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HARMONIC SURFACES IN 3-MANIFOLDS AND THE SIMPLE

LOOP THEOREM

VLADIMIR MARKOVIC

Abstract. Denote by M(Σ) the space of hyperbolic metrics on a closed, ori-

entable surface Σ and by M(M) the space of negatively curved Riemannian
metrics on a closed, orientable 3-manifold M . We show that the set of metrics

for which the corresponding harmonic map is in Whitney’s general position is

an open, dense, and connected subset of M(Σ)×M(M). The main application
of this result is the proof of the Simple Loop Theorem.

1. Introduction

Throughout the paper Σ denotes a closed, orientable, and smooth surface of
genus ≥ 2, and M a closed, orientable 3-manifold M . Let M(Σ) denote an open
and connected subset of the space of Cn,α-smooth hyperbolic Riemannian metrics
on Σ. We let M(M) denote an open and connected subset of the space of Cn,α-
smooth negatively curved Riemannian metrics on M , where n ≥ 2 and α ∈ (0, 1)
are fixed.

Remark. The set M(Σ) ×M(M) has the structure of a Banach manifold. This
enables one to apply the Sard-Smale Transversality Theorem and its relatives (see
[7]). We let C(Σ,M) denote the Banach manifold consisting of Cn+1,α-smooth
mappings from Σ to M (harmonic maps corresponding to Cn,α metrics are naturally
Cn+1,α-smooth).

Definition 1.1. Let f be a homotopy class of mappings from Σ into M . We say
that f is admissible if f∗(π1(Σ0)) is not Abelian.

Unless otherwise stated, f denotes an admissible homotopy class. Then, for each
µ ∈ M(Σ), and ν ∈ M(M), there exists the unique harmonic map fµ,ν : (Σ, µ) →
(M,ν) in the homotopy class f . Set

M = M(Σ)×M(M),

and define

MW = {(µ, ν) ∈M : fµ,ν is in Whitney’s general position}.
Our first main result is the following theorem.

Theorem 1.1. Let f be an admissible homotopy class of mappings from a closed
orientable surface Σ of genus at least seven into a closed, orientable 3-manifold M .
Then MW is open, dense, and connected subset of M.
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Remark. In this theorem it is implicitly assumed that M supports a metric of
negative curvature. However, it suffices to assume that M supports a Riemannian
metric ν of non-positive curvature such that every map in the homotopy class f
maps some portion of Σ into the part of M where the sectional curvatures of ν
are strictly negative. We do not prove this generalization in the present paper.
Also, the assumption that M is closed can be relaxed. The proof of Theorem 1.1
goes through (word for word) assuming that M is a convex-cocompact hyperbolic
3-manifold.

The main application of Theorem 1.1 is the proof of the Simple Loop Theorem.
A map f : X → Y from a closed surface X into a compact manifold Y is essential if
the induced map f∗ : π1(X)→ π1(Y ) is injective. We say that f is incompressible
if there exists an essential simple closed loop on X which lies in the kernel of f∗.

Theorem 1.2 (The Simple Loop Theorem). Let f : S → M be an incompressible
homotopy class of maps from a closed orientable surface S into a closed orientable
negatively curved 3-manifold M . Then f is essential.

Remark. The proof of Theorem 1.2 goes through when M is a convex cocompact
hyperbolic 3-manifold.

In the first part of the paper (Sections 1-10) we prove Theorem 1.1. In the
remaining sections we discuss the background, outline the idea, and prove Theorem
1.2 using Theorem 1.1. The first part of the paper is mathematically independent
of the second part. However, the two parts complement one another and naturally
belong in the same paper.

1.1. Whitney’s general position. We begin by recalling the notion of Whitney’s
general position.

Definition 1.2. A C2 smooth map f : Σ → M is in Whitney’s general position
(or just general position) at a point p ∈ Σ if

(1) f is an immersion near p, or

(2) for any choice of local coordinates (x1, x2) for which ∂f
∂x1

(p) = 0, the vectors
∂f
∂x2

(p), ∂2f
∂x1∂x1

(p), ∂2f
∂x1∂x2

(p) are linearly independent.

We say that f : Σ → M is in general position if it is in general position at every
p ∈ Σ.

Remark. Whitney showed (the second page in [34]) that if the second condition
holds for one pair of local coordinates, then it holds for any pair of local coordi-
nates. Thus, assuming that f is not an immersion near p, to show that f is in
general position at p, it suffices to find one pair of local coordinates such that the
corresponding three vectors are linearly independent at Tf(p)M .

This technical (and seemingly uninformative) definition represents the analytical
way of writing that the only singularities of f (the points where Rank(df) < 2) are
Whitney’s umbrellas. These singularities are isolated and the rank of df is equal to
one at such points. Consequently, surfaces in general position have at most finitely
many points which are not regular.

Being in general position is an open condition (with respect to the C2 metric
on the space of mappings). Singularities of surfaces in general position are stable
under small perturbations. This observation yields the following corollary.
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Proposition 1.1. Suppose gt : Σ → M , 0 ≤ t ≤ 1, is a continuous (in the C2

sense) path of mappings in general position. If g0 is an immersion then so is every
gt.

The significance of Definition 1.2 steams from the Whitney’s result (Theorem 2
in [34]) that every C2 smooth map can be perturbed (in the C2 sense) to a map in
general position. Let U denote a connected component of the space of C2 mappings
from Σ to M . By UW we denote its subset consisting of surfaces which are in general
position. The Whitney’s result states that UW is an open and everywhere dense
subset of U . However, UW is not connected!

Remark. This can be seen as follows. There exist immersions f, g : Σ→ M which
are smoothly homotopic to each other, but not through a regular homotopy. Given
any immersion f , one can construct the second immersion g by endowing f with
“kinks” (see [14]).

However, if we restrict to harmonic maps the outcome is different. This is the
content of Theorem 1.1. So, the question is what prompts this difference between
the harmonic and the general case. Heuristically speaking, the answer is the fol-
lowing. For a given harmonic map f : (Σ, µ) → (M,ν), let z = x + i y denote the
local complex coordinate in which Hopf(f) ≡ 1. Then, if f is not an immersion
near p, we have

∂f

∂y
(p) = 0,

∂f

∂x
(p) 6= 0,

∂f

∂x
(p) ⊥ ∂2f

∂y∂y
(p), and

∂f

∂x
(p) ⊥ ∂2f

∂y∂x
(p).

Therefore, to show that the three vectors ∂f
∂x (p), ∂

2f
∂y∂y (p), ∂

2f
∂y∂x (p) are linearly

independent it suffices to show that the last two vectors are linearly independent.
This suggests that the set of harmonic maps which are not in general position has
larger codimension than the corresponding set in the general case (which means
that the space of harmonic maps in general position has a bigger chance of being
connected than its general counterpart).

This remarkable and easy to establish property of harmonic maps shows that
harmonic maps are (relatively speaking) more likely to be in general position than
general maps. But to turn this into a valid argument we need to find a coordinate
free condition for harmonic maps to be in general position, and then compute the
codimension of the space of harmonic surfaces which are not in general position.

1.2. Harmonic surfaces. Given a map f : Σ → M , we let F = f−1TM denote
the pull back vector bundle over Σ. Sections of F are labeled as Γ(F).

Suppose µ and ν are Riemannian metrics on Σ and M respectively. By ∇F we
denote the pull back connection of the Levi-Civita connection ∇ν on M , and by ∇T

the induced connection on the tensor product T = T ∗Σ⊗F (where T ∗Σ is endowed
with the Levi-Civita connection of µ). The second fundamental form ∇Tdf of the
map f is given by

(1) ∇Tdf(X,Y ) = ∇F
Xdf(Y )− df(∇µXY )

where X,Y are vector fields on Σ. The bilinear form ∇Tdf is symmetric (see
Corollary 2.13 in [8]), and we get

(2) ∇F
Xdf(Y )−∇F

Y df(X) = df([X,Y ])
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where [X,Y ] is the Lie bracket.

Definition 1.3. We say that f : (Σ, µ) → (M,ν) is harmonic if τ ≡ 0, where the
tension field τ = τ(f, µ, ν) ∈ Γ(F) given by τ = Traceµ(∇Tdf).

Recall that each Riemannian metric µ yields the unique marked Riemann surface
Σµ on which µ becomes a conformal metric. With respect to a local complex
coordinate z = x+ iy on Σµ, the harmonic map equation becomes

(3) ∇F
∂
∂x
df

(
∂

∂x

)
+∇F

∂
∂y
df

(
∂

∂y

)
= 0.

Throughout the paper we abbreviate f = fµ,ν whenever possible. Thus, f :
(Σ, µ) → (M,ν) always stands for a harmonic map, and we write fµ,ν only when
it is necessary to point out the dependence on the metrics. The connection ∇F is
often used so from now on we abbreviate

∇ def
= ∇F.

A word on singular points of f . A point p ∈ Σ is called a branch point of f if
rank(df)(p) = 0. A point p ∈ Σ is called a regular point of f if rank(df)(p) = 2
(clearly f is an immersion near a regular point). The set of regular points of f is
denoted by Σreg(f). Assuming that f∗(π1(Σ)) is not a cyclic subgroup in π1(M),
it follows from Theorem 3 in [29] that Σreg(f) is open and dense subset of Σ.

1.3. The Hopf differential. We let TMC = TM ⊕ iTM denote the complexifi-
cation of TM and E = f−1TMC its pullback. Each section W of E is uniquely
written as W = Re(W ) + i Im(W ), where Re(W ) and Im(W ) are the sections of F.

Let z = x + i y denote a local complex parameter on Σµ. Set df
(
∂
∂x

)
= fx,

df
(
∂
∂y

)
= fy, and

df

(
∂

∂z

)
=

1

2
df

(
∂

∂x
− i

∂

∂y

)
=

1

2
(fx − i fy) = fz.

