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CARATHÈODORY’S METRICS ON TEICHMÜLLER SPACES

AND L-SHAPED PILLOWCASES

VLADIMIR MARKOVIC

Abstract. One of the most important results in Teichmüller theory is the

theorem of Royden which says that the Teichmüller and Kobayashi metrics

agree on the Teichmüller space of a given closed Riemann surface. The prob-
lem that remained open is whether the Carathèodory metric agrees with the

Teichmüller metric as well. In this paper we prove that these two metrics

disagree on each Tg , the Teichmüller space of a closed surface of genus g ≥ 2.
The main step is to establish a criterion to decide when the Teichmüller and

Carathéodory metrics agree on the Teichmüller disc corresponding to a ratio-

nal Jenkins-Strebel differential ϕ. First we construct a holomorphic embedding
E : Hk → Tg,n corresponding to ϕ. The criterion says that the two metrics

agree on this disc if and only if a certain function Φ : E(Hk) → H can be

extended to a holomorphic function Φ : Tg,n → H. We then show by explicit
computation that this is not the case for quadratic differentials arising from

L-shaped pillowcases.

1. Introduction

1.1. Carathèodory vs. Kobayashi. A Schwarz-Pick system is a functor as-
signing to each complex manifold X a pseudometric dX satisfying the following
conditions:

(1) The metric assigned to the upper half-plane H = {z : Im(z) > 0} is the
metric of constant curvature equal to −4.

(2) Any holomorphic map f : X → Y between complex manifolds is non-
expanding:

dY
(
f(p), f(q)

)
≤ dX(p, q)

for all p, q ∈ X.

Remark. We choose the metric on H to have constant curvature −4 (as opposed
to −1) because this is more convenient in the context of Teichmüller theory as it
is well known. Also, when the complex manifold X is understood we simplify the
notation by letting d = dX .

The largest Schwarz-Pick pseudo-metric on X is called the Kobayashi pseudo-
metric dK . On the other hand, one defines the Carathèodory pseudo-metric dC
as

(1) dC(p, q) = sup{dH(f(p), f(q)) : f : X → H, f is holomorphic}.
When either dK or dC happens to be a metric we refer to them as the Kobayashi
and Carathèodory metrics respectively (see for example [7]).
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The Schwarz lemma implies dC(p, q) ≤ dK(p, q) for p, q ∈ X. The question
on which complex manifolds X these two metrics agree received a good deal of
attention. On the unit disc, and moreover on every poly-disc in Cm, these two
metrics agree. But examples of complex manifolds where these metrics agree are
seldom.

In [16] Lempert showed that the Kobayashi and Carathèodory distances agree
on convex domains. For quite a while these were the only known examples of
domains where these metrics agree. In [1] and [3] it was established by Agler-
Young and Costara, that the symmetrized bi-disc has this property while it is not
bi-holomorphic to any convex domain.

In this paper we prove that these two metrics disagree on Teichmüller spaces of
closed surfaces.

1.2. Carathoedory vs. Teichmüller. By Tg,n we denote the Teichmüller space
of a genus g surface with n marked points and by dT its Teichmüller metric. The
space Tg,n is a contractible complex manifold of dimension 3g − 3 + n which is
bi-holomorphic to a domain in C3g−3+n. As we already mentioned, Royden [19]
showed that the Teichmüller metric agrees with the Kobayashi metric on Tg. This
result was extended to every Tg,n by Earle and Kra [6], and to all other Teichmüller
spaces by Gardiner [9]. Therefore by the Schwarz lemma the inequality

(2) dC ≤ dT ,
holds on every Tg,n.

The Carathèodory metric dC has been studied on Teichmüller spaces. Earle
showed [5] that dC is a complete metric on Tg,n and proportional with dK = dT .
As for the equality dC = dT , it was established by Kra [15] (and later rediscovered
by McMullen [18]) that these two metrics agree on Abelian Teichmüller discs in
Tg, and more generally on Teichmüller discs in Tg,n that are generated by holomor-
phic quadratic differentials whose zeroes are of even order. This beautiful theorem
(proved using the period matrix map from Tg into the Siegel upper-half space) sug-
gests that there is hope for establishing the equality on all Teichmüller discs and
therefore on the entire Teichmüller space. However this is not the case.

Theorem 1.1. dC 6= dT on T0,5.

As a corollary of this theorem we prove the following.

Theorem 1.2. dC 6= dT on Tg for every g ≥ 2.

Proof. The following argument is a variation of the argument used by Kra in Section
4 in [15]. The next claim is a known fact but we were not able to locate the exact
reference so we provide a proof in the first appendix below.

Proposition 1.1. For each g ≥ 2 there is a holomorphic and isometric embedding
from T0,5 into Tg (isometric with respect to the Teichmüller metric).

Denote by I : T0,5 → Tg the corresponding embedding, that is I is a holomor-
phic and an isometry onto its image. For every p, q ∈ T0,5 we have dT (p, q) =
dT (I(p), I(q)).

On the other hand, it follows from (1) that dC(I(p), I(q)) ≤ dC(p, q) (here we
use the fact that I is holomorphic). By Theorem 1.1 there exists p, q ∈ T (0, 5) such
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that dC(p, q) 6= dT (p, q) and using (2) we derive the strict inequality dC(p, q) <
dT (p, q). Thus dC(I(p), I(q)) ≤ dC(p, q) < dT (p, q) = dT (I(p), I(q)) and we see
that dC(I(p), I(q)) < dT (I(p), I(q)) which completes the proof.

�

1.3. The outline: Part 1. The rest of the paper is aimed at proving Theorem
1.1. There are two parts to it. We briefly describe each of them.

Let S denote marked Riemann surface and ϕ a holomorphic quadratic differential
on S. By τϕ : H → Tg,n we denote the Teichmüller disc corresponding to ϕ. The
Teichmüller and Carathèodory metrics agree on the disc τϕ if and only if there
exists a holomorphic map

(3) Φ : Tg,n → H,

such that
(
Φ ◦ τϕ

)
(λ) = λ for λ ∈ H.

We assume that ϕ is a rational Jenkins-Strebel differential which means that
the moduli of the annuli Πj (swept out by closed horizontal trajectories of ϕ) have
rational ratios. Then for a certain t > 0 the translation At ∈ Aut(H), given by
At(λ) = λ + t, belongs to the stabilizer of the disc τϕ. Moreover, T = τϕ∗ (At) ∈
Modg,n is a certain Dehn twist about curves homotopic to the annuli Πj . Our first
result, proved in Section 3, states that after averaging we may assume that the
holomorphic function (3) is equivariant with respect to T and At, that is

Φ ◦ T = At ◦Φ.

We then show that such an invariant function Φ has uniquely determined values
on a certain subset of Tg,n. Namely, in Section 4 we define a mapping E : Hk → Tg,n
where Hk is the poly-plane and k the number of Πj ’s (to properly define E we must
assume that the annuli Πj are non-degenerate). The new marked Riemann surface
E(λ) = S(λ), λ ∈ Hk, is obtained from S by varying the heights and twists of the
annuli Πj while the circumferences of Πj remain fixed. The map E is holomorphic
but it only parametrizes a small part of Tg,n (however, if k = 3g−3+n then E(Hk)
has a non-empty interior in Tg,n).

In Section 5.2 we show that the restriction of Φ to E(Hk) is given by

(4)
(
Φ ◦ E

)
(λ1, ..., λk) = α1λ1 + · · ·+ αkλk,

for some constants αj > 0. We only prove this when 3g − 3 + n = 2 for reasons
of clarity and since in this paper we only require this case. But we expect this to
hold in general.

Remark. If one wants to compute the Carathéodory distance on any complex man-
ifold X then at some point one has to prove a statement about all holomorphic
functions X → H. The claim (4) is the corresponding statement in our case.

We can reformulate this result as the criterion for when the Carathéodory and
Teichmüller metrics agree on τϕ. The criterion says that the two metrics agree on
this disc if and only if the function Φ : E(Hk)→ H given by the formula (4) can be
extended to a holomorphic function Φ : Tg,n → H (again, we prove this only when
3g − 3 + n = 2). The proof of this criterion relies on the following rigidity result
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for equivariant holomorphic functions. Let f : H2 → H be a holomorphic function
whose values on the diagonal in H2 are given by

f(η, η) = η, for every η ∈ H,

and which is translation invariant

f(z + c, w + c) = f(z, w) + c, for every (z, w) ∈ H2,

and for some c > 0. Then

f(z, w) = α1z + α2w.

This theorem is at the heart of our argument. Its proof is based on the Schwarz
lemma and it can be found in Section 6. This completes the first part of the paper.

While the above criterion is a substantial claim about extremal holomorphic
functions on Tg,n, it is by no means obvious that it implies that the Carathèodory
and Teichmüller metrics disagree on Teichmüller spaces. For example, there are
Jenkins-Strebel differentials that are Abelian (or with even order zeroes) and in
this case we know that the Carathèodory and Teichmüller metrics agree on the disc
τϕ. The corresponding holomorphic function Φ : Tg,n → H, that was constructed
using the period matrix, is equivariant in the sense of (3). Moreover, one can check
that the restriction of Φ to E(Hk) is given by the formula (4).

