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Abstract. Among other things, we prove the following two topologcal state-

ments about closed hyperbolic 3-manifolds. First, every rational second ho-
mology class of a closed hyperbolic 3-manifold has a positve integral multiple
represented by an oriented connected closed π1-injectively immersed quasi-

Fuchsian subsurface. Second, every rationally null-homologous, π1-injectively
immersed oriented closed 1-submanifold in a closed hyperbolic 3-manifold has
an equidegree finite cover which bounds an oriented connected compact π1-
injective immersed quasi-Fuchsian subsurface. In part, we exploit techniques

developed by Kahn and Markovic in [KM1, KM2], but we only distill geometric
and topological ingredients from those papers so no hard analysis is involved
in this paper.

1. Introduction

In this paper, we are concerned about the construction problem of homologically
interesting connected quasi-Fuchsian subsurfaces in closed hyperbolic 3-manifolds.
We show that in a closed hyperbolic 3-manifold, it is always possible to construct
an oriented compact connected π1-injectively immersed quasi-Fuchsian subsurface
which is virtually bounded by prescribed multicurves and which virtually represents
a prescribed rational relative second homology class (Theorem 1.3).

The following two results are motivational special cases of Theorem 1.3. For
simplicity we state them first.

Corollary 1.1. Every rational second homology class of a closed hyperbolic 3-
manifold has a positve integral multiple represented by an oriented connected closed
π1-injectively immersed quasi-Fuchsian subsurface.

Corollary 1.2. Every rationally null-homologous, π1-injectively immersed oriented
closed 1-submanifold in a closed hyperbolic 3-manifold has an equidegree finite cover
which bounds an oriented connected compact π1-injective immersed quasi-Fuchsian
subsurface.

Here the closed 1-submanifold being π1-injectively immersed means that all com-
ponents are homotopically nontrivial, and a finite cover being equidegree means that
the covering degree does not vary over different components of the 1-submanifold.
However, we do not require the finite cover to be connected restricted to any com-
ponent of the closed 1-submanifold.

Corollary 1.1 was a question that was recently (and informally) raised by William
Thurston. Note that if not requiring the subsurface to be connected, one may easily
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obtain a componentwise quasi-Fuchsian embedded incompressible subsurface rep-
resenting a second homology class that is nontrivial and non-fibered, or obtain a
componentwise π1-injectively immersed quasi-Fuchsian representative subsurface,
using the Cooper–Long–Reid construction [CLR] in the fibered case or the Kahn–
Markovic construction [KM1] in the trivial case. In the paper [CW], Danny Cale-
gari and Alden Walker show that in a random group at any positive density, many
second homology classes can be rationally represented by quasiconvex (closed) sur-
face subgroups (cf. Remark 6.4.2 of [CW]). Corollary 1.2 answers a question of
Calegari in the case of closed hyperbolic 3-manifold groups. Calegari proved the
surface group case [Ca] but his question remains widely open for hyperbolic groups
in general.

Next, we state our main result Theorem 1.3. A compact immersed subsurface F
of a closed hyperbolic 3-manifoldM is quasi-Fuchsian if it is an essential subsurface
of a closed π1-injectively immersed quasi-Fuchsian subsurface of M . Perhaps it
would be better to call F ‘quasi-Schottky’ if it is quasi-Fuchsian with nonempty
boundary.

Theorem 1.3. Let M be a closed hyperbolic 3-manifold, and L ⊂M be the (possi-
bly empty) union of finitely many mutually disjoint, π1-injectively embedded loops.
Then for any relative homology class α ∈ H2(M,L; Q), there exists an oriented
connected compact surface F , and an immersion of the pair

j : (F, ∂F ) # (M,L),

such that j is π1-injective and quasi-Fuchsian, and that F represents a positive
integral multiple of α.

The reader is referred to Subsection 8.1 for more explanation about the formula-
tion. In fact, the proof also implies that the claimed immersed subsurface is nearly
geodesic and nearly regularly panted (cf. Section 2).

In the course of proving Theorem 1.3, we revisit the techniques developed in the
work of Kahn–Markovic in [KM1, KM2], with an attempt to distill the topological
ingredients from those papers. In particular, we recall the gluing construction of
[KM1] and the topological part of the good correction theory of [KM2]. We do
not touch any details of dynamics and randomization part of the good correction
theory, so no hard analysis will be involved in the treatment of this paper.

The connectedness of the surface F in the conclusion of Theorem 1.3 comes from
improving the gluing construction of [KM1]. The idea of the construction of [KM1]
is to build a closed π1-injectively immersed quasi-Fuchsian subsurface in a closed
hyperbolic 3-manifold by gluing a sufficiently large finite collection of nearly regular
pairs of pants with nearly evenly distributed feet. A crucial criterion was proved
in [KM1, Theorem 2.1], asserting that a nearly unit shearing gluing yields the π1-
injectiveness and the quasi-Fuchsian property. In Section 2, we will review the
program in more details with emphasis on the boundary operator on measures of
nearly regular pairs of pants. However, the criterion of [KM1] does not necessarily
produce a connected surface, so we provide a slightly stronger criterion (Theorem
2.9) which ensures connectedness of the output. The new criterion will be proved in
Section 3 by applying a trick called hybriding. On the other hand, the assumptions
of the new criterion are not hard to be satisfied, for instance, cf. Theorem 2.10.

The control of the homology class of the surface F in the conclusion of Theorem
1.3 comes from extending and strengthening the non-random good correction theory
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of [KM2] in the 3-dimensional case. For an oriented closed hyperbolic 3-manifold
M , we will reformulate the Good Pants Homology introduced in [KM2] as the
nearly regularly panted cobordism group ΩR,ǫ(M) (Definition 5.1). In Section 5,
we will find a canonical isomorphism Φ between ΩR,ǫ(M) and the first integral
homology of the special orthonormal frame bundle SO(M) over M (Theorem 5.2).
This isomorphism fully characterizes the structure of ΩR,ǫ(M), and improves the
treatment of non-random good correction theory of [KM2] in that it accounts for
the torsion part which was previously ignored. In Section 6, we will further show
that any second integral homology class of M can be represented by an oriented
closed nearly regularly panted subsurface (Theorem 6.1). With an extra property
called nearly regularly panted connectedness introduced in Section 7, our study of
nearly regularly panted cobordisms can be summarized by the following Theorem
1.4, stated in a form analogous to Theorem 1.3 (cf. Section 2 for the notations).
Note that Corollaries 1.2 and 1.1 are also parallel to Theorems 5.2 and 6.1 in their
statements respectively. These results are all based on geometric constructions
using ∂-framed segments as we will study in Section 4.

Theorem 1.4. Let M be closed hyperbolic 3-manifold. For any sufficiently small
positive constant ǫ depending on the injectivity radius of M and any sufficiently
large positive constant R depending only on M and ǫ, the following holds. There
exists a nontrivial invariant σ(L) valued in Z2, defined for all null-homologous
oriented (R, ǫ)-multicurve L in M , satisfying the following.

(1) For any null-homologous oriented (R, ǫ)-multicurve L1, L2,

σ(L1 ⊔ L2) = σ(L1) + σ(L2).

(2) The invariant σ(L) vanishes if and only if L bounds a connected compact
oriented (R, ǫ)-panted subsurface F immersed in M .

(3) When σ(L) vanishes, every relative homology class α ∈ H2(M,L;Z) with
∂α equal to the fundamental class [L] ∈ H1(L;Z) is represented by a con-
nected compact oriented (R, ǫ)-panted immersed subsurface F bounded by
L.

In fact, σ(L) is defined as Φ([L]R,ǫ), where [L]R,ǫ is the (R, ǫ)-panted cobordism
class of L, so σ(L) lies in a canonical submodule of H1(SO(M);Z) isomorphic to
Z2. The proofs of Theorems 1.3 and 1.4 will be completed in Section 8. A few
further questions will be proposed in Section 9.

Acknowledgement. The authors thank Danny Calegari for comments on a pre-
vious draft of this paper.

2. Methodology

For a typical construction problem of quasi-Fuchsian subsurfaces in a closed
hyperbolic 3-manifold, such as addressed in Theorem 1.3, one may generally follow
two steps: first, decide a suitable finite collection of (oriented) nearly geodesic pairs
of pants whose cuff lengths are nearly equal; secondly, glue these pairs of pants up
along boundary in a well controlled fashion to output a connected quasi-Fuchsian
subsurface. The second step is supposed to be automatic once we have fed in
the collection of pairs of pants as initial data, so the real task is to provide such a
collection. Regarding the collection as a finite measure over the set of pairs of pants,
we will translate the compatibility condition for the gluing into a linear system of
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equations of that measure, and we will introduce properties on solutions to ensure
a suitable gluing. In other words, we will be interested in certain solutions of the
linear system of equations associated to a boundary operator on measures of pants.
The purpose of this section is to set up the framework, and to divide the discussion
into several aspects that can be treated separatedly in the rest of this paper.

2.1. Measures of pants. Throughout this subsection, M will be a closed hyper-

bolic 3-manifold. Identifying the universal cover M̂ of M as the 3-dimensional
hyperbolic space H

3, we will regard the deck transformation group π1(M) as a
torsion-free cocompact discrete subgroup of the group of isometries Isom(H3).

2.1.1. Curves and pants. Let S1 be the topological circle with a fixed orientation.
An oriented curve in M , or simply a curve, is the free homotopy class of a π1-
injective immersion γ : S1 #M . We often abuse the notations for curves and their
representatives, and write a curve as

γ #M.

Every curve can be homotoped to a unique oriented closed geodesic in M with the
length parametrization up to a rotation, so we define the visual torus Nγ of γ to
be the unit normal vector bundle of the geodesic representative. We think of the
visual torus to be a holomorphic torus, and the name comes from the fact that we
may alternatively define Nγ as follows. Let γ̂ be any elevation of a curve γ in H

3.

As γ̂ is a quasi-geodesic with endpoints p, q on the sphere at infinity Ĉ, we may
define Nγ to be the holomorphic cylinder Ĉ \ {p, q} quotiented by the stabilizer
Stabπ1(M)(γ̂). The two definitions of Nγ are certainly equivalent, but the latter
might be more natural from a perspective of geometric group theory.

The collection of curves in M will be denoted as Γ(M), or simply Γ. The
quotient of Γ under the free involution induced by orientation reversion of curves
is the collection of unoriented curves in M , and we will denote it as |Γ|.

Let Σ0,3 be a topological pair of pants, namely, a compact three-holed sphere.
For convenience, we will fix an orientation of Σ0,3. An unmarked oriented pair
of pants in M , or simply a pair of pants, is the homotopy class of a π1-injective
immersion Π : Σ0,3 # M , up to orientation-preserving self-homeomorphisms of
Σ0,3. We often abuse the notations for homotopy classes and their representatives,
and write a pair of pants as

Π #M.

The cuffs of Σ0,3 are the three boundary curves of Σ0,3, and the seams of Σ0,3

are three mutually disjoint, properly embedded arcs connecting the three pairs of
cuffs, which are unique up to orientation-preserving self-homeomorphisms of Σ0,3.
Every pair of pants can be homotoped so that the cuffs are the unique geodesic
closed curves, and that the seams are the unique geodesic arcs orthogonal to the
adjacent cuffs, or possibly points in the degenerate case. We say a pair of pants
in M is nonsingular if no seam degenerates to a point under the straightening as
above.

The collection of nonsingular pants in M will be denoted as Π(M), or simply
Π. The quotient of Π under the free involution induced by orientation reversion of
pants is the collection of unoriented nonsingular pants in M , and we will denote it
as |Π|.
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Suppose Π #M is a nonsingular pair of pants, straightened so that the cuffs are
geodesic and the seams are geodesic and orthogonal to the cuffs. For every pair of
cuffs γ and γ′, the seam η from γ to γ′ defines a unit normal vector v at γ, pointing
along η towards γ′. We call v ∈ Nγ the foot of Π at γ toward γ′, and it is the
‘visual direction of the nearest point’ as we observe γ′ from γ. There are exactly
six feet of Π, two at each cuff toward the other two cuffs respectively.

2.1.2. Boundary operators. Throughout this paper, a measure is always considered
to be nonnegative. Let M(Π) denote all finitely-supported finite measures on the
set of nonsingular pants Π in M . We usually write a nontrivial element of M(Π)
as a finite formal sum of elements of Π with positive coefficients. Similarly, let
M(Γ) denote all finitely-supported finite measures on the set of curves Γ in M .
There is a natural boundary operator

∂ : M(Π) → M(Γ),

defined by assigning ∂Π to be the sum of the cuffs of Π. We will consider two related
notions: the footed boundary ∂♯, which is a geometric refinement of ∂ remembering
the feet; and the net boundary ∂♭, which is an algebraic reduction of ∂ forgetting
the orientation.

Definition 2.1. Let M(Nγ) denote all Borel measures on the visual torus of any
curve γ in M , and let M(NΓ) denote the direct sum of M(Nγ) as γ runs over all
curves Γ. The footed boundary operator is the homomorphism:

∂♯ : M(Π) → M(NΓ),

defined by assigning ∂♯Π to be one half of the sum of the atomic measures supported
at the six feet of Π, where Π ∈ Π is any nonsingular pants.

Remark 2.2. The normalization coefficient 1
2 has been chosen so that the total

measure on Nγ of each cuff γ is equal to 1.

Definition 2.3. Let M(|Γ|) denote all finite measures on the set of unoriented
curves |Γ| in M . We identify M(|Γ|) as the subspace of M(Γ) fixed under the free
involution induced by the orientation reversion γ 7→ γ̄, in other words, regard the
atomic measure supported on the unoriented class {γ, γ̄} as the measure 1

2 (γ + γ̄).
The net boundary operator is the homomorphism:

∂♭ : M(Π) → M(|Γ|),

defined by

∂♭µ =
1

2

∣∣∂µ− ∂µ
∣∣ .

Remark 2.4. If we regard M(|Π|) as the subspace of M(Π) fixed under the
orientation reverion, then M(|Π|) lies in the kernel of ∂♭.
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We have the following commutative diagram relating various operators:

M(NΓ)

Tot

��
M(Π)

∂♯
99ttttttttt

∂ //

∂♭
%%J

JJ
JJ

JJ
JJ

M(Γ)

Net

��
M(|Γ|)

Here Tot is the componentwise total Tot(µ) =
∑
γ∈Γ

µ(Nγ) γ, and Net is the

unorientation reduction defined by linearly extending Net(γ) = 1
2 |γ − γ̄| for all

γ ∈ Γ.

2.1.3. Shape controlling. For most of our treatment we will focus on pairs of pants
in M that are nearly geodesic with cuffs of nearly equal length, or nearly regular
pants as we will introduce below.

First recall that for a boundary-framed segment in H
3 (with the canonical orien-

tation), the (oriented geometric) complex length of it can be defined as a complex
value in

(0,+∞) + (−π, π] i.
More precisely, an oriented ∂-framed segment is an oriented geodesic arc with a
unit normal vector at each endpoint, so the real part of the complex length is the
usual length of the geodesic arc, and the imaginary part is the signed angle from the
initial normal vector to the parallel transportation of the terminal normal vector
to the initial point of the geodesic arc, with respect to the initial tangent vector.
The complex length does not change if we reverse the orientation of the ∂-framed
segment. It is clear that the complex length of ∂-framed segments also makes sense
in any oriented hyperbolic 3-manifold M . For a geodesic loop in M , we may pick
a normal vector at a point, and define the complex length of the geodesic loop
as the complex length of the boundary-framed segment obtained from cutting the
geodesic loop along the chosen point, and endowing both the end-points with the
same chosen normal vector. The definition is clearly independent of the choices of
the point or the normal vector.

LetM be a closed hyperbolic 3-manifold. Suppose Π #M be a nonsingular pair
of pants, straightened by homotopy so that the cuffs and seams are geodesic and
orthogonal as before. Observe that each cuff γ of Π is bisected into two boundary-
framed segments with the boundary framing given by the two feet. In fact, these
two boundary-framed segments, called half cuffs, have the same complex length.
We define the complex half length of the cuff γ of Π to be the complex length of
either of the half cuffs, denoted as hlΠ(γ). We denote the complex length of γ as
l(γ). When the imaginary part of hlΠ(γ) is at most the right angle, l(γ) is equal
to twice hlΠ(γ).

Definition 2.5. Let M be a closed hyperbolic 3-manifold. Suppose R ∈ (0,+∞)
and ǫ ∈ [0, π].

(1) We say that a curve γ #M is (R, ǫ)-nearly hyperbolic, if

|l(γ)−R| < ǫ.



HOMOLOGY AND QF SUBSURFACES 7

The subcollection of (R, ǫ)-nearly hyperbolic curves in M will be denoted
as ΓR,ǫ ⊂ Γ.

(2) We say that a nondegenerate pair of pants Π #M is (R, ǫ)-nearly regular,
if for each cuff γ of Π, ∣∣∣∣hlΠ(γ)−

R

2

∣∣∣∣ <
ǫ

2
.

The subcollection of (R, ǫ)-nearly regular pants in M will be denoted as
ΠR,ǫ ⊂ Π.

We often simply say nearly hyperbolic or nearly regular with the usage explained
in the following Convention 2.6.

Convention 2.6. When ambiguously saying nearly instead of (R, ǫ)-nearly, we
suppose that R ∈ (0,+∞) and ǫ ∈ [0, π] are understood from the context. Presum-
ably, ǫ will be universally small, and R will be sufficiently large, depending on M
and ǫ. This precisely means that for some universal constant ǫ̂ > 0 to be deter-
mined, ǫ is assumed to satisfy 0 < ǫ < ǫ̂, and that for any given closed hyperbolic
3-manifold M , and for some constant R̂ = R̂(M, ǫ) > 0 to be determined, R is

assumed to satisfy R > R̂.

From Definition 2.5, it follows that the restriction of the boundary operator
yields:

∂ : M(ΠR,ǫ) → M(ΓR,ǫ),

and similarly for ∂♯ and ∂♭.

2.2. From pants measures to panted subsurfaces. For any finite collection of
pairs of pants in a closed hyperbolic 3-manifold M , we can try to glue them along
common cuffs with opposite induced orientations, and this will give rise to a panted
subsurface in M , precisely as follows.

Definition 2.7. Suppose R ∈ (0,+∞) and ǫ ∈ [0, π]. An (R, ǫ)-nearly regularly
panted subsurface of M , or simply an (R, ǫ)-panted subsurface, is a (possibly dis-
connected) compact oriented surface F with a pants decomposition, and with an
immersion j : F # M into M such that the restriction of j to each component
pair of pants is (R, ǫ)-nearly regular. Let µ ∈ M(ΠR,ǫ) be the integral measure
such that for each Π ∈ ΠR,ǫ, there are exactly µ({Π}) copies of Π in all component
pairs of pants of F immersed via j. Then we say that the (R, ǫ)-panted subsurface
is subordinate to µ.

In general, the panted subsurface would be neither π1-injective quasi-Fuchsian
nor connected. However, we wish to introduce conditions on µ to ensure that some
quasi-Fuchsian connected panted subsurface therefore exists and is subordinate to
µ.

Recall that for a metric space (X, d), and for a positive number δ, two Borel
probability measures µ, µ′ are said to be δ-equivalent, if for every Borel subset A
of X, µ(A) ≤ µ′(Nδ(A)), where Nδ(A) ⊂ X is the δ-neighborhood of A. Note that
δ-equivalence is a symmetric relation. For any nonvanishing finite Borel measure µ
on X, we may speak of δ-equivalence after normalization, namely, after dividing µ
by µ(X).

Definition 2.8. Let M be a closed hyperbolic 3-manifold. Suppose R ∈ (0,+∞)
and ǫ ∈ [0, π]. Let µ ∈ M(ΠR,ǫ) be a measure of nearly regular pants.
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(1) We say that µ is ubiquitous, if µ is positive at every Π ∈ ΠR,ǫ, and if ∂µ is
positive at every γ ∈ ΓR,ǫ.

(2) We say that µ is irreducible, if for any nontrivial decomposition µ = µ′+µ′′,
µ′ and µ′′ have adjacent supports, namely, that there is a curve γ ∈ ΓR,ǫ
which lies in the support of ∂µ′ and the orientation-reversal of which lies
in the support of ∂µ′′.

(3) We say that µ is (R, ǫ)-nearly evenly footed, if for every curve γ ∈ ΓR,ǫ on
which ∂µ is nonvanishing, the normalization of (∂♯µ)|Nγ

is ( ǫ
R
)-equivalent

to the normalization of the Lebesgue measure, with respect to the Euclidean
metric on the visual torus Nγ induced from the unit normal vector bundle
of the geodesic representative of γ. We often simply say nearly evenly footed
following Convention 2.6.

(4) We say that µ is rich, if the net boundary of µ at any unoriented curve
is a relatively small portion compared to the cancelled part, or specifically
for our application, that ∂♭µ(|γ|) ≤ 1

5 ∂µ({γ, γ̄}). Here |γ| means the
unoriented class {γ, γ̄} for any curve γ ⊂ ΓR,ǫ.

The following criterion about connected quasi-Fuchsian gluing will be proved in
Section 3.

Theorem 2.9. Let M be a closed hyperbolic 3-manifold. For a universally small
positive ǫ, and for all sufficiently large positive R, depending on M and ǫ, the
following statement holds. For any nontrivial rational measure µ ∈ M(ΠR,ǫ), if µ
is irreducible, (R, ǫ)-nearly evenly footed, and rich, then there exists an oriented,
connected, compact, π1-injectively immersed quasi-Fuchsian subsurface:

j : F #M,

which is (R, ǫ)-nearly regularly panted subordinate to a positive integral multiple of
µ.

2.3. Homology via pants measures. For a closed hyperbolic 3-manifold M ,
we wish to understand the structure of the boundary operator ∂ : M(ΠR,ǫ) →
M(ΓR,ǫ). More specifically, the following Theorem 2.10 should be viewed from this
perspective.

Let L ⊂ ΓR,ǫ be a collection of distinct curves, invariant under orientation
reversion. We write |L| ⊂ |ΓR,ǫ| for the corresponding unoriented curves, namely,
the quotient of L by orientation reversion. Let

ZM(ΠR,ǫ, |L|)
denote the subset of M(ΠR,ǫ) consisting of measures µ with the net boundary ∂♭µ
supported on (possibly a proper subset of) the unoriented curves |L|. Choosing a
collection of mutually disjoint, embedded unoriented loops k1, · · · , kr representing
elements of |L|, we write H2(M, |L|;R) for H2(M,k1 ∪ · · · ∪ kr;R). Note that
H2(M, |L|;R) is well defined up to natural isomorphisms for different choices of
the loops ki. Thus there is a natural homomorphism between semimodules over
the semiring of nonnegative real numbers:

[·] : ZM(ΠR,ǫ, |L|) → H2(M, |L|; R).

In particular, when L is empty, we denote the kernel of the homomorphism [·]
above as

BM(ΠR,ǫ) ⊂ ZM(ΠR,ǫ, ∅).
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Nevertheless, BM(ΠR,ǫ) is naturally contained in ZM(ΠR,ǫ, |L|) for any L as well.

Theorem 2.10. Let M be a closed hyperbolic 3-manifold. For a universally small
positive ǫ, and for all sufficiently large positive R, depending on M and ǫ, the
following statements hold. Suppose L ⊂ ΓR,ǫ is a collection of distinct curves
invariant under orientation reversion.

(1) There is a short exact sequence of semimodules over the semiring of non-
negative real numbers:

0 −→ BM(ΠR,ǫ) −→ ZM(ΠR,ǫ, |L|) −→ H2(M, |L|; R) −→ 0.

(2) There exists a nontrivial measure µ0 ∈ BM(ΠR,ǫ) which is ubiquitous,
irreducible, (R, ǫ)-nearly evenly footed, and rich. Moreover, every measure
in ZM(ΠR,ǫ, |L|) can be adjusted to satisfy the same properties, by adding
some measure in BM(ΠR,ǫ).

Furthermore, the same statements hold for rational coefficients instead of real co-
efficients as well.

Theorem 2.10 will be proved in Section 8. As Theorem 2.10 feeds Theorem 2.9
with workable input, homologically interesting connected quasi-Fuchsian subsur-
faces can be produced in closed hyperbolic 3-manifolds under fairly general condi-
tions.

3. Quasi-Fuchsian connected gluing

In this section, we prove Theorem 2.9, restated as Proposition 3.2 in terms
of gluing. Let M be a closed hyperbolic 3-manifold, and let (R, ǫ) be a pair of
undetermined constants, assuming that ǫ is a universally small positive number,
and that R is a sufficiently large positive number depending on M and ǫ.

Given a panted surface F of which the pants structure is given by a union of
disjoint simple closed curves C ⊂ F , we may cut F along C to obtain a disconnected
surface F whose components are all pairs of pants. Denote the union of all the
new boundary components of F coming from the cutting as C ⊂ ∂F . Then the
panted surface F can be recovered as the quotient of F by an orientation-reversing
involution φ : C → C, which sends any preimage component of C to its opposite
boundary component. With this in mind, we introduce the notion of gluing as
follows.

Definition 3.1. For any integral measure µ ∈ M(ΠR,ǫ), let F be the finite disjoint
union of copies of nearly regular pants prescribed by µ, namely, such that for any
Π ∈ ΠR,ǫ, there are exactly µ({Π}) copies of Π in F . By a gluing of F , we mean
a pair (C, φ), such that

C ⊂ ∂F
is a subunion of cuffs, and that

φ : C → C
is a free involution which sends each cuff c ⊂ C to its orientation-reversal, regarded
as in ΓR,ǫ. We say that (C, φ) is maximal if φ cannot be extended to any subunion
of cuffs C′ ⊂ ∂F larger than C. Since the quotient of F by φ yields a compact
oriented (R, ǫ)-panted subsurface j : F #M , the quotient image of any cuff c ⊂ C
in F will be called a glued cuff.
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Proposition 3.2. Let M be a closed hyperbolic 3-manifold. For all universally
small positive ǫ, and for all sufficiently large positive R depending on M and ǫ, the
following holds. If a rational nontrivial pants measure µ ∈ M(ΠR,ǫ) is irreducible,
(R, ǫ)-nearly evenly footed, and rich, then possibly after passing to a positive in-
tegral multiple of µ, the prescribed oriented compact surface F admits a maximal
gluing (C, φ), which yields a π1-injectively immersed, quasi-Fuchsian, and connected
subsurface j : F #M .