It is easily checked that

(4) (f ◦ h)w = (fz ◦ h)h′,

for a holomorphic map h such that h(w) = z. Therefore, fz is a E-valued (1, 0)-form
on Σ and

Hopf(f) = 〈fz, fz〉,
is a holomorphic quadratic differential called the Hopf differential of f . Here 〈·, ·〉 =
〈·, ·〉ν is the inner product on F pulled back from TM (this inner product extends
to the complex bilinear form on E which we also denote by 〈·, ·〉). A map f is said
to be minimal if it is harmonic and conformal at the same time. Thus, f is minimal
if and only if Hopf(f) ≡ 0.

We also note the formula for the derivative of the Hopf differential

(5) (Hopf(f))z = 2〈∇zfz, fz〉.
This formula holds because ∇ is pull back of the Levi-Civita connection from (M,ν)
(see (1.8) in [8]).

Remark. The complex vector bundle E supports the unique holomorphic structure
such that the (0, 1) part of the connection ∇T agrees with the standard ∂ (see
Section 2 in [21]). The harmonic map equation becomes ∇zfz ≡ 0, that is, fz is a
holomorphic E-valued 1 form.
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1.4. The E-valued quadratic differential M(f). Given a (non-conformal) har-
monic map f : (Σ, µ)→ (M,ν), we let

(6) M(f) = −1

2

(
∇zfz −

〈∇zfz, fz〉
〈fz, fz〉

fz

)
,

where z is a local complex parameter on Σ, and we abbreviate

∇z
def
= ∇ ∂

∂z
.

Remark. For a fixed local complex parameter z near p, the vector M(f)(p) ∈ Ep is
the projection of the vector − 1

2∇zfz onto the orthogonal complement of the vector
fz(p) ∈ Ep.

Let
∇Hdf(X,Y ) = ∇F

Xdf(Y )− df(∇|Hopf(f)|
X Y )

denote the second fundamental form of the map f where instead of the metric µ
we take the singular flat metric |Hopf(f)||dz2| on Σ. It is routinely checked that

(7) M(f) = ∇Hdf

(
∂

∂z
,
∂

∂z

)
.

Therefore

(8) M(f ◦ h) = (M(f) ◦ h) (h′)2,

where h is a holomorphic map such that h(w) = z. Thus, M(f) is a well defined
E-valued quadratic differential on Σ minus the zeroes of the Hopf differential.

Remark. Since (M,ν) is negatively curved, it can be shown that providing f is not
a constant function then M(f) ≡ 0 if and only if f maps Σ onto a closed geodesic
in M . This suggests that M(f) contains information about the geometry of the
harmonic surface f(Σ).

1.5. Harmonic maps in general position. For p ∈ Σ, we let Rank(fz)(p) denote
the dimension of the vector subspace of Fp spanned by the vectors Re(fz)(p) and
Im(fz)(p). Similarly, Rank(M(f))(p) is the dimension of the vector subspace of Fp
spanned by Re(M(f))(p) and Im(M(f))(p).

From (4) and (8) we derive that Rank(fz)(p) and Rank(M(f))(p) do not depend
on the choice of the complex parameter z. Clearly, Rank(fz)(p) = Rank(df)(p),
and f is an immersion near p if and only if Rank(fz)(p) = 2. The following is the
key lemma.

Lemma 1.1. A non-conformal harmonic map f : (Σ, µ) → (M,ν) is in general
position at a point p ∈ Σ if and only

(1) Rank(fz)(p) = 2, or
(2) fz(p) 6= 0 and Rank(M(f))(p) = 2.

If f is a conformal harmonic map, then f is in general position if and only if
fz(p) 6= 0 for every p ∈ Σ (in which case f is an immersion).

Proof. A minimal map is in general position if and only if it is an immersion. On
the other hand, the only singularities of minimal maps are branch points. Thus, if
f has no branch points then it is an immersion. Therefore, the proposition holds for
minimal maps. In the rest of the proof we assume that Hopf(f) is not identically
zero.
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Consider first the case when p is a zero of Hopf(f). Then either fz(p) = 0, or f
is conformal at p, in which case Rank(fz)(p) = 2. This confirms the lemma when
p is a zero of Hopf(f).

It remains to analyze the case when p is not a zero of Hopf(f). The map f is
an immersion near p if and only if Rank(fz)(p) = 2. Suppose Rank(fz)(p) < 2.
Then Rank(fz)(p) = 1 because p is not a branch point (which can only occur at
the zeroes of Hopf(f)). In the remainder we show that f is in general position if
and only if Rank(M(f))(p) = 2. Since Rank(M(f))(p) is independent of the local
complex parameter, we are free to choose the one that is most suitable to compute
it.

Let z be the local parameter near p such that Hopf(f) ≡ 1. Then fy(p) = 0 and
fx(p) 6= 0. The identity (5) yields

(9) 〈∇zfz, fz〉 ≡ 0.

This formula has two important corollaries. The first one

(10) M(f) = −1

2
∇zfz,

is obtained by replacing (10) in (6). The second one

(11) Re(fz)(p) ⊥ Re (M(f)) (p) and Re(fz)(p) ⊥ Im (M(f)) (p),

follows from the equality fz(p) = fx(p) = Re(fz)(p), which in turn follows from
fy(p) = 0.

From (10) we compute

Re(M(f)) = −1

2
(∇xfx −∇yfy), Im(M(f)) = −1

2
(−∇xfx −∇yfx).

Together with (3) and (2), this yields

(12) Re(M(f)) = ∇yfy, Im(M(f)) = ∇yfx,

where we use the identity [ ∂∂x ,
∂
∂y ] = 0.

Consider the flat metric induced by Hopf(f) near p and choose the normal coor-
dinates on M near f(p) for the metric ν on M . Then, with respect to these local
coordinates, and using (12), we compute the second fundamental form of f and
obtain that the following hold at the point p

Re(fz) =
∂f

∂x
, Im(fz) =

∂f

∂y
,

(13)

Re(M(f)) =
∂2f

∂y∂y
, Im(M(f)) =

∂2f

∂y∂x
.

Remark. The left-hand side in each of the above equalities is a vector in F, while
the right-hand side is a vector in TM . The equality sign means that the image of
the left-hand side under the bundle morphism F→ TM is equal to the right-hand
side in TM .
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Thus, the identities (13) imply that f is in general position at p if and only if the
three vectors Re(fz)(p), Re(M(f))(p), and Im(M(f))(p) are linearly independent
in Fp. From (11), and since Re(fz)(p) 6= 0, we conclude that these three vectors are
linearly independent if and only the last two vectors Re(M(f))(p) and Im(M(f))(p)
are linearly independent. But this is equivalent to Rank(M(f))(p) = 2, and we are
done.

�

1.6. Vector bundles and the universal cover. Since M is a closed, and ori-
entable 3-manifold its tangent bundle is trivial. Therefore, there is an isomorphism
TMC → C3 ×M , and we let

σ : TMC → C3

denote the projection onto the first factor which restricts to an isometry σ : TMC
p →

C3 between the inner products ν on TMC
p and the standard inner product on C3.

Unless otherwise stated, the dimension (codimension) refers to the real dimension
(codimension). Define the submanifold E ⊂ C3 ⊕ C3 by letting

E = {(A,B) ∈ C3 ⊕ C3 : 〈A,B〉 = 0, and A 6= 0}.

We also define the submanifold L ⊂ E by

L = {(A,B) ∈ E : Rank(A) = 1, and Rank(B) < 2}

(recall that Rank(C) denotes the dimension of the vector space spanned by Re(C)
and Im(C)). We observe that the codimension of L in E is equal to four.

To prove Theorem 1.1 we show that M \MW is of codimension two as a subset
of M. We construct the map

Ψ : Σ̂×M′ → E ,

where Σ̂ denotes the universal cover of Σ, and M′ a suitable open, dense, and
connected subset of M. We then observe that

Σ̂× (M′ \MW ) = Ψ−1(L).

Thus, the codimension of the submanifold Σ̂ × (M′ \MW ) is four which implies
that the codimension of the set M′ \MW is two. Of course, this argument assumes
that Ψ is transverse to L, and the remainder of the first part of the paper (after
this section) is devoted to proving this.

Let Σ̂ denote the universal cover of Σ which is diffeomorphic to the unit disc D.

The lift of the metric µ to Σ̂ is also denoted by µ, and the lift of the harmonic map

fµ,ν is also denoted by fµ,ν : (Σ̂, µ)→ (M,ν).

The Riemannian manifold (Σ̂, µ) is isometric to (D, g), where g the hyperbolic
metric on D. Moreover, we identify the Riemann surface Σµ with D/Γµ, where Γµ
is a smoothly varying family of Fuchsian groups acting on D. Let z ∈ D denote the
complex parameter. This provides us with the canonical complex parameter zµ = z

on Σ̂ which depends only on µ (and not on ν).

1.7. The map Ψ. Recall that M = M(Σ) × M(M), where M(Σ) and M(M)
are open and connected sets of hyperbolic metrics on Σ, and negatively curved
Riemannian metrics on M respectively. By M0 ⊂ M we denote the set of pairs
(µ, ν) such that fµ,ν has at least one branch point (a point where Rank(df) equals
zero).
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Let

X = Σ̂× (M \M0).

The harmonic map f = fµ,ν has no branch points when (µ, ν) ∈ M \M0. So, if
f is a minimal map then it is an immersion and Rank(fz) = 2 everywhere on Σ.
Similarly, if p is a zero of Hopf(f), or it is sufficiently close to a zero of f , then f is
an immersion near p, and again Rank(fz) = 2. Thus, we can construct a smooth
function ξ : X → R with the following properties:

• ξ ≡ 1 on an open subset of X , containing every (p, µ, ν) such that Rank(fz)(p) =
1, where f = fµ,ν ,

• ξ ≡ 0 on an open set X , containing every (p, µ, ν) such that either fµ,ν is a
minimal map, or p is a zero of Hopf(fµ,ν) providing fµ,ν is not minimal,

• ξ is equivariant, meaning that ξ(A(p), µ, ν) = ξ(p, µ, ν) for every A ∈ Γµ.

Define the map Ψ : X → E , by

Ψ(p, µ, ν) = (σ(fz(p)), σ(ξM(f)(p)))

where f = fµ,ν , ξ = ξ(p, µ, ν), and z = zµ (we evaluate fz and M(f) with respect
to zµ). See the remark after the definition of M(f) as to why the image of Ψ lies
in E .