1.4. The Outline: Part 2. In the second part of the paper, we apply the criterion
to Teichmüller discs in T0,5 arising from L-shaped pillowcases. For a, b > 0 and
0 < q < 1 we let L(a, b, q) denote the L-shaped polygon as in Figure 1. The L-
shaped pillowcase S(a, b, q) is the double of the polygon L(a, b, q) and is formally
defined as a half-translation surface. The (2, 0) form dz2 on L(a, b, q) gives rise
to the Jenkins-Strebel quadratic differential ψ(a, b, q) on S(a, b, q). (The surface
S(a, 0, q) ∈ T0,5 is also well defined and it is the usual pillowcase surface with an
extra marked point on one of its edges).

Assuming that the Carathèodory and Teichmüller metrics agree on T0,5, for each
q0 ∈ (0, 1) we construct a holomorphic function Ψ : T0,5 → H, whose restriction to
the locus S(a, b, q0) (we vary a and b but q0 remains fixed) is given by

Ψ
(
S(a, b, q0)

)
= (a+ bq0)i.

We show that such a map Ψ can not be holomorphic at points S(a, 0, q0) ∈ T0,5.
This is shown by considering the smooth path S(t) = S(a, 0, q0 − t) in T0,5. We
compute the first and second derivatives of Ψ

(
S(t)

)
and verify that Ψ is not twice

differentiable at S(0).

Most of the work in this part of the paper is to compute the values Ψ
(
S(t)

)
.

In order to compute Ψ
(
S(a, 0, q0 − t)

)
we need to find a(t) and b(t) such that the

marked surfaces S(a, 0, q0− t) and S(a(t), b(t), q0) represent the same point in T0,5.
We do this using the formula for Schwarz-Christoffel maps from H to L-shaped
polygons L(a, b, c).

This last few pages of the paper are little more technical although we only
perform advanced high school mathematics. It would be important to find a way
of generalizing this computation and applying the above criterion to Teichmüller
discs corresponding to Jenkins-Strebel differentials in arbitrary Tg,n.



CARATHÈODORY 6= TEICHMÜLLER 5

Figure 1. L-shaped polygon L(a, b, q)
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Carathéodory’s metric on Teichmüller spaces.

2. Teichmüller discs

2.1. Teichmüller discs. Let Σg,n denote an oriented smooth surface of genus
g ≥ 2 with n marked points (once and for all we assume 3g − 3 + n > 0). Recall
that Tg,n is the space of marked Riemann surfaces S of type (g, n), each equipped
with an orientation-preserving homeomorphism Σg,n → S up to isotopy.

By Modg,n we denote the corresponding Modular Group (also known as the
Mapping Class Group) and by Mg,n = Tg,n/Modg,n the corresponding Moduli
space. Let πg,n : Tg,n → Modg,n denote the projection.

We let QD(S) and BD(S) respectively denote the spaces of holomorphic qua-
dratic differentials and Beltrami differentials on S. Also, let BD1(S) denote the unit
ball (in the L∞ norm) in BD(S). Each µ ∈ BD1(S) defines the point [µ] ∈ Tg,n
and the corresponding map BD1(S)→ T (S) is holomorphic.

A holomorphic quadratic differential ϕ ∈ QD(S) induces a holomorphic map

from the upper half plane H to BD1(S) given by λ →
(

i−λ
i+λ

)
|ϕ|
ϕ . In turn this

defines the holomorphic embedding τϕ : H→ Tg,n by letting

(5) τϕ(λ) =

[(
i− λ
i + λ

)
|ϕ|
ϕ

]
∈ Tg,n.

Note that τϕ(i) = S. We refer to the map τϕ as the Teichmüller disc.
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Let S(λ) = τϕ(λ). The induced quasiconformal map S → S(λ), with the dilata-

tion
(

i−λ
i+λ

)
|ϕ|
ϕ is affine in local coordinates corresponding to ϕ and the correspond-

ing terminal quadratic differential ϕ(λ) ∈ QD
(
S(λ)

)
. If z is the local parameter

on S such that ϕ = dz2 then the quasiconformal map is of the form

(6) z → x+ λy,

where z = x+ yi.

2.2. Stabilizing Teichmüller discs. We let

Stab(τϕ) = {A ∈ Aut(H) : πg,n ◦ τϕ ◦A = πg,n ◦ τϕ},
denote the stabilizer of τϕ. There are the induced monomorphism

τϕ∗ : Stab(τ)→ Modg,n,

and the induced quotient map H/ Stab(τϕ)→Mg,n. When H/Stab(τϕ) has finite
hyperbolic area we refer to τϕ as a Teichmüller curve.

Suppose ϕ ∈ QD(S) is a J-S differential (J-S stand for Jenkins-Strebel), that
is ϕ induces a decomposition of S into a finite number of annuli Πj , j = 1, ..., k,
foliated by closed horizontal trajectories of ϕ. Let γ1, ...γk be a collection of disjoint
simple closed curves on S homotopic to Πj ’s.

By Tγj ∈ Modg,n we denote the Dehn twist about γj . The following proposition
is well known and elementary (see the analogous Lemma 9.7 in [18], but note that
this lemma concerns the annuli swept out by closed vertical trajectories). Let mj

denote the conformal modulus of Πj . If mj ’s have rational ratios we call ϕ a rational
J-S differential.

Proposition 2.1. Let ϕ be a rational J-S differential and let

(7) t = lcm{m−1
1 , ...,m−1

k },
where lcm stands for the lowest common multiple. Set At(λ) = λ+ t, λ ∈ H. Then
At ∈ Stab(τϕ) and τϕ∗ (At) = T ∈ Modg,n is the product of the (commuting) Dehn
twists T = Tn1

γ1 · · · T
nk
γk

, where nj = mjt.

3. Carathéodory metric on Teichmüller discs

3.1. Extremal discs for holomorphic functions on Teichmüller spaces. Fix
ϕ ∈ QD(S) and let Φ : Tg,n → H be a holomorphic map. We say that the
Teichmüller disc τϕ is an extremal disc for Φ if

(
Φ ◦ τϕ

)
∈ Aut(H)

By Royden’s theorem each Teichmüller disc is an isometric embedding of H (with
respect to its hyperbolic metric) into Tg,n (with respect to its Teichmüller metric).
Thus, the Teichmüller and Carathèodory metrics agree on a Teichmüller disc τϕ if
an only if τϕ is an extremal disc for some holomorphic map Φ : Tg,n → H.

We record the following elementary proposition.

Proposition 3.1. Fix ϕ ∈ QD(S) and let Φ : Tg,n → H be any holomorphic map
such that

(
Φ ◦ τϕ

)
(λ) = λ, for every λ ∈ H. The derivative of Φ at S(λ) = τϕ(λ)

is given by

(8) dΦ(ν) =
−2i Im(λ)

||ϕ(λ)||1

∫
S(λ)

νϕ(λ),
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where ν ∈ BD
(
S(λ)

)
represents a tangent vector to Tg,n at the point S(λ) and

||ϕ(λ)||1 stands for the L1-norm of ϕ(λ) ∈ QD
(
S(λ)

)
.

Proof. Let A : H→ D be the Möbius map given by

A(z) =
z − λ
z − λ

.

Note A(λ) = 0. Set Ψ = A◦Φ. Then Ψ : Tg,n → D is holomorphic and there exists
a holomorphic quadratic differential ψ on S(λ) such that

dΨ(ν) =

∫
S(λ)

νψ,

for every ν ∈ BD
(
S(λ)

)
. Moreover, since Ψ

(
Tg,n

)
⊂ D and Ψ

(
S(λ)

)
= 0, it follows

from the Schwarz lemma and the Royden’s theorem that |dΨ(ν)| ≤ ||ν||∞. This
yields

(9) ||ψ||1 ≤ 1.

On the other hand, let f : D → Tg,n be given by f = τϕ ◦ A−1. From the
definition of the Teichmüller disc τϕ and the choice of the Möbius map A, it follows
that f is the Teichmüller disc given by

f(η) =

[
η
|ϕ(λ)|
ϕ(λ)

]
∈ Tg,n.

Moreover,
(
Ψ ◦ f

)
(η) = η for every η ∈ D. Thus

(10) dΨ

(
df

dη

)
= 1.

Since df
dη = |ϕ(λ)|

ϕ(λ) , after combining (10) with (9) we get ψ = ϕ(λ)
||ϕ(λ)||1 , that is

(11) dΨ(ν) =
1

||ϕ(λ)||1

∫
S(λ)

νϕ(λ),

for every ν ∈ BD
(
S(λ)

)
. From Ψ = A ◦Φ we get

dΦ(ν) =
1

A′(λ)
dΨ(ν).

Replacing

A′(λ) =
1

−2i Im(λ)

in the previous identity yields the proof.
�
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3.2. Equivariant holomorphic functions. Assume ϕ to be a rational J-S differ-

ential and Φ̂ : Tg,n → H to be a holomorphic function such that the Teichmüller

disc τϕ is extremal for Φ̂. We want to average Φ̂ (in a suitable sense) over the
cyclic group generated by the twist T ∈ Modg,n from Proposition 2.1 and show

that one can replace Φ̂ with an equivariant holomorphic function Φ that also has
the property that τϕ is an extremal disc for Φ.