The key technique to ensure the connectedness of the resulting surface is a trick
called hybriding. To illustrate the idea, the reader may assume for simplicity that
∂µ is zero, so that any panted surface F resulted from a maximal gluing is closed.
We say that a gluing is nearly unit shearing, if for any glued cuff c on the resulting
(R, ǫ)-panted surface F , the feet of the pair of pants on one side of c is almost
exactly opposite to the feet of the pair of pants on the other side of c after a
parallel transportation along c of distance 1 (Definition 3.5). By the construction
of [KM1], the assumption that µ is (R, ǫ)-nearly evenly footed implies that such a
maximal gluing always exists, resulting in a π1-injectively immersed surface which
is quasi-Fuchsian. Since F might be disconnected, we wish to slightly modify the
gluing without affecting the nearly unit shearing property, nevertheless the number
of components of F can be decreased in that case. Denote the components of F
as F1, · · · , Fr, where r is at least two. If two components of F , say F1 and F2,
has glued cuffs c1 ⊂ F1 and c2 ⊂ F2 that are homotopic to each other, supposing
that ci is nonseparating on Fi, we may modify the gluing by cutting Fi along ci,
and regluing in a cross fashion. Then the new resulting surface F ′ has a connected
component F12 instead of the previous two components F1 and F2. We say that
F12 is obtained by hybriding F1 and F2 along c1 and c2. To preserve the nearly
unit shearing property, we need to require that the feet of pants on one side of c1 is
almost the same as the feet of pants on the same side of c2. Such Fi and ci can be
found by the following argument. First, the irreducibility of µ implies that there
is some curve class γ ∈ ΓR,ǫ, such that there are at least two distinct components
of F that have glued cuffs homotopic to γ. Because the footed boundary ∂♯µ
restricted to the unit normal vector bundle Nγ over γ is nearly evenly distributed,
the connectedness of Nγ implies that at least distinct two components F1 and F2

of F (not necessarily the components that we started with) have glued cuffs c1
and c2 homotopic to γ with their feet on the same side very close to those of each
other. Therefore, performing the hybriding on these Fi along ci will decrease the
number of components of the resulting surface, preserving the nearly unit shearing
property. Iterating the process until the resulting surface become connected, then
we are done. A minor point here is that the hybriding trick also require that ci
be nonseparating on Fi. In fact, with the somewhat technical assumption that µ
is rich, the nonseparating property of glued cuffs can be satisfied if we pass to a
cyclic finite cover of F , and hence pass to positive multiple of µ. Note also that
the arguments above certainly works as well when F has boundary. In practice,
one need to be slightly careful to control the error so that the new resulting surface
remains (R, ǫ)-panted, but the general idea of hybriding follows the outline above.

Roughly speaking, the assumption that µ is nearly evenly footed allows us to
control the shape of F along each glued cuff, which ensures the π1-injectivity and
the quasi-Fuchsian property; the assumption that µ is rich allows us to construct F
so that glued cuff is nonseparating in F , so combined with the assumption that µ
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is irreducible, we may perform a hybriding trick to obtain a connected F , possibly
after passing to a further positive integral multiple of µ.

In the rest of this section, we prove Proposition 3.2. In Subsection 3.1 we explain
how to control the gluing so that the glued cuffs are nonseparating; in Subsection
3.2, we review the nearly unit shearing condition that is used in [KM1]; Subsection
3.3 is the hybriding argument; Subsection 3.4 summarizes the proof of Proposition
3.2.

It will be convenient to introduce a measure

ν♯C ∈ M(NΓR,ǫ
),

naturally associated to any subunion of cuffs C ⊂ ∂F . This measure records the
contribution to the footed boundary ∂♯µ from those pairs of pants which contain
components of C. More concretely, each component c ⊂ C lies in a unique pair of
pants Pc ⊂ F . If c ⊂ C is a copy of γ ∈ ΓR,ǫ, and if Pc is a copy of Π ∈ ΠR,ǫ, we
define the marked footed boundary ∂♯c(Pc) ∈ M(Nγ) to be sum of the two feet (as
atomic measures) of Π at the cuff corresponding to c ⊂ ∂Pc. Note that potentially
Pc could have other cuffs which are copies of γ but which might not come from C,
so we need to specify c rather than just mentioning γ. We define

ν♯C =
∑

c⊂C

∂♯c(Pc).

In particular, we also write

ν♯c = ∂♯c(Pc).

3.1. Nonseparating glued cuffs. The lemma below essentially follows from the
condition that µ is rich.

Lemma 3.3. With the notations above, possibly after passing to a positive integral
multiple of µ, we may assume that the prescribed disjoint union of pants F admits
a subunion of cuffs C ⊂ ∂F , satisfying the following:

• Any gluing (C, φ) of F along C is maximal;

• Restricted to any Nγ , the measure ν♯C is a positive rational multiple of ∂♯µ;
• Any pair of pants P ⊂ F contains at least two cuffs from C.

Proof. For simplicity, we write mγ for (∂µ)({γ}), and nΠ for µ({Π}). Let kγ,Π ∈
{0, 1, 2, 3} be the number of times that a curve γ occurs as the cuff of a pair of
pants Π. For any curve γ ∈ ΓR,ǫ, let

µγ =
∑

Π∈ΠR,ǫ

nΠ kγ,Π ·Π.

Let

µ̃γ =
mγ −mγ̄

mγ
· µγ ,

if mγ > mγ̄ ; otherwise, let µ̃γ = 0. Since µ is rich, it is clear by Definition 2.8
that

mγ −mγ̄

mγ
≤ 1

3
,

whenever mγ > mγ̄ . It follows that
∑

γ∈ΓR,ǫ

µ̃γ ≤ µ,
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because every pair of pants has only three cuffs. Furthermore, possibly after passing
to a positive integral multiple of µ, we may assume that µ and all µ̃γ are integral.
Therefore, in the disjoint union of pairs of pants F prescribed by µ, we may find
mutually disjoint subunions Fγ prescribed by µ̃γ , and for each component P ⊂ Fγ ,
we may mark one cuff c ⊂ P which is a copy of γ. Let

C ⊂ ∂F
be the union of all the unmarked cuffs.

It is straightforward to check that the three listed properties about C are sat-
isfied by our construction. In fact, for any γ, γ̄ ∈ ΓR,ǫ, suppose without loss of
generality that mγ ≥ mγ̄ . Because C has exactly mγ̄ components homotopic to γ
and exactly mγ̄ components homotopic to γ̄, any gluing (C, φ) is maximal. The

measure ν♯C restricted to Nγ equals
mγ̄

mγ
times ∂♯µ and restricted to Nγ̄ equals ∂♯µ,

both proportional to ∂♯µ. For any P ∈ F , we marked at most one cuff c ⊂ P in
the construction above, so it contains at least two cuffs from C. �

Suppose (C, φ) is a gluing of F prescribed by µ. For a disjoint union of pants F̃
prescribed by a positive integral multiple of µ, we say that a gluing (C̃, φ̃) covers

(C, φ), if C̃ is the preimage of C under the natural covering κ : F̃ → F , and if the
following diagram commutes:

C̃ φ̃ //

κ

��

C̃
κ

��
C φ // C

In this case, the associated surface F̃ naturally covers F as well.

Lemma 3.4. Let C ⊂ F be a subunion of cuffs satisfying the conclusion of Lemma
3.3. Suppose that (C, φ) is a gluing of F prescribed by µ. Then the disjoint union

of pants F̃ prescribed by 2µ admits a gluing (C̃, φ̃) covering (C, φ), such that every

glued cuff in the resulted surface F̃ is nonseparating.

Proof. The glued cuffs induces a decomposition of F into pairs of pants, and let
Λ be the (possibly disconnected) dual graph. By Lemma 3.3, the valence of any
vertex of Λ is at least two. It follows from an easy construction that Λ admits a
double cover Λ̃ in which every edge is nonseparating. In other words, there is a
double cover F̃ of F induced from a cover (C̃, φ̃) of the gluing (C, φ), in which every

glued cuff is nonseparating. Note also that F̃ can be identified with F̃ cut along
the glued cuffs, so it is prescribed by 2µ. �

3.2. Gluing with nearly unit shearing. To control the shape of F along a glued
cuff, we will require the gluing φ to be nearly unit shearing, which can be described
on the visual tori as follows.

Observe that for any nearly purely hyperbolic curve γ ∈ ΓR,ǫ (or indeed for any
curve), there is a natural action of the additive group of complex numbers on Nγ .
More precisely, for any ζ ∈ C, there is an isomorphism between holomorphic tori:

Aζ : Nγ → Nγ ,

satisfying that for any r ∈ R, Ar parallel transports any normal vector along γ by
signed distance r, and that for any θ ∈ R, Aθi rotates the direction of any normal
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vector by a signed angle θ. It is clear that the kernel of the action is the lattice
in C generated by 2πi and the complex length l(γ) of γ. There is also a canonical
anti-isomorphism

¯ : Nγ → Nγ̄ ,

taking any unit normal vector (p, v) to the opposite vector (p, v) = (p,−v) at the
same point p ∈ |γ|, where |γ| is regarded as the unoriented geodesic representative.
Note that an anti-isomorphism is orientation-reversing. We will think of the com-
position of the bar anti-isomorphism with Aζ as the model of a ζ-shearing gluing
along γ, denoted as:

Aζ : Nγ → Nγ̄ .

In other words, a nearly unit shearing gluing (C, φ) should behave very much like
A1 along each glued cuff.

Definition 3.5. A gluing (C, φ) of F is said to be (R, ǫ)-nearly unit shearing, if

for every pair of cuffs c, c′ ⊂ C with c′ equal to φ(c), the feet measure ν♯c′ is ( ǫ
R
)-

equivalent to (A1)∗(ν
♯
c) on Nγ̄ , where γ ∈ ΓR,ǫ is the curve class of c.

Remark 3.6. A reader familiar with the Kahn–Markovic construction should rec-
ognize the definition above as equivalent to the condition

|s(c)− 1| < ǫ

R

in [KM1, Theorem 2.1].

The lemma below is a consequence of the condition that µ ∈ M(ΠR,ǫ) is (R, ǫ)-
nearly evenly footed.

Lemma 3.7. With the notations above, there is a gluing (C, φ) of F , which is
(R, ǫ)-nearly unit shearing.

Proof. Let C ⊂ ∂F be a subunion of cuffs as ensured by the conclusion of Lemma
3.3. The lemma follows from the Hall Marriage argument, cf. [KM1, Theorem 3.2
and Subsection 3.5]. �

Lemma 3.8. There exists ǫ̂ > 0, and for any 0 < ǫ < ǫ̂, there exists R̂ > 0
depending on M and ǫ, such that for any R > R̂, the following holds. If a gluing
(C, φ) of F is (R, ǫ)-nearly unit shearing, then the resulting surface j : F # M is
π1-injectively immersed and quasi-Fuchsian.

Proof. This is exactly [KM1, Theorem 2.1] if F is closed. In the general case, recall
that a compact immersed subsurface F of M is quasi-Fuchsian in our sense if it
is an essential subsurface of a closed immersed quasi-Fuchsian subsurface F ′ of M
(Section 1). We may take a ubiquitous (R, ǫ)-nearly evenly footed measure µ0 ∈
M(ΠR,ǫ), for instance, as guaranteed by Theorem 2.10 (2). Then for a sufficiently
large integer N , we may assume that Nµ− µ0 is still ubiquitous and (R, ǫ)-nearly
evenly footed. Let F ′ be the disjoint union of (R, ǫ)-nearly regular pants prescribed
by Nµ0. We may identify F as a subunion of components of F ′. It is not hard
to see that the gluing (C, φ) can be extended to be a gluing (∂F ′, φ′) which is
still (R, ǫ)-nearly unit shearing, provided N sufficiently large. Then the gluing
(∂F ′, φ′) yields a possibly disconnected, componentwise π1-injectively immersed
quasi-Fuchsian closed subsurface F ′ #M by [KM1, Theorem 2.1]. The subsurface
F obtained via the gluing (C, φ) of F is an essential subsurface of F ′, so it is
π1-injectively immersed and quasi-Fuchsian. �
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3.3. Hybriding disconnected components. The following lemma uses the con-
dition that µ is irreducible.

Lemma 3.9. Suppose that (C, φ) is a gluing of F prescribed by a positive integral
multiple of µ which is (R, ǫ)-nearly unit shearing with all glued cuffs nonseparating
on the resulting surface F . Then possibly after passing to a further positive multiple
of µ, there is a gluing (C, φ′), which is (R, 2ǫ)-nearly unit shearing with all glued
cuffs nonseparating on the resulting surface F ′, and moreover, F ′ is connected.

Proof. For simplicity, we rewrite the positive integral multiple of µ prescribing F as
µ. Note that we may still assume µ to be irreducible, (R, ǫ)-nearly evenly footed,
and rich. We also observe that if F has r components F1, · · · , Fr, then for any
positive integral multiple mµ, there is a gluing (C̃, φ̃) covering (C, φ) such that the

resulting surface F̃ is an m-fold cover of F with r components as well. Indeed, each
component F̃i of F̃ can be chosen as them-fold cyclic cover of Fi dual to a glued cuff
ci ⊂ Fi, and F̃ has an induced pants decomposition that describes (C̃, φ̃). Moreover,

(C̃, φ̃) is clearly (R, ǫ)-nearly unit shearing with all glued cuffs nonseparating as well.
Therefore, possibly after passing to a positive integral multiple of µ, and considering
the gluing (C̃, φ̃) instead of (C, φ), we may further assume that

∂µ({γ}) > r

for any curve γ ∈ ΓR,ǫ, unless ∂µ({γ}) = 0.
Let

F = F1 ⊔ · · · ⊔ Fr
be the decomposition of F into connected components. Then there is an induced
decomposition of F into subunion of pairs of pants F1, · · · ,Fr, such that compo-
nents of each Fi is projected to be Fi under the gluing. It follows that µ equals
µ1 + · · · + µr, where the measure µi prescribes Fi. Similarly, there is an induced
decomposition of

C = C1 ⊔ · · · ⊔ Cr
such that each Ci is the subunion of cuffs of Fi, which is invariant under φ. It
follows that

ν♯C = ν♯C1
+ · · ·+ ν♯Cr

.

Consider a simplicial graph X as follows of r vertices v1, · · · , vr. For any 1 ≤ i <
j ≤ r, the vertices vi and vj are connected by an edge if and only if there is a pair
of cuffs c ⊂ Ci and c′ ⊂ Cj representing the same curve class γ ∈ ΓR,ǫ, such that

ν♯
φ(c) and ν♯

φ(c′) are ( ǫ
R
)-equivalent on Nγ̄ . We hence fix a choice of c, c′ as above,

rewriting as cij , c
′
ij . Since we have assumed that ∂µ({γ}) is either 0 or at least r,

we may assume that cij are mutually distinct components of C, and similarly for
c′ij .

Observe that X is connected. In fact, let X1, · · · , Xs be the components of X,
and let Ik ⊂ {1, · · · , r} be the subset of indices so that i ∈ Ik if and only if vi ∈ Xk.
Suppose on the contrary that s > 1. We write the ( ǫ

R
)-neighborhood of the support

of ν♯Ci
as Ui, and write the union of U1, · · · , Ur as U . Because µ is (R, ǫ)-nearly

evenly distributed and rich (Definition 2.8), U ∩ Nγ is either the emptyset or Nγ ,
for any curve γ ∈ ΓR,ǫ. If U ∩ Nγ equals Nγ , then for all the Ui that meets Nγ in
a nonempty set, the connectedness of Nγ implies that the corresponding vertices
vi must lie on the same component of X. Therefore, writing µIk for the sum of
µi for i ∈ Ik, it follows that the supports of ∂µIk are mutually disjoint subsets of
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ΓR,ǫ. However, µ equals µI1 + · · ·+ µIs . This is contrary to the assumption that µ
is irreducible (Definition 2.8).

Guided by the simplicial graph X together with the decorating data cij , c
′
ij , we

perform the hybriding construction to obtain a new gluing

(C, φ′).
More precisely,

φ′ : C → C
is the gluing such that φ′(cij) equals φ(c′ij), and that φ′(c′ij) equals φ(cij), and
that φ′(c) equals φ(c) for all c ⊂ C other than any cij , c

′
ij above. Because cij , c

′
ij

are projected to nonseparating glued cuffs of Fi, Fj respectively, and because X is
connected, the new gluing (C, φ′) of F results in a connected surface F ′.

Because ν♯
φ(cij)

and ν♯
φ(c′ij)

are ( ǫ
R
)-equivalent on Nγ̄ij , where γij ∈ ΓR,ǫ denotes

the homotopy class represented by both cij and c′ij , and because (A1)∗(ν
♯
cij

) and

ν♯
φ(cij)

as (C, φ) is (R, ǫ)-nearly unit shearing, the construction of φ′ implies that

(C, φ′) is (R, 2ǫ)-nearly unit shearing. This completes the proof. �

3.4. Proof of Proposition 3.2. We summarize the proof of Proposition 3.2 as
follows. As µ is irreducible, (R, ǫ)-nearly evenly footed, and rich, possibly after
passing to a positive integral multiple of µ, we may construct an (R, 2ǫ)-nearly
unit-shearing gluing (C, φ) of F prescribed by µ, so that the resulting surface F
is connected (Lemmas 3.4, 3.5, 3.9). If ǫ is sufficiently small so that 2ǫ < ǫ̂ as in
Lemma 3.8, and if R is sufficiently large depending only on ǫ, then the induced
immersion j : F #M is π1-injective and quasi-Fuchsian. This completes the proof
of Proposition 3.2.

4. Hyperbolic geometry of segments with framed endpoints

In this section, we study the techniques of constructing (R, ǫ)-panted surfaces
via ∂-framed bigons and tripods in oriented closed hyperbolic 3-manifolds, which
generalizes the constructions of [KM2] in the 2-dimension case. In fact, our attempt
is to develop a theory of geometry of ∂-framed segments in a closed oriented hyper-
bolic 3-manifold, which seems to be generalizable to any closed oriented hyperbolic
manifold.

Following the spirit of Euclid, objects of the hyperbolic ∂-framed segment ge-
ometry are shapes that can be constructed via ∂-framed segments, so the theory of
the geometry naturally contains two parts, about shapes and about constructions.
In the first part, for our purpose of application, we will provide an approximate
formula that calculates the length and phase of sufficiently tame reduced concate-
nations of approximately consecutive chains and cycles, which should be compared
to the Cosine Law in elementary Euclidean geometry. In the second part, we will
define a list of basic constructions, and discuss several more efficient constructions,
which can be derived from composing the basic ones. These basic constructions
should be regarded as axioms that can be implemented in an oriented closed hy-
perbolic 3-manifold. The axiomatic approach to constructions brings at least two
benefits: first, it highlights the Connection Principle (Lemma 4.13) as a featuring
axiom (Definition 4.10 (4)) in the theory; secondly, it allows us to analyze limits
of constructions, for instance, as the Spine Principle (Lemma 4.14) implies, that
any construction provides no extra information about the second homology of the
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3-manifold M . The second point will be of particular importance to the treatment
of our paper. It suggests that in order to construct any homologically interesting
(R, ǫ)-panted surface, certain a priori knowledge about the fundamental group ofM
should be necessary. In our case, this piece of information will be supplemented by
a finite presentation of π1(M), topologically realized by the associated presentation
complex, (cf. Sections 5, 6).

In Subsection 4.1, we introduce some basic concepts in the geometry of ∂-framed
segments. In Subsection 4.2, we state and prove the Length and Phase Formula
(Lemma 4.7). In Subsection 4.3, we introduce the basic constructions in terms of
the constructible classes, and show the Connection Principle (Lemma 4.13) and the
Spine Principle (Lemma 4.14). In Subsection 4.4, we develop several useful derived
constructions, namely, splitting, swapping, rotation, and antirotation.

4.1. Terminology. Suppose M is an oriented hyperbolic 3-manifold. We intro-
duce several basic concepts in the geometry of ∂-framed segments.

4.1.1. Segments with framed endpoints.

Definition 4.1. An oriented ∂-framed segment in M is a triple

s = (s, ~nini, ~nter),

such that s is an immersed oriented compact geodesic segment, and that ~nini and
~nter are two unit normal vectors at the initial endpoint and the terminal endpoint,
respectively.

• The carrier segment is the oriented segment s;
• The initial endpoint pini(s) and the terminal endpoint pter(s) are the initial
endpoint and the terminal endpoint of s, respectively;

• The initial framing ~nini(s) and the terminal framing ~nter(s) are the unit
normal vectors ~nini and ~nter,

• The initial direction ~tini(s) and the terminal direction ~tter(s) are the unit
tangent vectors in the direction of s at the initial point and the terminal
point, respectively.

The orientation reversal of s is defined to be

s̄ = (s̄, ~nter, ~nini),

where s̄ is the orientation reversal of s. The framing rotation of s by an angle
φ ∈ R / 2πZ is defined to be

s(φ) =
(
s, ~nini cosφ+ (~tini × ~nini) sinφ, ~nter cosφ+ (~tter × ~nter) sinφ

)
,

where × means the cross product in the tangent space. In particular, the framing
flipping of s is defined to be framing rotation by π, denoted as

s∗ = (s,−~nini,−~nter).
It follows from the definition that

s(φ) = s̄(−φ),
and in particular, framing flipping commutes with orientation reversion.

Definition 4.2. For an oriented ∂-framed segment s inM , the length of s, denoted
as

ℓ(s) ∈ (0,+∞),
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is the length of the unframed segment s carrying s, and the phase of s, denoted as

ϕ(s) ∈ R / 2πZ,

is the angle from the initial framing ~nini to the transportation of ~nter to the initial
point of s via s, signed with respect to the normal orientation induced from ~tini
and the orientation of M . We may combine the length and phase into a complex
value known as the phasor of s, defined as

λ(s) = eℓ(s)+iϕ(s).

The value of a phasor always lies outside the unit circle of C. For an oriented closed
geodesic curve c in M , we will also speak of its length, phase, or phasor, by taking
an arbitrary unit normal vector ~n at a point p ∈ c, and regarding c as a ∂-framed
segment obtained from cutting at p and endowed with framing ~n at both endpoints.
Note that the geometric complex length l(c) of c satisfies

l(c) = ℓ(c) + i|ϕ(c)|,
where |.| on R/2πZ is understood as the distance from zero valued in [0, π].

It follows from the definition that length and phase are invariant under orienta-
tion reversal and under framing rotation.

4.1.2. Consecutiveness and fellow travelling.

Definition 4.3. Let 0 ≤ δ < π
3 , and L > 0, and 0 < θ < π be constants. Let M

be an oriented hyperbolic 3-manifold of injectivity radius at least 2δ.

(1) Two oriented ∂-framed segments s and s′ are said to be δ-consecutive if
terminal endpoint of s′ is the initial endpoint of s′, and if the the terminal
framing of s is δ-close to transportation of the initial framing of s′ to the
terminal endpoint of s via the unique δ-short geodesic path in M . We
simply say consecutive if δ equals zero. The bending angle between s and s′

is the angle between the the terminal direction of s and the initial direction
of s′, which is valued in [0, π].

(2) A δ-consecutive chain of oriented ∂-framed segments is a finite sequence
s1, · · · , sm such that each si is δ-consecutive to si+1. It is a δ-consecutive
cycle if furthermore sm is δ-consecutive to s1. A δ-consecutive chain or
cycle is said to be (L, θ)-tame, if each si has length at least 2L, and the
bending angle at each joint point is at most θ.

(3) For an (L, θ)-tame δ-consecutive chain s1, · · · , sm, the reduced concatena-
tion, denoted as

s1 · · · sm,
is the oriented ∂-framed segment as follows. The unframed oriented seg-
ment of s1 · · · sm is homotopic to the piecewise geodesic path obtained
from concatenating the unframed oriented segments carrying si, relative
to the initial point of s1 and the terminal point of sm; the initial framing of
s1 · · · sm is the unit normal vector at the initial endpoint that is the closest
to the initial framing of s1; the terminal framing of s1 · · · sm is the unit
normal vector at the terminal endpoint that is the closest to the terminal
framing of sm.
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(4) In the case of (L, θ)-tame δ-consecutive cycles, the reduced cyclic concate-
nation, denoted as

[s1 · · · sm],

is the oriented closed geodesic curve free-homotopic to the concatenation
of the unframed oriented segments defined similarly as above, assuming the
result not contractible to a point.

Definition 4.4. Let 0 ≤ δ < π
3 be a constant. Let M be an oriented closed

hyperbolic 3-manifold of injectivity radius at least 2δ. For any two oriented ∂-
framed segments s and s′ in M , we say that s and s′ form a δ-fellow-travel pair,
if there exist lifts s̃, s̃′ of s, s′ in H

3 respectively, such that the initial point of s̃ is
δ-close to the initial point of s̃′, and that the initial framing of s̃ is δ-close to the
transportation of the initial framing of s̃′ to the initial point of s̃, and that the same
holds for the terminal points and the terminal framings.

4.1.3. Bigons and tripods. We introduce (L, δ)-tame bigons and tripods. These
objects should be thought of as nearly hyperbolic curves and geodesic 2-simplices
in the context of ∂-framed segment geometry.

Definition 4.5. An (L, δ)-tame bigon is an (L, δ)-tame δ-consecutive cycle of two
oriented ∂-framed segments a, b of phase δ-close to 0. We usually say that the
reduced cyclic concatenation [ab] is a (L, δ)-tame bigon with the cycle understood.
Furthermore, it is said to be (l, δ)-nearly regular if the edges a and b have length
δ-close to l.

Note that framing flipping does not change the reduced cyclic concatenation,
namely, [a∗b∗] is the same as [ab]. However, the orientation of [āb̄] is exactly
opposite to that of [ab].

Definition 4.6. An (L, δ)-tame tripod, denoted as

a0 ∨ a1 ∨ a2,

is a triple (a0, a1, a2) of oriented ∂-framed segments of length at least 2L and of
phase δ-close to 0, such that āi is δ-consecutive to ai+1 with bending angle δ-close
to π

3 , for i ∈ Z3. Furthermore, it is said to be (l, δ)-nearly regular if the legs ai
have length δ-close to l, for i ∈ Z3. For each i ∈ Z3, ai will be referred to as a leg
of a0 ∨ a1 ∨ a2, and

ai,i+1 = āiai+1

will be referred to as a side of a0 ∨ a1 ∨ a2. Note that the initial framings of ai
are δ-close to each other, so approximately the ordered initial directions rotates
either couterclockwise or clockwise around any of them. We say that a0 ∨ a1 ∨ a2,
is right-hand if it is the former case, or left-hand if the latter.