Remark. We use ξ to smoothly extend the map Ψ to the points in X at which
M(fµ,ν)(p) is not well defined. However, in practice we are only concerned with
the values of Ψ on the set where ξ ≡ 1.

From (4) and (8) we conclude that Ψ is equivariant in the sense that

(14) Ψ(A(p), µ, ν) =
(
fz(A(p))A′(p), ξM(f)(A(p))A′(p)2

)
.

We let

Q = Ψ−1 (L) .

The set Q is invariant under the action of Γµ. That is, (p, µ, ν) ∈ Q if and only if
(A(p), µ, ν) ∈ Q for every A ∈ Γµ.

Recall that MW is the set of harmonic maps in general position. The significance
of Ψ steams from the identity

(15) (M \M0) \ π(Q) = MW ,

where π : X →M is the projection onto the second factor.
This is an immediate consequence of Lemma 1.1. Indeed, suppose (µ, ν) ∈

(M \M0) \ π(Q). This means that for every p ∈ Σ, either Rank(fz)(p) = 2, or
Rank(M(f))(p) = 2, or both. If Rank(fz)(p) = 2 then f is an immersion near p.
Also, since f does not have branch points (for (µ, ν) ∈ (M \M0)), it follows that
(µ, ν) ∈ (M \M0) \ π(Q) if and only if Rank(fz)(p) = 2, or Rank(fz)(p) = 1 and
Rank(M(f))(p) = 2. By Lemma 1.1 this is equivalent to (µ, ν) ∈MW , and we are
done.
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1.8. The Transversality Theorem. We show that Ψ is transverse to L.

Theorem 1.3. Suppose that genus of Σ is at least seven. Then, there exists an
open, dense, and connected set M′ ⊂M with the following properties

(1) M′ ⊂ (M \M0) (in particular, Ψ is well defined on M′),

(2) the restriction of Ψ to Σ̂×M′ is transverse to L.

If we show that MW ∩M′ is an open, dense, and connected subset of M′, then it
follows that MW is an open, dense, and connected subset of M. In the remainder of

the section we rename M′ to M, and assume that Ψ is transverse to on Σ̂×M = X .
We can now summarize the main idea behind the proof of Theorem 1.1, the idea

we hinted at earlier. Suppose Ψ is transverse to L. Then by the Transversality
Theorem in Banach spaces, the set Q is a submanifold of X of codimension four
because L has codimension four in E . Therefore, the subset (if not quite a subman-
ifold) π(Q) ⊂M is of codimension at least two. It follows that π(Q) is closed and
nowhere dense in M, and in turn this means (see (15)) that MW is open and dense
in M.

Remark. The above argument indicates that MW is a connected subset of M be-
cause removing the closed, and nowhere dense set π(Q) of codimension at least two
does not disconnect M. But π(Q) may not be a submanifold of M so we need to
work in X because Q is a submanifold of X .

1.9. Proof of Theorem 1.1. We define F : M → C(Σ,M) by F (µ, ν) = fµ,ν ,
where fµ,ν : (Σ, µ)→ (M,ν) is the unique harmonic map in the homotopy class f .
Then F is a Cn,α-smooth map between the Banach manifolds M and C(Σ,M) (see
[7]). This implies that Ψ is smooth and we can apply the Sard-Smale Transversality
Theorem. In view of (15), to prove Theorem 1.1 it suffices to prove that M \ π(Q)
is open, dense, and connected subset of M.

From Theorem 1.3 and the Transversality Theorem for Banach manifolds (see
Corollary 17.2 in [3]), we deduce that Q is a Banach submanifold of X of codimen-
sion four.

Remark. Let g : A → B be a smooth map between (real) Banach manifolds and
C ⊂ B a submanifold (not necessarily closed). If B is finite dimensional then
g−1(C) is a submanifold of A whose codimension is equal to the codimension of C
in B. If B is not finite dimensional additional assumptions are needed to ensure
that g−1(C) is a submanifold of A.

Let π1 : Q →M denote the restriction of the projection π : X →M. Since Q is

of codimension four, and Σ̂ is of dimension two, it follows that the codimension of
the tangent subspace dπ1(Q) < TM is at least two. Here dπ1 is the derivative of
π1.

Therefore π1(Q) is a closed and nowhere dense subset of M. This also indicates
that MW is connected. But dπ1 may not be an embedding so we can not claim
that π1(Q) is a submanifold of M. Instead, we work in X and give a direct proof
using the basic transversality theory.

Let γ : [0, 1] → M be a path whose endpoints lie in MW . We show that γ can
be perturbed (while keeping the endpoints fixed) to be entirely contained in MW .
First, we partition [0, 1] into sufficiently small intervals whose image under γ is



10 VLADIMIR MARKOVIC

contained in a subset of M which fits into a single chart in the model Banach space
for M.

Suppose (µi, νi) ∈M, i = 0, 1, are contained in this chart, and suppose (µ0, ν0) ∈
MW . We show that one can perturb (µ1, ν1) ever so slightly, so that the straight
line which connects (µ0, ν0) and the perturbed (µ1, ν1) is contained in MW (we are
now in the model Banach space and the straight line refers to the linear combination
t(µ0, ν0) + (1− t)(µ1, ν1), t ∈ [0, 1]).

Let U ⊂ M be a small neighborhood of (µ1, ν1) and consider the map β :

U × (Σ̂× [0, 1])→ E given by

β((µ, ν), (p, t)) = Ψ
(
t(p, µ0, ν0) + (1− t)(p, µ, ν)

)
.

Here t(p, µ0, ν0) + (1 − t)(p, µ, ν) is the element of Σ̂ × U for a fixed t ∈ [0, 1]. It
follows from Theorem 1.3 that β is transverse to L.

From the Parametric Transversality Theorem (see Theorem 19.1 in [3]), we con-

clude that for a generic point in (µ, ν) ∈ U , the evaluation map δµ,ν : Σ̂× [0, 1]→ E
given by

δ(p, t) = β((µ, ν), (p, t)),

is transverse to L. Since the dimension of Σ̂× [0, 1] is three, and the codimension

of L in E is four, it follows that δ(Σ̂ × [0, 1]) is disjoint from L. This implies that
the path

π (β((µ, ν), (p, t)))) ⊂MW

connects (µ0, ν0) and (µ, ν).
As promised, we managed to perturb (µ1, ν1) to a nearby point (µ, ν) such that

the straight line connecting (µ0, ν0) and (µ, ν) is entirely contained in MW . Re-
peating this, we perturb γ to obtain the new path γ̂ which is entirely contained in
M \M0.

Moreover, we can do this so that γ̂(1) is as close to γ(1) as we want to. Once the
points γ(1), γ̂(1) ∈MW are sufficiently close to each other to fit in a single chart,
we can connect them by the straight segment γ′ ⊂ MW (for MW is open). The
concatenation γ′ · γ̂ is contained in MW and it connects γ(0) and γ(1). This shows
that MW is connected. This completes the proof of Theorem 1.1.

1.10. Outline. It remains to prove Theorem 1.3. The central part of the proof is
contained in sections two, three, and four. In the remaining sections we tie up loose
ends using the methods introduced in the first four sections of the paper.

In Section 2 we compute the derivative dΨ which is needed in order to show that
the map Ψ is transversal to L. The formula for dΨ is obtained from the standard
formulas computed by Eells-Lemaire in [7], [8].

Perhaps the most essential part in proving the transversality are the Reproducing
formulas established in Section 3 (and again in Appendix A using the δ method).
These formulas recover the values of a section V ∈ Γ(F), and its first and second
derivatives, from the section JV . The proof of these formulas rests on the fact
that the Jacobi operator J is an isomorphism (which follows from the assumption
that (M,ν) has negative curvature). This is one of the cornerstones of this paper.

In Section 4 we complete the proof of Theorem 1.3. Using the Reproducing
formulas we show that if the theorem does not hold, then there exists a reproducing
kernel K which is annihilated by all sections of F which arise from varying families
of harmonic maps (when the metric on M is being varied). We then show this to
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be impossible using Proposition 4.1 (see Moore’s paper [24] and book [23]) which
states that there are sufficiently many variations νt.

The proofs in Section 4 are given modulo Lemma 4.3 which says that removing
certain special metrics from M does not disconnect it. This includes removing har-
monic maps which have branch points and harmonic maps which are not somewhere
injective. In Section 5 we deal with harmonic maps which have branch points. We
show that M0 is a meager set and that removing it does not disconnect M. The
proof follows the exact same line as the proof that MW is connected, although the
fact that M \M0 is open, dense, and connected is shorter and simpler to prove. In
the particular, the auxiliary map Λ (which plays the role of Ψ) involves only the
first derivative fz.

One technical (but not very profound) complication that we have to address is
that harmonic surfaces may not be somewhere injective. In Section 6 we show that
the set of harmonic maps which are not somewhere injective, but do not factor
through a holomorphic cover Σ→ Σ1, is of dimension zero so it is pretty negligible
(we settle for proving that it does not disconnect M, but this stronger fact can be
established from our argument). The proof in Section 6 again follows the same line
as above and it rests on the transversality theorem established in Section 7.

The proofs in sections 5 and 7 require more precise information about the repro-
ducing kernels near their singularities. This is established in Section 8 (named the
Appendix A) where we recompute the kernels using the standard δ method.

In Appendix B (Section 9) we show that the set of exceptional Riemann surfaces
(defined below) does not disconnect the Teichmüller space. This ought to be well
known and it follows readily from the Riemann-Hurwitz formula. This is the only
place where we use that Σ has genus ≥ 7 (it is likely this assumption can be relaxed).

In Appendix C (Section 10) we show that if the harmonic map fµ,ν : Σ → M
factors through a local conformal map between two neighborhoods on Σ, then Σµ
is an exceptional Riemann surface. This is well known when f is a minimal map
[12], and it is borderline known in general. We observe that if a harmonic map f

has this property then its minimal suspension F : Σ̂→ M̂ × T has the exact same
property. Here T is the metric tree obtained from Hopf(f) (see Wolf’s papers [36],
[37]). The proof then reduces to the first case.