Lemma 3.1. Suppose ϕ is a rational J-S differential on a marked Riemann surface

S. If τϕ is extremal for a holomorphic function Φ̂ : Tg,n → H then there exists a
holomorphic function Φ : Tg,n → H with the following properties

(1)
(
Φ ◦ τϕ

)
(λ) = λ, for every λ ∈ H,

(2)
(
Φ ◦ T

)
(τ) = Φ(τ) + t, for every τ ∈ Tg,n, where T = τϕ∗ (At) is the Dehn

twist from Proposition 2.1.

Proof. After post-composing Φ̂ by an automorphism of H if necessary, we may

assume
(
Φ̂ ◦ τϕ

)
(λ) = λ for every λ ∈ H. Let

Φ̂m(τ) =
1

m

m−1∑
k=0

(
Φ̂
(
T k(τ)

)
− kt

)
, for every τ ∈ Tg,n.

Clearly Φ̂m : Tg,n → H. Since T = τϕ∗ (At) and At ∈ Stab(τϕ) we conclude(
Φ̂m ◦ τϕ

)
(λ) = λ, for every λ ∈ H.

The sequence Φ̂m : Tg,n → H is a normal family (since H is conformally the

same as the unit disc). Thus the sequence Φ̂m has an accumulation point. The

restriction of Φ̂m to the Teichmüller disc τϕ(H) does not change with m, so every
accumulation point Φ : Tg,n → H of this sequence is a non constant holomorphic
map.

We want to show that every such accumulation point Φ is an equivariant func-
tion. We compute

(12) Φ̂m

(
T (τ)

)
− Φ̂m(τ) =

Φ̂(Tm(τ))

m
− Φ̂(τ)

m
.

Clearly Φ̂(τ)
m → 0 when m→∞ and for a fixed τ . Next we show

Φ̂(Tm(τ))

m
→ t.

This can be seen from the Schwarz lemma as follows.

Let τ0 = τϕ(i). Since Tm is an isometry of Tg,n it follows that

dT (Tm(τ0), Tm(τ)) = dT (τ0, τ) = C(τ),

for some constant C(τ) that only depends on τ . From the Schwarz lemma we
conclude

dH

(
Φ̂(Tm(τ0)), Φ̂(Tm(τ))

)
≤ C(τ).

But Φ̂(Tm(τ0)) = i + mt. Combining this with the previous inequality yields the
estimate ∣∣∣Φ̂(Tm(τ))− (i +mt)

∣∣∣ ≤ C1(τ),



CARATHÈODORY 6= TEICHMÜLLER 9

where C1(τ) is some other constant depending only on τ . Dividing both sides by

m, yields Φ̂(Tm(τ))
m → t, as promised.

Replacing this into (12) yields the equality

Φ̂m

(
T (τ)

)
− Φ̂m(τ) = t+ o(1),

where o(1) → 0 when m → ∞. This proves that any accumulation point Φ of the

sequence Φ̂m satisfies the equivariance condition

Φ ◦ T = At ◦Φ,

and the proof is complete.
�

4. Mapping the poly-plane Hk to Tg,n
4.1. Definitions. Fix a marked Riemann surface S ∈ Tg,n. Select a rational J-S
quadratic differential ϕ ∈ QD(S) and let h1, ..., hk denote the heights (with respect
to the |ϕ| singular metric) of the corresponding annuli Πj . To define the poly-pane
mapping below we must assume that each hj > 0 (that is Πj is non-degenerate).

We let Hk = H × · · · × H denote the k-fold product of the upper half plane H,
and let λ = (λ1, ..., λk) denote the coordinates on Hk. Define F : Hk → BD1(S) by
letting

F(λ) =

(
i− λj
i + λj

)
|ϕ|
ϕ
,

on each Πj . This yields the map E : Hk → Tg,n by letting E(λ) = [F(λ)]. We say
that E is the poly-plane mapping corresponding to ϕ.

The map F is clearly holomorphic and thus E is holomorphic as well. Observe
that the restriction of E on the diagonal in Hk is the Teichmüller disc τϕ.

The new marked Riemann surface E(λ) = S(λ) comes equipped with the qua-
dratic differential ϕ(λ) which is the unique J-S differential in QD

(
S(λ)

)
which

induces a decomposition of S(λ) into annuli Πj(λ) (swept out by closed horizon-
tal trajectories homotopic to γj) such that the height hj(λ) of Πj(λ) is given by
hj(λ) = Im(λj)hj . (By the Hubbard-Masur theorem [12] such ϕ(λ) exists and is
unique.)

The quasiconformal map with the Beltrami dilatation F(λ) is affine (with respect
to the coordinates corresponding to ϕ and ϕ(λ) respectively) on each annulus.

Moreover, for every λ, λ̂ ∈ Hk the affine map between the annuli Πj(λ) and Πj(λ̂)
is of the form (compare with (6))

(13) z → x+

(
λ̂j − Re(λj)

Im(λj)

)
y,

where z = x+ iy is the local coordinate on the surface S(λ) in which the differential
if of the form ϕ(λ) = dz2.

Let mj denote the conformal modulus of the annulus Πj . It is evident from (13)

that the map E conjugates the translation λ→
(
λ+ (0, ..,m−1

j , ..., 0)
)

to the twist
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Tγj ∈ Modg,n, that is

E
(
λ+ (0, ..,m−1

j , ..., 0)
)

=
(
Tγj ◦ E

)
(λ),

for every λ ∈ Hk. This yields the equality

(14) E
(
λ+ (t, ..., t)

)
= (T ◦ E) (λ),

where t is given by (7) and T ∈ Modg,n is the corresponding Dehn twist from
Proposition 2.1 above.

Remark. We make a few observations and claims which we neither need nor prove.

• In [17] Liu constructs Fenchel-Nielsen type coordinates for Tg,n. On each
marked Riemann surface he finds the unique J-S quadratic differential with
the corresponding annuli about γj ’s having the prescribed heights (this of
course follows from the Hubbar-Masur theorem [12]). The coordinates are
the circumferences of the annuli and the twist parameters (that determine
how adjacent annuli are glued to each other). These coordinates should not
be confused with our map E . In our case the circumferences stay fixed and
heights are the ones that vary.
• The map E is an embedding. This follows from the theorem of Jenkins [13]

which states that there exists at most one Jenkins-Strebel differential such
that the corresponding annuli have prescribed circumferences.
• Our ”coordinates” are holomorphic but at the expense that they parame-

trize only a small part of Tg,n.
• The map E is far from being proper.

5. Criterion for Carathéodory=Teichmüller

In this section we assume that ϕ is a J-S differential and that Φ : Tg,n → H is
a holomorphic function satisfying the conditions (1) and (2) from Lemma 3.1. We
establish the criterion for deciding when the two metrics agree on this Teichmüller
disc.

5.1. Computing the derivatives of Φ : Tg,n → H. Let γj stand for simple
closed curves on S homotopic to the corresponding annuli Πj (which are swept out
by closed horizontal trajectories of ϕ). Let f = Φ ◦ E , where E is the poly-plane
map corresponding to ϕ. Then f : Hk → H. Moreover, the values of f on the
diagonal in Hk are given by

(15) f(η, η, ..., η) = η,

for every η ∈ H.

Let us compute the derivatives of f along the diagonal. Let λ = (η, η, ..., η).
Fix η and let h ∈ C. The marked surface S(η, ..., (η + h), ..., η) is a quasiconformal
deformation of S(η, ..., η). Moreover, from (13) we compute S(η, ..., (η+h), ..., η) =
[hµj + o(h)], where µj ∈ BD(S(λ)) is equal to zero outside the annulus Πj(λ) and
on Πj(λ) is given by

µj =
i

2 Im(η)

|ϕ(λ)|
ϕ(λ)

.

Also, o(h) ∈ BD(Πj(λ)) is such that o(h)/h→ 0 when h→ 0.
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According to the formula (8) from Proposition 3.1 the (complex) derivative of
Φ at the point S(λ) = E(λ) is

dΦ(ν) =
−2i Im(η)

||ϕ(λ)||1

∫
S(λ)

νϕ(λ),

where ν ∈ BD
(
S(λ)

)
represents a tangent vector to Tg,n at the point S(λ).

After replacing ν = µj we get

∂f

∂λj
(λ) =

−2i Im(η)

||ϕ(λ)||1

∫
Πj(λ)

i

2 Im(η)
|ϕ(λ)| = 1

||ϕ(λ)||1

∫
Πj(λ)

|ϕ(λ)|.

We have just established the following proposition.

Proposition 5.1. For λ = (η, ..., η) we have

∂f

∂λj
(λ) = αj ,

where

αj =
1

||ϕ(λ)||1

∫
Πj(λ)

|ϕ(λ)| = 1

||ϕ||1

∫
Πj

|ϕ|,

and Πj, j = 1, ...k, are the corresponding annuli swept out by closed horizontal
trajectories (note α1 + · · ·+ αk = 1).

5.2. The Criterion. From (14) and from (2) in Lemma 3.1 it follows

(16) f(λ+ (t, ..., t)) = f(λ) + t, for every λ ∈ Hk.