Note that framing flipping switches the chirality and the side order of a nearly
regular tripod, namely, the chirality of a∗0 ∨ a∗1 ∨ a∗2 is exactly opposite to that of
a0∨a1∨a2. However, the chirality of a∗0∨a∗−1∨a∗−2 is the same as that of a0∨a1∨a2,
where the indices are considered to be in Z3.

4.2. The Length and Phase Formula. For sufficiently tame concatenations of
approximately consecutive chains and cycles, the change of length and phase under
reduction of the concatenation can be approximately calculated.
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Recall that for any bending angle 0 ≤ ϑ < π, the limit inefficiency associated to
ϑ is defined as

I(ϑ) = 2 log(sec(ϑ/2)).

The function I(ϑ) is strictly convex and increasing on [0, π), and the geometric
meaning is explained by Lemma 4.8 (2).

Lemma 4.7 (Length and Phase Formula). Given any constants 0 < δ < 1
100 , and

0 < θ < π− 100δ, and L > I(θ)+ 1
10 , the following statements hold in any oriented

hyperbolic 3-manifold of injectivity radius at least 2δ.

(1) If s1, · · · , sm is an (L, θ)-tame δ-consecutive chain of oriented ∂-framed
segments, denoting the bending angle between si and si+1 as θi ∈ [0, θ],
then∣∣∣∣∣ℓ(s1 · · · sm)−

m∑

i=1

ℓ(si) +

m−1∑

i=1

I(θi)

∣∣∣∣∣ < (90 + tan(θ/2))(m− 1)δ,

and ∣∣∣∣∣ϕ(s1 · · · sm)−
m∑

i=1

ϕ(si)

∣∣∣∣∣ < 100(m− 1)δ,

where |.| on R/2πZ is understood as the distance from zero valued in [0, π].
(2) If s1, · · · , sm is an (L, θ)-tame δ-consecutive cycle of oriented ∂-framed seg-

ments, denoting the bending angle between si and si+1 as θi ∈ [0, π−θ] with
sm+1 equal to s0 by convention, then

∣∣∣∣∣ℓ([s1 · · · sm])−
m∑

i=1

ℓ(si) +

m∑

i=1

I(θi)

∣∣∣∣∣ < (90 + tan(θ/2))mδ,

and ∣∣∣∣∣ϕ([s1 · · · sm])−
m∑

i=0

ϕ(si)

∣∣∣∣∣ < 100mδ,

where |.| on R/2πZ is understood as the distance from zero valued in [0, π].

The proof relies on a lemma in elementary hyperbolic geometry, which provides
some key estimation for tame concatenation of segments.

Lemma 4.8. Given any constants 0 < δ < π
2 , and 0 < θ < π − 2δ, and L > I(θ),

suppose that △ABC is a geodesic triangle in hyperbolic space, where |CA|, |CB| ≥
L, and ∠C = π − θ, then

(1) ∠A+ ∠B < 4δ sin(θ/2) < 4δ.
(2) I(θ) + 4δ/ log(2δ) < |CA|+ |CB| − |AB| < I(θ).

Proof. To prove the inequality (1), it suffices to assume that |CA| = |CB| = L
since in this case ∠A+ ∠B achieves its unique maximum. Let M be the midpoint
of AB. In the right triangle △ACM , it follows from the Dual Law of Cosines that

− cos
∠C

2
cos∠A+ sin

∠C

2
sin∠A cosh |AC| = 0.

Therefore,

∠A < tan∠A =
tan(θ/2)

coshL
.
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Since 0 < θ < π − 2δ,

coshL > cosh I(θ) > eI(θ)/2 > sec2(θ/2)/2 > sec(θ/2) csc(δ)/2,

thus,

∠A <
tan(θ/2)

sec(θ/2) csc(δ)/2
= 2 sin δ sin(θ/2) < 2δ sin(θ/2).

The same estimation holds for ∠B, so the inequality (1) follows.
To prove the inequality (2), consider the inscribed circle ⊙J of △ABC, denoting

the tangent point of ⊙J with AB, BC, and CA as Tc, Tb, and Ta, respectively.
Then

|CA|+ |CB| − |AB| = |CTa|+ |CTb|,
which approaches the supremum as |CA| and |CB| tend to +∞, and achieves the
unique minimum when |CA| = |CB| = L. A direct computation shows that the
supremum is exactly I(θ), so the upper bound of inequality (2) holds.

For the lower bound, it hence suffices to assume that |CA| = |CB| = L. We write
△A∗B∗C for the triangle with ideal points A∗ and B∗, and let ⊙J∗ be the inscribed
circle which is tangent to A∗B∗, B∗C and CA∗ at Tc, T

∗
a and T ∗

b , respectively. Note
that now Tc is the midpoint of AB, and similarly for T ∗

c . It is also clear that

|CT ∗
b | − |CTb| = |T ∗

b Tb| < |J∗J | < |TcT ∗
c |.

In the right triangle △CTcA, it follows from the Dual Law of Cosines that

sin∠A cosh |ATc| = cos
∠C

2
.

Therefore,

cosh |ATc| =
cos((π − θ)/2)

sin∠A
>

sin(θ/2)

2δ sin(θ/2)
=

1

2δ
.

Since e|ATc| > cosh |ATc|, we obtain

|ATc| > − log(2δ).

On the other hand, the difference between the area of △A∗B∗C and △ABC is the
area of the quadrilateral ATcT

∗
c A

∗, which clearly equals the value of ∠A in △ABC.
Because ATc and A

∗T ∗
c are perpendicular to TcT

∗
c , there is the comparison of area:

|TcT ∗
c | · |ATc| < Area(ATcT

∗
c A

∗) = ∠A.

Therefore,

|TcT ∗
c | <

∠A

|ATc|
<

2δ

− log(2δ)
.

We obtain

|CA|+ |CB| − |AB| = |CTa|+ |CTb|
> |CT ∗

a |+ |CT ∗| − 2|TcT ∗
c |

= I(θ) +
4δ

log(2δ)
,

which verifies the lower bound in the inequality (2). �



HOMOLOGY AND QF SUBSURFACES 21

Proof of Lemma 4.7. Since it follows from certain standard estimation argument
provided Lemma 4.8, we only sketch the proof.

To see the statement (1), we write

∆ℓ(s1 · · · sm) = ℓ(s1 · · · sm)−
m∑

i=1

ℓ(si) +

m−1∑

i=1

I(θi)

and

∆ϕ(s1 · · · sm) = ϕ(s1 · · · sm)−
m∑

i=1

ϕ(si)

for the error terms that we will estimate.
By perturbing ~nter(si) and ~nini(si+1) appropriately for each 1 ≤ i < m, we

may obtain a consecutive (L̃, θ̃)-chain s̃1, · · · , s̃m, where (L̃, θ̃) equals (L, θ + δ).

Moreover, we may assume |ℓ(s̃i)− ℓ(si)|, |ϕ(s̃)−ϕ(si)|, and |θ̃i−θi| are all bounded
by δ. Hence |I(θ̃i)− I(θi)| is bounded by |θ̃i− θi| · tan((θ+ δ)/2) < δ+ δ tan(θ/2).
Therefore, the new errors of length and phase differ from the old by

|∆ℓ(s̃1 · · · s̃m)−∆ℓ(s1 · · · sm)| < (3 + tan(θ/2))(m− 1)δ,

and

|∆ϕ(s̃1 · · · s̃m)−∆ϕ(s1 · · · sm)| < (m− 1)δ.

Note that

L > I(θ + δ)− δ(1 + tan(θ/2)) +
1

10
> I(θ + δ) +

1

10
− δ(1 + cot(50δ)),

so with δ < 1
100 ,

L̃ > I(θ̃).

It is also obvious that θ̃ < π − 2δ. We will be safe to apply Lemma 4.8 in the
following with respect to δ, θ̃ and L̃.

If m equals 1, we have already done, as ∆ℓ(s̃1) and ∆ϕ(s̃1) are both 0 by def-
inition. If m is greater than 1, we may consider a chain s′1, · · · , s′m−1 as follows.
For each 1 < i < m, write s̃i as the concatenation of two consecutive oriented
∂-framed segments s̃i− and s̃i+ of equal length and phase. For 1 < i < m − 1,
let s′i be s̃i+s̃(i+1)−. Let s′1 be s̃1s̃2−, and s′m be s̃(m−1)+s̃m, or in the case
that m equals 2, let s′1 be s̃1s̃2. It follows immediately from Lemma 4.8 that

s′1, · · · , s′m−1 is (10δ)-consecutive and (L̃, 10δ)-tame, and that ∆ℓ(s′1 · · · s′m−1) is
(−4(m − 1)δ/ log(2δ))-close, and hence (10(m − 1)δ)-close, to ∆ℓ(s̃1 · · · s̃m). It is
also clear that ∆ϕ(s′1 · · · s′m−1) is (10(m− 1)δ)-close to ∆ϕ(s̃1 · · · s̃m).

If m equals 2, we have done since the chain s′1, · · · , s′m−1 has only one term. If m
is greater than 2, we may further obtain a chain s′′1 , · · · , s′′m−2 from s′1, · · · , s′m−1, in a
similar way as we obtain the latter from s̃1, · · · , s̃m. However, because s′1, · · · , s′m−1

is (10δ)-consecutive and (L̃, 10δ)-tame, applying the finer bound of Lemma 4.8
(1) will imply that s′′1 , · · · , s′′m−2 is much more closely consecutive and tamer, for

example, as sufficiently for our estimation, (10δ)2-consecutive and (L̃, (10δ)2)-tame.
It follows that ∆ℓ(s′′1 · · · s′′m−2) is ((m−1)(10δ)2)-close, to ∆ℓ(s′1 · · · s′m−1), and that
∆ϕ(s′′1 · · · s′′m−2) is ((m− 1)(10δ)2)-close to ∆ϕ(s′1 · · · s′m−1).
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Proceed iteratively to obtain new chains sr1, · · · , srm−r from sr−1
1 , · · · , sr−1

m−r−1

until m− r equals 1. Summing up the error of length in each step yields that

|∆ℓ(s̃1 · · · s̃m)| <
m−1∑

r=1

(m− 1)(10δ)r < 20(m− 1)δ,

and that

|∆ϕ(s̃1 · · · s̃m)| <
m−1∑

r=1

(m− 1)(10δ)r < 20(m− 1)δ.

Therefore, we have the estimations of the statement (1).
The statment (2) can be proved similarly. We first obtain a consecutive cycle

s̃1, · · · , s̃m from s1, · · · , sm, then construct iteratively the cycles sr+1
1 , · · · , sr+1

m from
sr1, · · · , srm by joining consequential midpoints, starting with s01, · · · , s0m which is
s̃1, · · · , s̃m. Similar estimations as before hold in this case, and as r tends to
infinity, the (non-reduced) cyclic concatenation sr1, · · · , srm converges to [s1 · · · sm]
geometrically. Note that the summation of errors in this case will be a geometric
series, but the upper bound 20mδ will stay unchanged. Combining the estimations
as before yields the estimations in the statement (2). �

4.3. Principles of construction. Before we discuss how to construct various
(R, ǫ)-panted surfaces with ∂-framed segments (Subsection 4.4), in this subsection,
we wish to formally discuss what we mean by a construction (Definition 4.12). We
will enumerate our basic constructions as axioms (Definition 4.10). These con-
structions are realizable in an oriented closed hyperbolic 3-manifold M essentially
because of the Connection Principle (Lemma 4.13, cf. Lemma 4.11). Then we will
state the Spine Principle (Lemma 4.14), which morally says that since we are only
drawing auxiliary ∂-framed segments in any such construction, we will not gain
any new knowledge about the second homology of M . This observation will be of
fundamental importance when we pantify a second homology class (Section 6). In
practice, it will be convenient to describe constructions more naturally in terms
of ∂-framed segments, and at the end of this subsection, we will explain how to
translate between the natural description and the formal description in terms of
constructible extensions. However, the reader may safely skip the discussion of this
subsection until Section 6.

4.3.1. Constructible classes. We provide a formal definition of constructible objects
in terms of partially-∆ spaces over an oriented closed hyperbolic 3-manifold.

Definition 4.9. Let M be an oriented hyperbolic 3-manifold. A partially-∆ space
over M is a triple (X,X∆, fX) as follows. The space X∆ is a CW subspace of a CW
space X, enriched with a ∆-complex structure; the map fX : X → M is geodesic
restricted to the 1-skeleton of X∆. We often simply mention a partially-∆ space X
with X∆ and fX implicitly assumed. A partially combinatorial map between two
partially-∆ space X and Y is a CW map φ : (X,X∆) → (Y, Y∆), combinatorial
with respect to the ∆-complex structure of X∆ and Y∆, such that fZ = fX ◦φ. For
a partially-∆ space Z over M , an extension of Z is a partially-∆ space X together
with a partially combinatorial embedding φ : (Z,Z∆) → (X,X∆).

We list our basic constructions by the following axioms, and verify that they are
all possible in the situation that we will be concerned with.
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Definition 4.10. For an oriented hyperbolic 3-manifold M and a pair (L, δ) of
positive constants, the axioms of constructions are the following statements:

(1) Vertex Creation. Suppose that p ∈M is a point. If X is a partially-∆ space
over M , then there exists a partially-∆ space X ′ as follows. The space pair
(X ′, X ′

∆) is (X ⊔ v, X∆ ⊔ v) where v is a new vertex; the map fX′ is an
extension of fX such that fX′(v) = p.

(2) Vertex Insertion. Suppose that p ∈ M is a point. If X is a partially-∆
space over M with an edge e of X∆, such that f(e) passes through p, then
there exists a partially-∆ space X ′ as follows. The space pair (X ′, X ′

∆) is
(X∪e−∪e+∪D, X∆∪e−∪e+), where e− and e+ are new edges consecutive
at a new vertex v, with the initial vertex of e− the initial vertex of e, and
the terminal vertex of e+ the terminal vertex of e, and where D is a new
disk with the boundary 1-cycle e−, e+, ē; the map fX′ is an extension of fX
so that fX′(v) = p, and that fX′ |e− and fX′ |e+ are geodesic subsegments
of fX′ |e in the sense that fX′ |e−∪e+ homotopic to fX′ |e relative to the
endpoints.

(3) Edge Extension. Suppose that l is a positive number. If X is a partially-∆
space over M with an edge e of X∆ such that f(e) is a nondegenerate geo-
desic segment, then there exists a partially-∆ space X ′ over M as follows.
The space pair (X ′, X ′

∆) is (X ∪ e′, X∆ ∪ e′), where e is a new edge the
terminal vertex of e to a new vertex v; the map fX′ is an extension of fX
such that fX′ |e′ is a geodesic segment of length l that extends the geodesic
segment fX |e.

(4) Edge Connection. Suppose that ~tp, ~np ∈ TpM and ~tq, ~nq ∈ TqM are pairs
of orthogonal unit vectors at points p, q ∈ M respectively, and that λ is a
complex number of modulus at least L. If X is a partially-∆ space over
M with (not necessarily distinct) vertices v, w of X∆ such that fX(v) = p
and fX(w) = q, then there exists a partially-∆ space X ′ over M as follows.
The space pair (X ′, X ′

∆) is (X ∪ e, X∆ ∪ e), where e is a new edge from v
to w; the map fX′ is an extension of fX such that fX′ |e carries an oriented
∂-framed segment s from p to q satisfying the following.

• The oriented ∂-framed segment s has length and phase δ-close to log |λ|
and arg(λ), respectively. The initial direction and framing of s are δ-
close to ~tp and ~np, respectively. The terminal direction and framing

of s are δ-close to ~tq and ~nq, respectively.
(5) Reduction of Concatenation. Suppose that s1, · · · , sm is an (L, θ)-tame δ-

consecutive chain of oriented ∂-framed segments inM . If X is a partially-∆
space over M with a 1-chain e1, · · · , em of X∆ such that fX |ei carries si,
then there exists a partially-∆ space X ′ over M as follows. The space pair
(X ′, X ′

∆) is (X∪e∪D, X∆∪e), where e is a new edge from the initial vertex
of e1 to the terminal vertex of e1, and D is a new disk with the boundary
1-cycle of D the 1-cycle e1, · · · , em, e; the map fX′ is an extension of fX
such that fX′ |e carries the reduced concatenation s1 · · · sm.

(6) Reduction of Cyclic Concatenation. Suppose that s1, · · · , sm is an (L, θ)-
tame δ-consecutive cycle of oriented ∂-framed segments. If X is a partially-
∆ space over M with a 1-cycle e1, · · · , em of X∆ such that fX |ei carries
si, then there exists a partially-∆ space X ′ over M as follows. The space
pair (X ′, X ′

∆) is (X ∪ v ∪ e ∪ A, X∆ ∪ v ∪ e), where v is a new vertex, e
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is a new edge with both vertices attached to v, and A is a new oriented
annulus with the boundary 1-cycle of A the sum of the 1-cycles e1, · · · , em
and the orientation reversal of e; the map fX′ is an extension of fX such
that fX′ |v∪e carries the reduced cyclic concatenation [s1 · · · sm].

(7) Tripod Zipping. If X is a partially-∆ space over M with a 2-simplex σ of
X∆ such that the immersed oriented geodesic triangle fX |∂σ has all the
internal angles δ-close to 0, then there exists a partially-∆ space X ′ over
M as follows. The space pair (X ′, X ′

∆) is (X ∪C(σ∪∂σ), X ′
∆∪C(σ∪∂σ)),

where C(σ∪∂σ) is the cone over the ∆-complex closure of σ in X∆; the map
fX′ is an extension of fX such that fX′ restricted to the cone over vertices
of σ carries a (10, δ)-tame tripod a0 ∨ a1 ∨ a2 satisfying the following.

• For each i ∈ Z3, the length of ai is at least 10, and the phase of ai is 0.
The initial endpoints and initial framings of all ai are the same. The
initial directions of all ai form 120◦ angle between each other.

• The carrier segment of ai lies on the unique geodesic 2-simplex homo-
topic to fX |σ relative to the boundary, for i ∈ Z3. The carrier segment
of ai,i+1 is the oriented sides of fX |∂σ for i ∈ Z3.

(8) Fellow Traveller Zipping. Suppose that a1, · · · , an are oriented ∂-framed
segments of length at least 4L+1, such that the terminal endpoints of ai are
the same, and the terminal directions and framings of ai are (δ/(2 cosh(2L)))-
close to each other respectively for all i. If X is a partially-∆ space over M
with edges e1, · · · , em of X∆ having the same terminal vertex v, such that
f |ei carries ai, then there exists a partially-∆ space X ′ over M as follows.
The partially-∆ space (X ′, X ′

∆) is (X ∪ w ∪ ẽ0 ∪ · · · ∪ ẽn ∪ s ∪ D1 ∪ · · · ∪
Dn, X

′
∆∪w∪ ẽ0∪· · ·∪ ẽn∪s), where w is a new vertex, and ẽi are new edges

from the initial vertices of ei to w, and s is a new edge from w to v, and
Di are a new oriented CW disk with boundary 1-cycles ẽi, s, ēi; the map
fX′ is an extension of fX such that f |s and f |ẽi carry oriented ∂-framed
segments s and ãi respectively, satisfying the following.

• The chains ãi, s are δ-consecutive and (L, δ)-tame for all i.
• The reduced concatenation ãis is the same as ai up to (δ/(2 cosh(2L)))-
small change of framings for all i.

Lemma 4.11. Suppose that M is an oriented closed hyperbolic 3-manifold. If δ is
universally small positive, and if L is sufficiently large depending only on δ and M ,
the axioms of constructions are true statements.

Proof. Axioms (1), (2), (3) are clearly true for any hyperbolic 3-manifold, since
they are true for the universal cover H3 by straightforward constructions.

Axiom (4) holds for any oriented closed hyperbolic 3-manifold M . In fact, it
suffices to prove the existence of fX′ |e, and this follows immediately from the Con-
nection Principle (Lemma 4.13), which we prefer to state separately later because
of its importance.

Axioms (5) and (6) occur only if the hyperbolic 3-manifold has nontrivial fun-
damental group. The constructions are straightforward from the statement.

Axiom (7) holds for any oriented hyperbolic 3-manifold. In fact, it suffices to
prove the existence of the tripod a0 ∨ a1 ∨ a2 for H3. Moreover, the following argu-
ment also implies that a0 ∨ a1 ∨ a2 is unique up to rotations of the indices of legs
subject to either prescribed chirality. Let p be the Fermat point on the geodesic
2-simplex fX(σ) that minimizes sum of the distances to the three vertices. Then
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the oriented geodesic segments s0, s1, s2 from p to the three vertices of fX(σ) form
120◦ angle to each other if the internal angles of σ are all less than 120◦. An easy
argument of elementary hyperbolic geometry shows that if the internal angles are
all universally small, the length of each si will be at least 20. Possibly after switch-
ing the order of s0, s1, s2, we may assume that they are rotating counterclockwise
around the unit normal vector ~np at p of σ in M . For each i ∈ Z3, let ai be the
unique oriented ∂-framed segment carried by si of phase 0 and with the initial
framing ~np. This gives rise to the right-hand tripod a0∨a1∨a2 as desired, which is
unique up to rotation of the indices in Z3. Taking a∗0∨a∗1∨a∗2 instead of a0∨a1∨a2,
we obtain the unique left-hand tripod as desired.

Axiom (8) holds for any oriented hyperbolic 3-manifold. Again, it suffices to
prove the existence of s and ãi for H

3. We may decompose a1 into the concatenation
of two consecutive oriented ∂-framed segments ã1s, where s has length 2L+ 1

10 . Let
ãi be an oriented ∂-orientable segment carried by the geodesic segment from pter(s)
to pter(ai), and with initial and terminal framings as close as possible to ~nter(s) and
~nter(ai), respectively. Using elementary hyperbolic geometry, a direct estimation
will verify that ã1, · · · , ãn and s are as claimed. �

Let M be an oriented close hyperbolic 3-manifold and let (L, δ) be a pair of
positive constants satisfying the assumption of Lemma 4.11.

Definition 4.12. Suppose that Z is a partially-∆ space over M . We define the
class of constructible extensions of Z with respect to (L, δ) to be the smallest class
C of extensions of Z, satisfying that Z ∈ C , and that X ∈ C implies X ′ ∈ C for
any X ′ obtained from X by one of the axioms of constructions above. A partially-∆
space U over M is said to be constructible from Z if there exists a constructible
extension X ∈ C of Z and a partially combinatorial map ψ : U → X, such that
fU = fX ◦ ψ.

In practice, Z will serve as the object that a construction starts with, where
Z∆ records the piece of information that are available for the construction; X will
serve as the recipe of the construction; and U will serve as the resulting object of
the construction, where U∆ is meant to record certain properties that result should
satisfy.

4.3.2. The Connection Principle. We emphasize the following Connection Principle
as it is the fundamental reason for all our constructions of nearly regular pants to
work. For example, it implies that ΓR,ǫ and ΠR,ǫ are nonempty for an oriented
closed hyperbolic 3-manifold M , provided that ǫ is universally small positive and
that R is sufficiently large depending only on M and ǫ.

Lemma 4.13 (Connection Principle). For any universally small positive δ, and for
any sufficiently large positive L depending only on δ andM , the following statement
holds. If ~tp, ~np ∈ TpM and ~tq, ~nq ∈ TqM are pairs of orthogonal unit vectors at
points p, q ∈ M respectively, and if λ is a complex number of modulus at least L,
then there exists an oriented ∂-framed segment s from p to q satisfying the following.

• The oriented ∂-framed segment s has length and phase δ-close to log |λ| and
arg(λ), respectively. The initial direction and framing of s are δ-close to ~tp
and ~np, respectively. The terminal direction and framing of s are δ-close to
~tq and ~nq, respectively.



26 Y. LIU AND V. MARKOVIC

Proof. This follows from the fact that the frame flow is mixing [KM1, Theorem
4.2]. In fact, it suffices to prove the existence of fX′ |e and the argument is the same
as that of [KM1, Lemma 4.4]. �

4.3.3. The Spine Principle. The Spine Principle says that any constructible ex-
tension of a partially-∆ space over an oriented hyperbolic 3-manifold is relatively
1-spined, or precisely as follows.

Lemma 4.14 (Spine Principle). If (X,X∆, fX) is a constructible extension of a
partially-∆ space (Z,Z∆, fZ) over an oriented hyperbolic 3-manifold M , then the
defining inclusion φ : Z → X can be extended to be a homotopy equivalence Z ′ ≃ X
where Z ′ is obtained from Z by attaching cells of dimension at most 1.

Proof. This follows immediately from inspecting the construction axioms listed in
Definition 4.12. �

4.3.4. Describing a construction. In the rest of this paper, we will often describe
a construction without explicitly writing down the associated partially-∆ spaces.
Instead, the hypothesis of a construction will be stated in terms of ∂-framed seg-
ments. For our applications, the result of a construction is often an (R, ǫ)-panted
surface j : F →M with the boundary prescribed in terms of the ∂-framed segments
from the hypothesis. See any construction of Subsection 4.4 for an example. To
translate such a description into one with partially-∆ spaces, one may take the
partially-∆ space (Z,Z∆, fZ) to be as follows. Take Z∆ to be a 1-complex such
that each ∂-framed segment in the hypothesis corresponds to an oriented 1-cell, and
any two 1-cells have identified endpoints if and only if the corresponding ∂-framed
segments are declared to be consecutive; take Z to be Z∆; and take fZ to be the
obvious map that send any 1-cell to the carrier segment of its defining ∂-framed
segment. In the same fashion, the recipe of the construction applies the axioms of
the construction (Definition 4.10) step by step, by indicating at each step that an
auxiliary point, segment, or ∂-framed segment should be drawn, so the procedure
gives rise to an extension X of Z. The result of the construction can then be trans-
lated in terms of a partially-∆ space (F, ∂F, j) constructible from Z, where ∂F
has a preferred 1-complex structure since it is prescribed by the ∂-framed segments
from the hypothesis. In fact, one can always write down the partially combinatorial
map ψ : F → X explicitly, where X is the extension of Z from the recipe of the
construction.