1.11. Acknowledgment. Beside the works of Eells-Lemaire [7] and Sampson [29],
there are other instances where Transversality theory on Banach manifolds have
been used to analyze spaces of harmonic maps. We mention just a few. In [4]
Bohme-Tromba study harmonic discs which span a fixed curve in R3. In Theorem
1.19 in [4] they compute the dimension of the space of harmonic discs having a fixed
number of branch points. Another example of this kind of investigation appear in
works by Moore [24] and [23]. He shows that minimal surfaces with respect to
generic Riemannian metrics on M (and without any curvature restrictions) do not
have branch points (in [23] this was done for dim(M) ≥ 4, and in [24] extended to
the case dim(M) = 3).

2. Finding the derivative of Ψ

Before we compute the derivative of Ψ, we must find the derivative of F : M→
C(Σ,M). First, we recall this well known computation [8]. We then compute dΦ
in preparation for the proof of Theorem 1.3.
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Remark. For our purposes it suffices to compute the restriction dF : {0}×TM(M).
Throughout the paper, we neither compute, nor use the formula for the derivative
dF in the TM(Σ) direction.

2.1. The Jacobi operator. Let f : (Σ, µ)→ (M,ν) be a smooth (not necessarily
harmonic) map. The Jacobi Operator Jf = J : Γ(F) → Γ(F) is given by (see
Definition 4.4 in [8])

(16) JV = ∆V − TraceµR(df, V )df, V ∈ Γ(F).

Here ∆ is the Laplacian induced by the connection ∇T, and R = RM is the cur-
vature tensor of the Levi-Civita connection of ν. If z = x + i y is a local complex
parameter, and µ a conformal metric, then

(17) JV = ∇x∇xV +∇y∇yV − |µ|−1 (R(fx, V )fx +R(fy, V )fy) .

The Jacobi operator is a second order strongly elliptic operator and it is self
adjoint

(18)

∫
Σ

〈JV,W 〉 dA =

∫
Σ

〈V,JW 〉 dA

for all V,W ∈ Γ(F). Recall that 〈·, ·〉 = 〈·, ·〉ν is the inner product on F induced by
the metric ν on M . We integrate over Σ with respect to the volume form dA = dAµ
corresponding to µ.

A section V ∈ Γ(F) is called a Jacobi field if JV ≡ 0. One of the cornerstones
of this paper is the following well known fact.

Proposition 2.1. Suppose (µ, ν) ∈M and let f = fµ,ν . Then, the Jacobi operator
Jf : Γ(F)→ Γ(F) is an isomorphism.

Remark. The proof of this proposition rests on the assumption that metrics in
M(M) have negative sectional curvatures. See Section 7 in [29] and [7]. A version
of this result for non-positively curved metrics (or metrics sufficiently close to being
non-positively curved) can be proved.

2.2. The derivative dF . Next, we compute the derivative of F : M→ C(Σ,M).
Fix (µ, ν) ∈ M and set f = fµ,ν . The tangent space Tµ,νM splits as Tµ,νM =
TµM(Σ)×TνM(M), while the tangent space TfC(Σ,M) is the space of vector fields
along the image surface f(Σ), and we have the natural identification TfC(Σ,M) =
Γ(F). We are only interested in computing the restriction of dF to {0}× TM(M).

Pick a tangent vector
.
ν ∈ TνM(M), and let νt ∈M(M) be a variation such that

∂νt
∂t

=
.
ν.

Let ft : (Σ, µ) → (M,νt) denote the corresponding path of harmonic mappings
ft = fµ,νt . Then, there exists a unique section V ∈ Γ(F) such that

(19) ft(p) = expf(p) (tV (p)) +O(t2),

where the exponential map exp is defined with respect to ν. The section V is
uniquely determined by the equation (see formula (2.7) in [7], or (4) in [29], or [18])

(20) JV = Gµ,ν(
.
ν),

where

(21) Gµ,ν(
.
ν) =

∂τ

∂t
.
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Here τ = τ(fµ,ν , µ, νt) is the tension of field of the fixed map fµ,ν with respect to
the varying metrics νt.

Remark. The section V is uniquely determined by (20) because J is an isomorphism.

We write dF (0,
.
ν) = dF (

.
ν) = V ∈ Γ(F). The condition (22) is more succinctly

written as

(22) dF (
.
ν) = V =

∂ft
∂t

∣∣
t=0

.

2.3. The derivative of a varying family of maps. Let g : Σ→M be a smooth
map and choose any section U ∈ g−1TM . Set

(23) gt(p) = expg(p) (tU(p)) ,

where exp is computed with respect to a Riemannian metric ν on M (note that
g = g0). We let G : Σ × R → M be given by G(p, t) = gt(p), and let ∇G denote
the connection on G−1TM induced by the Levi-Civita connection for the metric ν
on M .

In this subsection we compute the first and second derivatives of the family of
maps gt without assuming that gt are harmonic maps. In the next subsection we
apply these results to our case.

Fix local complex parameter w = u+ i v near p ∈ Σ. Then (see Proposition 2.4
in [8])

(24) ∇G∂
∂t
gtw
∣∣
t=0

= ∇wU,

where ∇ is the connection on g−1TM induced by the Levi-Civita connection for
the metric ν on M .

Suppose νt is a smooth family of metrics on M . By ∇t where we denote con-
nection on (gt)−1TM induced by the Levi-Civita connection for νt. We have the
following formula.

Proposition 2.2. For simplicity of the notation we let x1 = u and x2 = v. Then
for fixed i, j ∈ {1, 2}, we have

(25) ∇G∂
∂t

(
∇txig

t
xj (p)

)
= ∇xi∇xjU(p) +Aij(p) +Bij(p),

where the coordinates of Aij(p) ∈ Fp are

Aγij =

(
.

Γ
γ

αβ

∂gα

xi

∂gβ

xj

)
,

with γ = 1, 2, 3, and

.

Γ
γ

αβ =
∂
(
νtΓγαβ

)
∂t

.

The vector Bij(p) ∈ Fp is given by

Bij(p) = R (gxi(p), U(p)) gxj (p).
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Remark. Since the second fundamental form of gt is symmetric, we have

∇G∂
∂t

(
∇txig

t
xj (p)

)
= ∇G∂

∂t

(
∇txjg

t
xi(p)

)
.

Therefore the right-hand sides in the corresponding formulas (25) have to agree.

This can be verified by observing that Aij(p) = Aji(p) since
.

Γ
γ

αβ =
.

Γ
γ

βα (for the
Levi-Civita connection is torsion free), and that

∇xi∇xjU(p)−∇xj∇xiU(p) = Bji(p)−Bij(p),

which follows from the Bianchi identities.

Proof. For fixed γ ∈ {1, 2, 3}, and i, j ∈ {1, 2}, the corresponding component of the
second fundamental form ∇tdgt is given by(

∇txidg
t

(
∂

∂xj

))γ
=
∂2(gt)γ

∂xixj
− µΓkij

∂(gt)γ

xk
+ νtΓγαβ

∂(gt)α

xi

∂(gt)β

xj
,

(see the third displayed formula on page 15 in Section (2.5) in [8]). As usual, we
abbreviate ∇ ∂

∂xi

= ∇xi . Then,(
∇txidg

t

(
∂

∂xj

))γ
=

(
∇xidgt

(
∂

∂xj

))γ
+ t

(
.

Γ
γ

αβ

∂gα

xi

∂gβ

xj

)
+O(t2).

We obtain

(26) ∇G∂
∂t

(
∇txig

t
xj

)
= ∇G∂

∂t

(
∇xigtxj

)
(p) +Aij(p).

It remains to compute

∇G∂
∂t

(
∇xigtxj

)
(p).

As shown by Eells-Lemaire (see the bottom of the page 27 in Section 4 in [8])(
∇ ∂

∂t
∇xigtxj

)
(p) = ∇xi∇xjU(p) +R (gxi(p), U(p)) gxj (p).

Thus, we get

∇G∂
∂t

(
∇xigtxj

)
(p) = ∇xi∇xjU(p) +Bij(p).

Together with (26) this implies (25).
�

2.4. A varying family of harmonic maps. We now compute the second deriv-
ative of gt assuming it is harmonic with respect to the metric νt on M .

Proposition 2.3. Let gt : (Σ, µ) → (M,νt) be a family of harmonic maps where
(Σ, µ) is a fixed Riemann surface. Suppose that Rank(gw)(p) = 1, and that w is the
local complex parameter near p such that Hopf(g) ≡ 1 (recall that g = g0). Then

(27) ∇G∂
∂t

(
∇twgtw(p)

)
= −∇v∇vU(p)− i∇u∇vU(p).

Proof. We have

∇twgtw(p) =
1

2

(
(∇tugtu(p)−∇tvgtv(p))− i (∇tugtv(p) +∇tvgtu(p))

)
.
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Since gt is harmonic we apply (3) and find that ∇tugtu(p) = −∇tvgtv(p). Moreover,
the second fundamental form ∇tdgt is symmetric and we get ∇tugtv(p) = ∇tvgtu(p).
Replacing this in the above formula yields

(28) ∇twgtw(p) = −∇tvgtv(p)− i∇tugtv(p).

On the other hand, we are assuming that Rank(gw)(p) = 1 and Hopf(g) ≡ 1
near p. Thus, gv(p) = 0. Replacing this into (25) implies

∇G∂
∂t

(
∇tvgtv(p)

)
= ∇v∇vU(p),

∇G∂
∂t

(
∇tugtv(p)

)
= ∇u∇vU(p),

because the corresponding A’s and B’s vanish since gv(p) = 0. Replacing this into
(28) proves the proposition.

�

2.5. The derivative of Φ. Fix a point (p0, µ0, ν0) ∈ X and let N ⊂ X be a small
neighborhood of this point. Define the auxiliary map

Φ : N → E

by

Φ(p, µ, ν) =

(
σ(fw(p)), −1

2
σ

(
∇wfw(p)− 〈∇wf(p)w, fw(p)〉

〈fw(p), fw(p)〉
fw(p)

))
,

where f = fµ,ν . Recall that σ : TMC → C3 ⊕ C3 is the projection. Here w is the
fixed local complex parameter near p0 such that Hopf(f0) ≡ 1, where f0 = fµ0,ν0 .
The map Φ is closely related to the map Ψ (we explain this connection below).
Right now, we compute the derivative of Φ.