Proposition 5.1 yields

(17)
∂f

∂λj
(λ) = αj , for λ = (η, ..., η),

where

αj =
1

||ϕ||1

∫
Πj(λ)

|ϕ|,

Below in Theorem 6.1 we prove that any holomorphic function f : H2 → H
satisfying (15), (16), and (17), must be equal to

f(λ1, λ2) = α1λ1 + α2λ2, for every (λ1, λ2) ∈ H2.

Remark. Analogous result holds true for functions on the poly-plane Hk of arbitrary
dimension. Here we prove it only in the case k = 2 for the reasons of clarity and
since we only apply this theorem in that case.

Now we prove the following corollary of Theorem 6.1.

Theorem 5.1. Suppose 3g − 3 + n = 2. Let ϕ be a rational J-S differential that
induces S to decompose into exactly two (non-degenerate) annuli swept out by closed
horizontal trajectories of ϕ. Then any holomorphic function Φ : Tg,n → H satisfying
the conditions (1) and (2) from Lemma 3.1 has the property that its restriction on
the set E(H2) is given by the formula
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(
Φ ◦ E

)
(λ1, λ2) = α1λ1 + α2λ2,

for every (λ1, λ2) ∈ H2.

Proof. The function f satisfies the assumptions of Theorem 6.1 and we verify the
formula in the statement of this theorem. �

We have now established the following criterion to decide when the Carathérode
and Teichüller metrics agree on the Teichmülelr disc τϕ.

Theorem 5.2. Suppose 3g − 3 + n = 2. Let ϕ be a rational J-S differential that
induces S to decompose into exactly two (non-degenerate) annuli swept out by closed
horizontal trajectories of ϕ. Then the Carathéodory and Teichmüller metrics agree
on the Teichmüller disc τϕ if and only if the function Φ : E(H2)→ H given by

Φ(τ) = α1λ1 + α2λ2,

where τ = E(λ1, λ2), can be extended to a holomorphic function Φ : Tg,n → H.

Remark. In fact, if such a function Φ exists it has to be unique since E(H2) has
non-empty interior. We do not make a use of this fact and we omit its proof.

6. Translation Equivariant holomorphic functions H2 → H

The main result of this section is the backbone of this paper. However, it is
entirely self contained and except the application of its main result it is otherwise
not connected to the rest of the paper. The reader may choose to skip it at first
reading.

6.1. Rigidity of equivariant holomorphic functions. We are interested in
holomorphic functions f : H2 → H, satisfying the conditions

f(λ, λ) = λ(18)

∂f

∂z
(λ, λ) = α,(19)

∂f

∂w
(λ, λ) = 1− α,(20)

for every λ ∈ H and some constant 0 < α < 1.

Examples of such maps are

fα(z, w) = αz + (1− α)w,

where (z, w) denote the coordinates on H2. But there are other such maps. For
simplicity we adopt the notation f 1

2
= f .

Example. Let

h(z, w) =
1

2
(z + w)− 1

2

(z − w)2

(z + w)
,

The function h maps H2 to H (this is rather easy to check) and obviously satisfies
the three conditions (18), (19),(20), for α = 1/2. Thus, we have found further
examples (beside f) satisfying these 3 conditions. But h is interesting for another
reason. A map A : H→ H2 is called a balanced disc if it is of the form A = (A1, A2),
for some automorphisms A1, A2 ∈ Aut(H). An extremal disc for a holomorphic map
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g : H2 → H is any balanced disc such that g ◦ A ∈ Aut(H). The set of points in
H2 which are contained in some extremal disc is denoted by X(g). In [14] Knese
described all functions g : H2 → H, such that X(g) = H2 (our functions fα are such
examples). Furthermore, he constructed examples of functions having two extremal
discs but that are not everywhere extremal. One can verify that X(h) contains a
two (real) dimensional family of extremal discs (the set X(h) has real dimension
three), but h is not everywhere extremal.

However, if we impose an additional translation invariance assumption then func-
tions fα are the only examples. The following is the main result of this section and
it confirms Theorem 5.1 above.

Theorem 6.1. Suppose f : H2 → H satisfies the conditions (18), (19), (20) and

(21) f(z + c, w + c) = f(z, w) + c,

for (z, w) ∈ H2 and some c > 0. Then f ≡ fα.

Remark. In fact, a stronger result holds true. Let f : H2 → H be any function that
satisfies the conditions (18), (19), (20), but not necessarily the invariance condition
(21). Consider the ”translation” flow fs(z, w) = f(z + s, w + s) − s. It can be
proved that for a random choice of the variable s the function fs is very close to
being equal to fα. More precisely, if s ∈ [−n, n] and ε > 0, then ||fs − fα|| ≤ ε with
the probability 1−O( 1

εn ) (where ||fs− fα|| is the ”weak” distance generated by the
topology of convergence on compact sets). This stronger result yields Theorem 6.1.

In the remainder of this section we prove Theorem 6.1.

6.2. Consequences of the Schwarz lemma. The classical Schwarz lemma says
that a holomorphic map between complex manifolds does not increase the Carathèodory
distance. We are interested in maps H2 → H, so first we describe the Carathèodory
distances on these two domains.

The Carathèodory distance on H is equal to the hyperbolic distance dH. We let

dH2

(
(z1, w1), (z2, w2)

)
= max{dH(z1, z2), dH(w1, w2)}.

This is the Carathèodory distance on H2.

Let

(22) ft(z, w) =
f(tz, tw)

t
, t > 0.

Recall f(z, w) = 1
2

(
z + w

)
. The following lemma plays a key role in the proof of

Theorem 6.1.

Lemma 6.1. Suppose f : H2 → H, is such that

lim
t→∞

ft(z, w) = f(z, w),

for every (z, w) ∈ H2. Then

f (λ, (2i− λ)) = i,

for every complex number |λ− i| < 1.
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Figure 2. The points z, w, zt, wt for t = 4

Proof. Suppose |λ− i| < 1 and λ = u+ vi. For t > 1 we let (see Figure 2)

z = u+ vi zt = u+ tvi,

and

w = −u+ (2− v)i wt = −u+ t(2− v)i.

One reason behind the definition of zt and wt is the equality

dH2 ((z, w), (zt, wt)) = dH(i, ti).

The Schwarz lemma tells us

dH
(
f(z, w), f(zt, wt)

)
≤ dH2

(
(z, w), (zt, wt)

)
.

Together, the previous two equations yield the inequality

(23) dH
(
f(z, w), f(zt, wt)

)
≤ dH(i, ti).

Next, we prove the claim

(24) dH
(
f(zt, wt), ti

)
→ 0, t→∞.

Indeed, since elements of Aut(H) are isometries of dH, we have

dH
(
f(zt, wt), ti

)
= dH

(
t−1f(zt, wt), i

)
.

Substituting zt = t(t−1zt) and wt = t(t−1wt) we get

dH
(
f(zt, wt), ti

)
= dH

(
ft
(
(t−1zt), (t

−1wt)
)
, i
)
.

By the assumption of the lemma we have ft → f (uniformly on compact sets).
Since

(t−1zt, t
−1wt)→ (vi, (2− v)i),
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we conclude
dH
(
f(zt, wt), ti

)
→ dH

(
f(vi, (2− v)i), i

)
.

But f(vi, (2− v)i) = i, so dH
(
f(vi, (2− v)i), i

)
= 0 and (24) is proved.

We apply the triangle inequality and get

dH
(
f(z, w), ti

)
≤ dH

(
f(z, w), f(zt, wt)

)
+ dH

(
f(zt, wt), ti

)
.

Combining (23) and (24) we obtain

(25) dH
(
f(z, w), ti

)
≤ dH(i, ti) + o(1),

where o(1)→ 0, when t→∞.

When t→∞, the family of metric balls of radius
(
dH(i, ti) +o(1)

)
, and centered

at ti, converges to the closed horoball

H = {ζ ∈ H : Im(ζ) ≥ 1}.
Since the point f(z, w) lives in all these balls, it follows that f(z, w) belongs to H.
In terms of the parameter λ (recall z = λ and w = 2i − λ) this means that the
point f(λ, 2i− λ) ∈ H, for every |λ− i| < 1.

Next, let h denote the function h(λ) = (λ, 2i−λ), defined on the disc |λ− i| < 1.
Consider the composition f ◦ h. One one hand, we have h(i) = (i, i) and thus
(f ◦ h)(i) = i. On the other hand, we have shown that f(λ, 2i − λ) ∈ H. But the
point i is on the boundary of H and from the open mapping theorem we conclude
that h is the constant map (f ◦ h) ≡ i. We have proved the lemma.

�

6.3. The proof of Theorem 6.1. First we show that we may assume α = 1/2.
Consider the map

f̂(z, w) =
1

2

(
f(z, w) + f1−α

)
.

Then f̂(z, w) satisfies (18), (21). It also satisfies the identities (19), (20) for α = 1
2 .

If we prove f̂ ≡ f then (by the linearity of fα’s in terms of α) it follows f ≡ fα.
Thus in the remainder of the proof we assume α = 1/2 and it remains to prove
f ≡ f .