4.4. Derived constructions. In this subsection, we exhibit several constructions
of (R, ǫ)-panted surfaces using ∂-framed segments that will be applied in the rest
of this paper. Throughout this subsection, we assume M to be an oriented closed
hyperbolic 3-manifold. We will assume that ǫ is at most 1, and δ positive and less
than the minimum among 1

100 ,
ǫ

10000 and half the injectivity radius of M , and L at
least 100 satisfying the conclusion of the Connection Principle (Lemma 4.13) with
respect to δ and M , and R at least 100L. The constructions below are all derived
from the basic constructions listed in Definition 4.10, and are all definite in the
sense that the number of ∂-framed segments involved are universally bounded.

4.4.1. Splitting. The splitting construction below gives rise to a nearly regular pair
of pants by adding a bisecting segment to a nearly purely hyperbolic curve. The
reader should compare it with [KM2, Lemma 3.2 and Remark].
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Construction 4.15 (Splitting). Let s, s′ be two cyclically consecutive oriented ∂-
framed segments of the same length, ( ǫ2 )-close to R

2 , and the same phase, ( ǫ2 )-close
to 0. Then a pair of pants Π ∈ ΠR,ǫ can be constructed, with one cuff [ss′] ∈ ΓR,ǫ,
and with the other two cuffs in ΓR,δ.

Proof. By the Connection Principle (Lemma 4.13), draw an oriented ∂-framed seg-
ment m from pter(s) to pini(s) as follows:

• The initial and terminal directions are δ-close to ~tter(s) × ~nter(s) and
−~tini(s) × ~nini(s) respectively, and the initial and terminal framings are
δ-close to ~nter(s) and ~nini(s) respectively, and the length and phase are
δ-close to R− ℓ(s) + I(π2 ) and −ϕ(s) respectively.

Then a pair of pants Π ∈ ΠR,ǫ can be constructed, such that one cuff of Π is

[ss′] ∈ ΓR,ǫ, and that the other two cuffs are [sm], [m̄s′] ∈ ΓR,δ. The verification
follows from the Length and Phase Formula (Lemma 4.7). �

4.4.2. Swapping. The swapping construction below allows us to exchange the arcs
of two nearly purely hyperbolic curves if they fellow travel near a pair of common
points, as long as the result are still purely hyperbolic curves. The reader should
compare it with the Geometric Square Lemma [KM2, Lemma 5.4]. In fact, our
construction largely follows the idea there.

Definition 4.16. A δ-swap pair of bigons is a pair of (1, δ)-tame bigons [ab] and
[a′b′], such that the cycles a, b′ and a′, b are also δ-consecutive, and that a and a′

have length and phase δ-close to each other respectively, and that the same holds
for b and b′. In this case, we say that the new pair of (1, δ)-tame bigons [ab′] and
[a′b] is the δ-swap pair resulted from swapping [ab] and [a′b′], and vice versa.

Construction 4.17 (Swapping). Let [ab] and [a′b′] a δ-swap pair of (100, δ)-tame
bigons. Suppose that the sum of length ℓ(a)+ℓ(b) is δ-close to R. Then an oriented
connected compact (R, ǫ)-panted surface F can be constructed, with exactly four

boundary components [ab], [a′b′], [ab′], [a′b] ∈ ΓR,ǫ.

Proof. We will first construct swap surfaces for pairs of squares, which can be
regarded as a special case of swapping pairs of bigons. Then a simple reduction from
the bigon case to the square case using fellow traveller replacement will complete
the proof.

Parallel to the definition for bigons, we will refer to an (L, δ)-tame cycle of four
oriented ∂-framed segments a, s, b, t, or ambiguously their reduced cyclic concate-
nation [asbt], as an (L, δ)-tame square. A δ-swap pair of squares with respect to
the common segments s and t is a pair of (1, δ)-tame squares [asbt] and [a′sb′t] such
that a and a′ has length and phase δ-close to each other respectively, and that the
same holds for b and b′. In this case, we say that the new pair of (1, δ)-tame squares
[asb′t] and [a′sbt] is the δ-swap pair resulted from swapping [asbt] and [a′sb′t], and
vice versa.

Step 1. Let [asbt] and [a′sb′t] be a δ-swap pair of two (2L, δ)-tame squares. Suppose
that the sum of length ℓ(a) + ℓ(b) is δ-close to R − ℓ(s) − ℓ(t), and that the sum
of phase ϕ(a) + ϕ(b) is δ-close to −ϕ(s) − ϕ(t). In addition, suppose for this
step that both ℓ(a) and ℓ(b) are less than R

2 − 4L. We construct an oriented
connected compact (R, ǫ)-panted surface F with exactly four boundary components

[asbt], [a′sb′t], [asb′t], [a′sbt] ∈ ΓR,ǫ, using four pairs of pants from ΠR,ǫ as follows.
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Observe that the additional assumption allows one can find a segment that ap-
proximately tamely bisects all the squares. More precisely, let p be the point on
the carrier segment of s of distance 2L from the terminal endpoint of s, and the
assumption implies that there is a point q on the carrier segment of t of distance
R
2 − 2L− ℓ(b) > 2L from the initial endpoint of t. Suitably assigning framings at p
and q, we decompose s and t as the concatenation of consecutive oriented ∂-framed
segments s−s+ and t−t+, respectively, such that the reduced concatenation t+as−
is (L, δ)-tame with the length and phase δ-close to R

2 and 0 respectively, and that
the same holds for the reduced concatenations t+a

′s−, s+bt−, and s+b
′t− as well.

Draw an oriented ∂-framed segment m from p to q satisfying the following:

• m has length and phase δ-close to R
2 +2I(π2 ) and 0 respectively. The initial

and terminal directions of m are δ-close to the cross product −~tter(s−) ×
~nter(s−) and ~tter(t−)×~nter(t−) respectively. The initial and terminal fram-
ings of m are δ-close to ~nter(s−) and ~nter(t−) respectively.

With u standing for a or a′, and v standing for b or b′, there is a unique pair of pants
Πu,v ∈ ΠR,ǫ determined by its cuffs [usvt], [us−mt+], [s+vt−m̄] ∈ ΓR,ǫ. Note that

the curve [us−mt+] appears in exactly two pairs of pants as a cuff, and that the same

holds for [s+vt−m̄]. Thus the four pairs of pants Πa,b,Πa,b′ ,Πa′,b,Πa′,b′ ∈ ΠR,ǫ can
be glued along these cuffs, yielding the desired (R, ǫ)-panted surface F , which is a
torus with four holes.

Step 2. Let [asbt] and [a′sb′t] be a δ-swap pair of two (10L, δ)-tame squares.
Suppose that the sum of length ℓ(a) + ℓ(b) is δ-close to R − ℓ(s) − ℓ(t), and that
the sum of phase ϕ(a) + ϕ(b) is δ-close to −ϕ(s) − ϕ(t). In addition, suppose for
this step that both ℓ(a) and ℓ(b) are less than 3R

4 − 30L. We construct an oriented
connected compact (R, ǫ)-panted surface F with exactly four boundary components

[asbt], [a′sb′t], [asb′t], [a′sbt] ∈ ΓR,ǫ, using at most eight pairs of pants from ΠR,ǫ

as follows.
Because of Step 1, it suffices to find F assuming that the length of either a or b is

at least R
2 − 4L. Without loss of generality, we may suppose that ℓ(a) and ℓ(a′) are

greater than R
2 − 6L. Let p be the point on the carrier segment of s of distance 2L

from the terminal endpoint of s, and now there is a point q on the carrier segment
of a of distance ℓ(a) + ℓ(s)− R

2 − 2L, which is between 12L and R
4 − 12L, from the

initial endpoint of a, and similarly a point q′ on the carrier segment of a′. One can
suitably assign framings at the points p, q, q′ to decompose the oriented ∂-framed
segments s, a, a′ as the concatenations s−s+, a−a+, a

′
−a

′
+, respectively, such that

the reduced concatenation a+s− is (L, δ)-tame with the length and phase δ-close
to R

2 and 0 respectively, and that the same holds for the reduced concatenations
a′+s−, s+bta−, and s+bta

′
− as well. Choose an auxiliary point x ∈ M . Draw an

oriented ∂-framed segment r from p to x, and two oriented ∂-framed segments c

and c′ from x to q and to q′ respectively, satisfying the following:

• r has length and phase δ-close to R
4 + I(π2 ) − 2L and 0 respectively. The

initial direction of r is δ-close to the cross product −~tter(s−) × ~nter(s−).
The initial framing of r are δ-close to ~nter(s−).

• c and c′ have length and phase δ-close to R
4 + I(π2 )+2L and 0, respectively.

The terminal directions of c and c′ are δ-close to ~tter(a−) × ~nter(a−) and
~tter(a

′
−) × ~nter(a

′
−), respectively. The terminal framings of c and c′ are

δ-close to ~nter(a−) and ~nter(a
′
−), respectively.
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• The chains r, c and r, c′ are δ-consecutive. Note that they are also (1, δ)-
tame.

With v standing for b or b′, there is a unique pair of pants Πa,v ∈ ΠR,ǫ determined

by its cuffs [asbt], [a+s−rc], [s+vta−c̄r̄] ∈ ΓR,ǫ, and similarly, Πa′,v ∈ ΠR,ǫ with

cuffs [a′sbt], [a′+s−rc
′], [s+vta′−c̄

′r̄] ∈ ΓR,ǫ. Note that the curve [a+s−rc] appears

in exactly two pairs of pants as a cuff, and that the same holds for [a′+s−rc
′].

Another four cuffs form two δ-swap pairs of squares, namely, the pair [s+bta−c̄r̄]

and [s+b′ta′−c̄
′r̄], and the other pair [s+bta′−c̄

′r̄] and [s+b′ta−c̄r̄], with respect to the
common ∂-framed segments r̄s+ and t. Moreover, swapping each pair results in the
other. By Lemma 4.7, the lengths of b and b′ are less than R

2 − 32L, and that the

lengths of a−c̄ and a′−c̄
′ are less than R

2 − 8L, where 2L has been deducted in each
bound to buffer the error. By Step 1, there is an oriented (R, ǫ)-panted four-hold

torus E with boundary exactly four curves [s+bta−c̄r̄], [s+b
′ta′−c̄r̄], [s+bta

′
−c̄r̄], and

[s+b′ta−c̄r̄]. Thus the two pairs of pants Πa,b and Πa,b′ can be glued along the

oppositely oriented common cuffs [a+s−rc] and [a+s−rc], and similarly, Πa′,b and
Πa′,b′ can be glued their oppositely oriented common cuffs. Another four cuffs then
match up with the boundary components of E with respect to orientation. Gluing
up along these curve results in a connected oriented compact (R, ǫ) panted surface

F with exactly four boundary components [asbt], [a′sb′t], [asb′t], [a′sbt] ∈ ΓR,ǫ as
desired.

Step 3. Let [asbt] and [a′sb′t] be a δ-swap pair of two (20L, δ)-tame squares.
Suppose that the sum of length ℓ(a) + ℓ(b) is δ-close to R − ℓ(s) − ℓ(t), and that
the sum of phase ϕ(a) + ϕ(b) is δ-close to −ϕ(s)− ϕ(t). We construct an oriented
connected compact (R, ǫ)-panted surface F with exactly four boundary components

[asbt], [a′sb′t], [asb′t], [a′sbt] ∈ ΓR,ǫ, using at most twelve pairs of pants from ΠR,ǫ

as follows.
Because of Step 2, it suffices to find F assuming that the length of either a or

b is at least 3R
4 − 30L. Without loss of generality, we may suppose that ℓ(a) and

ℓ(a′) are greater than 3R
4 − 32L. We perform a similar construction as in Step

2. Now the point p is chosen on the carrier segment of s of distance 2L from the
terminal endpoint of s. Construct q, q′, a±, a

′
±, and s± as before. The length

of a− is between R
4 + 6L and R

2 − 42L. Construct c, c′, and r as before with the

same parameters. It follows that the lengths of b and b′ are less than R
4 − 46L,

and that the lengths of a−c̄ and a′−c̄
′ are less than 3R

4 − 38L, where 2L has been
deducted in each bound to buffer the error. We may construct the surfaces as
before except applying Step 2 instead of Step 1 for the swap surface E. This yields
an oriented compact (R, ǫ)-panted surface with exactly four boundary components

[asbt], [a′sb′t], [asb′t], [a′sbt] ∈ ΓR,ǫ as desired.

Step 4. We construct an oriented connected compact (R, ǫ)-panted surface F in
the bigon case. Let [ab] and [a′b′] be the δ-swap pair of (100, δ)-tame bigons as
assumed.

The trick is that a very consecutive and tame swap pair of bigons can be regarded
as as a swap pair of square, and vice versa. On one hand, a δ-swap pair of (L, δ)-
tame squares [asbt] and [a′sb′t] can be regarded as a (100δ)-swap pair of (2L, 100δ)-
tame bigons [(as)(bt)] and [(a′s)(b′t)], by the length and phase formula (Lemma
4.7). On the other hand, a δ-swap pair of (2K + 1, δ)-tame bigons [ab] and [a′b′]
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can also be regarded as a (2(cosh(2K) + 1)δ)-swap pair of (K, 2 cosh(2K)δ))-tame

squares [ãsb̃t] and [ã′sb̃′t], by the fellow traveller zipping (Definition 4.10 (8)),
provided K > 1 and 2δ cosh(2K) < 1

100 .

Therefore, we can regard [ab] and [a′b′] as δ̃-swap pair of (20L̃, δ̃)-tame squares,

where (L̃, δ̃) can be chosen as (2, 2 cosh(80)δ), respectively. Now the bigon case
simply reduces to Step 3 assuming δ to be so small that Step 3 can be applied with
respect to the pair (L̃, δ̃) instead of (L, δ). This completes the proof. �

4.4.3. Rotation. When two nearly regular tripods of opposite chiralities have legs
almost opposite to the ones of each other, one can naturally build a nearly regular
pair of pants spined on the union of the two tripods. This will be the first state-
ment of the rotation construction below. However, there is another case when the
tripods have identical chirality. Thus we have two rotation constructions. Note
that in the identical chirality case, we take two copies of the curves arising from
the construction. This turns out to be necessary due to Theorem 5.2.

Definition 4.18. A δ-rotation pair of tripods is a pair of (10, δ)-tame tripods
a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2, where a0 ∨ a1 ∨ a2 is (la, δ)-nearly regular, and
b0 ∨ b1 ∨ b2 is (lb, δ)-nearly regular. Moreover, the chains ai, b̄j are δ-consecutive
for all i, j ∈ Z3.

Construction 4.19 (Rotation). Let a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2 be a δ-rotation
pair of tripods. Suppose ℓ(ai) + ℓ(bj) is δ-close to R

2 + I(π3 ), for i, j ∈ Z3. Then
an oriented connected compact (R, ǫ)-panted surface F can be constructed satisfying
the following.

(1) If a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2 are of opposite charalities, then F is a pair
of pants Π ∈ ΠR,ǫ with cuffs [ai,i+1b̄i,i+1] in ΓR,ǫ, for i ∈ Z3.

(2) If a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2 are of identical charality, then F has exactly
six boundary components, namely, two copies of each [ai,i+1b̄i,i+1] in ΓR,ǫ,
for i ∈ Z3.

Proof. To prove the statement (1), suppose that a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2 are
of opposite chiralities. This is the simple case because F can be naturally chosen
as the pair of pants Π ∈ ΠR,ǫ with cuffs [ai,i+1b̄i,i+1] for i ∈ Z3. The spine of Π is
the figure-θ graph which is approximately the union of the carrier segments of aib̄i
for i ∈ Z3.

To prove the statment (2), suppose that a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2 are of
identical chirality. Considering the framing flipping a∗0 ∨ a∗1 ∨ a∗2 and b∗0 ∨ b∗1 ∨ b∗2
instead if necessary, we may assume that the tripods are both right-hand without
loss of generality.

Step 1. We construct an oriented connected compact (R, ǫ)-panted surface F
assuming that b0∨b1∨b2 can be written as c0r∨c1r∨c2r where ci, r is a δ-consecutive
(L, δ)-tame chain for each i ∈ Z3. It follows that c0 ∨ c1 ∨ c2 is an (lb − ℓ(r), δ)-
nearly regular right-hand tripod. Draw an auxiliary oriented ∂-oriented segment s
satisfying the following.

• The length and phase of s is δ-close to ℓ(r) and 0 respectively. The initial
and terminal endpoints of s coincide with pini(r) and pter(r) respectively.
The initial and terminal directions of s are δ-close to ~tini(r) and ~tter(r)
respectively. The initial framing of s is δ-close to −~nini(r), and the terminal
framing of s is δ-close to ~nter(r).
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It follows that c∗0s∨c∗1s∨c∗2s is an (lb−ℓ(r), δ)-nearly regular left-hand tripod, where
c∗i , s is a δ-consecutive (L, δ)-tame chain for each i ∈ Z3.

Observe the following (R, ǫ)-panted surfaces. By swapping (Construction 4.17),
for each i ∈ Z3, there is an (R, ǫ)-panted surface Ei with boundary components

the curves [ai,i+1r̄ c̄i,i+1r], [āi,i+1 s̄c
∗
i,i+1s], [āi,i+1r̄ c̄i,i+1r], [ai,i+1s̄c

∗
i,i+1s] in ΓR,ǫ;

also by swapping (Construction 4.17), for each i ∈ Z3, there is an (R, ǫ)-panted
surface E′

i with boundary components the curves [ai,i+1r̄ c̄i,i+1r], [ā
∗
i,i+1 s̄

∗ci,i+1s
∗],

[ai,i+1r̄ci,i+1r], [ā∗i,i+1 s̄
∗c̄i,i+1s∗] in ΓR,ǫ; by rotation in the opposite chirality case

(Statement (1)) applied to the δ-rotation pair c∗0s∨c∗1s∨c∗2s and a0∨a1∨a2, there is

a pair of pants Π ∈ ΠR,ǫ with boundary components the curves [ā∗i,i+1s̄
∗ci,i+1s∗] in

ΓR,ǫ, where i runs over Z3; for another copy Π′ of Π, we may rewrite the boundary

components of Π′ as [āi,i+1s̄c
∗
i,i+1s] in ΓR,ǫ, where i runs over Z3. Furthermore,

in the above, observe the following common boundary components of opposite ori-
entations. The third curve of ∂Ei is the orientation reversal of the third curve of
∂E′

i; the fourth curve of ∂E can be rewritten as [a∗i,i+1s̄
∗ci,i+1s∗], which is clearly

the orientation reversal of the fourth curve of ∂E′; the orientation reversal of each
curve of ∂Π appears exactly once as the second curve in ∂Ei, and similarly for ∂Π′

and ∂E′
i. Gluing the (R, ǫ)-panted surfaces Ei, E

′
i, Π, and Π′ along these oppositely

oriented common boundary components, the result is an oriented connected com-
pact surface F with exactly six boundary components, namely, two copies for each
[ai,i+1r̄c̄i,i+1r], where i runs over Z3. Since [ai,i+1r̄ c̄i,i+1r] equals [ab̄i,i+1] under the
additional assumption of the current step, the (R, ǫ)-panted surface F is as desired.

Step 2. We will finish the proof of the statement (2) in the general case. Possibly
after switching the roles of a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2, we may assume without
loss of generality that lb is greater than or equal to la. Then an auxiliary (lb, δ)-
nearly regular right-hand tripod b′0 ∨ b′1 ∨ b′2 can be drawn so that a0 ∨ a1 ∨ a2 and
b′0 ∨ b′1 ∨ b′2 form a δ-rotation pair, and that b′0 ∨ b′1 ∨ b′2 satisfies the additional
assumption of Step 1.

Observe the following (R, ǫ)-panted surfaces. By Step 1, there is an (R, ǫ)-
panted surface F ′ with six boundary components, namely, two copies of each curve
[ai,i+1b̄

′
i,i+1] in ΓR,ǫ for i ∈ Z3; by rotation in the opposite chirality case (Statement

(1)), applied to the δ-rotation pair b0 ∨b1 ∨b2 and a0 ∨ a−1 ∨ a−2, there is a pair of
pants Π ∈ ΠR,ǫ with boundary components [a−i,−i−1b̄i,i+1] in ΓR,ǫ for i ∈ Z3; also
by rotation in the opposite chirality case (Statement (1)), applied to the δ-rotation
pair b′0∨b′1∨b′2 and a0∨a−1∨a−2, there is a pair of pants Π′ ∈ ΠR,ǫ with boundary

components [a−i,−i−1b̄
′
i,i+1] in ΓR,ǫ for i ∈ Z3; by swapping (Construction 4.17),

for each i ∈ Z3, there is an (R, ǫ)-panted surface Ei with boundary components the

curves [ai,i+1b̄i,i+1] [a−i,−i−1b̄
′
i,i+1] [ai,i+1b̄

′
i,i+1] [a−i,−i−1b̄i,i+1] in ΓR,ǫ. Gluing

the (R, ǫ)-panted surfaces F ′, and two copies of the (R, ǫ)-panted surfaces Π, Π′,
E0, E1, and E2, along these oppositely oriented common boundary components,
the result is an oriented connected compact surface F with exactly six boundary
components, namely, two copies for each [ai,i+1b̄i,i+1] for i ∈ Z3 as desired. This
completes the proof of the statement (2). �

4.4.4. Antirotation. The antirotation construction is a variation of rotation when
we join the legs in an ‘unnatural’ way. As before, we have two cases depending on
the chiralities of the pair of tripods in consideration.
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Construction 4.20 (Antirotation). Let a0∨a1∨a2 and b0∨b1∨b2 be a δ-rotation
pair of tripods. Suppose ℓ(ai) + ℓ(bj) is δ-close to R

2 + I(π3 ), for i, j ∈ Z3. Then
an oriented connected compact (R, ǫ)-panted surface F can be constructed satisfying
the following.

(1) If a0∨a1∨a2 and b0∨b1∨b2 are of opposite charalities, then F has exactly
six boundary components, namely, two copies of each [ai,i+1b̄i+1,i] in ΓR,ǫ,
for i ∈ Z3.

(2) If a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2 are of identical charality, then F has exactly
three boundary components namely, [ai,i+1b̄i+1,i] in ΓR,ǫ, for i ∈ Z3.

Proof. Because [a01b̄10] and [a20b̄20] form a δ-swap pair, by swapping (Construction
4.17), there is an oriented connected compact (R, ǫ)-panted surface E with exactly

four boundary components [a01b̄10], [a20b̄02], [a01b̄02], [a20b̄10]. Thus, it suffices an
oriented connected compact (R, ǫ)-panted surface F ′ satisfying the following.

(1) If a0 ∨ a1 ∨ a2 and b0 ∨ b1 ∨ b2 are of opposite charalities, then F ′ has
exactly six boundary components, namely, two copies of [a01b̄02], [a12b̄21],
and [a20b̄10].

(2) If a0∨a1∨a2 and b0∨b1∨b2 are of identical charality, then F ′ has exactly
three boundary components namely, [a01b̄02], [a12b̄21], and [a20b̄10].

In fact, this follows immediately from rotation (Construction 4.19) with respect to
the δ-rotation pair a0∨a1∨a2 and b0∨b2∨b1. Note that the chirality of b0∨b2∨b1
is exactly opposite to that of b0 ∨ b1 ∨ b2. This completes the proof. �

5. Panted cobordism group

In this section, we introduce the (R, ǫ)-panted cobordism group of oriented (R, ǫ)-
multicurves in an oriented closed hyperbolic 3-manifold. This will serve as a correc-
tion theory which will reduce the relative case of Theorem 2.10 (1) to the absolute
case.

Let M be an oriented closed hyperbolic 3-manifold, and let (R, ǫ) be a pair of
undetermined constants, assuming that ǫ is a universally small positive number,
and that R is a sufficiently large positive number depending on M and ǫ. By
an (R, ǫ)-nearly hyperbolic multicurve, or simply an (R, ǫ)-multicurve, we mean a
(possibly disconnected) nonempty oriented closed 1-submanifold immersed in M ,
of which all components are (R, ǫ)-nearly hyperbolic curves.

Definition 5.1. An (R, ǫ)-nearly regularly panted cobordism, or simply an (R, ǫ)-
panted cobordism, between two (R, ǫ)-multicurves L,L′ in M is an (R, ǫ)-panted
subsurface F such that ∂F is the disjoint union L ⊔ L̄′, where L̄′ denotes the
orientation-reversal of L′. We say that L,L′ are (R, ǫ)-panted cobordant if there
exists an (R, ǫ)-panted cobordism between them. Hence being (R, ǫ)-panted cobor-
dant is an equivalence relation on the set of (R, ǫ)-multicurves. The set of all
(R, ǫ)-panted cobordism classes of (R, ǫ)-multicurves will be denoted as ΩR,ǫ(M),
or simply ΩR,ǫ, the cobordism class of any (R, ǫ)-multicurve L will be denoted as
[L]R,ǫ.

It will be verified in Subsubsection 5.1.1 that ΩR,ǫ is an abelian group with the
addition induced by the disjoint union operation between (R, ǫ)-multicurves.
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Theorem 5.2. Let M be an oriented closed hyperbolic 3-manifold. For all suffi-
ciently small positive ǫ depending on the injectivity radius of M , and for all suffi-
ciently large positive R depending on M and ǫ, there is a canonical isomorphism

Φ : ΩR,ǫ(M)−→H1(SO(M);Z),

where SO(M) denotes the bundle overM of special orthonormal frames with respect
to the orientation of M . Moreover, for all [L]R,ǫ ∈ ΩR,ǫ(M), the image of Φ([L]R,ǫ)
under the bundle projection is the homology class [L] ∈ H1(M ;Z).

Remark 5.3. The last part of the statement implies that the integral module
ΩR,ǫ(M) is equivalent to H1(SO(M); Z) as a splitting extesion of H1(M ; Z) by
Z2 (Subsubsection 5.1.2). Therefore, all the isomorphisms between ΩR,ǫ(M) and
H1(SO(M); Z) that are extension equivalences are in natural bijection toH1(M ; Z2),
where the canonical isomorphism Φ corresponds to 0.