Proposition 2.4. Suppose that Rank(f0
w)(p0) = 1. Let V be the section of F

determined by the equation JV = Gµ,ν(
.
ν). Assuming V (p0) = 0, we have

(29)

dΦ(0, 0,
.
ν) =

(
σ(∇wV (p0)), −1

2
σ
(
ϕ(0, 0,

.
ν)(p0)− 〈∇wf0

w(p0),∇wV (p0)〉f0
w(p0)

))
,

where

ϕ(0, 0,
.
ν)(p0) = ∇G∂

∂t

(
∇twf tw

)
(p0)− 〈∇G∂

∂t

(
∇twf tw

)
(p0), f0

w(p0)〉f0
w(p0).

Proof. Since Φ maps N into E ⊂ C3 ⊕ C3, the derivative dΦ(0, 0,
.
ν) is a vector

in the tangent space TE ⊂ T (C3 ⊕ C3). Since we assume V (p0) = 0, the vector
dΦ(0, 0,

.
ν) ∈ T (C3⊕C3) can be identified with the vertical lift of the corresponding

vector from C3 ⊕ C3.
Moreover, we can use any connection to differentiate Φ(p0, µ0, νt) because the

points f t(p0) and f0(p0) are O(t2) close to each other so for the purposes of differ-
entiation we may assume they are the same. For the same reason the derivative of
σ does not enter the computation either. We use the connection ∇G defined above.

Combining Proposition 2.3 and formula (24) we obtain (29). We also use the
facts that 〈∇wf0

w(p0), f0
w(p0)〉 = 0 and 〈f0

w(p0), f0
w(p0)〉 = 1 which hold because w

is the natural parameter for the map f0 (this takes care of extra terms that appear
after differentiating Φ(p0, µ0, νt)).

�
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2.6. The derivative of Ψ. Recall that z = zµ is the complex parameter on Σ̂
depending only on µ. We let α be the local conformal map near p0 such that
α(z) = w. Then λ(p)fw(p) = fz(p) and M(f)(p) = λ2(p)M(f ◦ α)(p), where
λ(p) = α′(p) (thus λ(p) 6= 0). This yields the formula

Ψ(p0, µ0, νt) =

(
λσ(f tw(p0)), −λ

2

2
σ

(
∇wf tw(p0)− 〈∇wf

t
w(p0), f tw(p0)〉

〈f tw(p0), f tw(p0)〉
f tw(p0)

))
,

where λ = λ(p0). Together with Proposition 2.4 this yields the following proposi-
tion.

Proposition 2.5. Suppose that Rank(f0
z )(p0) = Rank(f0

w) = 1. Let V be the
section of F determined by the equation JV = Gµ,ν(

.
ν). Assuming V (p0) = 0, we

have
(30)

dΨ(0, 0,
.
ν) =

(
λσ(∇wV (p0)), −λ

2

2
σ
(
ϕ(0, 0,

.
ν)(p0)− 〈∇wf0

w(p0),∇wV (p0)〉f0
w(p0)

))
,

where

ϕ(0, 0,
.
ν)(p0) = ∇G∂

∂t

(
∇twf tw

)
(p0)− 〈∇G∂

∂t

(
∇twf tw

)
(p0), f0

w(p0)〉f0
w(p0).

Remark. Recall the function ξ from the definition of Ψ. Note that ξ ≡ 1 on the set
where Rank(fz)(p) < 2, so ξ does not figure in the formula for dΨ as we are only
computing it at the points where Rank(fz)(p) < 2 (they are the only points in X
that are mapped to L under the map Ψ).

Proposition 2.6. Suppose that (p, µ, ν) ∈ X is such that Rank(fz)(p) = 1. Let
Z,W ∈ Ep be any two vectors and suppose that there exists

.
ν such that V (p) = 0,

∇wV (p) = Z, and ∇v∇vV (p) + i∇u∇vV (p) = W , where JV = Gµ,ν(
.
ν) and w the

local parameter near p such that Hopf(f) ≡ 1 near p. Then dΨ : T(p,µ,ν)X → TE is
surjective, and in particular Ψ is transverse to L at those points.

Proof. Follows readily from Proposition 2.3, Proposition 2.5, and the description
of the tangent space of E . Indeed, let (A,B) ∈ E . Then T(A,B)E is the vector space

T(A,B)E = {(X,Y ) ∈ C3 ⊕ C3 : 〈A, Y 〉+ 〈X,B〉 = 0}.
Letting

A = λσ(fw(p0)), B = −λ
2

2
σ (∇wfw(p0)) ,

we note that the image of dΨ : T(p,µ,ν)X → TE contains every pair (X,Y ) of the
form

X = λZ, Y =

(λ2

2
W

)
−
〈
(
λ2

2 W
)
, A〉

〈A,A〉
A− 〈B,X〉

λ2
A

 .

Here we use 〈A,A〉 = λ2. It is now clear that each pair (X,Y ) ∈ T(A,B)E is picked
up for some values of Z,W . The proposition is proved.

�
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3. The Reproducing formulas

As stated in (21), if V = dF (
.
ν) then JV = Gµ,ν(

.
ν). To prove Lemma 4.1 we

need to be able to compute the values of V , ∇zV , and ∇z∇zV , at a point p ∈ Σ, in
terms of JV . This is the content of the Reproducing Formulas we establish in this
section. These formulas hold for any harmonic surface f : (Σ, µ) → (M,ν) whose
Jacobi operator is an isomorphism.

3.1. Interior elliptic regularity theory. We recall standard estimates and facts
from the Elliptic Regularity Theory that we use. See Sections 10.1-10.4 in [25] for
the references.

For 1 ≤ p <∞ we let Lp(F) be the space of sections that are bounded in the Lp

norm || · ||p and by W 2,p(F) the Sobolev space of sections (with the Sobolev norm
|| · ||2,p) whose second derivatives are in Lp(F). For 0 < α < 1 and an integer k ≥ 0,
we let Ck,α(F) denote the Holder space of sections, with the Holder norm || · ||k,α,
whose k-th derivatives are α-Holder.

Below we recall some basic facts and estimates. The Sobolev inequality compares
different Sobolev norms.

Proposition 3.1. Let 1 < p < 2 and 2 < q be such that 1− 2
q = 2− 2

p . Then there

exists a constant C > 0 such that

||V ||1,q ≤ C||V ||2,p, V ∈ Γ(F).

The following is the Morrey inequality which relates the Sobolev and the Holder
norms (see Theorem 10.2.25 and it’s proof in [25] ).

Proposition 3.2. For every p > 2 there exists a constant C such that

||V ||0,α ≤ C||V ||1,p, V ∈ Γ(F)

where α = 1− 2
p .

We recall the basic Elliptic Interior estimates.

Lemma 3.1. Let p > 1 and 0 < α < 1. Then there exists a constant C > 0 such
that for every V ∈ Γ(F) the Interior Elliptic estimates

(31) ||V ||2,p ≤ C(||JV ||p + ||V ||p)

(32) ||V ||2,α ≤ C(||JV ||0,α + ||V ||0,α)

and the Poincaré inequality

(33) ||JV ||p ≤ C||V ||p
hold. Moreover, for every p > 1 and 0 < α < 1, the operator J extends to continuous
operator J : W 2,p(F)→ Lp(F) and J : W 2,α(F)→ C0,α(F). If J : Γ(F)→ Γ(F) is
an isomorphism then so are the extensions.

Given an open set Ω ⊂ Σ and V ∈ Γ(F), we write ||V ||p,Ω, ||V ||2,p,Ω, and
||V ||k,α,Ω, for the above defined norms of the restriction of V to Ω. Let Ω′ be
another open subset of Σ which is compactly contained in Ω. The following versions
of (31) and (32) hold

(34) ||V ||2,p,Ω′ ≤ C(||JV ||p,Ω + ||V ||p,Ω)

(35) ||V ||2,α,Ω′ ≤ C(||JV ||0,α,Ω + ||V ||0,α,Ω)

Finally we state the regularity of Lp weak solutions of the equation JV = 0.
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Proposition 3.3. Let Ω ⊂ Σ be an open set and suppose that for some 1 < p <∞
we have ||Vp,Ω|| <∞. If JV = 0 weakly on Ω, then V is smooth on Ω and JV ≡ 0.
Moreover, if (Σ, µ) and (M,ν) are real analytic, then so is V .

3.2. The zeroth derivatives. Throughout the rest of this section we fix a har-
monic map f : (Σ, µ) → (M,ν) such that Jf = J is an isomorphism. Fix a point
x ∈ Σ and let Fx denote the fiber of F over x and TxΣ the tangent space to Σ at
x.

Lemma 3.2. We let U ∈ Fx be a unit vector. Then there exists a smooth section
K = K(U, x) : Σ \ {x} → F such that

〈V (x), U〉 =

∫
Σ

〈JV,K〉 dA

for every section V ∈ Γ(F). Moreover, JK(p) = 0 for every p ∈ Σ \ {x} and
K ∈ Lr(F) for every r ≥ 1.

Proof. Let V ∈ Γ(F) and q > 2. Set α = 1− 2
q . Applying first Proposition 3.2, and

then Proposition 3.1, to estimate the norm ||V ||0,α from above, we obtain

|V (x)| ≤ ||V ||0,α ≤ C|||V ||1,q ≤ C1|||V ||2,p,

where p is determined by p = 2q
q+2 . Using (31) and (33) to estimate the norm

||V ||2,p from above, yields the inequality

(36) |V (x)| ≤ C2||JV ||p.