Next, we show that the assumption in Lemma 6.1 is satisfied when f is translation
invariant.

Proposition 6.1. Suppose f : H2 → H satisfies the conditions (18), (19), (20)
and (21) (assuming that in (19), (20), the parameter α = 1

2). Then

lim
t→∞

ft(z, w) = f(z, w), (z, w) ∈ H2.

Proof. Note that ft also satisfies (18), (19) and (20). Moreover

(26) ft

(
z +

c

t
, w +

c

t

)
= ft(z, w) +

c

t
.

Let h : H2 → H be any accumulation point of the sequence ft. Then h satisfies
(18), (19) and (20). Moreover, it follows from (26) that

h(z + s, w + s) = h(z, w) + s, for every s ∈ R.
This last translation invariance condition together with the assumption that the
range of the map h is the upper half plane H implies that h is an affine holomorphic
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map of the form h(z, w) = az+bw, for some a, b ∈ C. We prove this claim in Lemma
11.1 in the second appendix below.

From (19) and (20) we find that a = b = 1/2 and thus h ≡ f . We are done. �

We can now complete the proof of Theorem 6.1. Observe that for every r ∈ R the
map f(z − r, w− r) + r satisfies the conditions (18), (19), (20) and (21). Applying
first Proposition 6.1 and then Lemma 6.1 to the map f(z− r, w− r) + r, we derive
the identity

(27) f (r + λ, r + (2i− λ)) = r + i,

for every r ∈ R and |λ− i| < 1. From here we prove Theorem 6.1, that is we prove
fα = f .

The proof of Theorem 6.1 now follows by polarizing the map f . More precisely,
below we apply the following cornerstone principle from complex analysis (see page
10 in [4] or [14]).

Polarization Principle. Let Ω be a neighborhood of the origin (0, 0) ∈ C2 and
F : Ω → C a holomorphic map which satisfies the identity F (z, z) = 0, for every
(z, z) ∈ Ω. Then F is the constant map F ≡ 0.

We let h(z, w) = f(z + i, w + i) − i. The h is defined on the set {(z, w) : −1 <
Im(z), Im(w)}. Choosing λ = (1 + s)i, for some s ∈ (−1, 1), we deduce from (27)
the identity h(r+ is, r− is) = r, for every r ∈ R and s ∈ (−1, 1). We can write this
as h(ζ, ζ) = r for ζ ∈ Ω = {(z, w) : −1 < Im(z), Im(w) < −1}.

Set F = h − f . We have just shown h(ζ, ζ) = r for ζ ∈ Ω. The same holds
true for f and thus the identity F (ζ, ζ) = 0 holds for every ζ ∈ Ω. From the above
principle we conclude F ≡ 0, that is h ≡ f . This implies f ≡ f and the proof is
complete.

7. L-shaped pillowcases

7.1. Definitions. We make the standing assumption that a > 0 and 0 < q < 1.
Unless otherwise stated we assume b > 0. Let L = L(a, b, q) denote the L-shaped
polygon as in Figure 3. By Pk, k = 1, ..., 5, we denote the vertices at which the
interior angle is π/2 and by Q the remaining vertex at which the interior angle is
3π/2.

Let S = S(a, b, q) denote the double of the polygon L. Formally S is defined
as a half-translation surface. As a Riemann surface S is a five times punctured
Riemann sphere (Pk’s are the marked points). We call S an L-shaped pillowcase.
(If we allow b = 0 then S is still a well defined Riemann surface. In this case S
is a pillowcase surface with the additional marked point P3 that lives on the edge
P2P4).

The (2, 0) form dz2 lives on the polygon L. After doubling, the two copies of
the form dz2 (one on each copy of L) glue together along the edges of the L-shaped
pillowcase S to form the holomorphic quadratic differential ψ = ψ(a, b, q) on S. The
differential ψ has the first order poles at the points Pk and the first order zero at
Q ∈ S. Moreover, ψ is a J-S differential and S decomposes into two non-degenerate
annuli Π1 and Π2 swept out by closed horizontal trajectories of ψ. (If b = 0 then
ψ has first order poles at the points P1, P2, P4, P5 and no zeroes).



CARATHÈODORY 6= TEICHMÜLLER 17

Figure 3. L-shaped polygon L(a, b, q)

Remark. The differential ψ is not a square of an Abelian differential. The corre-

sponding degree two branched cover, where the lift of ψ (which we denote by ψ̂) is a
square of an Abelian differential, is a genus two surface and the Abelian differential√
ψ̂ is a Weierstrass form (see [18]).

We consider surfaces S(a, b, q) as marked surfaces, that is as elements of T0,5.
Once and for all, we fix a marking such that the surfaces S(a, b, q) are simultaneously
marked, that is the corresponding family of marked surfaces S(a, b, q) varies con-
tinuously in T0,5 when a, b, q vary continuously.

The family of pairs
(
S(a, b, q), ψ(a, b, q)

)
is a real 3-dimensional locus of the

cotangent bundle over T0,5 while the family S(a, b, q) is a real 2-dimensional locus
in T0,5. But, deciding when two L-shaped pillowcases are the same as marked
surfaces is not so easy. If the marked surfaces S(a1, b1, q1) and S(a2, b2, q2) represent
the same point in T0,5 then the corresponding triples are related by certain non-
elementary functions arising from the Schwarz-Christoffel formula for conformal
maps from the unit disc onto L-shaped polygons.

7.2. The stabilizer of the Teichmüller disc τψ(a,b,q). By γ1 and γ2 we denote
simple closed curves homotopic to Π1 and Π2 respectively. . The modulus of the
annulus Π1 is m1 = b/2q and of Π2 is m2 = a/2 (the moduli of the corresponding
rectangle Πj is 2mj).

Assuming m1/m2 is rational it follows that ψ(a, b, q) is a rational J-S differential.
We let

t = lcm

{
1

m1
,

1

m2

}
= lcm

{
2q

b
,

2

a

}
.

By Proposition 2.1 we know that At ∈ Stab(τψ) where At(λ) = λ + t, λ ∈ H.

Moreover, τψ∗ (A) = T ∈ Mod0,5 is the product of the (commuting) Dehn twists
T = Tn1

γ1 T
n2
γ2 where nj = mjt.

7.3. The Carathéodory metric on τψ(a,b,q). Fix a triple (a0, b0, q0) and let ψ0 =
ψ(a0, b0, q0). We let E0 : H2 → T0,5 be the poly-plane mapping corresponding to
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ψ0. Also, set

α1 =
1

||ψ0||1

∫
Π1

|ψ0| =
b0q0

a0 + b0q0
,

and

α2 =
1

||ψ0||1

∫
Π2

|ψ0| =
a0

a0 + b0q0
.

If a0, b0, q0 ∈ Q and τψ0 is an extremal disc for some holomorphic function T0,5 → H
then by Theorem 5.1 there exists a holomorphic function Φ : T0,5 → H such that

Φ
(
E0(λ1, λ2)

)
= α1λ1 + α2λ2,

where (λ1, λ2) ∈ H2. We find that for any a and b the equalty

E0
(
b

b0
i,
a

a0
i

)
= S(a, b, q0),

holds. The last two formulas yield the following equality

(28) Φ
(
S(a, b, q0)

)
=

(
a+ bq0

a0 + b0q0

)
i.

Thus, we have found a holomorphic function Φ whose restriction to the locus of
surfaces S(a, b, q0) is given by (28). As it turns out, up to multiplication by a
constant the restriction of Φ to the locus S(a, b, q0) depends only on q0.

Lemma 7.1. Fix q0 ∈ (0, 1) and suppose that the Carathéodory and Teichmüller
metrics agree on τψ(a0,b0,q0) for some choice of a0, b0 > 0. Then there exists a
holomorphic function Ψ : T0,5 → H such that

Ψ
(
S(a, b, q0)

)
= (a+ bq0) i,

for every a > 0 and b ≥ 0.

Proof. We let

Ψ =
Φ

a0 + q0b0
.

Then Ψ : T0,5 is holomorphic and from (28) we see that Ψ satisfies the stated
equality. To derive this formula we assumed b > 0. But since S(a, b, q)→ S(a, 0, q)
in T0,5 when b → 0, the formula also holds for b = 0. (The formula does not hold
for a = 0 since the surface S(0, b, q) is not well defined, that is S(a, b, q) tends to
∞ in T0,5 when a→∞).

�

Remark. It is well known that the Carathéodory and Teichmüller metrics agree
on the disc τψ(a,0,q0). In fact τψ(a,0,q0) is an extremal disc for the forgetful map
π : T0,5 → T0,4

∼= H (see [2] and [6]). But each disc τψ(a,b,q0), when b > 0, is

extremal for Ψ and by continuity so is the disc τψ(a,0,q). It is easy to see that π
and Ψ (if it exists) are different holomorphic functions (for example, none of the
discs ψ(a, b, q0), when b > 0, is extremal for π).
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Figure 4. The annuli Π̂j

8. The proof of Theorem 1.1

Fix a pillowcase S = S(a, 0, q) for some a, q. For small t > 0 we let S(t) =
S(a, 0, q − t). Next we show that S(t) is a C∞ path in T0,5. Our aim is to prove
that Ψ (corresponding to q) from Lemma 7.1 is not smooth along the path S(t) at
t = 0. This implies that the Carathéodory and Teichmüller metrics do not agree.