The idea of Theorem 5.2 is developed from the (non-random) correction theory
part of [KM2]. In that paper, the notion Good Pants Homology of an oriented
closed hyperbolic surface S is informally introduced, and with our notations above,
the Good Pants Homology of S there means precisely the rational (R, ǫ)-panted
cobordism group ΩR,ǫ(S) ⊗ Q, cf. [KM2, Definition 3.2]. The proof of the Good
Correction Theorem [KM2, Theorem 3.2] essentially implies that there is an iso-
morphism φ : ΩR,ǫ(S) ⊗ Q → H1(S;Q), such that φ([γ]R,ǫ) equals [γ]. In fact,
most part of the proof of [KM2, Theorem 3.2] can be extended directly to the
3-dimensional case, yielding an isomorphism φ : ΩR,ǫ(M) ⊗ Q → H1(M ;Q) as
above. Motivated by pushing the result to the integral coefficient case, the main
innovation of Theorem 5.2 lies in the observation that in many senses, it should
be more natural to replace H1(M ;Z) with H1(SO(M);Z). One reason, for in-
stance, is that (R, ǫ)-multicurves and (R, ǫ)-pants admit certain canonical lifts into
SO(M) because of their geometry; another reason is that technically, passing to
SO(M) resolves certain ambiguity in the definition of the inverse of Φ; the reader
may also observe a vague analogy between the statement of Theorem 5.2 and the
Thom–Pontrjagin correspondence in cobordism theory, thinking of H1(SO(M);Z)
as π1(SO(M)) modulo the action of conjugations.

The proof of Theorem 5.2 is organized slightly differently from the treatment
of [KM2]. Fix a basepoint ∗ of M and a special orthonormal frame e ∈ SO(M)|∗
as a basepoint of SO(M). We will construct the homorphism Φ and a homo-
morphism Ψ : π1(SO(M), e) → ΩR,ǫ, which descends to be a homomorphism
Ψab : H1(SO(M);Z) → ΩR,ǫ by abelianization. We will verify that Φ ◦ Ψab = id
and that Ψ surjects ΩR,ǫ. This will imply that Φ is an isomorphism with the in-
verse Ψab. To briefly describe Φ, note that any curve γ ∈ ΓR,ǫ has a framing over
its geodesic representative given by (nearly) parallel transporting a frame around
γ. The canonical lift γ̂ : S1 → SO(M) of γ, well defined up to homotopy, is then
a framing that differs from the the parallel-transportation framing by a loop of
matrices S1 → SO(3) that represents the nontrivial element of π1(SO(3)) ∼= Z2

(Definition 5.11). The homomorphism Φ : ΩR,ǫ → H1(SO(M);Z) will hence be
uniquely defined so that Φ([γ]R,ǫ) equals [γ̂]. The definition of Ψ will depend on
a choice of a finite triangular generating set ĝ1, · · · , ĝs of π1(SO(M), e), together
with some other setup data. Here triangular means that all the relators of length
at most 3 in the generating set gives rise to a finite presentation of π1(SO(M), e).
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We will define Ψ(ĝi) (or decorated with some setup data, ΨhD′(ĝi)) to be repre-
sented by some (R, ǫ)-multicurve constructed from ĝi, so that [Ψ(ĝi)] is obviously
equal to [ĝi] in H1(SO(M);Z). With the derived constructions of Subsection 4.4,
we will verify that Ψ(ĝi)+Ψ(ĝj)+Ψ(ĝk) = 0 in ΩR,ǫ whenever there is a triangular
relation ĝiĝj ĝk = id. It will follow that Ψ : π1(SO(M), e) → ΩR,ǫ is a well defined
homomorphism. We point out that the triangular generating set of π1(SO(M), e),
or more essentially, a finite triangular presentation of π1(M, ∗), is the source of
topological information which makes the construction of Ψ possible. This idea will
be further investigated in Section 6 when we pantify second homology classes.

The rest of this section is devoted to the proof of Theorem 5.2. In Subsection 5.1,
we define the homomorphism Φ. In Subsection 5.2, we define the homomorphism
Ψ and verify that Ψab is the inverse of Φ. In Subsection 5.3, we summarize the
proof of Theorem 5.2.

Throughout this section, after fixing a basepoint ∗ ofM , we will no longer distin-
guish a nontrivial element of π1(M, ∗) from its pointed geodesic loop representative,
so it makes sense to speak of the length, or the initial or terminal direction of a
nontrivial element in π1(M, ∗).
5.1. The homomorphism Φ. In this subsection, we define the homomorphism Φ.
We also need to mention some basic facts about the (R, ǫ)-panted cobordism gorup
ΩR,ǫ, and about the special orthonomal framing bundle SO(M).

5.1.1. The panted cobordism group ΩR,ǫ.

Lemma 5.4. For all universally small positive ǫ, and for all sufficiently large
positive R depending on M and ǫ, ΩR,ǫ is a finitely generated abelian group. Here
the addition is induced by the disjoint union operation between (R, ǫ)-multicurves.

Proof. If R is sufficiently large with respect to M and universally small ǫ, the
Connection Principle (Lemma 4.13) and splitting (Construction 4.15) implies that
ΓR,ǫ and ΠR,ǫ are both nonempty, but finite. The zero of ΩR,ǫ is represented by
the sum of the three cuffs for any Π ∈ ΠR,ǫ. It is then straightforward to see that
ΩR,ǫ is a finitely generated abelian group with the addition induced by disjoint
union. In fact, we have a natural presentation of ΩR,ǫ given by the exact sequence

ZΓR,ǫ
∂−→ ZΠR,ǫ −→ ΩR,ǫ −→ 0.

�

Lemma 5.5. If ǫ is universally small and R is sufficiently large, then for all (R, ǫ)-
multicurve L in M ,

[L]R,ǫ = −[L̄]R,ǫ.

Proof. It suffices to assume that L has only one component. Then [c]R,ǫ = −[c̄]R,ǫ
if there is a pair of pants Πc ∈ ΠR,ǫ with a cuff c, for each component c of L.
The condition certainly holds for universally small ǫ if R is sufficiently large (Con-
struction 4.15). In fact, one may take two oppositely oriented copies of Π±

c of Πc,
and glue them along their two cuffs other than c or c̄. The resulting (R, ǫ)-panted
surface has exactly two boundary component c and c̄. �

Lemma 5.6. For all universally small positive ǫ and ǫ′ such that ǫ′ ≤ ǫ, and for
all sufficiently large positive R depending on M , ǫ and ǫ′, ΩR,ǫ is generated by
(R, ǫ)-panted cobordism classes of (R, ǫ′)-multicurves.
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Proof. This is the restatement of splitting (Construction 4.15). �

5.1.2. The special orthonormal frame bundle SO(M). Fix an orthonormal frame

e = (~t, ~n,~t× ~n)

at a fixed basepoint ∗ of M , and regard e as a basepoint of the total space SO(M)
of the bundle over M of special orthonormal frames with respect to the orientation
ofM . One may naturally identify SO(M) as Isom0(H

3) / π1(M). Since the tangent
bundle of a closed orientable 3-manifold is always trivializable, SO(M) is a trivial
SO(3)-principal bundle over M . There are canonical short exact sequences

1 −→ π1(SO(3), I) −→ π1(SO(M), e) −→ π1(M, ∗) −→ 1,

and
0 −→ Z2 −→ H1(SO(M);Z) −→ H1(M ;Z) −→ 0,

both of which are splitting but not naturally. Note that π1(SO(3), I) ∼= Z2 is the
center of π1(SO(M), e). We will usually write

ĉ ∈ π1(SO(M), e)

for the nontrivial central element.
Certain noncentral elements of π1(SO(M), e), namely, the δ-sharp elements in

the sense of Definition 5.7 below, can be naturally represented by their associated
oriented ∂-framed segments. This provides a convenient way to understand such
elements, which will be especially useful when we construct the inverse of Φ.

Definition 5.7. Let δ be a positive constant at most 1
100 . A noncentral element

ĝ ∈ π1(SO(M), e) is said to be δ-sharp if its image g in π1(M, ∗) has the initial and
terminal directions δ-close to ~t and −~t, respectively. For a δ-sharp ĝ, we will say
that an oriented ∂-framed segment g is associated to ĝ, and vice versa, if g satisfies
the following.

• The carrier segment of g is g. The phase of g is δ-close to 0. The initial
and terminal framings of g are δ-close to each other.

• The element ĝ is represented by a loop of frames based at e ∈ SO(M) as
follows. The loop first flows e along g by parallel transportation, and then
rotates 180◦ counterclockwise about ~nter(g), and then rotates back to e

along a δ-short path within SO(M)|∗.
We point out that our biased choice of the 180◦ counterclockwise rotation in

Definition 5.7 determines our choices of chirality for tripods in the rest of this
section. The essential difference between distinct chiralities is revealed by Lemma
5.9 and Remark 5.10.

Lemma 5.8. For any δ-sharp element ĝ ∈ π1(SO(M), e), there is an oriented
∂-framed segment g associated to ĝ, unique up to δ-small change of framings at
endpoints. Moreover, g∗ is associated to ĉĝ, and ḡ∗ is associated to ĝ−1.

Proof. Let ~m be a unit vector orthogonal to ~t such that the parallel transportation
of ~m along g to the other end is δ-close to ~m. Up to δ-small change, there are
only two possible such vectors, namely, ±~m. Enriching g with initial and terminal
framings both δ-close to ±~m yield oriented ∂-framed segments g± satisfying the
first part of the listed properties in Definition 5.7. It is clear that exactly one of g±
fulfills the second part of the listed properties, so we pick it as g. The ‘moreover’
part is straightforward from the construction above as well. �
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Lemma 5.9. Let δ be a positve constant at most 1
100 . Suppose that t0 ∨ t1 ∨ t2 is a

(10, δ)-tame left-hand tripod with the terminal directions of legs δ-close to ~t. Then
there exist angles φ0, φ1, φ2 ∈ R/2πZ satisfying

φ0 + φ1 + φ2 = 0,

such that 2φi+2 ∈ R/2πZ is δ-close to the directed angle from ~nter(ti) to ~nter(ti+1)
with respect to the common orthogonal vector at ∗ which is δ-close to ~t, and that each
ti,i+1(φi+2) (Definition 4.1) is associated to a δ-sharp element ĝi+2 ∈ π1(SO(M), e)
for i ∈ Z3. For any such φi as above, the triangular relation

ĝ0ĝ1ĝ2 = id

is satisfied. Moreover, adding two of the three φi by π yields another triple of angles
satisfying the conditions above, with two corresponding ĝi changed into ĉĝi.

Remark 5.10. If t0 ∨ t1 ∨ t2 is right-hand, we must either replace the triangu-
lar relation in the conclusion with the twisted triangular relation ĝ0ĝ1ĝ2 = ĉ, or
alternatively, replace the equation for the anlges with φ0 + φ1 + φ2 = π.

Proof. For each i ∈ Z3, pick a unit vector ~ni at ∗ orthogonal to ~e, such that ~ni is
δ-close to ~nini(ti). Let ψi,i+1 ∈ R/2πZ be the angle from ~ni to ~ni+1 with respect

to ~t, and let φ′i+2 be half of ψi,i+1, valued in R/πZ. Choose a lift φi+2 ∈ R/2πZ
for each φ′i+2, so that φ0 + φ1 + φ2 = 0. Note that any other lift can be obtained
from changing two φi by adding π. It is clear that ti,i+1(φi+2) is associated to a
δ-sharp ĝi+2 ∈ π1(SO(M), e), and ĝ0ĝ1ĝ2 equals either id or ĉ. We claim that it is
the former case.

It suffices to verify that ĝ0ĝ1ĝ2 is trivial in H1(SO(M), e). The argument is

routine and easy so we only include an outline below. Let β̂i+2 be a path of
frames from (~t, ~ni,~t × ~ni+1)|∗ to (~t, ~ni+1,~t × ~ni+1)|∗ that first flowing by parallel
transportation along gi+2, and then rotates 180◦ counterclockwise about ~ni+1, and
then rotates to (~t, ~ni+1,~t × ~ni+1)|∗ via a δ-short path in SO(M)|∗. Here gi+2 ∈
π1(M, ∗) is the image of ĝi+2, also regarded as a pointed geodesic loop. Since ~ni are
all δ-close to the normal vector of the 2-simplex σ spanned by the concatenation of

g0, g1, g2, the loop of frames β̂0β̂1β̂2 obtained by concatenation is homotopic to the
constant loop (~t, ~n1,~t×~n1)|∗ in SO(M)|∗ as t0∨ t1∨ t2 is left-hand. (Compare with
the right-hand case where the resulting loop would be the 360◦ counterclockwise
rotation of the frame (~t, ~n1,~t× ~n1)|∗ about ~n1.) In particular,

[β̂0β̂1β̂2] = 0

in H1(SO(M), e). Let ~mi+2 be a unit vector at ∗ orthogonal to ~t, such that ~mi+2 is

δ-close to both the initial and terminal framings of ti,i+1(φi+2). Let ξ̂i+2 be the path

of frames in SO(M)|∗ from (~t, ~mi+2,~t× ~mi+2) to (~t, ~ni,~t×~ni) by a rotation of angle
δ-close to φi+2, and let η̂i+2 be the path of frames in SO(M)|∗ from (~t, ~ni+1,~t×~ni+1)
to (~t, ~mi+2,~t× ~mi+2) by a rotation of angle δ-close to φi+2. Then the loop of frames

ξ̂i+2β̂i+2η̂i+2 based at (~t, ~mi+2,~t× ~mi+2) can be conjugated to the loop based at e
representing ĝi+2 described in Definition 5.7. Thus

[ĝi+2] = [ξ̂i+2β̂i+2η̂i+2]

in H1(SO(M), e). Note that ξ̂0η̂0ξ̂1η̂1ξ̂2η̂2 is a loop of frames in SO(M)|∗ that
rotates counterclockwise about ~t of angle 2(φ0 + φ1 + φ2). As φ0 + φ1 + φ2 = 0
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modulo 2π, the winding number of this loop around ~t is even. Hence

[ξ̂0η̂0ξ̂1η̂1ξ̂2η̂2] = 0

in H1(SO(M);Z). Therefore, in H1(SO(M);Z),

[ĝ0ĝ1ĝ2] = [ξ̂0β̂0η̂0] + [ξ̂1β̂1η̂1] + [ξ̂2β̂2η̂2]

= [ξ̂0β̂0η̂0ξ̂1β̂1η̂1ξ̂2β̂2η̂2]

= [β̂0β̂1β̂2] + [ξ̂0η̂0ξ̂1η̂1ξ̂2η̂2]

= 0.

This implies that ĝ0ĝ1ĝ2 = id in π1(SO(M), e). �

There is a canonical way to lift (R, ǫ)-curves and (R, ǫ)-pants into SO(M), up to
homotopy.

Definition 5.11. For any curve γ ∈ ΓR,ǫ, a canonical lift of γ is a loop of frames

γ̂ : S1 → SO(M)

as follows. Choose a point p on the geodesic representative of γ, and a normal vector
~np of γ at p. Let ~tp be the direction vector of γ at p. The frame eγ,~np

= (~tp, ~np,~tp×
~np) is an element of SO(M)|p. With these notations, a base-point free loop of frames
γ̂ starts from eγ,~np

, and then flows once around γ by parallel transportation, and
then rotates 360◦ counterclockwise about ~np, and then rotates back to eγ,~np

along
an ǫ-short path within SO(M)|p. For any pair of pants Π ∈ ΠR,ǫ, a canonical lift
of Π is a lift

Π̂ : Σ0,3 → SO(M)

of Π, such that the three cuffs are canonically lifted.

Lemma 5.12. For any positive constant ǫ at most 1
100 , suppose γ ∈ ΓR,ǫ and

Π ∈ ΠR,ǫ. The canonical lifts γ̂ and Π̂ as described in Definition 5.11 exist and are
unique up to homotopy.

Remark 5.13. However, if the canonical lifts of Π̂ on the cuffs have been chosen, Π̂
is unique only up to homotopy relative to cuffs together with Z2-Dehn twists in the
fiber SO(3) near the boundary. In other words, the relative homotopy class of Π̂ is
determined by any class of H2(SO(Π), SO(∂Π);Z) that projects to the fundamental
class [Π] in H2(Π, ∂Π;Z).

Proof. The existence of γ̂ is by definition. The uniqueness follows from the fact
that the set of homotopy classes of framings of TM |γ is bijective to [S1, SO(3)] ∼=
Z2. To see the existence of Π̂, note that the pull-back tangent bundle TM |Π,
namely, Π∗(TM), is isomorphic to TΣ0,3⊕ǫ1. Consider a trivialization of TΣ0,3, for
example, by embedding Σ0,3 into the plane and endowing with the standard framing
of R2. By direct summing with the trivialization induced by the orientation of Π,
the trivialization of TΣ0,3 naturally induces a framing of TM |Π up to homotopy.
The restriction of this framing on any cuff γ of Π is the canonical lift of γ. Thus this
framing of TM |Π is a canonical lift Π̂ : Σ0,3 → SO(M) of Π by definition. To see

the uniqueness of Π̂, note that the set of homotopy classes of framings of TM |Σ0,3

is bijective to [Σ0,3, SO(3)] ∼= Z2 ⊕ Z2. Thus the homotopy class of a framing of
TM |Σ0,3

is uniquely determined by its restriction to the cuffs. This completes the
proof. �
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5.1.3. Construction of Φ. We construct

Φ : ΩR,ǫ → H1(SO(M); Z)

as follows. Suppose γ is a geodesic representative of a curve in ΓR,ǫ. We define
Φ([γ]R,ǫ) in H1(SO(M);Z) to be represented by the canonical lift of γ (Definition
5.11). For an (R, ǫ)-multicurve L, we define

Φ([L]R,ǫ) ∈ H1(SO(M); Z)

to be the sum of Φ defined for each of its components. We verify that Φ is well
defined.

Lemma 5.14. The homology class Φ([L]R,ǫ) in H1(SO(M); Z) constructed above
depends only on the (R, ǫ)-panted cobordism class [L]R,ǫ ∈ ΩR,ǫ of L. Moreover,
the induced map Φ from ΩR,ǫ to H1(SO(M); Z) is a homomorphism.

Proof. If [L]R,ǫ vanishes in ΩR,ǫ, there exists an (R, ǫ)-panted surface F # M
bounded by L. The canonical lifts of pairs of pants of F (Definition 5.11) yield
a canonical lift F → SO(M), whose restriction to the boundary are the canonical
lifts of components of L. This implies that (R, ǫ)-panted cobordant multicurves
yield homologous canonical lifts, or in other words, that Φ([L]R,ǫ) in H1(SO(M); Z)
depends only [L]R,ǫ. The ‘moreover’ part is straightforward from the definition. �

Lemma 5.15. For any (R, ǫ)-panted cobordism class [L]R,ǫ, the image of Φ([L]R,ǫ)
under the natural projection from H1(SO(M); Z) to H1(M ;Z) is the homology class
[L].

Proof. This follows immediately from the construction of Φ. �

5.2. The inverse of Φ. Fix an orthonormal frame e = (~t, ~n,~t × ~n) at a fixed
basepoint ∗ of M as before. In this subsection, we construct a homomorphism

Ψ : π1(SO(M), e) → ΩR,ǫ

which, descending to the abelianization,

Ψab : H1(SO(M);Z) → ΩR,ǫ,

yields the inverse of Φ. We need to choose some setup data including a triangular
finite generating set of π1(M, ∗), and define Ψ on a subset of π1(M, ∗) that contains
the triangular generating set. We verify that Ψ extends as a homomorphism by
showing that it vanishes on words corresponding to the triangular relations. We
also verify that Ψab is the inverse of Φ by showing that it is surjective and is the
pre-inverse of Φ.

5.2.1. Setup. Given any positive number ǫ, we need to fix some setup data

(Ch,BD′ , τh)

in terms of π1(M, ∗), restrained by some environmental data (δ′, L′) and (δ, L),
which are constant pairs fulfilling the conditions of the Connection Principle (Lemma
4.13). Such a collection of data is provided by Lemma 5.16 below, together with a
positive constant

R(ǫ,M)

such that the homomorphism Ψ from π1(SO(M), e) to ΩR,ǫ can be constructed for
any constant R greater than R(ǫ,M).
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In the following, a triangular generating set of π1(M, ∗) means a generating set
in which all the relations of word length at most 3 yield a presentation of π1(M, ∗)
(cf. Subsection 6.1 for discussion in more details); the conjugation τh induced by an
element h ∈ π1(M, ∗) acts on π1(M, ∗) by τh(g) = h−1gh; a δ-fellow-travel pair of
geodesic segments in a hyperbolic 3-manifold is understood in the same sense as in
the ∂-framed case (Definition 4.4), except with the framing conditions disregarded.

Lemma 5.16. Let M be an oriented closed hyperbolic 3-manifold. Given any
positive number ǫ, there is a collection of data depending only on M and ǫ as
follows.

(1) There exist positive constants δ′ and L′. The constant δ′ is less than the
minimum among 1

100 ,
ǫ

10000 and half the injectivity radius of M ; the con-
stant L′ is at least 100, and L′ satisfies the conclusion of the Connection
Principle (Lemma 4.13) with respect to δ′ and M .

(2) There exist finite subsets BD′ and BD of π1(M, ∗), where Bd denotes the
elements of π1(M, ∗) with length at most d. The constants D and D′ are
both greater than 10L′; the subset BD′ contains a generating set of π1(M, ∗);
the subset BD contains a triangular generating set of π1(M, ∗) which further
contains BD′ .

(3) There exist positive constants δ and L. The constant δ is less than δ′ and
1

1000
√

Card(BD)
, where Card denotes the cardinality; the constant L is greater

than 10L′, and L satisfies the conclusion of Connection Principle (Lemma
4.13) with respect to δ and M , and the condition for the Length and Phase
Formula (Lemma 4.7) with respect to δ and M .

(4) There exists a conjugation τh of π1(M, ∗) by an element h ∈ π1(M, ∗) of
length at least 10L. For each g ∈ BD, τh(g) is δ-sharp (Definition 5.7)
of length at least 10L; for each pair g, g′ ∈ BD, the initial subsegments of
τh(g) and τh(g

′) of length 2L form a δ-fellow-travel pair, and hence the
same holds for terminal subsegments as well.

(5) There exists a positive constant

R(ǫ,M),

which is greater than 10L+K, where K is maximal length of τh(g) for all
g ∈ BD.

(6) There exists a finite subset Ch of π1(M, ∗) containing BD, consisting of ele-
ments u so that τh(u) has length between 4L and R(ǫ,M)−10L, and that for
each g ∈ BD, the initial subsegments of τh(u) and τh(g) of length 2L form
a δ-fellow-travel pair, and hence the same holds for terminal subsegments
as well.

Proof. It suffices to prove the statements (2) and (4), since the other ones are
obvious from the statements themselves.

The statement (2) follows from the fact that any presentation (S,R) of a group

G induces a triangular generating set S̃ consisting of all the elements that are
represented by subwords of all the relators from R. Note that S̃ is finite if (S,R) is
a finite presentation. Since π1(M, ∗) is finitely presented, we may choose D′ > 10L′

sufficiently large so that BD′ generates π1(M, ∗). Then for any finite presentation

of π1(M, ∗) over BD′ , the induced finite triangular generating set B̃D′ is finite, and
hence contained in BD for some sufficiently large D ≥ D′.
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To prove the statement (4), we construct h to be h2h1 as follows. Since BD is a
finite set, we may first find some h1 ∈ π1(M, ∗) such that τh1

(g) has length 2L for
all g ∈ BD. In fact, choosing a basepoint O of the universal cover H3 which covers
∗, we may regard g as acting on H

3 by a deck transformation. Let Vg be the subset
of H3 consisting of points which translates of distance at most 2L under the action
of g. Note that Vg is a round tubular neighborhood of the axis of g which is strictly
convex. It follows that there is a conjugate h1.O of O which lies outside all Vg for
g ∈ BD. We may choose the h1 above as claimed. Since Card(BD) · (2000δ)2π is
bounded by 4π, it is easy to see that there exists a unit vector ~v at ∗ to that ~v is
(2000δ)-away from the initial direction of τh1

(g) for any g ∈ BD. By the Connection
Principle (Lemma 4.13), there is an element h2 ∈ π1(M, ∗) represented by a pointed
geodesic loop of length at least 10L, of which the initial direction is δ-close to ~v and
the terminal direction is δ-close to ~t. We may choose the h2 above as claimed. Note
that tan(1000δ) is bounded by 1. With the Length and Phase Formula (Lemma
4.7) and the statement (3), it is straightforward to check that the conjugation τh
satisfies the conclusion of the statement (4). �

5.2.2. Construction of Ψ. Given any positive constant ǫ, we fix a collection of setup
data (Ch,BD′ , τh) subject to (δ′, L′) and (δ, L) as provided by Lemma 5.16, and
obtain a positive constantR(ǫ,M) accordingly. For any constantR at leastR(ǫ,M),
we will construct the homomorphism

Ψ : π1(SO(M), e) → ΩR,ǫ

in the following. More precisely, let Ĉh and B̂D′ denote the preimages of Ch and
BD′ in π1(SO(M), e), respectively. We will construct a set-theoretic map

ΨhD : Ĉh → ΩR,ǫ.

The restriction of ΨhD to B̂D′ , denoted as

ΨhD′ : B̂D′ → ΩR,ǫ,

will extend uniquely over π1(SO(M), e) to be a homomorphism, which will still be
denoted as ΨhD′ . However, it will be verified that ΨhD′ descends to the abelianization,
yielding a homomorphism

(ΨhD′)ab : H1(SO(M);Z) → ΩR,ǫ,

which is exactly the inverse of Φ (Subsubsection 5.2.3), so eventually we may drop
the scripts h and D′ and simply write ΨhD′ as Ψ.

Since π1(SO(M), e) is a central extension of π1(M, ∗) by Z2, the conjugation τh
of π1(M, ∗) naturally induces a conjugation of π1(SO(M), e), which will be denoted

as τ̂h. For each noncentral ĝ ∈ B̂D, by Lemma 5.7 and Lemma 5.16 (4), we may
choose an oriented ∂-framed segment shĝ associated to the δ-sharp element τ̂h(ĝ),
or simply written as

sĝ

with the fixed τh understood. Note that sĝ is unique up to δ-small change of the
initial and terminal framings, and sĉĝ can be chosen as the framing flipping s∗ĝ.