Define λ : Γ(F)→ R by

λ(W ) = 〈V (x), U〉
where V = J−1W . From (36) we get that for each W ∈ Γ(F) the inequality

|λ(W )| = |〈V (x), U〉| ≤ |U | |V (x)|
≤ C2||JV ||p = C2||W ||p

holds. Since Γ(F) is dense in Lr(F) it follows that λ extends to a bounded linear
functional on Lp(F). By the Riesz Representation Theorem there exists K ∈ Lr(F)
such that

λ(W ) =

∫
Σ

〈W,K〉 dA.

Here 1
p + 1

r = 1, so by choosing the appropriate q > 2 we can reach every r > 2.

It remains to show K is smooth, and that JK = 0 away from x . Let V ∈ Γ(F)
be any section which is equal to zero near x. From the definition of K, and using
that J is self-adjoint, we obtain

0 = 〈V (x), U〉 =

∫
Σ

〈JV,K〉 dA =

∫
Σ

〈V,JK〉 dA.

Therefore, K is a weak solution of JK = 0 on Σ\{x}. The lemma now follows from
Proposition 3.3.

�
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3.3. The first derivatives.

Lemma 3.3. We let X1 ∈ TxΣ and U ∈ Fx be unit vectors. Then there exists a
smooth section K = K(X1, U, x) : Σ \ {x} → F such that

〈(∇X1
V )(x), U〉 =

∫
Σ

〈JV,K〉 dA

for every section V ∈ Γ(F). Moreover, JK(p) = 0 for every p ∈ Σ \ {x} and
K ∈ Lr(F) for every 1 ≤ r < 2.

Remark. In Appendix A we manually compute K using the ∂-bar technique applied
to the complexified bundle F⊗C and the Koszul-Malgrange holomorphic structure
on it.

Proof. Let V ∈ Γ(F) and let q > 2 and set α = 1− 2
q . Applying Proposition 3.2 to

estimate the norm ||∇X1
V ||0,α from above, we get

|(∇X1
V )(x)| ≤ ||∇X1

V ||0,α ≤ C|||∇X1
V ||1,q ≤ C||V ||2,q.

In the last inequality we used |X1| = 1. Using (31) and (33) to estimate the norm
||V ||2,q from above yields the inequality

(37) |(∇X1
V )(x)| ≤ C1||JV ||q.

Define λ : Γ(F)→ R by

λ(W ) = 〈(∇X1
V )(x), U〉

where V = J−1W . From (38) we get that for each W ∈ Γ(F) the inequality

|λ(W )| = |〈(∇X1
V )(x), U〉| ≤ |U | |(∇X1

V )(x)|
≤ C1||JV ||q = C1||W ||q

holds. Since Γ(F) is dense in Lq(F) it follows that λ extends to a bounded linear
functional on Lq(F). Let 1 < r < 2 be given by the formula 1

r + 1
q = 1. By the

Riesz Representation Theorem there exists K ∈ Lr(F) such that

λ(W ) =

∫
Σ

〈W,K〉 dA.

That K is smooth and JK = 0 on Σ \Ω is proved in exactly the same way as in the
previous lemma.

�

3.4. The second derivatives.

Proposition 3.4. We let X1, X2 ∈ TxΣ and U ∈ Fx be unit vectors and denote
by Ω a neighborhood (with C1 boundary) of the point x ∈ Σ. Then there exists a
smooth section KΩ = K(X1, X2, U, x,Ω) : Σ \ Ω→ F such that

〈(∇X1∇X2V )(x), U〉 =

∫
Σ

〈JV,KΩ〉 dA

for every section V ∈ Γ(F) for which JV = 0 on Ω. Moreover, JK(p) = 0 for every
p ∈ Σ \ Ω.
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Proof. Let Γ0(F) ⊂ Γ(F) be the subset containing sections which are equal to 0
on Ω, and let V ∈ Γ(F) be such that JV ∈ Γ0(F). Choose an open set Ω′ ⊂ Ω
which contains x. From the definition of the Holder norm and using the assumption
|X1|, |X2| = 1 we obtain

|(∇X1
∇X2

V )(x)| ≤ ||V ||2,α,Ω′

for every 0 < α < 1. We use (35) to estimate ||V ||2,α,Ω′ from above. Since JV = 0
on Ω, we derive the estimate

|(∇X1
∇X2

V )(x)| ≤ ||V ||2,α,Ω′ ≤ C||V ||0,α,Ω ≤ C||V ||0,α.

Let q > 2 and set α = 1− 2
q . The previous inequality together with Proposition

3.2 yields

|(∇X1
∇X2

V )(x)| ≤ C1||V ||1,q ≤ C1||V ||2,q.
Together with (31) and (33) this gives

(38) |(∇X1
∇X2

V )(x)| ≤ C2||JV ||q.

Define λ : Γ0(F)→ R by

λ(W ) = 〈(∇X1
∇X2

V )(x), U〉

where V = J−1W . Then

|λ(W )| = |〈(∇X1
∇X2

V )(x), U〉| ≤ |U | |(∇X1
∇X2

V )(x)|
≤ C2||JV ||q = C2||W ||q.

Denote by Lq0(F) the Lq sections of F supported in Σ \ Ω. Since Ω has C1

boundary Γ0(F) is dense in Lq0(F) (this is a standard result in the theory of Sobolev
spaces, see [25]). Hence, λ extends to a bounded linear functional on Lq0(F). Let
1 < p < 2 be given by the formula 1

p + 1
q = 1. Again, by the Riesz Representation

Theorem there exists KΩ ∈ Lp0(F) such that

λ(W ) =

∫
Σ\Ω

〈W,KΩ〉 dA.

That K is smooth and JK = 0 on Σ\Ω is proved in exactly the same way as above.
�

Let Ω(n) be a decreasing sequence of domains such that⋂
Ω(n) = {x}.

If n ≥ m then KΩ(n) = KΩ(m) on Ω(m). This follows from the uniqueness part of
the Riesz Representation Theorem. Therefore, the sequence KΩ(n) converges to a
smooth section K : Σ \ {x} → F such that JK = 0 away from x.

Let V ∈ Γ(F) such that JV (x) = 0. Denote by Γn(F) ⊂ Γ(F) the subset
containing sections which are equal to 0 on Ω(n). Then one can find a sequence
Vn ∈ Γn(F) such that JVn → JV in the C0,α-norm for every 0 < α < 1 (but not in
the C1 sense).

By Proposition 3.1 we have that J : W 2,α(F) → C0,α(F) is a continuous iso-
morphism. Thus, Vn → V in the W 2,α-norm which implies that ∇X1

∇X2
Vn →
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∇X1
∇X2

V . Combining this with Proposition 3.4 yields the equality

〈(∇X1∇X2V )(x), U〉 = p.v.

∫
Σ

〈JV,K〉 dA.

The integral on the right hand side in the previous formula is defined as the Cauchy
Principal Value. By construction, the limit

lim
n→∞

∫
Σ\Ω(n)

〈JV,K〉 dA

exists whenever JV (p) = 0, and V is smooth on Σ. This enables us to define

p.v.

∫
Σ

〈JV,K〉 dA = lim
n→∞

∫
Σ\Ω(n)

〈JV,K〉 dA.

We have just established the following lemma.

Lemma 3.4. We let X1, X2 ∈ TxΣ and U ∈ Fx be unit vectors. There exists a
smooth section K = K(X1, X2, U, x) : Σ \ {x} → F such that

〈(∇X1
∇X2

V )(x), U〉 = p.v.

∫
Σ

〈JV,K〉 dA

for every V ∈ Γ(F) for which JV (x) = 0. Moreover, JK = 0 away from x.

Remark. The fact the the limit on the right-hand side exists (in the displayed
formula in Lemma 3.4) tells us something about the growth of the kernel K near x.
For example, if K is the real part of a meromorphic section of E, then such section
can have at most the second order pole at x. We use this observation in the next
section.

Remark. In fact, one can compute K explicitly (see Appendix A) and show that it
has a second order pole at x.

4. Proof of Theorem 1.3

Using Reproduction Formulas one can prescribe the 2-jet of a section V ∈ F at a
point p ∈ Σ by choosing appropriate JV . This is exactly what is required to prove
Theorem 1.3, except that in this case we have the constraint JV = G(

.
ν). So, we

need to prove that there are sufficiently many tangent vectors
.
ν such that when we

replace JV = G(
.
ν) in the Reproduction Formulas we can recover any given 2-jet at

any given point on Σ.
This problem reduces to the following question: Does there exist a (non-trivial)

reproducing kernel K which is annihilated by all possible sections of the form G(
.
ν).

To answer this question we employ the following result of Moore. Suppose that K
is annihilated by all sections of the form G(

.
ν), where

.
ν has a support in some open

disc Ω ⊂ Σreg(f). Then K is local section of the holomorphic line bundle L < E on
Ω.

Assuming K is real analytic (which is the case providing µ and ν are real analytic)
we show that K is a holomorphic section of L on Σ \ {p}. Therefore, we need to
ensure that the kernel K does not agree with a holomorphic local section of the line
bundle L on some open subset of Σ.
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4.1. Special metrics. We recall the notion of somewhere injective maps (origi-
nating in symplectic topology). A map f : Σ → M is somewhere injective if there
exists an open subset Ω ⊂ Σ on which the restriction of f is injective.

Definition 4.1. We say that a Riemann surface Σ is exceptional if one of the
following holds:

(1) Σ is a branched holomorphic cover of another Riemann surface of genus at
least two,

(2) Σ has an anti-holomorphic involution,
(3) Σ is a branched holomorphic cover of the Riemann sphere of degree at most

four.

Definition 4.2. We say that a pair of metrics (µ, ν) ∈ M is special if it satisfies
one of the following conditions:

(1) fµ,ν is not somewhere injective,
(2) (µ, ν) ∈M0 (that is, fµ,ν has a branch point),
(3) the Riemann surface Σµ is exceptional.

The above conditions are not mutually exclusive and there are pairs (µ, ν) which
simultaneously satisfy several of them. By Mspc we denote the set of pairs (µ, ν) ⊂
M which are not special. We prove below that Mspc is open, dense, and connected
subset of M.

4.2. Prescribing the 2-jet of a harmonic variation. The next couple of lem-
mas show the image dF (TMspc) is sufficiently rich.