Lemma 8.1. The path S(t) is infinitely differentiable.

Proof. The path S(t) can be defined as S(t) = [µ(t)] where µ(t) ∈ BD1(S) is equal

to µj(t) on the annulus Π̂j (see Figure 4)

µ1(t) =
−t

2q − t
, µ2(t) =

t

2(1− q) + t
.

The Beltrami dilatation µ(t) is pointwise smooth function of t and thus S(t) is a
smooth path in T0,5.

�

Assume now that the Carathéodory and Teichmüller metrics agree on the disc
τψ(a,b,q), for some choice of b > 0. Let Ψ : T0,5 → H be the function from Lemma
7.1 corresponding to q.

The function Ψ is holomorphic and the path S(t) smooth, so the function
Ψ
(
S(t)

)
is a complex valued smooth function of t. Thus

(29) Ψ
(
S(t)

)
= Ψ

(
S(0)

)
+ δ1t+ δ2t

2 +O(t3),

for some constants δ1, δ2 ∈ C.

Using the explicit formula for Ψ from Lemma 7.1, in the next section we prove
the following lemma.

Lemma 8.2. Let a, q, q1 such that q > q1 and denote by Ψ the holomorphic function
from Lemma 7.1 corresponding to q. Then there are constants β1 and β2 6= 0 such
that

Ψ
(
S(a, 0, q1)

)
= Ψ

(
S(a, 0, q)

)
+β1

(
1+o(1)

) t

log t−1
+β2

(
1+o(1)

) t2

log t−1
+o

(
t2

log t−1

)
,

where t = q − q1 and o(1)→ 0 when t→ 0.
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Applying this lemma to our situation (and letting q1 = q − t) gives the equality

Ψ
(
S(t)

)
= Ψ

(
S(0)

)
+ β1

(
1 + o(1)

) t

log t−1
+ β2

(
1 + o(1)

) t2

log t−1
+ o

(
t2

log t−1

)
.

This equality and the equality (29) offer two competing expressions for Ψ
(
S(t)

)
−

Ψ
(
S(0)

)
. Equating them gives

(30) δ1t+δ2t
2 +O(t3) = β1

(
1+o(1)

) t

log t−1
+β2

(
1+o(1)

) t2

log t−1
+o

(
t2

log t−1

)
.

Using (30), we first check that δ1 = 0 since otherwise the left hand side would
be larger than the right hand side for t small enough. Second we see that β1 = 0
since otherwise the right hand side would be larger than the left hand side for t
small enough. The equality (30) becomes

δ2t
2 +O(t3) = β2

(
1 + o(1)

) t2

log t−1
+ o

(
t2

log t−1

)
.

Similarly we see that δ2 = 0 since otherwise the left hand side would be larger than
the right hand side for t small enough. We are down to

O(t3) = β2

(
1 + o(1)

) t2

log t−1
+ o

(
t2

log t−1

)
.

Divide the both sides of the equality by t2

log t−1 and get

O(t log t−1) = β2

(
1 + o(1)

)
+ o(1).

Since β2 6= 0 we derive a contradiction and Theorem 1.1 is proved.

9. Endgame: The proof of Lemma 8.2

9.1. The Schwarz-Christoffel maps. Let w1, w2, w3, w4, w5, η denote points on
the extended real line such that w1 =∞, w2 = −1, w3 = ζ, w4 = λ, w5 = 1, where
−1 < η ≤ ζ < λ < 1. Consider the map F (λ, ζ, η) = F : H→ C given by

F (z) = J−1

z∫
0

√
w − η√

w + 1
√
w − ζ

√
w − λ

√
w − 1

dw,

for z ∈ H and some constant J > 0.

In general F does not have to be injective but in this case it always is. Observe
that F maps R onto a closed hexagonal chain of lines that has 5 interior angles
equal to π

2 (at the points F (wk)) and one interior angle equal 3π
2 (at F (η)). Every

such hexagonal chain (with this choice of angles) must be embedded in the plane
and we conclude that F is injective. The image F (H) is an L-shaped polygon. As
usual, we refer to F as the Schwarz-Christoffel map.

From the standard theorem in complex analysis we know that for any triple
(a, b, q) we can find the unique −1 < η ≤ ζ < λ < 1 and J > 0 such that the
corresponding Schwarz-Christoffel map F maps H onto L(a, b, q), that is F : H →
L(a, b, q) and F (wj) = Pj and F (η) = Q. We note that b = 0 if and only if η = ζ.
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By definition, the bottom horizontal side P5P1 of the polygon L(a, b, q) is of
length one. This enables us to express the constant J as

J =

∞∫
1

√
x− η√

x+ 1
√
x− ζ

√
x− λ

√
x− 1

dx.

The pillowcase S = S(a, b, q) is the double of L = L(a, b, q). Note the anti-
conformal involution of S that exchanges the two copies of L and point-wise fixes
the (common) boundary of the two copies of L. Now we extend the map F to the
lower half plane so that it maps the lower half plane onto the second copy of L. This
extended map (we use F to denoted the extension) F : C\{−1, ζ, λ, 1} → S(a, b, q)
is conformal and F (η) = Q. Moreover, F conjugates the anti-conformal involution
z → z of C to the anti-conformal involution on S.

9.2. Computing the Schwarz-Christoffel maps. Fix −1 < η = ζ < λ < 1.
For small r > 0 we let F (λ, ζ, ζ − r) = F denote the corresponding Schwarz-
Christoffel map. Varying r yields the family of conformal mappings F : X(λ, ζ)→
S
(
a(r), b(r), q(r)

)
for suitable a(r), b(r), q(r). Thus, we get an 1-dimensional family

of L-pillowcases S(r) = S
(
a(r), b(r), q(r)

)
that are equal to each other in T0,5. Note

that b(0) = 0 and that q(r) is an increasing function.

Our goal is to compute a(r), b(r) and q(r). We want to establish the following
equality

a(r) + b(r)q(r) = 1 +Dr + Cr2 log r−1 + o
(
r2 log r−1

))
,

where D and C are constants such that C 6= 0. This is the content of Proposition
9.4 below. From there we easily derive Lemma 8.2 which is the goal of this section.

We compute a(r), b(r) and q(r) from the formula for the Schwarz-Christoffel
map. We find

a(r) =
A(r)

J(r)
, b(r) =

B(r)

J(r)
, q(r) =

Q(r)

J(r)
,

where

A(r) = −i

−1∫
−∞

√
x− ζ + r√

x+ 1
√
x− ζ

√
x− λ

√
x− 1

dx

B(r) = −i

ζ∫
ζ−r

√
x− ζ + r√

x+ 1
√
x− ζ

√
x− λ

√
x− 1

dx

J(r) =

∞∫
1

√
x− ζ + r√

x+ 1
√
x− ζ

√
x− λ

√
x− 1

dx,

Q(r) = −
λ∫
ζ

√
x− ζ + r√

x+ 1
√
x− ζ

√
x− λ

√
x− 1

dx.

Observe A(r), J(r), Q(r) > 0 for every r and B(r) > 0 for r > 0. We first ana-
lyze these functions. Then in the next subsection we draw the conclusions about
a(r), b(r) and q(r).
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Functions A(r) and J(r) are in fact real analytic for r sufficiently small since
the corresponding integrand functions depend analytically on r and are uniformly
integrable. As for the function B(r) we have the following proposition.

Proposition 9.1. We have

B(r) =
πr

2
√
ζ + 1

√
λ− ζ

√
1− ζ

+O(r2).

Proof. The equality

−i√
x+ 1

√
x− λ

√
x− 1

=
i +O(r)√

ζ + 1
√
λ− ζ

√
1− ζ

,

holds for every x ∈ [ζ − r, ζ], so we conclude

B(r) =
i +O(r)√

ζ + 1
√
λ− ζ

√
1− ζ

ζ∫
ζ−r

√
x− ζ + r√
x− ζ

dx

On the other hand, one computes (recall that r is non-negative)

i

ζ∫
ζ−r

√
x− ζ + r√
x− ζ

dx =

ζ∫
ζ−r

√
x− ζ + r√
ζ − x

dx.

Substituting ζ − x = y yields

ζ∫
ζ−r

√
x− ζ + r√
ζ − x

dx =

r∫
0

√
r − y
√
y

dy

=

[√
r − y√y + r arctan

( √
y

√
r − y

)] ∣∣∣∣r
0

=
rπ

2
,

and we obtain the desired equality.
�

It remains to analyze Q(t).

Proposition 9.2. The following equality holds

Q(r)−Q(0) =
r log r−1

2
√
ζ + 1

√
λ− ζ

√
1− ζ

+ o
(
r log r−1

)
.

