to Problem 1.2, which com-
pletes the proof of the Surface Subgroup Conjecture for cocompact lattices of
PSL2(C).

Before moving on to the correction theory, we make two technical remarks re-
garding Theorems 2.1 and 3.1:

(1) Current techniques of good pants construction do not apply to non-cocompact
lattices in PSL2(R) or PSL2(C). The argument in the previous section to
construct good curves or good pants would fail without the assumption of
positive injectivity radius, so the existence of µ0 is no longer guaranteed;

(2) The averaging trick in the PSL2(C) case fails in the PSL2(R) case es-
sentially because the flip transformation of N (ΓR,ε) that takes any unit
normal vector n to −n is orientation reversing. The fact that the flip trans-
formation is central but not contained in the identity component of the
isometry group of N (ΓR,ε) obstructs µ0 from being nearly symmetric un-
der flipping. Similar technical obstructions can be observed for cocompact
lattices in SO(2m, 1).

A qualitative correction theory has been developed for cocompact lattices in
PSL2(C). We state the result in terms of the good panted cobordism group.
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Let M be an oriented closed hyperbolic 3-manifold. A possibly disconnect ori-
ented immersed 1-submanifold L of M is called an (R, ε)-multicurve, if each com-
ponent of L is homotopic to an (R, ε)-good curve. Two (R, ε)-multicurves L,L′

are said to be (R, ε)-panted cobordant if there exists a possibly disconnected (R, ε)-
panted subsurface bounded by L t L̄′ (a (R, ε)-panted subsurface is a subsurface
that comes with a decomposition into (R, ε) good pants). For any universally small
ε and sufficiently large R, being (R, ε)-panted cobordant is an equivalence relation.
Then we define the (R, ε)-panted cobordism group of M to be the set of (R, ε)-
panted cobordism classes [L]R,ε of (R, ε)-multicurves L, denoted as ΩR,ε(M). This
is a finitely generated Abelian group with the addition induced by the disjoint union
operation and the inverse induced by the orientation reversion.

Theorem 3.2. Let M be an oriented closed hyperbolic 3-manifold. For any uni-
versally small positive ε, and any sufficiently large positive R depending only on M
and ε, there is a canonical isomorphism

Φ : ΩR,ε(M)−→H1(SO(M); Z),

where SO(M) denotes the bundle over M of special orthonormal frames with respect
to the orientation of M . Moreover, for all [L]R,ε ∈ ΩR,ε(M), the image of Φ([L]R,ε)
under the bundle projection is the homology class [L] ∈ H1(M ; Z).

See [Liu–Markovic 2014, Theorem 5.2].
Since H1(SO(M); Z) is a split extension of H1(M ; Z) by Z2, the only obstruction

for a null-homologous good multicurve to bound a good panted subsurface lies in
the center Z2.

For an oriented closed hyperbolic surface M , the Good Pants Homology of M
introduced in [Kahn–Markovic 2014] may be equivalently defined as ΩR,ε(M)⊗Q.
It has been shown there that ΩR,ε(M)⊗Q is canonically isomorphic to H1(M ; Q),
(see also [Calegari 2009]).

4. Further applications

There have been a number of proceedings of good pants constructions since
[Kahn–Markovic 2012, Kahn–Markovic 2014]. Ursula Hamenstädt has considered
good pants constructions for cocompact lattices of broader families of Lie groups.

Theorem 4.1 ([Hamenstädt 2014]). Every cocompact lattice in a rank one simple
Lie group other than SO(2m, 1) for positive integers m contains a surface subgroup.

The complete list of Lie groups in Hamenstädt’s result consists of SO(2m +
1, 1), SU(n, 1), Sp(n, 1), and F−20

4 . It is also conjectured in [Hamenstädt 2014]
the existence of surface subgroups for cocompact irreducible lattices in semisimple
Lie groups with finite center, without compact factors and without factors locally
isomorphic to SL2(R).

The good correction theory for PSL2(C) can be applied to construct bounded
π1-injectively immersed subsurface in closed hyperbolic 3-manifolds. The following
theorem is the generalization of a result of Danny Calegari in the case of hyperbolic
surfaces [Calegari 2009].

Theorem 4.2 ([Liu–Markovic 2014]). Every π1-injectively immersed oriented closed
1-submanifold in a closed hyperbolic 3-manifold which is rationally null-homologous
admits an equidegree finite cover which bounds an oriented connected compact π1-
injective immersed quasi-Fuchsian subsurface.
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The fact that the good correction theory yields a finite cover of a closed hyper-
bolic surface can be generalized to a procedure called homological substitution as
introduced in [Liu–Markovic 2014]. It replaces any π1-injectively immersed one-
vertexed 2-complex with a good panted complex so that the 1-cells correspond to
a collection of good multicurves, and the 2-cells correspond to a collection of good
panted subsurfaces. Homological substitution enables us to produce nicely glued
good panted subsurfaces with control on the homology class.

Theorem 4.3 ([Liu–Markovic 2014]). Every rational second homology class of a
closed hyperbolic 3-manifold has a positve integral multiple represented by an ori-
ented connected closed π1-injectively immersed quasi-Fuchsian subsurface.

Compare the result of Danny Calegari and Alden Walker that in a random group
at any positive density, many second homology classes can be rationally represented
by quasiconvex (closed) surface subgroups [Calegari–Walker 2013].

Some similar idea can be found in Hongbin Sun’s work on virtual properties of 3-
manifolds. The following results are based on good pants constructions and invoke
the separability of quasiconvex subgroups for lattices of PSL2(C), [Agol 2013].

Theorem 4.4 ([Sun 2014a]). For any finite Abelian group A, every closed ori-
entable hyperbolic 3-manifold has a finite cover of which the first integral homology
contains A as a direct sum component.

Theorem 4.5 ([Sun 2014b]). For any closed orientable 3-manifold N , every closed
orientable hyperbolic 3-manifold has a finite cover that maps onto N of degree 2.

In [Sun 2014a], the core construction is a 2-complex which is good panted and
nicely glued with certain mild singularity near a 1-submanifold locus. In [Sun 2014b],
the core construction involves homological substitution of a carefully chosen one-
vertexed 2-complex. In particular, the mapping degree 2 is essentially due to the
Z2 obstruction discovered in Theorem 3.2.

In prospect, there are several directions rather interesting to explore. The first
challenge is to generalize good pants constructions to non-cocompact lattices and
one-ended word-hyperbolic groups. The next step is to develop qualitative and
quantitative versions of the good correction theory. Finally, it remains widely open
at this point how to construct higher dimensional submanifolds in locally symmetric
spaces through their geometry and dynamics of various flow.
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