Lemma 4.1. Suppose that genus of Σ is at least seven, and let (µ, ν) ∈ Mspc be
a pair of real analytic metrics such that fµ,ν is not minimal. Fix a local complex
coordinate z near a point p ∈ Σµ. Then, for any two vectors Z,W ∈ Ep, we can
find

.
ν ∈ TνM(M) such that

(39) ∇zV (p) = Z, −∇y∇yV (p)− i∇x∇yV (p) = W.

where G(
.
ν) = V (we abbreviate G = Gµ,ν).

Remark. We explain the reasons we need to remove the special metrics to prove
Lemma 4.1. The reason to exclude harmonic surfaces which are not somewhere
injective is Proposition 4.1 below. This includes pairs (µ, ν) such that Σµ satisfies
the first and the second condition in the definition of exceptional Riemann surfaces.
The reason we exclude pairs (µ, ν) such that Σµ satisfies the third condition in the
definition of exceptional Riemann surfaces is the proof of Proposition 4.4. We
exclude the pairs from M0 because the map Ψ is not defined on M0. However,
Lemma 4.1 holds for every real analytic pair (µ, ν) ∈ M0 providing fµ,ν is not
minimal.

4.3. Proof of Lemma 4.1. Lemma 4.1 follows from the following stronger result.

Lemma 4.2. Suppose that genus of Σ is at least seven, and let (µ, ν) ∈ Mspc be
a pair of real analytic metrics such that fµ,ν is not minimal. Fix a local complex
coordinate near a point p ∈ Σµ. Then, for any five vectors Zj ∈ Fp, j = 1, ...5, we
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can find
.
ν ∈ TνM(M) such that

V (p) = Z1, ∇xV (p) = Z2, ∇yV (p) = Z3,

(40)

∇x∇yV (p) = Z4, ∇y∇yV (p) = Z5,

where G(
.
ν) = V .

We prove Lemma 4.2 by contraposition. Suppose it is false, and that there are
five vectors Z1, ..., Z5 ∈ Fp, such that (40) fails for every V of the form V = G(

.
ν),

where
.
ν ∈ TνM(M). Considering the induced inner product on ⊕5

1F, we can find
a five-tuple of vectors U1, ..., U5 ∈ Fp (not all of them equal to the zero vector),
which is orthogonal to every vector V = G(

.
ν). This yields the identity

〈V (p), U1〉+ 〈∇xV (p), U2〉+ 〈∇yV (p), U3〉+
〈∇x∇yV (p), U4〉+ 〈∇y∇yV (p), U5〉 = 0,

for every such V .
We invoke the Reproducing Formulas from Lemma 3.2, Lemma 3.3, and Lemma

3.4. Applying these three formulas, we find a smooth section X : Σ\{p} → F, such
that at the point p we have

〈W,U1〉+ 〈∇xW,U2〉+ 〈∇yW,U3〉+ 〈∇x∇yW,U4〉
(41)

+ 〈∇y∇yW,U5〉 =

∫
Σ

〈JW,X〉 dA,

for every W ∈ Γ(F) such that JW (p) = 0. Moreover, JX(p) = 0 for every x ∈
Σ \ {p}, and X has at most the second order pole at p.

Claim 4.1. We can find a section W ∈ Γ(F) so that the six vectors W (p), ∇xW (p),
∇yW (p), ∇x∇yW (p), ∇y∇yW (p), and ∇x∇xW (p), are equal to any six vectors
in Fp. Moreover, the section X : Σ \ {p} → F from (41) is not identically equal to
zero on Σ.

Proof. To simplify the notation, in this proof we let x = x1 and y = x2. Fix
a, b ∈ {1, 2}, we let α = α(a,b) be a real valued function defined near p ∈ Σ such
that

α(p) = αxi(p) = αxixj (p) = 0, (i, j) 6= (a, b), (b, a)

and
αxaxb(p) = 1.

Let U be a any local section of F near p, and set W = αU . Using the Leibniz rule,
we get

(αU)(p) = ∇xi(αU)(p) = ∇xi∇xj (αU)(p) = 0, (i, j) 6= (a, b), (b, a)

and
∇xa∇xb(αU)(p) = ∇xb∇xa(αU)(p) = U(p).

Summing up the corresponding vectors α(a,b)U over different pairs (a, b), we get

W2 =

2∑
a,b=1

α(a,b)U.
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This shows that there exists a section W2 such that

∇x1
∇x1

W2(p),∇x1
∇x2

W2(p),∇x2
∇x2

W2(p),

are equal to any three vectors in Fp, while

W2(p) = ∇x1
W2(p) = ∇x2

W2(p) = 0.

Remark. Since αxixj = αxjxi , it follows that ∇xi∇xjW2(p) = ∇xj∇xiW2(p). Thus,
we can only prescribe the value of one of them and not the values of the two vectors
individually.

Similarly, we can find a section W1 such that ∇1W1(p) and ∇2W1(p) are equal
to any two vectors in Fp that we want, while W1(p) = 0. Moreover, we can find W0

such that W0(p) equals any vector in Fp that we need. Adding up the appropriate
sections W0, W1, and W2, we obtain the section W which satisfies the condition of
this claim. The claim is proved.

To show that X is not identically zero, we find W such that the right-hand side
of (41) is positive. We still have the freedom to prescribe the value of the vector
∇x∇xW (p) + ∇y∇yW (p). We do this so that JW (p) = 0 (see (17)). Therefore,
there is a section W ∈ Γ(F) such that the left-hand side in (41) is not zero, thus X
is not identically zero.

�

We conclude

(42)

∫
Σ

〈JV,X〉 dA = 0,

for every V = G(
.
ν), where

.
ν ∈ TνM(M). We show this is not possible when

(µ, ν) ∈Mspc, providing (µ, ν) are real analytic.

4.4. The wealth of harmonic variations. Recall that fz can be viewed as a
local holomorphic section of the vector bundle E (with respect to the corresponding
holomorphic structure on E). By L we denote the holomorphic line bundle induced
by fz.

For Ω ⊂ Σ, we say that a local section V : Ω → F is tangential if it is tangent
to f(Ω) at the regular points of f . While there are no global Jacobi fields in Γ(F)
(since J is an isomorphism), there are local sections V : Ω → F which are (local)
Jacobi fields, that is JV = 0 on Ω. For example, the real (or imaginary) parts of
local holomorphic sections of the line bundle L are examples of local Jacobi fields
in F. These local Jacobi fields are tangential.

Remark. However, not every tangential local Jacobi field V : Ω→ F is the real (or
imaginary) part of local holomorphic section of L!

The following proposition is due to Moore (see Lemma 3.1 in [23]). The compu-
tation was repeated in Lemma 5.4.2 in [24] (G agrees with the Metric Deformation
Operator defined on page 311 [24]).

Proposition 4.1. Let Ω ⊂ Σreg(f) be an open subset of the regular set of f , and
assume f = fµ,ν is injective on Ω (and thus an embedding). Suppose X is a smooth
section Ω→ F. If ∫

S

〈G(
.
ν), X〉 dA = 0
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for every
.
ν ∈ TνM(M) whose support is contained in Ω, then each point p ∈ Ω has

a neighborhood on which X equals the real part of a local holomorphic section of L.

Remark. Actually, it suffices to assume that X is locally L2 (the proof then follows
from the Moore’s computation and the Weyl’s lemma).

Proof. The reader can find the proof in the above cited sources. Here we only offer
a brief sketch. Also, later in the paper we prove a version of this proposition for
maps which are not somewhere injective, where we give more details.

Let z = x1 + ix2 be a local complex parameter on Ω. Then, we can find local
coordinates (u1, u2, u3) near f(Ω) ⊂M with the following properties

(1) u1 ◦ f = x1, u2 ◦ f = x2, and u3 ◦ f = 0, (thus, f(Ω) is contained in the
coordinate plane u3 = 0),

(2) ν13 = ν23 = 0 and ν33 ≡ 1, when restricted to the plane u3 = 0,

(3) the metric µ is conformal on Ω.

This normalization provides us with the identification of Ω with f(Ω). In these

coordinates ∂fi

∂xj
= 1 iff i = j, and is zero otherwise, at every point in Ω. Therefore,

the second derivatives of f are all equal to zero.

Remark. This choice of coordinates was used by Moore (see page 17 in [23] or page
311 in [24]). It is clear that one can arrange for the first two conditions to hold.
To arrange that (3) holds simultaneously we solve the Beltrami equation (in the
plane u3 = 0) to obtain a diffeomorphism h which provides the transition to the
new coordinate system in which µ is in conformal form. This diffeomorphism h
is then extended from the plane u3 = 0 to a 3-dimensional neighborhood of f(Ω)
by letting h(u1, u2, u3) = (h(u1, u2), u3). We conjugate everything by h and verify
that the three conditions are satisfied.

On Ω (which is identified with f(Ω)) we write X as

X =

3∑
i=1

Xi ∂

∂ui
,

where Xi are the real valued functions on Ω. Choosing suitable
.
ν one first shows

that X3 ≡ 0 (this is the part where the injectivity of f on Ω is crucial). Thus, X
is a tangential section of F over Ω.

Furthermore, one shows that for any two real valued test functions α and β on
Ω, we have ∫

Ω

α

(
∂X1

∂x1
− ∂X2

∂x2

)
+ β

(
∂X1

∂x2
+
∂X2

∂x1

)
du1du2 = 0.

It follows that

(43)

(
∂X1

∂x1
− ∂X2

∂x2

)
≡
(
∂X1

∂x2
+
∂X2

∂x1

)
≡ 0

on Ω. Let

Z = (X1 + iX2)

(
∂

∂x1
− i

∂

∂x2

)
.
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Then Re(Z) = X. It remains to show that Z is a holomorphic section of L. First
of all, in these coordinates we have

fz =
1

2
(fx1 − i fx2) =

1

2

(
∂

∂x1
− i

∂

∂x2

)
.

On the other hand, the equations (43) are the Cauchy-Riemann equations and
therefore h = X1 + iX2 is a holomorphic function on Ω. Thus Z = hfz is a
holomorphic section of L.