Proof. Let ε = ε(r) > 0 be any function that tends to 0 when r → 0. We write

Q(r)−Q(0) =

(
1 + o(1)

)
√
ζ + 1

√
λ− ζ

√
1− ζ

ζ+ε∫
ζ

(√
x− ζ + r√
x− ζ

− 1

)
dx+O

(r
ε

)
,

where o(1)→ 0 when r → 0. We used two things here. First

− 1√
x+ 1

√
x− λ

√
x− 1

=

(
1 +O(ε)

)
√
ζ + 1

√
λ− ζ

√
1− ζ

,

when ζ ≤ x ≤ ζ + ε. We then set o(1) = O(ε). Second

λ∫
ζ+ε

(√
x− ζ + r√
x− ζ

− 1

)
1√

x+ 1
√
x− λ

√
x− 1

dx = O
(r
ε

)
,
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since (√
x− ζ + r√
x− ζ

− 1

)
= O

(r
ε

)
,

when x ≥ ζ + ε.

Substituting x− ζ = y yields

ζ+ε∫
ζ

√
x− ζ + r√
x− ζ

dx =

ε∫
0

√
y + r
√
y

dy =
[√
y
√
r + y + r log

(√
y +
√
r + y

)] ∣∣∣∣ε
0

=
√
ε
√
r + ε+ r log

√
ε+
√
r + ε√
r

We get
ζ+ε∫
ζ

(√
x− ζ + r√
x− ζ

− 1

)
dx = O

(r
ε

)
+ r log

√
ε+
√
r + ε√
r

.

Let

ε(r) =
1√

log r−1
.

Then

ζ+ε∫
ζ

(√
x− ζ + r√
x− ζ

− 1

)
dx = O

(
r
√

log r−1
)

+

(
1

2
+ o(1)

)
r log r−1

=
1

2
r log r−1 + o

(
r log r−1

)
,

where o(1) → 0 when r → 0. Here we used the equality O
(
r
√

log r−1
)

=

o
(
r log r−1

)
. We replace this in the formula above and obtain

Q(r)−Q(0) =

(
1 + o(1)

) (
1
2r log r−1 + o

(
r log r−1

))
√
ζ + 1

√
λ− ζ

√
1− ζ

+O
(
r
√

log r−1
)

and the desired equality follows.
�

9.3. Differentiating a(r), b(r) and q(r). We derive corollaries (concerning a(r), b(r)
and q(r)) of the formulae we computed in the previous subsection). Since A(r) and
J(r) are smooth and J(0) > 0 it follows that a(r) is smooth near 0 and thus

(31) a(r) = a(0) +D1r +O(r2)

for some constant D1.

Proposition 9.3. There exists C1 > 0 such that

q(r)− q(0) = C1r log r−1 + o
(
r log r−1

)
.
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Proof. Since J(r) is smooth near 0 and J(0) > 0 from Proposition 9.2 we find

q(r)− q(0) =
Q(r)

J(r)
− Q(0)

J(0)
=

r log r−1

2J(0)
√
ζ + 1

√
λ− ζ

√
1− ζ

+ o
(
r log r−1

)
.

Letting

C1 =
1

2J(0)
√
ζ + 1

√
λ− ζ

√
1− ζ

,

yields the stated formula.
�

Proposition 9.4. There are constants D and C > 0 such that

a(r) + b(r)q(r) = a(0) +Dr + Cr2 log r−1 + o
(
r2 log r−1

))
.

Proof. Again, since J(r) is smooth and J(0) > 0 from Proposition 9.1 we find

b(r) =
B(r)

J(r)
= D2r +O(r2),

for

D2 =
π

2J(0)
√
ζ + 1

√
λ− ζ

√
1− ζ

.

Together with the previous Proposition 9.3 this gives

b(r)q(r) =
(
D2r +O(r2)

)(
q(0) + C1r log r−1 + o

(
r log r−1

))
= q(0)D2r +D2C1r

2 log r−1 + o
(
r2 log r−1

))
.

Combining this with (31) and letting

D = D1 + q(0)D2 , C = C1D2,

proves the proposition (note that both C1 > 0 and D2 > 0 were computed explic-
itly). �

9.4. The proof of Lemma 8.2. We are ready to prove Lemma 8.2. Recall that
we need to prove that for some β2 6= 0 the equality

Ψ
(
S(a, 0, q1)

)
= Ψ

(
S(a, 0, q)

)
+β1

(
1+o(1)

) t

log t−1
+β2

(
1+o(1)

) t2

log t−1
+o

(
t2

log t−1

)
,

holds where t = q − q1 and Ψ = Ψ(q) is the function from Lemma 7.1.

Given a and q1 we first find −1 < ζ < λ < 1 such that the Schwarz-Christoffel
map F = F (λ, ζ, ζ) maps H onto S(a, 0, q1). We start the r flow S(a(r), b(r), q(r)),
that is S(a(r), b(r), q(r)) is the image of H under the Schwarz-Christoffel map F =
F (λ, ζ, ζ − r). Observe that q(r) is increasing with r.

We locate the time r > 0 such that q = q(r). From Proposition 9.3 it follows
that q = q(r) for some r which satisfies the equality

q − q1 = t = C1r log r−1 + o
(
r log r−1

)
,

for C1 > 0. Thus

(32) r =
(1 + o(1))t

C1 log t−1
and log r−1 = (1 + o(1)) log t−1,

where o(1)→ 0 when t→ 0.
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Since by construction S(a, 0, q1) = S(a(r), b(r), q(r)) in T0,5, and q = q(r), from
Lemma 7.1 we find

Ψ
(
S(a, 0, q1)

)
= Ψ

(
S(a(r), b(r), q(r))

)
= i
(
a(r) + b(r)q(r)

)
.

On the other hand, we have a = a(0) and so Ψ
(
S(a, 0, q)

)
= Ψ

(
S(a(0), 0, q)

)
= a(0)

(again using Lemma 7.1). Together the last two identities imply

Ψ
(
S(a, 0, q1)

)
−Ψ

(
S(a, 0, q)

)
= i(a(r) + b(r)q(r)− a(0)).

From Proposition 9.4 we get

Ψ
(
S(a, 0, q1)

)
−Ψ

(
S(a, 0, q)

)
=
(
Di
)
r +

(
Ci
)
r2 log r−1 + o

(
r2 log r−1

))
.

Replacing r with t as in (32) shows that the right hand side in the previous equality
is equal to

(
Di
) (1 + o(1))t

C1 log t−1
+
(
Ci
)( (1 + o(1))t

C1 log t−1

)2

(1 + o(1)) log t−1 + o

(
t2

log t−1

)
.

Letting

β1 =
Di

C1
β2 =

Ci

C2
1

,

and observing β2 6= 0 yields Lemma 8.2.

10. Appendix 1: The proof of Proposition 1.1

We need to show that T0,5 isometrically and holomorphically embeds into each
Tg, g ≥ 2.

10.1. Signature of a Fuchsian group. Recall that the Euler characteristic of a
Fuchsian group Γ of signature (g; k1, ..., kn) is given by

(33) χ(Γ) = 2− 2g −
n∑
t=1

(
1− 1

kt

)
.

Here kt is the order of the corresponding generator of Γ. If kt < ∞ then this
generator is elliptic and if kt = ∞ then it is parabolic. By T (g; k1, ..., kn) we
denote the Teichmüller space of Γ.

We recall the following well known fact: For any choice of kt’s we have that
T (g;∞, ...,∞) is biholomorphic to T (g; k1, ..., kn), where ∞ is repeated n times
(see [15]). Since T (g;∞, ...,∞) is biholomorphic to Tg,n, we find that

(34) T(g,n) ' T (g; k1, ..., kn),

holds for any choice if ki’s, where ' denotes the relation of being biholomorphic.
Let Γ1 be a finite index torsion free subgroup of a Fuchsian group Γ of signature

(g; k1, ..., kn). Suppose that each kt < ∞. Then Γ (and thus Γ1) has no parabolic
elements. This yields that Γ1 is the fundamental group of a genus g surface for
some g ≥ 2. The Teichmüller space T (g; k1, ..., kn) = T (Γ) isometrically and
holomorphically embeds into T (Γ1) ' Tg. By the Riemann-Hurwitz formula we
have

χ(Γ1) = χ(Γ)[Γ : Γ1],

which implies

(35) 2g − 2 = χ(Γ)[Γ : Γ1].
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This formula computes the genus of Γ1 in terms of the Euler characteristic of Γ and
the index of Γ1 in Γ.

10.2. The proof of Proposition 1.1. It was proved in Theorem 1.2 in [8] that a
Fuchsian group Γ of signature (g; k1, ..., kn) contains a torsion free subgroup Γ1 of
index D if and only if D is divisible by 2ελ, where λ is the lowest common multiple
of ki’s and ε is equal to zero or 1 depending on whether the group Γ is of even or
odd type (group Γ of odd type if λ is even, but λ

kt
is odd for exactly odd number

of i’s; otherwise Γ is of even type).
Let Γ be a Fuchsian group of signature (0; 2, 2, 2, 2, 2). Then Γ is of odd type and

by the previous result we see that for every integer m ≥ 1, the group Γ contains
a torsion free subgroup Γm of index 4m. Since χ(Γ) = − 1

2 by (35) it follows that
χ(Γm) = −2m, and thus Γm is the fundamental group of the closed surface of
genus m + 1. Therefore T (Γ) naturally (and in particular holomorphically and
isometrically) embeds into T (Γm) ' Tm+1, for every m ≥ 1.