We define the claimed set-theoretic map ΨhD as follows. For each noncentral

element ĝ ∈ Ĉh, choose an oriented ∂-framed segment sĝ which is associated to
τ̂h(ĝ) as above. For convenience, choose a unit vector

~nĝ ∈ T∗(M)
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orthogonal to ~t, such that ~nini(sĝ) and ~nter(sĝ) are both δ-close to ~nĝ. Choose a
right-hand nearly regular tripod a0 ∨ a1 ∨ a2 and an oriented ∂-framed segment b
satisfying the following:

• The right-hand tripod a0∨a1∨a2 is (R2 − ℓ(sĝ)
2 + 1

2I(
π
3 ), 10δ)-nearly regular.

For each i ∈ Z3, the terminal endpoint pter(ai) equals ∗, and the terminal
direction ~tter(ai) is (10δ)-close to −~t, and the terminal framing ~nter(ai) is
(10δ)-close to ~nĝ.

• The oriented ∂-framed segment b has length (100δ)-close to R
2 − ℓ(sĝ) and

phase (100δ)-close to 0. The initial and terminal directions of b are δ-close
to ~t and −~t respectively, and the initial and terminal framings of b are both
δ-close to ~nĝ.

In ΩR,ǫ, define

ΨhD(ĝ) = [sĝa01]R,ǫ + [sĝa12]R,ǫ + [sĝa20]R,ǫ − [sĝb]R,ǫ − [sĝb̄]R,ǫ,

and define

ΨhD(id) = 0,

and define

ΨhD(ĉ) = ΨhD(ĝ)−ΨhD(ĉĝ),

using any noncentral ĝ ∈ Ĉh.
Remark 5.17. The reader should compare the definition of ΨhD′ with the definition
of the operator AT in [KM2, Subsection 7.1]. Since AT was defined with a coefficient
1
2 , it does not work in integral coefficients. In fact, the argument of Good Correction
Theorem [KM2, Theorem 3.2] essentially implies that AT induces an isomorphism
ψab : H1(S;Q) → ΩR,ǫ(S) for any closed oriented hyperbolic surface S, which is the
inverse of the homomorphism φ : ΩR,ǫ(S) → H1(S;Q) given by φ([γ]R,ǫ) = [γ]. By
introducing a right-hand tripod a0∨a1∨a2 in addition to segment b, we may get rid
of the coefficient 1

2 and write down an expression of ΨhD′ with integral coefficients.
However, the ambiguity of the choice of ~nĝ makes it necessary to pass to SO(M)
rather than to stay in M .

Lemma 5.18. The set-theoretic map ΨhD is well defined from Ĉh to ΩR,ǫ with
respect to the fixed conjugation τh. In other words,

(1) All the reduced cyclic concatenations involved are curves in ΓR,ǫ;

(2) For any noncentral ĝ ∈ Ĉh, ΨhD(ĝ) depends only on ĝ;
(3) Different choices of noncentral ĝ defines the same ΨhD(ĉ).

Proof. The statement (1) follows from straightforward verification using the Length
and Phase Formula (Lemma 4.7) under our fixed choice of setup data (Lemma 5.16).
It remains to prove the statements (2) and (3).

To prove the statement (2), observe that ΨhD(ĝ) is clearly independent of the
choice of sĝ and ~nĝ, since sĝ is unique up to δ-fellow travelling and ~nĝ is unique
up to δ-closeness. Suppose that a′0 ∨ a′1 ∨ a′2 is another oriented ∂-framed segment
satisfying the same conditions as of a0 ∨ a1 ∨ a2, and similarly for b′. We write the
new ΨhD(ĝ) as Ψh

′

D (ĝ) to distinguish. We must show that ΨhD(ĝ) equals Ψh
′

D (ĝ) in
ΩR,ǫ.

Choose an auxiliary left-hand nearly regular tripod c0 ∨ c1 ∨ c2 satisfying the
following.
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• The left-hand tripod c0∨c1∨c2 is ( ℓ(sĝ)2 + 1
2I(

π
3 ), δ)-nearly regular. For each

i ∈ Z3, the terminal endpoint pter(ci) equals ∗, and the terminal direction
~tter(ci) is δ-close to ~t, and the terminal framing ~nter(ci) is δ-close to ~nĝ.

Since both a0∨a1∨a2 and a′0∨a′1∨a′2 have the opposite chirality to that of c0∨c1∨c2,
it follows from rotation (Construction 4.19 (1)) that

∑

i∈Z3

[ai,i+1c̄i,i+1]R,ǫ = 0

and

∑

i∈Z3

[a′i,i+1c̄i,i+1]R,ǫ = 0,

where ai,i+1 means āiai+1 for i ∈ Z3, and similarly for the notations a′i,i+1 and
ci,i+1. On the other hand, by swapping (Construction 4.17),

[sĝai,i+1]R,ǫ − [sĝa
′
i,i+1]R,ǫ = [̄ci,i+1ai,i+1]R,ǫ − [̄ci,i+1a

′
i,i+1]R,ǫ,

and

[sĝb]R,ǫ − [sĝb
′]R,ǫ = [s̄ĝb]R,ǫ − [s̄ĝb

′]R,ǫ.

For convenience, we write b01 and b10 for b and b̄, respectively, and similarly for
b′01 and b′10. Then ΨhD(ĝ)−Ψh

′

D (ĝ) equals

∑

i∈Z3

([sĝai,i+1]R,ǫ − [sĝa
′
i,i+1]R,ǫ)−

∑

j∈Z2

([sĝbj,j+1]R,ǫ − [sĝb
′
j,j+1]R,ǫ)

=
∑

i∈Z3

([̄ci,i+1ai,i+1]R,ǫ − [̄ci,i+1a
′
i,i+1]R,ǫ)− 0

= 0,

or in other words, ΨhD(ĝ) equals Ψ
h′

D (ĝ) in ΩR,ǫ. This proves the statement (2).
To prove the statement (3), we must show that for any noncentral elements ĝ, ĝ′

of Ĉh,

ΨhD(ĝ)−ΨhD(ĉĝ) = ΨhD(ĝ
′)−ΨhD(ĉĝ

′).

Step 1. We prove the equation above assuming that ℓ(sĝ) is δ-close to ℓ(sĝ′), and
that ~nĝ is δ-close to ~nĝ′ .

Observe that the defining right-hand tripod a0 ∨ a1 ∨ a2 and the defining ∂-
framed segment b can be chosen as the same for both ĝ and ĝ′. Moreover, sĉĝ can
be chosen as the framing flipping s∗ĝ, and the defining right-hand tripod and the
defining ∂-framed segment can be chosen as a∗0 ∨a∗−1∨a∗−2 and b∗ respectively, and

similarly for sĉĝ′ . For convenience, we write b01 and b10 for b and b̄, respectively.
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Thus,

ΨhD(ĝ)−ΨhD(ĉĝ)

=
∑

i∈Z3

([sĝai,i+1]R,ǫ − [s∗ĝa
∗
−i,−i−1]R,ǫ)−

∑

j∈Z2

([sĝbj,j+1]R,ǫ − [s∗ĝb
∗
j,j+1]R,ǫ)

=
∑

i∈Z3

([sĝai,i+1]R,ǫ − [sĝa−i,−i−1]R,ǫ)−
∑

j∈Z2

([sĝbj,j+1]R,ǫ − [sĝbj,j+1]R,ǫ)

=
∑

i∈Z3

([sĝ′ai,i+1]R,ǫ − [sĝ′a−i,−i−1]R,ǫ)−
∑

j∈Z2

([sĝ′bj,j+1]R,ǫ − [sĝ′bj,j+1]R,ǫ)

=
∑

i∈Z3

([sĝ′ai,i+1]R,ǫ − [s∗ĝ′a
∗
−i,−i−1]R,ǫ)−

∑

j∈Z2

([sĝ′bj,j+1]R,ǫ − [s∗ĝ′b
∗
j,j+1]R,ǫ)

= ΨhD(ĝ
′)−ΨhD(ĉĝ

′),

where the third equality following from swapping (Construction 4.17), applied to
each bigon pair [sĝai,i+1], [sĝ′a−i,−i−1], for i ∈ Z3, and to each bigon pair [sĝbj,j+1],
[sĝ′aj,j+1], for j ∈ Z2.

Step 2. We prove the equation ΨhD(ĝ)−ΨhD(ĉĝ) = ΨhD(ĝ
′)−ΨhD(ĉĝ

′) in the general
case.

By the Connection Principle (Lemma 4.13), we may interpolate a sequence of

elements ĝ0, · · · , ĝN in Ĉh, where ĝ0 = ĝ and ĝN = ĝ′, such that ℓ(sĝk) is δ-close to
ℓ(sĝk+1

), and that ~nĝk is δ-close to ~nĝk+1
, for each 0 ≤ k < N . By Step 1,

ΨhD(ĝk)−ΨhD(ĉĝk) = ΨhD(ĝk+1)−ΨhD(ĉĝk+1),

for each 0 ≤ k < N . We conclude that ΨhD(ĝ)−ΨhD(ĉĝ) equals Ψ
h
D(ĝ

′)−ΨhD(ĉĝ
′).

This completes the proof of the statement (3). �

Lemma 5.19. For any triple of elements ĝ0, ĝ1, ĝ2 in Ĉh satisfying the triagular
relation ĝ0ĝ1ĝ2 = id,

ΨhD(ĝ0) + ΨhD(ĝ1) + ΨhD(ĝ2) = 0.

Hence the restriction of ΨhD to B̂D′ extends uniquely to be a homomorphism ΨhD′

from π1(SO(M), e) to ΩR,ǫ.

Remark 5.20. We point out that in the proof of Lemma 5.19, the last equality in
Step 1 uses antirotation of tripod pairs with opposite charilities (Construction 4.20
(1)). The presence of the coefficient 2 there is not only indispensible but also crucial
for Theorem 5.2 to work in the integral coefficient case. The corresponding fact is
that in the paper [KM2], the conclusion of the Second Rotation Lemma (Lemma
8.2) should be

2
2∑

i=0

(RiR̄i+1)T = 0

if one attempts to state with integral coefficients.

Proof. The ‘hence’ part follows from the facts that BD′ contains a generating set of
π1(M, ∗), and that Ch contains BD which further contains a triangular generating
set of π1(M, ∗) (Lemma 5.16 (2)(6)). The former implies that the extension is
unique, and the latter implies that the extension exists. It remains to prove the
main statement.
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First consider the case when at least one of ĝi is central. If exactly one of ĝi
is central, and if it is nontrivial, the equation follows from the definition of ĥD(ĉ).
If exactly one of ĝi is central, and if it is the identity, we must prove that for any
noncentral ĝ ∈ Ĉh,

ΨhD(ĝ
−1) = −ΨhD(ĝ).

Observe that sĝ−1 can be chosen as the orientation reversed framing flipping s̄∗ĝ,
and that the defining right-hand tripod and ∂-framed segment can be chosen as
a∗0 ∨ a∗−1 ∨ a∗−2 and b̄∗ respectively, provided that sĝ, a0 ∨ a1 ∨ a2, and b have been

chosen to define ΨhD(ĝ). This should be compared to the wrong choice s̄ĝ, a0∨a1∨a2,
and b, which is actually right for defining ΨhD(ĉĝ

−1) by Lemma 5.16 (4). Choose

an auxiliary left-hand (
ℓ(sĝ)
2 + 1

2I(
π
3 ), δ)-nearly regular tripod c0 ∨ c1 ∨ c2 as in the

proof of Lemma 5.18 (2), namely, such that c0 ∨ c1 ∨ c2 and a0 ∨ a1 ∨ a2 form a
δ-rotation pair. For convenience, we write b01 and b10 for b and b̄, respectively.
Then ΨhD(ĝ) + ΨhD(ĝ

−1) equals
∑

i∈Z3

([sĝai,i+1]R,ǫ + [s̄∗ĝa
∗
−i,−i−1]R,ǫ)−

∑

j∈Z2

([sĝbj,j+1]R,ǫ + [s̄∗ĝb̄
∗
j,j+1]R,ǫ)

=
∑

i∈Z3

([sĝai,i+1]R,ǫ + [s̄ĝa−i,−i−1]R,ǫ)−
∑

j∈Z2

([sĝbj,j+1]R,ǫ + [s̄ĝb̄j,j+1]R,ǫ)

=
∑

i∈Z3

([sĝai,i+1]R,ǫ + [s̄ĝai+1,i]R,ǫ)− 0

= 0.

This proves ΨhD(ĝ
−1) = −ΨhD(ĝ). Finally, if all ĝi are central, it suffices to show

that 2ΨhD(ĉ) = 0. However, this can be derived by the previous case, indeed, for

any noncentral ĝ ∈ Ĉh,
2ΨhD(ĉ) = (ΨhD(ĝĉ) + ΨhD(ĝ

−1)) + (ΨhD(ĝ
−1ĉ) + ΨhD(ĝ))

= (ΨhD(ĝĉ) + ΨhD(ĝ
−1ĉ)) + (ΨhD(ĝ

−1) + ΨhD(ĝ))

= 0.

It remains to consider the case when none of ĝi is central. From the relation
ĝ0ĝ1ĝ2 = id, the carrier segments of sĝi form the boundary cycle of an oriented
2-simplex σ in M , so the tripod zipping (Definition 4.10 (7), and Lemma 4.11)
provides us a (2L+10+ I(π3 ), δ)-tame tripod t0 ∨ t1 ∨ t2, such that ti,i+1 and sĝi+2

are carried by the same segment for all i. Moreover, we may choose t0∨ t1∨ t2 to be
left-hand, then by Lemma 5.9, there are φ0, φ1, φ2 ∈ R/2πZ with φ0 + φ1 + φ2 = 0
and 2φi+2 δ-close to the angle from ti to ti+1 with respect to ~t, such that ti,i+1(φi+2)
is the same as sĝi+2

up to δ-small change of the initial and termal framings. Note
that the central case allows us to alternatively prove the identity after switching
two of the three ĝi into ĉĝi.

Step 1. We prove the base step when t0 ∨ t1 ∨ t2 is ( l2 +
I(π

3
)

2 , δ)-nearly regular
for some constant l at least 2L + 10, and when the terminal framings of ti are all
δ-close to a unit vector ~m at ∗ ∈M orthogonal to ~t.

Possibly after switching two ĝi to ĉĝi, we may assume that φi are all 0. Observe
that in this case, for each ĝr+2 where r ∈ Z3, sĝr+2

may be chosen as tr,r+1, and the
defining tripod can be chosen as a0 ∨ a1 ∨ a2, and the defining ∂-framed segment b
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may be chosen as ar,r+1. Then ΨhD(ĝ0) + ΨhD(ĝ1) + ΨhD(ĝ2) equals

∑

r∈Z3

((∑

i∈Z3

[tr,r+1ai,i+1]R,ǫ

)
− [tr,r+1ar,r+1]R,ǫ − [tr,r+1ār,r+1]R,ǫ

)

=
∑

r∈Z3

[tr,r+1ar+1,r+2]R,ǫ +
∑

r∈Z3

[tr,r+1ar+2,r]R,ǫ −
∑

r∈Z3

[tr,r+1ār,r+1]R,ǫ

=
∑

r∈Z3

[tr,r+1ar+1,r+2]R,ǫ +
∑

r∈Z3

[tr,r+1ar+2,r]R,ǫ −
∑

r∈Z3

[tr,r+1ār,r+1]R,ǫ

= 2
∑

r∈Z3

[tr,r+1ar,r+1]R,ǫ − 0

= 2
∑

r∈Z3

[tr,r+1ār+1,r]R,ǫ

= 0.

In the third equality, the last summation equals zero by rotation (Construction 4.19
(1)); the first two summations are both equal to the summation of [tr,r+1ar,r+1]R,ǫ
over r ∈ Z3, since by swapping (Construction 4.17),

[t01a12]R,ǫ + [t12a20]R,ǫ + [t20a01]R,ǫ

= [t01a12]R,ǫ + [t12a01]R,ǫ + [t20a20]R,ǫ

= [t01a01]R,ǫ + [t12a12]R,ǫ + [t20a20]R,ǫ,

and similarly for [t01a20]R,ǫ+[t12a01]R,ǫ+[t20a12]R,ǫ. The last equality follows from
antirotation (Construction 4.20 (1)). This proves ΨhD(ĝ0) + ΨhD(ĝ1) + ΨhD(ĝ2) = 0
for the base step.

Step 2. We prove a connecting step which is the following claim. Suppose that
c0r0 ∨ c1r1 ∨ c2r2 and c0r

′
0 ∨ c1r

′
1 ∨ c2r

′
2 are (L, δ)-tame left-hand tripods satisfying

the following:

• The left-hand tripod c0 ∨ c1 ∨ c2 is (10, δ)-nearly regular.
• For each i ∈ Z3, the chain ci, ri is δ-consecutive and (10, δ)-tame. The
length of ciri is at most 1

2 (R − 2L+ I(π3 )− 20). The terminal direction of

ciri is δ-close to ~t. The same holds for cir
′
i.

• For each i ∈ Z3, ℓ(ri) is δ-close to ℓ(r′i), and ~nter(ri) is δ-close to ~nter(r
′
i).

Let φ0, φ1, φ2 ∈ R/2πZ be the angles guaranteed by Lemma 5.9 with respect to
c0r0 ∨ c1r1 ∨ c2r2, which, hence, works for c0r

′
0 ∨ c1r

′
1 ∨ c2r

′
2 as well. Let ĝi+2, ĝ

′
i+2 ∈

π1(SO(M), e) be the δ-sharp element associated to (r̄ici,i+1ri)(φi+2), (r̄
′
ici,i+1r

′
i)(φi+2),

respectively, which, in fact, lie in Ĉh. With the notations above, we claim

ΨhD(ĝ0) + ΨhD(ĝ1) + ΨhD(ĝ2) = ΨhD(ĝ
′
0) + ΨhD(ĝ

′
1) + ΨhD(ĝ

′
2).

To prove the claim, observe that it suffices to prove a simple case that ri equals
r′i except for one i ∈ Z3. Then the claim follows by applying the simple case
successively to each neighboring pair in the sequence of tripods c0r0 ∨ c1r1 ∨ c2r2,
c0r0 ∨ c1r1 ∨ c2r

′
2, c0r0 ∨ c1r

′
1 ∨ c2r

′
2, c0r

′
0 ∨ c1r

′
1 ∨ c2r

′
2. Without loss of generality,

we may assume that ri = r′i except for i being 0. Then ΨhD(ĝ0) = ΨhD(ĝ
′
0), and

we must show ΨhD(ĝ1) + ΨhD(ĝ2) = ΨhD(ĝ
′
1) + ΨhD(ĝ

′
2). Observe further that for

both ĝ1 and ĝ′1, we may choose the same defining right-hand tripod a
(1)
0 ∨ a

(1)
1 ∨

a
(1)
2 and the same defining ∂-framed segment b(1). Similarly, for ĝ2 and ĝ′2 we
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choose the same a
(2)
0 ∨ a

(2)
1 ∨ a

(2)
2 and b(2) for both ĝ2 and ĝ′2. By swapping the

bigon pair [r0 (a
(2)
01 (−φ1)r̄2c20)] and [r′0 (ā

(1)
01 (φ2)r̄1c̄01)] into [r′0 (a

(2)
01 (−φ1)r̄2c20)] and

[r0 (ā
(1)
01 (φ2)r̄1c̄01)] (Construction 4.17), after rearrangement, we have

[t01(φ2)a
(1)
01 ]R,ǫ + [t20(φ1)a

(2)
01 ]R,ǫ = [t′01(φ2)a

(1)
01 ]R,ǫ + [t′20(φ1)a

(2)
01 ]R,ǫ,

where ti,i+1 = r̄ici,i+1ri+1 and t′i,i+1 = r̄′ici,i+1r
′
i+1; similarly,

[t01(φ2)a
(1)
12 ]R,ǫ + [t20(φ1)a

(2)
12 ]R,ǫ = [t′01(φ2)a

(1)
12 ]R,ǫ + [t′20(φ1)a

(2)
12 ]R,ǫ;

[t01(φ2)a
(1)
20 ]R,ǫ + [t20(φ1)a

(2)
20 ]R,ǫ = [t′01(φ2)a

(1)
20 ]R,ǫ + [t′20(φ1)a

(2)
20 ]R,ǫ;

and

−[t01(φ2)b
(1)]R,ǫ − [t20(φ1)b

(2)]R,ǫ = −[t′01(φ2)b
(1)]R,ǫ − [t′20(φ1)b

(2)]R,ǫ;

−[t01(φ2)b̄
(1)]R,ǫ − [t20(φ1)b̄

(2)]R,ǫ = −[t′01(φ2)b̄
(1)]R,ǫ − [t′20(φ1)b̄

(2)]R,ǫ.

Summing up the five equations above yields ΨhD(ĝ1)+ΨhD(ĝ2) = ΨhD(ĝ
′
1)+ΨhD(ĝ

′
2).

This finishes the proof the claim of the connecting step.

Step 3. We finish the proof of the general noncentral case. Let t0 ∨ t1 ∨ t2 and
φ0, φ1, φ2 be as before so that ĝi+2 is associated to ti,i+1(φi+2). We may write
ti as concatenation of consecutive ∂-framed segments ciri, so that c0 ∨ c1 ∨ c2 is
(10+I(π3 ), δ)-nearly regular. Hence ri has at least 2L+10 and phase δ-close to 0. By
the Connection Principle (Lemma 4.13), we may interpolate a sequence of tripods

t
(k)
0 ∨ t

(k)
1 ∨ t

(k)
2 where k runs over 0, · · · , N , such that t

(k)
i is the δ-concatenation

cir
(k)
i , and r

(k)
i satisfies the following.

• For all i ∈ Z3 and 0 ≤ k ≤ N , r
(k)
i have length at least 2L and phase δ-close

to 0.
• For i ∈ Z3 and 0 ≤ k < N , r

(k)
i and r

(k+1)
i have length δ-close to each other,

and terminal framings δ-close to each other.

• For i ∈ Z3, r
(0)
i equals ri.

• For i ∈ Z3, r
(N)
i have length δ-close to each other, and terminal framings

δ-close to each other.

For each t
(k)
0 ∨t(k)1 ∨t(k)2 , let φ

(k)
0 , φ

(k)
1 , φ

(k)
2 ∈ R/2πZ be a triple of angles guaranteed

by Lemma 5.9, and let ĝ
(k)
i+2 ∈ π1(SO(M), e) be the δ-sharp element associated to

t
(k)
i,i+1(φi+2). It follows that ĝ

(k)
0 ĝ

(k)
1 ĝ

(k)
2 = id for 0 ≤ k ≤ N . Moreover, we may

assume without loss of generality that φ
(0)
0 , φ

(0)
1 , φ

(0)
2 are all φ0, φ1, φ2 respectively,

and that φ
(N)
0 , φ

(N)
1 , φ

(N)
2 are all 0. Therefore, Step 1 implies that

ΨhD(ĝ
(N)
0 ) + ΨhD(ĝ

(N)
1 ) + ΨhD(ĝ

(N)
2 ) = 0,

and Step 2 implies that

ΨhD(ĝ
(k)
0 ) + ΨhD(ĝ

(k)
1 ) + ΨhD(ĝ

(k)
2 ) = ΨhD(ĝ

(k+1)
0 ) + ΨhD(ĝ

(k+1)
1 ) + ΨhD(ĝ

(k+1)
2 ),

for 0 ≤ k < N . It follows that when k equals 0, we have

ΨhD(ĝ0) + ΨhD(ĝ1) + ΨhD(ĝ2) = 0.

This completes the proof. �
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By Lemma 5.19, we conclude that the restriction of ΨhD to B̂D′ extends uniquely
to a homomorphism

ΨhD′ : π1(SO(M), e) → ΩR,ǫ.

Descending to the abelianization, we denote the induced homomorphism as

(ΨhD′)ab : H1(SO(M);Z) → ΩR,ǫ.

5.2.3. Verifications. It remains to verify that (ΨhD′)ab is the inverse of Φ. We com-
plete this by proving that (ΨhD′)ab is the pre-inverse of Φ (Lemma 5.21), and that
ΨhD′ is onto (Lemma 5.22).

Lemma 5.21. For any element ĝ in Ĉh,
Φ(ΨhD(ĝ)) = [ĝ]

in H1(SO(M);Z). Hence the composition Φ◦(ΨhD′)ab is the identity transformation
of H1(SO(M);Z).

Proof. First consider the case when ĝ is noncentral. Let âi,i+1 in π1(SO(M), e)

be the δ-sharp element associated to ai,i+1 for i ∈ Z3, and b̂ ∈ π1(SO(M), e) be

associated to b (Definition 5.7). Hence ĉb̂−1 is associated to b̄. It is clear from the
construction of Φ that the the image of [sĝai,i+1]R,ǫ under Φ is equal to [ĝâi,i+1].

Similarly, Φ([sĝb]R,ǫ) = [ĝb̂], and Φ([sĝb̄]R,ǫ) = [ĝĉb̂−1]. Then in H1(SO(M);Z),
Φ(ΨhD(ĝ)) equals

[ĝâ01] + [ĝâ12] + [ĝâ20]− [ĝb̂]− [ĝĉb̂−1]

= [ĝ] + [â01] + [â12] + [â20]− [ĉ]

= [ĝ] + [â01â12â20ĉ]

= [ĝ],

where [â01â12â20ĉ] = 0 because a0 ∨ a1 ∨ a2 is right-hand, (Remark 5.10). This
shows Φ(ΨhD(ĝ)) = [ĝ] in the noncentral case. The central case is an immediate
consequence of the noncentral case, so we have completed the proof of the main
statement. The ‘hence’ part follows immediately from the fact that B̂D′ generates
π1(SO(M), e) (Lemma 5.16 (2)). �

Lemma 5.22. For any curve γ ∈ ΓR,ǫ, the (R, ǫ)-panted cobordism class [γ]R,ǫ is

equal to an integral linear combination of elements in the image of B̂D′ under ΨhD′ .
Hence the homomorphism (ΨhD′)ab surjects ΩR,ǫ.

Proof. The ‘hence’ part follows immediately from the main statement and the fact
that B̂D′ generates π1(SO(M), e) (Lemma 5.16 (2)). It remains to prove the main
statement.

Remember that (L′, δ′) are the pair of constants guaranteed by Lemma 5.16 (1).
By Lemma 5.6, it suffices to assume γ ∈ ΓR,δ′ . Let A denote the subset of π1(M, ∗)
consisting of elements u such that the length of u is at most R

2 + 2L′ + 2, and

that the initial and terminal directions of u is (10δ′)-close to ~tter(h) and ~tini(h),

respectively. Note that τh(A) is contained in Ch. Let Â denote the preimage of A
in π1(SO(M), e).

Step 1. We find x̂± ∈ τ̂h(Â), such that

[γ]R,ǫ = ΦhD(x̂−) + ΦhD(x̂+).
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Since γ ∈ ΓR,δ′ , we may bisect γ into an (R2 , δ
′)-nearly regular bigon [s−s+] by

interpolating a pair of antipodal points with suitably chosen normal vectors. Enrich
h with initial and terminal framings to obtain a ∂-framed segment h of phase 0. By
the Connection Principle (Lemma 4.13) there are oriented ∂-framed segments u±
from pter(u±) to ∗, satisfying the following.

• The length and phase of u± are δ′-close to L′ + I(π2 ) + 1 and 0 respec-

tively. The initial direction u± is δ′-close to ±~nter(s±)× ~tter(s±), and the
initial framing of u± is δ′-close to ~nter(s±). The terminal direction of u±
is δ′-close to ~tini(h), and the terminal framings of u± and are δ′-close to
~nini(h(±π/2)).

Let x± = w̄∓s±w±, where w± = u±h(±π/2), be the reduced concatenation. Then

x±(±π/2) is associated to a δ′-sharp element x̂± ∈ τ̂h(Â).
Choose a right-hand tripod a0 ∨ a1 ∨ a2 and a ∂-framed segment b for defining

ΨhD(x̂+), and choose a∗0 ∨ a∗−1 ∨ a∗−2 with the indices understood in Z3 and b̄∗ for

ΨhD(x̂−). Note that for i ∈ Z3,

[x+(π/2)ai,i+1]R,ǫ + [x−(−π/2)a∗−i,−i−1]R,ǫ

= [x+ai,i+1(π/2)]R,ǫ + [x−ai,i+1(π/2)]R,ǫ

= [s+(w+ai,i+1(π/2)w̄−)]R,ǫ + [s−(w+ai,i+1(π/2)w̄−)]R,ǫ

= [γ]R,ǫ,

where the last equality follows from splitting s+s− (Construction 4.15). Thus

[x+(π/2)a01]R,ǫ + [x−(−π/2)a∗02]R,ǫ = [γ]R,ǫ;

[x+(π/2)a12]R,ǫ + [x−(−π/2)a∗21]R,ǫ = [γ]R,ǫ;

[x+(π/2)a20]R,ǫ + [x−(−π/2)a∗10]R,ǫ = [γ]R,ǫ;

Similarly,
−[x+(π/2)b]R,ǫ +−[x−(−π/2)b̄∗]R,ǫ = −[γ]R,ǫ;

−[x+(π/2)b̄]R,ǫ +−[x−(−π/2)b∗]R,ǫ = −[γ]R,ǫ.

Summing up the five equations above shows that ΦhD(x̂+) + ΦhD(x̂−) = [γ]R,ǫ.

Step 2. For any ẑ ∈ Â of length at least 10L′ we find ŷ± ∈ Â, such that

ẑ = ŷ−ŷ+

and that for the images y±, z ∈ π1(M, ∗) of ŷ±, ẑ respectively, both τh(y±) have
length less than 1

2ℓ(z) + 3L′.
In fact, we may write the pointed geodesic loop as the concatenation of to ge-

odesic segments ζ−ζ+ joint at the midpoint of z. By the Connection Principle
(Lemma 4.13), applied to the unframed case simply by ignoring the framings, there
is a path υ from the midpoint of z to ∗, satisfying the following: the length of υ
is δ′-close to L′ + I(π2 ); the initial direction of υ is δ′-closely perpendicular to z;

and the terminal direction of υ is δ′-close to ~t. Let y− and y+ in π1(M, ∗) be ζ−υ
and ῡζ+, respectively. Since z = y−y+ in π1(M, ∗), we may choose lifts ŷ± of y± in
π1(SO(M), e) so that ẑ = ŷ−ŷ+. It is straightforward to see that ŷ± are as desired.

Step 3. We complete the proof of the main statement. As mentioned above, we
may assume that γ ∈ ΓR,δ′ . By Step 1, [γ]R,ǫ can be written as a sum of elements

in the image of τ̂h(Â) under ΨhD. By iterately applying Step 2, any element in

ΨhD(τ̂h(Â)) can be replaced with a sum of elements of the form ΨhD(τ̂h(ŷ)) where
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the image of ŷ ∈ Â in π1(M, ∗) has length at most 10L′. In particular, ŷ ∈ B̂D′

since D′ is assumed to be at least 10L′ (Lemma 5.16 (2)). Thus [γ]R,ǫ is equal to

an integral linear combination of elements in the image of B̂D′ under ΨhD′ , as ΨhD′

is the restriction of ΨhD to B̂D′ . This completes the proof. �

5.3. Proof of Theorem 5.2. In summary, given any oriented closed hyperbolic
3-manifold M , suppose that ǫ is a positive constant smaller than the minimum be-
tween 1

100 and half the injectivity radius of M . With the positive constant R(ǫ,M)
guaranteed by Lemma 5.16 (5), suppose that R is a positive constant greater than
R(ǫ,M). Then the homomorphism

Φ : ΩR,ǫ(M) → H1(SO(M), e)

constructed in Subsection 5.1 is a canonically defined isomorphism (Lemma 5.14
and Subsection 5.2). By Lemma 5.15, for all [L]R,ǫ ∈ ΩR,ǫ(M), the image of
Φ([L]R,ǫ) under the bundle projection is the homology class [L] ∈ H1(M ;Z). This
completes the proof of Theorem 5.2.

6. Pantifying second homology classes

In this section, we show that second homology classes of an oriented closed
hyperbolic 3-manifold M can be represented by (R, ǫ)-panted surfaces, as precisely
stated in Theorem 6.1. This will imply the absolute case of Theorem 2.10 (1),
namely, when the collection of curves L ⊂ ΓR,ǫ is empty (Subsection 8.2). Roughly
speaking, Theorem 6.1 follows from inspecting the homology classes of the (R, ǫ)-
panted surfaces constructed in the proof of Theorem 5.2, so our argument and
notations will heavily rely on Section 5. In particular, throughout this section, it
will suffice to assume ǫ to be a positive constant smaller than the minimum between
1

100 and half the injectivity radius of M , and R to be a positive constant greater
than the constant R(ǫ,M) as guaranteed by Lemma 5.16 (5).

Theorem 6.1. Let M be an oriented closed hyperbolic 3-manifold. For any small
positive ǫ and sufficiently large positive R depending on M and ǫ, the following
holds. For any homology class α ∈ H2(M ; Z), there exists an (oriented) closed
(R, ǫ)-panted subsurface j : F #M so that j∗[F ] equals α.

Remark 6.2. There is a canonical free resolution of the integral module ΩR,ǫ given
by

0 −→ N −→ ZΠR,ǫ
∂−→ ZΓR,ǫ −→ ΩR,ǫ −→ 0,

where N denotes the kernel of of the boundary homomorphism. There is also a nat-
ural homomorphism N → H2(M ; Z) since the natural homomorphism ZΠR,ǫ →
H2(M, |ΓR,ǫ|;Z) uniquely lifts to H2(M ;Z) restricted to N . Therefore, Theorem
6.1 asserts that N surjects H2(M ;Z). In this sense, it reveals certain finer structure
of (R, ǫ)-panted cobordisms in addition to Theorem 5.2.

The key idea of the proof of Theorem 6.1 is to apply a process called homologous
substitution. To illustrate how it works, suppose that S is a connected oriented
closed surface and that f : S → M is a map so that f∗[S] equals α. To replace
f : S → M with a homologous (R, ǫ)-panted subsurface j : F # M , we endow S
with a triangulation with a single vertex ∗, and assume that f has been homotoped
so that ∗ is sent to a chosen basepoint of M , and that the 1-simplices of S are
long geodesic segments, and that the 2-simplices of S are totally geodesic in M .
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Following the construction of Ψ in Subsection 5.2, we may replace any (oriented)
1-simplex e with an (R, ǫ)-multicurve L(e) as in the definition of Ψ, without pass-

ing to the (R, ǫ)-panted cobordism class. By convention, we define L(ē) to be L(e).
Moreover, we may replace any 2-simplex σ with an (R, ǫ)-panted surface F (σ),
so that if ∂σ is a cycle e0, e1, e2, F (σ) will be bounded by L(e0) ⊔ L(e1) ⊔ L(e2).
The (R, ǫ)-panted surface F (σ) can be obtained explicitly by the constructions in
Lemmas 5.18, 5.19. Thus the (R, ǫ)-panted surface F can be obtained by naturally
gluing the (R, ǫ)-panted surfaces F (σ) along the (R, ǫ)-multicurves L(e) on their
boundary, according to the triangulation structure of S. Intuitively, it should fol-
low from the Spine Principle (Lemma 4.14) that there are natural isomorphisms
H2(F (σ), ∂F (σ);Z) ∼= H2(σ, ∂σ;Z). Then a Mayer–Vietoris argument will imply
that there is a natural isomorphism H2(F ;Z) ∼= H2(S;Z) that commutes with
the homomorphisms f∗ : H2(S;Z) → H2(M ;Z) and j∗ : H2(F ;Z) → H2(M ;Z).
In other words, the (R, ǫ)-panted surface F is homologous to S in M , and hence
represents α as desired. In practice, it is actually more convenient not to specify
the homology class α ∈ H2(M ;Z). Instead, we consider a triangular presentation
complex f : (K, ∗) → (M, ∗) (cf. Subsection 6.1) of π1(M, ∗) rather than the tri-
angulated (S, ∗) → (M, ∗). Then a similar process of homologous subsitution will
yield an (R, ǫ)-panted complex j : K #M (a 2-complex obtained by gluing (R, ǫ)-
panted surfaces along (R, ǫ)-multicurves on the boundary, cf. Subsection 6.2). In
general, there will be a natural epimorphism H2(K;Z) → H2(K;Z) that commutes
with f∗ and j∗. Because of the easy observation that f∗ : H2(K;Z) → H2(M ;Z) is
onto, j∗ : H2(K;Z) → H2(M ;Z) will also be onto. In other words, any homology
class α ∈ H2(M ;Z) comes from some α̃ ∈ H2(K;Z), so it is represented by some
(R, ǫ)-panted surface obtained by a composition F → K →M .

The rest of this section is devoted to the proof of Theorem 6.1. In Subsec-
tions 6.1, 6.2, we introduce some notations that we will adopt, namely, triangular
presentation complexes and (R, ǫ)-panted complexes; Subsection 6.3 is the homol-
ogous substitution argument, which is core of the proof; Subsection 6.4 completes
the proof of Theorem 6.1 by a brief summary.

Let M be an oriented closed 3-manifold. The bundle of special orthonormal
frames of M will be denoted as SO(M). Fix an orthonormal frame e = (~t, ~n,~t×~n)
at a fixed basepoint ∗ of M , so the special orthonormal bundle SO(M) has a
preferred basepoint e.

6.1. Triangular presentation complexes. Recall that a presentation of a group
G is a pair (S,R), where S is a set of independent letters and R is a set of words in
x and x−1 for x ∈ S, such that the canonical quotient 〈S|R〉 is isomorphic to G. For
a presentation of G, there is a naturally associated CW 2-complex K with a single
vertex ∗ as the basepoint, called the presentation complex, such that the 1-cells are
in correspondence with the generators, and the 2-cells are in correspondence with
the relators. Hence the fundamental group π1(K, ∗) is naturally isomorphic to G.
In fact, if (X, ∗) is a pointed topological space, any homomorphism π1(K, ∗) →
π1(X, ∗) can be realized by a map (K, ∗) → (X, ∗). Combinatorially, any 2-cell of
K has polygonal boundary, and the number of edges is equal to the word length of
the corresponding relator. A presentation is said to be finite if the sets of generators
and relators are finite.
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Lemma 6.3. If (K, ∗) is a presentation complex of (M, ∗), then the presentation
map

f : (K, ∗) → (M, ∗)
which induces the natural isomorphism on π1 induces an epimorphism

f∗ : H2(K; Z) → H2(M ; Z).

Proof. This follows from the fact that M is aspherical. In fact, we may obtain
an Eilenberg–MacLane space K ′ ≃ K(π1(M, ∗), 1) by attaching to K cells of di-
mension greater than 2, and we may extend f to obtain a homotopy equivalence
f ′ : (K ′, ∗) → (M, ∗). This implies the surjectivity of the induced homomorphism
f∗ on the second homology. �

Lemma 6.4. If (K, ∗) is a presentation complex of (M, ∗), then the presentation
map

f : (K, ∗) → (M, ∗)
lifts to a map

f̂ : (K, ∗) → (SO(M), e).

Proof. This follows from the fact that π1(SO(M)) is the splitting extension of
π1(M) by π1(SO(3), I) ∼= Z2. Moreover, the homotopy classes of lifts of f are deter-
mined by the splittings, which are in bijection with H1(M ;Z2) since π2(SO(M), e)
is trivial. �

A presentation is said to be triangular, if the word length of the relators are
at most 3. The complex (K, ∗) associated to a triangular finite presentation is
compact with only monogonal, bigonal, or triangular 2-cells, and we say that (K, ∗)
is triangular and finite. Note that any finite presentation gives rise to a triangular
finite presentation, by adding a maximal collection of mutually non-intersecting
diagonals to subdivide the 2-cells ofK. Furthermore, if we assume thatK minimizes
the number of generators and the number of relators in the lexicographical order
among triangular finite presentations of G, it is easy to see that K will not contain
any monogonal 2-cells, and that any bigonal 2-cells of K will be attached to 1-cells
representing elements of order 2.

For our application, it suffices to consider a specific triangular finite presentation
of π1(M, ∗) associated to the triangular generating set guaranteed by Lemma 5.16
(2). In particular, the associated triangular finite presentation complex (K, ∗) is a
∆-complex, and we denote the presentation map as

f : (K, ∗) → (M, ∗),
which is unique up to homotopy relative to the basepoint.

6.2. Panted complexes. By a (topological) panted complex K we mean a com-
pact CW space obtained from a finite disjoint union of circles by attaching finitely
many disjoint pairs of pants via homeomorphisms from cuffs. Recording the pants
decomposition of K as part of data, we will refer to the defining circles and pairs of
pants as the structure curves and structure pants of K. When a panted complex K
is immersed into a closed hyperbolic 3-manifold M , we will say that the immersion
is (R, ǫ)-panted, if the restriction to each pair of pants is (R, ǫ)-nearly regular up
to homotopy, or ambiguously, we will say that K is an (R, ǫ)-panted complex. Note
that any connected (R, ǫ)-panted surface is naturally an (R, ǫ)-panted complex. A
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panted map between two panted complexes is a map that sends each structural pair
of pants homeomorphically onto a structural pair of pants of the target.

Lemma 6.5. For any nontrivial element α ∈ H2(K; Z), there is a closed oriented
panted surface F and a panted map F → K, such that the fundamental class of F
in H2(F ; Z) is sent to α.

Proof. Let P be the disjoint union of structure pants of K, and C be the disjoint
union of structure curves of K. The long exact sequence of homology yields

0 // H2(K;Z) // H2(K, C;Z)
∂∗ // H1(C)

H2(P, ∂P;Z)
∂∗ //

∼=

OO

H1(∂P;Z)

χ

OO

where χ means the homomorphism induced by the characteristic map of the panted
complex K that identifies the cuffs of structure pants with the structure curves. Now
any element α ∈ H2(K;Z) can be identified as an element α′ of H2(P, ∂P;Z) in the
kernel of χ ◦ ∂∗. Since H2(P, ∂P;Z) has a basis formed by the fundamental classes
[P ] of the components P ⊂ P, the element α′ naturally yields a collection of copies
of structure pants with suitable orientations, and χ(∂∗[α

′]) = 0 implies that these
copies of pants can be glued up along cuffs, resulting in a closed oriented panted
surface F . The naturally induced panted map F → K is as desired. �

6.3. Homologous substitution. Let (K, ∗) be the CW complex associated to the
triangular generating set guaranteed by Lemma 5.16 (2), (cf. Subsection 6.1), and
f : (K, ∗) → (M, ∗) be the basepoint-preserving map associated to the presenta-
tion. Let τh be the conjugation provided by Lemma 5.16 (4). The presentation
conjugated by τh induces an isomorphism τh ◦f♯ : π1(K, ∗) → π1(M, ∗). We denote
the corresponding basepoint-preserving map as

fh : (K, ∗) → (M, ∗).
It can be topologically obtained from f by pushing the image of ∗ ∈ K along the
loop corresponding to h−1 ∈ π1(M, ∗).

Lemma 6.6. There exists a CW complex K ′ obtained from K by attaching 1-cells,
and a compact panted complex K, and there exist maps

(K, ∅) −→ (K ′, ∗) −→ (M, ∗)
satisfying the following.

• The map (K ′, ∗) → (M, ∗) restricts to be the basepoint-preserving map

fh : (K, ∗) → (M, ∗).
• The map K → K ′ induces an epimorphism

H2(K;Z) → H2(K
′;Z).

• The composition K →M yields an (R, ǫ)-panted complex.

We prove Lemma 6.6 in the rest of this subsection.
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6.3.1. Construction of K and K ′. We construct K,K ′ and maps (K, ∅) → (K ′, ∗) →
(M, ∗) following the construction of Ψ : π1(SO(M), e) → ΩR,ǫ in Subsection 5.2.
Fix a lift of fh into SO(M), denoted as

f̂h : (K, ∗) → (SO(M), e)

(Lemma 6.4). Note that by our assumption, K is a ∆-complex, so each 1-cell
of K can be conveniently denoted by the element g ∈ π1(K, ∗) ∼= π1(M, ∗) that it
represents, and each 2-cell ofK can be conveniently denoted by a triangular relation
g0g1g2 = id of three generators or their inverses. As K and fh are provided from

Lemma 5.16, for each 1-cell g of K, f̂h(g) is a δ-sharp element. Thus there is an
associated oriented ∂-framed segment sf̂h(g), or simply written as sĝ in order to be

consistent with the notation in Subsection 5.2.

Step 1. For each 1-cell g of K, fix a right-hand nearly regular tripod a0 ∨ a1 ∨ a2
and an oriented ∂-framed segment b as in the definition of Ψ. We construct a
2-dimensional ∆-complex X(g) and a multcurve L(g), together with maps

(L(g), ∅) → (X(g), ∗) → (M, ∗)

such that the composition yields an (R, ǫ)-multicurve L(g) #M , which represents
the (R, ǫ)-panted cobordism class Ψ(ĝ) ∈ ΩR,ǫ, where ĝ ∈ π1(SO(M), e) is the

element f̂♯(g).
The construction is as follows. Take the subcomplex ∗ ∪ g of K; attach 1-cells

ai,i+1 for i ∈ Z3 and b, corresponding to the carrier segments of ai,i+1 and b,
respectively; attach a simplicial 2-cell with boundary the cycle a01a12a20. The
resulting 2-complex will be denoted as X(g). There is a naturally induced map
(X(g), ∗) → (M, ∗) extending fh|∗∪g. Let L(g) = [sĝa01] ⊔ [sĝa12] ⊔ [sĝa20] ⊔
[sĝb] ⊔ [sĝb̄] be the multicurve of five components, which are the reduced cyclic
concatenations of the defining oriented ∂-framed segments. The natural immersion
L(g) #M can be homotoped to factor through X(g) via a composition (L(g), ∅) →
(X(g), ∗) → (M, ∗) in the explicit way as indicated by the construction.

We define L(g−1) to be L(g), and X(g−1) for X(g). Note that L(g−1) is the
representative of Φ(ĝ−1) ∈ ΩR,ǫ corresponding to the defining right-hand tripod
a∗2 ∨ a∗1 ∨ a∗0 and b∗ since the δ-sharp element ĝ−1 is associated to s̄∗ĝ. Thus there
are also maps

(L(g−1), ∅) → (X(g−1), ∗) → (M, ∗),
and the composition is homotopic to an (R, ǫ)-multicurve L(g−1) # M , which
represents Ψ(ĝ−1) ∈ ΩR,ǫ.

Step 2. For each simplicial 2-cell σ of K corresponding to a triangular relation
g0g1g2 = id, write

X(∂σ) = X(g0) ∨X(g1) ∨X(g2),

where the wedge is over the basepoint ∗, and

X(σ) = X(∂σ) ∪ σ

by identifying the copies of gi in X(gi) and σ, and

L(∂σ) = L(g0) ⊔ L(g1) ⊔ L(g2).
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We construct a 2-complex Y (σ) obtained from X(σ) by attaching 1-cells and a
panted surface F (σ) bounded by L(∂σ), together with maps

(F (σ), ∅) → (Y (σ), ∗) → (M, ∗),
such that the composition is homotopic to an (R, ǫ)-panted surface F (σ) # M ;
moreover, the following diagram of maps commutes:

F (σ) // Y (σ)

L(∂σ) //

∪

OO

X(∂σ).

∪

OO

The construction is as follows. Since [L(g0)]R,ǫ + [L(g1)]R,ǫ + [L(g2)]R,ǫ = 0 in
ΩR,ǫ (Lemma 5.19), there exists an (R, ǫ)-panted surface F (σ) with ∂F (σ) equal
to L(∂σ). In fact, the construction of F (σ) relies on Lemmas 5.18, 5.19. Checking
the constructions there, we see that F (σ) can be constructed based only on the
∆-complex X(σ) and the map X(σ) → M induced from the constructed maps
X(gi) → M and the given map fh| : σ → M . Formally, we regard X(σ) as a
partially-∆ space over M where the partially-∆ structure is given by the entire
∆-complex X(σ), and the map X(σ) → M is as described above (Definition 4.9)
Then the construction of F (σ) implies that there is a partially-∆ space X ′ over M
which is an extension of X(σ), such that there is a commutative diagram of maps:

F (σ) // X ′

""F
F
F
F
F
F
F
F
F

L(∂σ) //

∪

OO

X(∂σ)

∪

OO

// M.

By the Spine Principle (Lemma 4.14), X ′ is 1-spined over X(∂σ), so we may replace
X ′ with a CW complex Y (σ), which is obtained from X(σ) by attaching 1-cells.
Then F (σ), Y (σ) and the involved maps from the diagram are as desired.

Step 3. Now we may naturally attach the disjoint union of all F (σ) to the disjoint
union of all L(g) according to the attaching maps of K. The result is a panted
complex K. Similarly, we may attach the disjoint union of Y (σ) to the disjoint
union of all X(g) by naturally identifying the copies of X(g) (possibly marked by
g−1). The result is a CW 2-complex Y (K) containing the subcomplexK. Moreover,
there are naturally induced maps

(K, ∅) → (Y (K), ∗) → (M, ∗).
The composition is homotopic to an (R, ǫ)-panted complex K #M ; the restriction
of Y (K) →M to K is fh.

It is clear from the construction that Y (K) deformation retracts relative to K
to a CW subspace

K ′ →֒ Y (K),

which can be obtained from K by attaching 1-cells. Therefore, replacing Y (K)
with K ′, we obtain maps

(K, ∅) → (K ′, ∗) → (M, ∗).
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6.3.2. Verifications. To verify that K, K ′ and the maps (K, ∅) → (K ′, ∗) → (M, ∗)
above are as desired, it suffices to prove that K → K ′ is surjective on the second
homology, as the other listed properties are obviously satisfied. By the construction,
we may equivalently prove with Y (K) instead of K ′.

Write C for the disjoint union of all L(g), and X(K(1)) for the wedge of all X(g)
over ∗. There is a commutative diagram of homomorphisms

0 // H2(K;Z) //

φ

��

H2(K, C;Z)
∂∗ //

φ′′

��

H1(C;Z)

φ′

��
0 // H2(Y (K);Z) // H2(Y (K), X(K(1));Z)

∂∗ // H1(X(K(1));Z)

0 // H2(K;Z) //

ι∼=

OO

H2(K,K
(1);Z)

∂∗ //

ι′′∼=

OO

H1(K
(1);Z)

ι′∪

OO

where the rows are part of the long exact sequences of homology, and the homo-
morphisms φ, φ′′, φ′ are induced from the map (K,L) → (Y (K), X(K(1)) of our
construction, and the homomorphisms ι, ι′′, ι′ are induced from the natural inclu-
sion (K,K(1)) →֒ (Y (K), X(K(1))).

Write the quotient map defining K as

q :
⊔

σ⊂K

F (σ) → K.

Define a homomorphism

ψ′′ : H2(K,K
(1);Z) → H2(K, C;Z)

by assigning

ψ′′([σ]) = q∗[F (σ)]

where [F (σ)] ∈ H2(F (σ), L(∂σ);Z) is the fundamental class. Define a homomor-
phism

ψ′ : H1(K
(1);Z) → H1(C;Z)

by assigning

ψ′([g]) = q∗[L(g)]

where [L(g)] ∈ H2(L(g);Z) is the fundamental class. There is a commutative
diagram

H2(K, C;Z)
∂∗ // H1(C;Z)

H2(K,K
(1);Z)

∂∗ //

ψ′′

OO

H1(K
(1);Z).

ψ′

OO

Lemma 6.7. With the notations above, φ′ ◦ ψ′ = ι′ and φ′′ ◦ ψ′′ = ι′′.

Proof. It is straightforward to check that φ′(ψ′([g])) = ι′([g]) for any 1-cell g of K,
by the construction of L(g). Since H1(K

(1);Z) is freely generated by [g] where g
runs over all 1-cells of K, we see that φ′ ◦ ψ′ = ι′.
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We claim that for any 2-cell σ of K, φ′′(ψ′′([σ])) = ι′′([σ]). In fact, applying the
discussion to the special case when K consists of a single 2-simplex σ together with
the 1-skeleton ∂σ, we obtain the commutative diagrams

0 // H2(F (σ), L(∂σ);Z)
∂∗ //

φ′′

σ

��

H1(L(∂σ);Z)

φ′

σ

��
0 // H2(Y (σ), X(∂σ);Z)

∂∗ // H1(X(∂σ);Z)

0 // H2(σ, ∂σ;Z)
∂∗ //

ι′′σ
∼=

OO

H1(∂σ;Z)

ι′σ∪

OO

where the rows are exact sequences, and

H2(F (σ), L(∂σ);Z)
∂∗ // H1(L(∂σ);Z)

H2(σ, ∂σ;Z)
∂∗ //

ψ′′

σ

OO

H1(∂σ;Z).