It follows from (34) that T0,5 is biholomorphic to T (Γ). By Royden’s theorem,
biholomorphic maps between Teichmüller spaces are necessarily isometries so there
is a biholomorphic isometry between T0,5 and T (Γ). Combining this with the
previous conclusion we find that T0,5 holomophically and isometrically embeds into
each Tg, g ≥ 2. This completes the proof of the theorem.

11. Appendix 2: Rigidity of translation invariant functions into H

The goal of this appendix is to prove the following lemma that was used in
Proposition 6.1. This result is a special case of Proposition 6.2 from the paper by
Gekhtman [11]. The proof below closely follows Gekhtman’s proof.

Lemma 11.1. Let f : H2 → H be a holomorphic function satisfying

(36) f(λ, λ) = λ,

for all λ ∈ H. If

(37) f(z1 + t, z2 + t) = f(z1, z2) + t,

for all (z1, z2) ∈ H2 and all t ∈ R, then

f(z1, z2) = α1z1 + α2z2,

for some α1, α2 ≥ 0

We start with the following proposition.

Proposition 11.1. Let φ : C→ R be a harmonic function with

φ(0) =
∂φ

∂x
(0) =

∂φ

∂y
(0) = 0.

Suppose there is a C > 0 so that φ(z) ≥ −C|z| for all z ∈ C. Then φ is identically
zero.

Proof. We use the Poisson integral formula to show that φ has sublinear growth.

Write φ = φ+ − φ−, where φ+(z) = max{0, φ(z)}, and φ−(z) = max{0,−φ(z)}.
Fix r > 0, and set

A =

∫ 1

0

φ+(re2πiθ) dθ, B =

∫ 1

0

φ−(re2πiθ) dθ.
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By the mean value property, A−B = φ(0) = 0. We compute∫ 1

0

|φ(re2πiθ)| dθ = A+B

= 2B

= 2

∫ 1

0

φ−(re2πiθ) dθ

≤ 2Cr,

where in the last inequality, we’ve used φ(z) ≥ −C|z|. Now, for any z ∈ Dr(0), the
Poisson integral formula for the disc Dr(0) yields

|φ(z)| =

∣∣∣∣∣
∫ 1

0

r2 −
(
r
2

)2
r |z − re2πiθ|

φ(e2πiθ) dθ

∣∣∣∣∣ ≤ sup
θ∈[0,2π]

(
3r

4 |z − re2πiθ|

)∫ 1

0

|φ(re2πiθ)| dθ.

Considering only z’s such that |z| = r
2 , we have

sup
θ∈[0,2π]

(
3r

4 |z − re2πiθ|

)
≤ 3

2
,

and so derive the inequality

|φ(z)| ≤ 3Cr = 6C|z|,
for every z ∈ C such that |z| = r

2 . By varying r > 0 we derive the upper bound for
every z ∈ C.

Since φ is harmonic and has sublinear growth, φ is affine, that is, φ(x + iy) =
ax + by + c for some a, b, c ∈ C. (Indeed, the higher derivatives of φ at 0 vanish,
as we can see by differentiating Poisson’s formula on Br(0) under the integral and
letting r tend to infinity.) By assumption, φ and its first derivatives vanish at the
origin, so φ is identically 0.

�

11.1. Proof of Lemma 11.1. The idea is to first show that f is of form

f(z1, z2) =

2∑
j=1

αjzj +H(z2 − z1),

for some entire function H : C → C. Then we use Proposition 11.1 to show that
H ≡ 0.

We begin with the proposition.

Proposition 11.2. There are α1, α2 ≥ 0 such that α1 + α2 = 1 and

αj =
∂f

∂zj
(λ, λ) ,

for j = 1, 2 and every λ ∈ H.

Proof. Let ι(λ) = (λ, λ) be the diagonal embedding ι : H→ H2. From f(λ, λ) = λ
we find f ◦ι is the identity map on H. Applying the chain rule we derive the identity

(38)
∂f

∂z1
(λ, λ) +

∂f

∂z2
(λ, λ) = 1,

for every λ ∈ H.
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On the other hand, we have the Schwarz lemma for the maps h : H2 → H (see
Lemma 7.5.6 in [20] for the proof in the case of the polydisc)

Im(z1)

∣∣∣∣ ∂h∂z1
(z1, z2)

∣∣∣∣+ Im(z2)

∣∣∣∣ ∂h∂z2
(z1, z2)

∣∣∣∣ ≤ Im
(
h(z1, z2)

)
.

Replacing (z1, z2) = (λ, λ) and h = f (and again using f(λ, λ) = λ) we get∣∣∣∣ ∂f∂z1
(z1, z2)

∣∣∣∣+

∣∣∣∣ ∂f∂z2
(z1, z2)

∣∣∣∣ ≤ 1.

Combining this with (38) shows that the holomorphic functions λ 7→ ∂f
∂zj

(λ, λ) are

non-negative, and so by the maximum principle they must be constant. Set

αj =
∂f

∂zj
(λ, λ) .

The identity α1 + α2 = 1 now follows from (38). �

Let

g(z1, z2) = f(z1, z2)−
2∑
j=1

αjzj ,

Then g satisfies the conditions

(39) g(λ, λ) = 0,

(40)
∂g

∂zj
(λ, λ) = 0,

for every λ ∈ H, and

(41) g(z1 + t, z2 + t) = g(z1, z2), for all t ∈ R.

Condition (41) implies that

(42) g(z1 + c, z2 + c) = g(z1, z2),

for every c ∈ C such that Im(c) ≥ 0. Indeed, fixing z1, z2 ∈ H, the function
c 7→ g(z1 + c, z2 + c) − g(z1, z2) is holomorphic in a neighborhood of H and it
vanishes on the real axis, thus, it vanishes on the whole domain.

Proposition 11.3. There exists an entire function H : C → C such that H(0) =
H ′(0) = 0 and

g(z1, z2) = H(z2 − z1),

for every (z1, z2) ∈ H2.

Proof. Write

g(z1, z2) = h(ζ, w),

where

ζ =

2∑
j=1

αjzj and w = z2 − z1,

and h is holomorphic on the image Ω of H under this (linear) coordinate change.
For ζ ∈ H, let Ω(ζ) be
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Ω(ζ) = {w ∈ C : (ζ, w) ∈ Ω}.
Then

Ω =
⋃
ζ∈H

(
ζ,Ω(ζ)

)
.

Define hζ : Ω(ζ)→ C, the restriction of g on the slice Ω(ζ), by

hζ(w) = h(ζ, w).

From (42) (and the fact α1 + α2 = 1) we find that hζ+c(w) = hζ(w), for every
ζ ∈ H, c ∈ C with Im(c) ≥ 0, and w ∈ Ωζ ∩ Ωζ+c. Therefore, it follows that for
every ζ1, ζ2 ∈ H we have

(43) hζ1(w) = hζ2(w), for every w ∈ Ωζ1 ∩ Ωζ2

For each ζ ∈ H, Ω(ζ) is a convex open set containing the origin. Moreover,
Ω(tζ) = tΩ(ζ) for every t > 0. It follows that Ω(it1) ⊂ Ω(it2) for 0 < t1 < t2, and
that ⋃

t>0

Ω(it) = C.

Together with (43) this means that there is an entire function H : C→ C so that

h(ζ, w) = hζ(w) = H(w), w ∈ Ω(ζ).

In particular, the function h(ζ, w) does not depend on ζ.

We have shown that h(ζ, w) = H(w) for every (ζ, w) ∈ Ω and the identity
g(z1, z2) = H(z2 − z1) follows. The identity H(0) = H ′(0) = 0 follows from the
conditions (39), (40) and the chain rule. �

The previous proposition together with the definition of g(z1, z2) implies the
idenity

(44) f(z1, z2) =

2∑
j=1

αjzj +H(z2 − z1),

when (z1, z2) ∈ H. (It is now clear that f extends holomorphically to a function on
C2 but we make no use of this fact). To complete the proof of the lemma, it thus
suffices to show that H is identically 0.

Recall that f(z1, z2) ∈ H when (z1, z2) ∈ H2. Together with (44) this yields the
inequality

(45) Im
(
H(z2 − z1)

)
≥ − Im

(
α1z1 + α2z2

)
.

Let w ∈ C and ε > 0. If Im(w) ≥ 0 we let z2 = w + εi and z1 = εi, and if
Im(w) ≤ 0 we let z2 = εi and z1 = −w + εi. Either way we have (z1, z2) ∈ H2 and
w = z2 − z1. From Proposition 11.2 we can conclude

Im
(
α1z1 + α2z2

)
≤ max{|z1|, |z2|} ≤ |w|+ 2ε.

Together with (45) we verify that the inequality

Im
(
H(w)

)
≥ −(|w|+ 2ε),



30 VLAD MARKOVIC

holds for every w ∈ C and every ε > 0. Letting ε→ 0 grants us the inequality

Im
(
H(w)

)
≥ −|w|.

Since by Proposition 11.3 we have H(0) = H ′(0) = 0, after applying Proposition
11.1 to the harmonic function Im(H) we conclude H ≡ 0. The proof of the lemma
is complete.
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