ψ′

σ

OO

Because

∂∗(φ
′′
σ ◦ ψ′′

σ([σ])) = φ′σ ◦ ψ′
σ(∂∗([σ])) = ι′σ(∂∗([σ])) = ∂∗(ι

′′
σ[σ]),

the injectivity of ∂∗ in this case implies that

φ′′σ ◦ ψ′′
σ([σ]) = ι′′σ([σ]).

By naturality of Mayer–Vietoris sequences, it follows that

φ′′ ◦ ψ′′([σ]) = ι′′([σ]),

as claimed.
Since H2(K,K

(1);Z) is freely generated by [σ] where σ runs over all 2-cells of
K, we conclude that φ′′ ◦ ψ′′ = ι′′. �

Now an easy diagram chase will show the surjectivity of

φ : H2(K;Z) → H2(Y (K);Z).

In fact, we may identify H2(K;Z) and H2(Y (K)) as kernels of ∂∗ in H2(K, C;Z) and
H2(Y (K), X(K(1);Z), respectively. If α ∈ H2(Y (K), X(K(1);Z) vanishes under ∂∗,
β = ψ′′ ◦ (ι′′)−1(α) in H2(K, C;Z) also vanishes under ∂∗, using the injectivity of
ι′. Moreover, φ′′(β) = α by Lemma 6.7. This implies that φ′′ is surjective between
the kernels of ∂∗, or in other words, φ is surjective.

This completes the verification, and hence completes the proof of Lemma 6.6.

6.4. Proof of Theorem 6.1. We summarize the proof of Theorem 6.1 as follows.
Let M be a closed oriented hyperbolic 3-manifold. By Lemma 6.6, there exists a
CW complex K ′ obtained from a presentation complex K of π1(M, ∗) by attaching
1-cells, and a compact panted complex K, together with maps

(K, ∅) −→ (K ′, ∗) −→ (M, ∗),
satisfying the listed properties. In particular, the composed map K → M is an
(R, ǫ)-panted complex in M . It is surjective on the second homology by Lemmas
6.6 and 6.3. In other words, any element α of H2(M ;Z) can be lifted to be an
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element α̃ of H2(K;Z). Moreover, α̃ can be represented by a panted surface via
a panted map F → K (Lemma 6.5), which yields an (R, ǫ)-panted surface via the
map K → M . Therefore, the (R, ǫ)-panted surface F # M is an representative of
α as desired. This completes the proof of Theorem 6.1.

7. Panted connectedness between curves

In this section, we show that in a closed hyperbolic 3-manifold M , the collection
of (R, ǫ)-curves ΓR,ǫ are (R, ǫ)-panted connected in the sense of the following Propo-
sition 7.1. This will be applied to show that an ubiquitous measure of (R, ǫ)-pants
µ ∈ M(ΠR,ǫ) is irreducible in the proof of Theorem 2.10 (Subsection 8.2).

Proposition 7.1. Let M be a closed hyperbolic 3-manifold. For all universally
small positive ǫ and sufficiently large positive R depending onM and ǫ, the following
holds. For any two curves γ0, γ1 ∈ ΓR,ǫ, there exists a connected (R, ǫ)-panted
subsurface j : F # M , and ∂F contains two components homotopic to γ0 and γ1,
respectively.

The proof of Proposition 7.1 follows from an easy construction using the Con-
nection Principle (Lemma 4.13). However, we leave it as a separate section as its
statement has certain independent geometric interest.

Proof. We say that two curves γ0, γ1 ∈ ΓR,ǫ are (R, ǫ)-panted connected if there
exists a connected (R, ǫ)-panted subsurface j : F # M as in the conclusion of the
proposition. This defines an equivalence relation between curves in ΓR,ǫ. Suppose
that ǫ universally small and R is sufficiently large, for instance, as guaranteed by
Lemma 5.16.

By splitting (Construction 4.15), every curve in ΓR,ǫ is (R, ǫ)-panted connected
to a curve in ΓR, ǫ

10000
. It suffices to show that any two curves in ΓR, ǫ

10000
are

(R, ǫ)-panted connected.
Let γ0, γ1 are any two curves in ΓR, ǫ

10000
. By interpolating a pair of points of

distance R
4 on γ with suitably assigned normal vectors, we may decompose γ0 into a

(1, ǫ
10000 )-tame bigon [a−a+] with a− of length R

4 . Similarly, we decompose γ1 into

a (1, ǫ
10000 )-tame bigon [b−b+] with b+ of length R

4 . By the Connection Principle
(Lemma 4.13), there exist oriented ∂-framed segments s and t of length ( ǫ

10000 )-

close to R
4 and phase ( ǫ

10000 )-close to 0, so that a−, s, b+, t form a (100, ǫ
100 )-tame

cycle. Let γ′ be the reduced cyclic concatenation [a−sb+t], then γ
′ ∈ ΓR, ǫ

100
by the

Length and Phase Formula (Lemma 4.7). Furthermore, [a−a+] and [a−(sb+t)] form
an ( ǫ

100 )-swap pair, and [b−b+] and [(sb−t)b+] form an ( ǫ
100 )-swap pair (Definition

4.16). By swapping (Construction 4.17), we see that γ0 is (R, ǫ)-panted connected
with γ′, and that γ′ is (R, ǫ)-panted connected with γ1. Thus γ0 and γ1 are (R, ǫ)-
panted connected. This completes the proof. �

An application of Proposition 7.1 is that we can replace any (R, ǫ)-panted sur-
face with a connected one with the same boundary without changing its relative
homology class.

Lemma 7.2. If M is an oriented closed hyperbolic 3-manifold and (R, ǫ) are con-
stants so that ΓR,ǫ is (R, ǫ)-panted connected in the sense of Proposition 7.1, then
for any oriented compact (R, ǫ)-panted subsurface j : F #M bounded by an (R, ǫ)-
multicurve L, there exists an oriented compact connected (R, ǫ)-panted subsurface
j′ : F ′ #M bounded by L such that j∗[F ] equals j

′
∗[F

′] in H2(M,L;Z).
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Proof. By induction, it suffices to prove the case when F has only two components
F1 and F2.

Without loss of generality, we may assume that each Fi has a nonseparating
glued cuff ci of its pants structure. In fact, this is automatically true if Fi is closed.
If some Fi is has a nonempty boundary component c, there is an (R, ǫ)-pants P
with a boundary component c′ homotopic to c. Take two oppositely oriented copies
P± of P and glue up along the two cuffs other that c′±. Denote the resulting (R, ǫ)-
panted surface as Q, so ∂Q is c′+ ⊔ c′−. If P+ is has the same orientation as that of
P , we glue up Q and Fi identifying c

′
− with c. The resulting (R, ǫ)-panted surface

F ′
i has the same boundary as that of Fi up to homotopy, and F ′

i is homologous to
Fi in M relative to their boundary. After replacing Fi with F

′
i , each component of

F has a nonseparating glued cuff c as claimed.
Now suppose that ci ⊂ Fi is a nonseparating glued cuff for each Fi. Let Ei be the

(R, ǫ)-panted surface obtained by cutting Fi along ci, so ∂Ei has two components
ci+ and ci− homotopic to c and its orientation reversal, respectively. By Proposition
7.1, there exists an (R, ǫ)-panted surface W with boundary, so that there are two
components d1 and d2 of ∂W homotopic to c1 and c2, respectively. Take a copy
W+ of W and a copy W− of the orientation reversal of W . Denote the components
of ∂W± corresponding to di as di±. We glue up W± along the opposite pairs
of boundary components other than di±, and glue them with Ei by identifying
di± with ci∓, respectively. The resulting (R, ǫ)-panted surface F ′ has the same
boundary as that of F , and F ′ is homologous to F in M relative to their boundary.
Since F ′ is connected by the construction, we see that F ′ is a connected (R, ǫ)-
panted surface as desired. �

8. Bounded quasi-Fuchsian subsurfaces

In this section, we prove Theorem 2.10 by applying Theorem 5.2 and Propositions
6.1, 7.1 (Subsection 8.2); we prove Theorem 1.3 by applying Theorems 2.9 and
2.10, following the methodology of Section 2; we prove Theorem 1.4 by applying
Theorems 5.2, 6.1 and Proposition 7.1. Subsection 8.1 contains some remarks about
the formulation of Theorem 1.3

8.1. Description of the problem. Generally speaking, the construction problem
of geometrically finite surface subgroups in a Kleinian group is concerned about the
existence of such surface subgroups subject to various conditions. For instance, one
may ask about the existence specifying the boundary of the subsurface, or requiring
it to represent some homology class. We will allow ourselves to pass to finite covers
of the designated boundary loops or positive multiples of the homology class, and we
will only look for immersed subsurfaces rather than embedded ones. In many mo-
tivating applications, these are the usual assumptions under similar circumstances.
On the other hand, we will only consider closed hyperbolic 3-manifolds. This is due
to the restriction of our current techniques, and it would certainly be interesting to
study the construction problem for cusped hyperbolic 3-manifolds.

Let M be a closed hyperbolic 3-manifold. Suppose γ1, · · · , γm are π1-injectively
immersed loops γi : S

1 #M , and let L : ⊔mS1 #M be their disjoint union:

L = γ1 ⊔ · · · ⊔ γm.
The relative homology of the mapping cone H∗(M ∪L ∨mD2,∨mD2;Z) is well
defined, depending only on the free homotopy classes of the loops. Without loss of
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generality, we may hence assume that they are embedded. Identifying L with its
image, the relative homology of the cone becomes H∗(M,L;Z) by excision. If

j : (F, ∂F ) # (M,L)

is an immersion of an oriented compact surface F , then F naturally represents a
relative homology class

j∗[F, ∂F ] ∈ H2(M,L; Q),

where the rational coefficient is taken since we are not interested in the torsion.
Moreover, it is clear that the restriction of j on ∂F is a covering if F has no disk
or sphere component and if j is π1-injective on each component of F .

With the notations above, the construction problem that we are concerned about
in this paper is the following:

Question 8.1. For any element α ∈ H2(M,L; Q), is there a positive multiple of
α represented by a connected oriented surface F and a π1-injective quasi-Fuchsian
immersion j?

The answer is affirmative as stated in Theorem 1.3.

8.2. Proof of Theorem 2.10. We summarize the proof of Theorem 2.10. Note
that the ‘furthermore’ part follows immediately from the main statements because
the boundary homomorphism ∂ is integral coefficiented over the natural basis of
M(ΠR,ǫ) and M(ΓR,ǫ).

To prove the first statement, it suffices to find an (R, ǫ)-panted surface represent-
ing any class α ∈ H2(M, |L|;Q) up to a scalar multiple. We may assume without
loss of generality that α is integral. Under the boundary homomorphism

∂ : H2(M, |L|;Z) → H1(|L|;Z),
∂α can be represented by a multicurve L all of whose components are carried by
components of |L|. Note that there is a commutative diagram of homomorphisms

H2(SO(M);Z)
∂ //

��

H1(SO(M);Z)

��
H2(M ;Z)

∂ // H1(M ;Z)

Under the composition of the canonical isomorphism ΩR,ǫ ∈ H1(SO(M);Z) (Theo-
rem 5.2) and the projection H1(SO(M);Z) → H1(M ;Z), [L]R,ǫ is sent to 0 since L
is a boundary. This means 2[L]R,ǫ is 0 in ΩR,ǫ, so there is an (R, ǫ)-panted surface
FL with boundary 2L. Let

β = 2α− [F ],

in H2(M, |L|;Z). Since ∂β = 0 in H1(|L|;Z), β can be regarded as an element
of H2(M ;Z). By Theorem 6.1, β is represented by an (R, ǫ)-panted surface Fβ .
Therefore 2α is represented by the (R, ǫ)-panted surface FL ⊔ Fβ .

To prove the second statement, recall that by [KM1, Theorem 3.4], there is a
measure of (R, ǫ)-nearly regular pants µ ∈ M(ΠR,ǫ) which is (R, ǫ2 )-nearly evenly
footed (Definition 2.8), such that ∂µ is positive on any curve γ ∈ ΓR,ǫ. Let µ1 be
the sum µ+ µ̄, where µ̄({Π}) = µ({Π̄}), so µ1 ∈ BM(ΠR,ǫ). Let µ2 ∈ BM(ΠR,ǫ)
be the sum of all Π for all Π ∈ ΠR,ǫ. For some sufficiently large positive integer N ,
let

µ0 = Nµ1 + µ2.
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Then µ0 ∈ BMR,ǫ is ubiquitous, (R, ǫ)-nearly evenly footed. It is certainly rich as

∂♭µ0 vanishes in this case. By Proposition 7.1, µ0 is irreducible. In fact, suppose
otherwise that µ0 were the sum µ′+µ′′, such that ∂µ′ and ∂µ′′ have disjoint supports
on ΓR,ǫ. Then for γ′, γ′′ ∈ ΓR,ǫ lying in the supports of ∂µ′ and ∂µ′′ respectively, γ′

and γ′′ cannot appear simultaneously on an (R, ǫ)-panted surface F whose pants are
all from the support of µ0. However, µ0 is ubiquitous so the support of µ0 is ΠR,ǫ.
Thus we reach a contradiction since γ′ and γ′′ should be (R, ǫ)-panted connected
in the sense of the conclusion of Proposition 7.1. Therefore, µ0 ∈ BM(ΠR,ǫ) is a
measure as claimed in the second statement of Theorem 2.10.

It remains to prove that if ξ ∈ ZM(ΠR,ǫ, |L|), then for some sufficiently large
integer m,

ξ′ = ξ +mµ0

in ZM(ΠR,ǫ, |L|) is ubiquitous, irreducible, (R, ǫ)-nearly evenly footed, and rich.
Technically, one may assume here that µ0 is (R, ǫ2 ), and such a µ0 can be achieved
by using ǫ

2 instead of ǫ in the construciton above. It is clear that ξ′ is ubiquitous
and irreducible as so is µ0. On the other hand, µ0 being ubiquitous also implies
that ∂♯µ0 is positive on Nγ for any curve γ, so when m is sufficiently large, the
normalization of the measure ∂♯ξ′ can be ( ǫ

2R )-equivalent to the normalization of

∂♯µ0 restricted to Nγ , for all γ ∈ ΓR,ǫ. Hence ξ′ is (R, ǫ)-nearly evenly footed. It
is also clear that ξ′ is rich if m is so large that ∂ξ′({γ}) is less than, for instance,
m
3 ∂µ0({γ}) for all γ ∈ ΓR,ǫ. This completes the proof of the second statement, and
hence the proof of Theorem 2.10.

8.3. Proof of Theorem 1.3. We derive Theorem 1.3 from Theorems 2.10 and 2.9
as follows.

Let M be a closed hyperbolic 3-manifold, and L ⊂ M be the union of finitely
many mutually disjoint, π1-injectively embedded loops.

Lemma 8.2. If Theorem 1.3 is true when M is orientable, it holds in the general
case as well.

Proof. Assume that Theorem 1.3 is true for the orientable case. If M is not ori-
entable, we consider an orientable 2-fold cover κ : M̃ → M , and let L̃ be the
preimage of L. By excision, H2(M,L;Q) is isomorphic to H2(N ;Q) where N is
the compact 3-manifold with tori boundary obtained from M with L removed, and
similarly, H2(M̃, L̃;Q) is isomorphic to H2(Ñ ;Q) where Ñ is the 2-fold cover of

N obtained from M̃ with L̃ removed. Because H2(Ñ ;Q) surjects H2(N ;Q) un-

der the covering, the same holds for H2(M̃, L̃;Q) and H2(M,L;Q). Therefore, for

any element α ∈ H2(M,L;Q), we may take an element α̃ ∈ H2(M̃, L̃;Q) which
is projected to be α. The orientable case implies that a positive integral multiple
of α̃ can be represented by an orientable compact π1-injectively immersed quasi-
Fuchsian surface j̃ : (F, ∂F ) # (M̃, L̃), so κ ◦ j̃ : (F, ∂F ) # (M,L) represents a
positive integral multiple of α as desired. �

By Lemma 8.2, we may assume without loss of generality that M is an oriented
closed hyperbolic 3-manifold.

Lemma 8.3. With the notations above, for any constant ǫ > 0, and for any con-
stant R̂ > 0, there exist some R > R̂, such that every component of L has a finite
cyclic cover which is homotopic to a curve of ΓR,ǫ.
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Proof. Let c1, · · · , cn be the components of L. Let ℓk ∈ (0,+∞) be the length of
ck, and ϕk ∈ R / 2πZ be the phase of ck. Then for any positive integer mk, the
length and phase of the mk-fold cyclic cover of ck are mkℓk and mkϕi, respectively.
We must show that for any positive constant ǫ and R̂ as above, there exists R > R̂
and positive integers m1, · · · ,mn, such that the complex numbers mk(ℓk+ϕki) are
all ǫ close to the real number R.

Consider the complex torus T obtained by Cn modulo the lattice spanned over Z
by 2πi~ek, and (ℓk+ϕki)~ek, for k = 1, · · · , n, where ~e1, · · · , ~en denotes the standard
basis. The origin of Cn is projected to be the basepoint ∗ of T . The diagonal ray

~v : [0,+∞) → Cn

defined by ~v(r) = r(~e1 + · · ·+ ~en) is projected to be a ray

v : [0,+∞) → T

start from v(0) = ∗. Then to find R and m1, · · · ,mn as above, it suffices to show

that for any positive constants ǫ and R̂, there exists R > R̂ so that v(R) is ǫ-close
to ∗. However, this is a well known fact, which can be derived easily from dynamics
of geodesic flow on a Euclidean torus, so we omit the details. �

By Lemma 8.3, we may choose universally small positive ǫ and sufficiently large
positive R, so that there is a finite cover L̃ of L with all components homotopic to
curves of ΓR,ǫ. We may also assume that Theorems 2.9, 2.10 can be applied with
respect to ǫ and R. Let |L| ⊂ |ΓR,ǫ| be all the unoriented curve classes which are

realized by some component of L̃.
Consider the essential case when L̃ does not have two components that are

homotopic to each other up to the orientation reversion. In this case, |L| is in

correspondence with components of L̃. The relative homologyH2(M, |L|;Z) defined
in Subsection 2.3 is naturally isomorphic to H2(M, L̃;Z) (cf. Subsection 8.1), and

that there is a natural homomorphism H2(M, L̃;Z) → H2(M,L;Z) induced by the

covering L̃ → L. We may realize any homology class α ∈ H2(M,L;Z) as follows.
Passing to some large multiple of α, we may lift α to be an element

α̃ ∈ H2(M, |L|;Z).
Then by Theorem 2.10 (1), there exists a measure µ ∈ ZM(ΠR,ǫ, |L|) which is
mapped onto α̃, and by Theorem 2.10 (2), we may assume that µ is ubiquitous,
irreducible, (R, ǫ)-nearly evenly footed, and rich. Then there exists an oriented,
connected, compact, π1-injectively immersed quasi-Fuchsian subsurface:

j : F #M,

which is (R, ǫ)-nearly regularly panted subordinate to a positive integral multiple
of µ, by Theorem 2.9. It is clear from the construction that (up to homotopy) [F ]
can be regarded as an element in H2(M,L;Z) representing a positive multiple of
α.

From the essential case above one can derive the general case when L̃ may have
components that are homotopic to each other up to the orientation reversion. We
will only sketch the argument, as the tricks used below should be easy and less
important.

Let L̃0 be a maximal subunion of components of L̃ so that L̃0 does not have
two components that are homotopic to each other up to the orientation rever-
sion. As in the essential case, |L| is in correspondence with components of L̃,
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so H2(M, |L|;Z) can be realized as H2(M, L̃0;Z). There is also a natural homo-

morphism H2(M, L̃0;Z) → H2(M, L̃;Z) induced by the inclusion L̃0 ⊂ L̃. It is

easy to verify that H2(M, L̃;Z) is generated by H2(M, L̃0;Z) together with all

[A] where A # M is any annulus between two homotopic components of L̃0. If
the boundary of any such annulus A is a curve γ ∈ ΓR,ǫ, we may take a null-
homologous (R, ǫ)-panted surface E which has a glued cuff c homotopic to γ. Such
an E can be obtained, for example, by gluing pairs of pants prescribed by an ubiq-
uitous µ0 ∈ BM(ΠR,ǫ). Cutting E along c and homotoping the two boundary
components to the two components of ∂A gives rise to an (R, ǫ)-panted surface

EA such that [EA] equals [A] as in H2(M, L̃;Z). Now for any homology class
α ∈ H2(M,L;Q), we may pass to a positive integral multiple of α and lift it as

α̃ ∈ H2(M, L̃;Q). From the above α̃ equals the sum of some α̃0 ∈ H1(M, L̃0;Q)
together with some positive rational multiple [EA]. Possibly after passing to fur-
ther positive multiple, the essential case implies that α̃0 can be represented by an
(R, ǫ)-panted surface F0 with ∂F0 mapped to L̃0. We may also represent the dif-
ference term α̃ − α̃0 by a union of (R, ǫ)-panted surfaces EA1

, · · · , EAs
as above.

Thus the union F = F0 ∪ EA1
∪ · · · ∪ EAs

is an (R, ǫ)-panted surface representing

α̃ in H2(M, L̃;Q). We may assume that F0 and each EA1
, · · · , EAs

to be obtained
by a (R, ǫ)-nearly unit-shearing gluing of a collection of (R, ǫ)-pants prescribed by
a ubiquitous, irreducible, (R, ǫ)-nearly evenly footed, and rich measure, then mod-
ifying the gluing by a hybriding argument (cf. Lemma 3.9) will yield a connected
π1-injectively immersed quasi-Fuchsian surface F ′, which still represents α̃. This
completes the argument of the general case, and hence completes the proof of The-
orem 1.3.

8.4. Proof of Theorem 1.4. We derive Theorem 1.4 from Theorems 5.2, 6.1 and
Proposition 7.1 as follows. We point out that as those results rely only on the
constructions of ∂-framed segments (Section 4), the input from dynamics necessary
for the proof is only the mixing property of the frame flow on the closed hyperbolic
3-manifold M , but not the fact that the mixing rate is exponential.

The invariant σ can be defined for any null-homologous (R, ǫ)-multicurve as

σ(L) = Φ([L]R,ǫ),

where Φ : ΩR,ǫ → H1(SO(M);Z) is the canonical isomorphism by Theorem 5.2.
Note that since L is null homologous, σ(L) lies in the canonical submodule of
H1(SO(M);Z) coming from the center Z2 of π1(SO(M)). Hence σ(L) has well
defined value in Z2.

It follows that σ(L1⊔L2) equals σ(L1)+σ(L2) because Φ is a homomorphism. It
also follows that σ(L) vanishes if and only if L is the boundary of an (R, ǫ)-panted
subsurface F of M . Moreover, Proposition 7.1 implies that we may assume F to
be connected (Lemma 7.2).

It remains to show the last statement in the conclusion of Theorem 1.4. Let L be
an (R, ǫ)-multicurve with vanishing σ(L). Fix an (R, ǫ)-panted surface F0 bounded
by L, and denote the relative homology class of F0 as α0 ∈ H2(M,L;Z). For any
homology class α ∈ H2(M,L;Z) with ∂α equal to [L] ∈ H1(L;Z), there exists some
β ∈ H2(M ;Z) such that α = α0+β. By Theorem 6.1, β can also be represented by
a closed (R, ǫ)-panted subsurface E. Thus we may take F to be F0 ⊔ E so that F
is an oriented compact (R, ǫ)-panted subsurface of M representing α. By applying
Lemma 7.2 again, we may substitute F with another oriented compact connected
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(R, ǫ)-panted subsurface F ′ representing α, as desired. This completes the proof of
Theorem 1.4.

9. Conclusions

In conclusion, we are able to construct homologically interesting connected im-
mersed nearly geodesic nearly regularly panted subsurfaces in a closed hyperbolic
3-manifold M by knowning a finite presentation of its fundamental group. The
existence of plenty of nearly regular pairs of pants in M is a consequence of the
exponential mixing property of the frame flow, and is the essential reason for the
connectedness and the π1-injective quasi-Fuchsian property. Even if we did not
know the mixing rate, the Connection Principle can still be deduced from the mix-
ing property, so homologically interesting connected (R, ǫ)-panted subsurfaces can
still be constructed.

We propose a few further questions regarding generalization of results from this
paper.

Question 9.1. Is it possible to generalize Theorem 1.3 to other coefficients? For
example, if F is any field, does every homology class α ∈ H2(M,L; F) have repre-
sented an F-oriented compact π1-injectively immersed quasi-Fuchsian subsurface?

It seems that our argument can be modified without difficulty to confirm Ques-
tion 9.1 when F is any field of characteristic other than 2. However, the Z2 coeffi-
cient case is not clear since the subsurface constructed might be non-orientable, so
an unoriented (R, ǫ)-panted cobordism theory needs to be developed.

Question 9.2. Is it possible to generalize Theorems 5.2 and 6.1 to other dimen-
sions? In particular, can we define and determine the (R, ǫ)-panted cobordism
group ΩR,ǫ(M) for any oriented closed hyperbolic manifold M?

We expect that Theorem 5.2 should hold in all dimensions at least 3. In dimen-
sion 2, it seems that ΩR,ǫ(S) should be a splitting extension of H1(S;Z) by Z2.
This is basically because the special orthonormal frame bundle SO(S) should be
replaced with the special orthonormal frame bundle of a stabilization T (S)⊕ ǫ1 of
the tangent bundle T (S), in order that Lemma 5.12 holds.

The following two questions are much more difficult but significant. To answer
Question 9.3, we expect a notion of good basic pieces playing the role of nearly
regular pairs of pants. To answer Question 9.4, we need a modified version of the
Connection Principle since the mixing property of frame flow no longer holds.

Question 9.3. How to construct (homologically interesting) connected π1-injectively
immersed geometrically finite submanifolds in a closed hyperbolic manifold M?

Question 9.4. How to construct (homologically interesting) connected π1-injectively
immersed quasi-Fuchsian subsurfaces in a cusped hyperbolic 3-manifold M of finite
volume?
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