�

4.5. Proof of Lemma 4.2. Since µ and ν are real analytic so is X (see Proposition
3.3). On the other hand, we know from Proposition 4.1 that X agrees with the real
part of a local holomorphic section of L on an open set Ω ⊂ Σ.

Let γ ⊂ Σ be an arc whose initial point belongs to Ω. It follows from the unique
continuation theorem that X is the real part of a holomorphic section of L in some
neighborhood of γ. Thus, we can show that X is the real part of a holomorphic
section of L in some neighborhood of any point on Σ.

But in general this does not mean that there is a single holomorphic section of L
whose real part agrees with X. However, this holds true in our case as the following
proposition shows.

Proposition 4.2. Let W denote a local (not necessarily holomorphic) section of
L. Then Re(W ) is not identically zero.

Proof. With respect to some local complex parameter z = x + i y, the section W
is written as W = hfz for some complex valued function h = h1 + ih2. Then
Re(W ) = h1fx + h2fy = 0. If Re(W ) ≡ 0, then fx and fy are linearly dependent
vectors and Rank(df) < 2 at these points. This is impossible since the set of regular
points is open and dense in Σ.

�

Thus, we have shown the following proposition.

Proposition 4.3. X is the real part of a holomorphic section

Z : Σ \ {p} → L.

The proof of Lemma 4.2 follows from the next proposition.

Proposition 4.4. Suppose that f = fµ,ν is not a minimal map and that there are
no holomorphic maps from Σµ to the Riemann sphere of degree at most four. Let
p ∈ Σ. Then, there is no holomorphic section Z : Σ \ {p} → L such that Z has at
most the second order pole at p.

Proof. Suppose Z is a such a section. Set ϕ = 〈Z,Z〉. We show that ϕ is a
(non-constant) holomorphic function on Σ \ {p}. In local coordinates

Z dz = hfz

for some local holomorphic function h. Therefore,

ϕdz2 = h2〈fz, fz〉.
Since f is not minimal it follows that 〈fz, fz〉 is not identically equal to zero. Thus,
ϕ is a non-constant holomorphic function on Σ \ {p}.
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If Z has at most the second order pole at p it follows that ϕ has at most the
fourth order pole at p (and no other poles on Σ). But then ϕ : Σ→ S2 is a branched
cover of degree at most four, where S2 is the Riemann sphere. Such pairs (µ, ν) are
excluded from Mspc. This concludes the proof.

�

4.6. Proof of Theorem 1.3. In the remainder of the paper we establish the fol-
lowing lemma.

Lemma 4.3. The set Mspc is an open, dense, and connected subset of M.

Assuming this lemma, we first prove Theorem 1.3. .

Definition 4.3. We let M′ ⊂ Mspc be the maximal subset of Mspc such that the
restriction Ψ : M′ → E is transverse to L.

Clearly, M′ is an open subset of Mspc. Moreover, the following holds.

Proposition 4.5. Suppose (µ, ν) ∈ Mspc is a pair of real analytic metrics. Then
(µ, ν) ∈M′.

Proof. If fµ,ν is a minimal immersion and (µ, ν) ∈Mspc, then (µ, ν) ∈M′ because
Ψ(p, µ, ν) /∈ L for such (µ, ν). We note that Lemma 4.1 applies to every other
(µ, ν) ∈Mspc. Assume now that fµ,ν is not a minimal immersion. The proof of the
proposition now follows directly from Lemma 4.1 and Proposition 2.6.

�

Thus, M′ is an open subset of Mspc. Let us show that M′ is also a dense and
connected subset of Mspc. Together with Lemma 4.3 this will imply that M′ is an
open, dense, and connected subset of M, which yields Theorem 1.3.

Real analytic pairs of metrics are dense among all pairs of metrics. Thus M′ is
dense in Mspc. It remains to show it is connected. Suppose (µi, νi) ∈M′, i = 0, 1.

Since Mspc is connected (as per Lemma 4.3 above), there exists a path γ :
[0, 1] → Mspc connecting (µ0, ν0) and (µ1, ν1). We can then find a nearby path
γ̂ : [0, 1] → Mspc such that the pairs of metrics in the image γ̂ ([0, 1]) are real
analytic (we can arrange that γ̂ is real analytic in t but this is not needed). From
Proposition 4.5 we find that γ̂ maps into M′, that is, γ̂ : [0, 1]→M′.

We construct such γ̂ : [0, 1] → M′ so that the points γ(0) = (µ0, ν0), and γ̂(0)
live in the same chart in M′. Thus, there exists a path α : [0, 1] →M′ connecting
γ(0) and γ̂(0) (in fact, we can choose α to be the straight line in the corresponding
local chart of M′). Similarly, we can arrange that there exists a path β : [0, 1]→M′

connecting γ(1) = (µ1, ν1) and γ̂(1). The concatenation α · γ̂ ·β maps [0, 1] into M′

and connects (µ0, ν0) and (µ1, ν1).
Thus, M′ is an open, dense, and connected subset of Mspc (and therefore of M),

and we are done with the proof of Theorem 1.3.

5. Harmonic maps with branch points

In Appendix B we prove Proposition 5.1 stating that removing metrics (µ, ν)
such that Σµ is exceptional does not disconnect M.

Proposition 5.1. We let µ ∈M′(Σ) if Σµ is not exceptional. If the genus of Σ is
at least seven, then M′(Σ) is an open, dense, and connected subset of M(Σ).
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The proposition follows readily from the Riemann-Hurwitz formula, and it is the
only place in the argument where we need to assume the genus of Σ is at least
seven. In view of this proposition, we may assume M = M(Σ) ×M(M), where
M(Σ) does not contain any metrics µ such that Σµ is an exceptional surface.

We let
J = {(µ, ν) ∈M : fµ,ν is not somewhere injective}.

To prove Lemma 4.3 it remains to show that M \ (M0 ∪J ) is an open, dense, and
connected subset of M.

5.1. Localizing the problem.

Proposition 5.2. Suppose every pair of real analytic metrics (µ, ν) ∈ M has a
neighborhood D ⊂ M such that D \ (M0 ∪ J ) is an open, dense, and connected
subset of D. Then M \ (M0 ∪ J ) is an open, dense, and connected subset of M.

Proof. The proof is similar to the proof in Subsection 4.6. To simplify the notation,
in this proof we let M′ = M \ (M0 ∪ J ). Since the real analytic metrics are dense
it follows that M′ is open and dense in M. It remains to show M′ is connected.

Suppose (µ, ν), (µ′, ν′) ∈ M′. Since M is path connected, there exists a path
γ : [0, 1]→M connecting (µ, ν) and (µ′, ν′). We then find a real analytic path γ̂ :
[0, 1]→M such that γ̂(0) is close to γ(0) = (µ, ν), and γ̂(1) close to γ(1) = (µ′, ν′),
so that there exist paths α, β : [0, 1]→M′ connecting γ(0) and γ̂(0), and γ(1) and
γ̂(1) respectively.

Thus, to show that M′ is connected it suffices to show that the endpoints
(µ, ν), (µ′, ν′) ∈ M′ of a real analytic path γ : [0, 1] → M can be connected by
a path contained in M′.

For each t ∈ [0, 1] by Dt ⊂M we denote the neighborhood of the point (µt, νt) ∈
M such that Dt∩M′ is an open, dense and connected subset of Dt (such Dt exists by
the assumption in the statement of the proposition we are proving). After passing
to a finite sub-cover, we have found finitely many such open and connected sets Dj ,
j = 0, ..., k, which cover the image γ(([0, 1]). We label Dj so that D0 contains (µ, ν),
Dk contains (µ′, ν′), and Dj has non-empty intersection with Dj−1 and Dj+1, when
0 < j < k.

Then, we can find points

(µj , νj) ∈ (Dj ∩ Dj+1 ∩M′)

for each 0 ≤ j ≤ k − 1. By the assumption tha-t Dj ∩M′ is connected (and thus
path connected) we can find paths αj : [0, 1] → Dj ∩M′ connecting the points
(µj−1, νj−1) and (µj , νj). Moreover, we find paths α : [0, 1]→ D0 ∩M′ connecting
the points (µ, ν) and (µ0, ν0), and α′ : [0, 1] → Dk ∩M′ connecting the points
(µ′, ν′) and (µk, νk). Concatenating the paths α, α0,....,αk, and α′, we obtain the
new path in M′ which connects (µ, ν) and (µ′, ν′).

�

The proof of the following lemma is postponed until the next section.

Lemma 5.1. The set M \ J is an open, dense, and connected subset of M.

Assuming Lemma 5.1, we are allowed to let M = M \ J . In the remainder of
this section we prove:

Lemma 5.2. The set M \M0 is open, dense, and connected subset of M.
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5.2. Proof of Lemma 5.2. The obvious way to try to prove Lemma 5.2 is by

considering the map Σ̂ ×M → TMC given by (p, µ, ν) → fz(p). Let L ⊂ TMC

be the zero sub-bundle M × {0} < TMC. Then M0 ⊂ Ψ−1(L). If we can show
that Ψ is transverse to L that would imply that Ψ−1(L) is submanifold of M of
codimension six.

Using Proposition 4.4, one can show that Ψ is transverse to L at points (p, µ, ν)
where fµ,ν is not a minimal map. But we need to modify the strategy to deal with
the minimal maps.

Let N1 and N2 denote two vector fields on M with the values in TMC. Let
P ⊂ Σ be an open disc and z a local complex parameter on P . Consider the map
Λ : P ×M→ C2 given by

(44) Λ(p, µ, ν) = (〈fz, (N1 ◦ f)〉(p), 〈fz, (N2 ◦ f)〉(p)) .

Proposition 5.3. Fix p ∈ Σ and let (µ, ν) ∈M be real analytic. Suppose fz(p) = 0
where f = fµ,ν . Then there are vector fields N1 and N2 on M such that the linear
map

dΛ : T(p,µ,ν)(P ×M)→ T0C2
C2

is surjective.

We first prove Lemma 5.2 given Proposition 5.3.

Claim 5.1. For each (p, µ0, ν0) (with (µ0, ν0) real analytic), there exist neighbor-
hoods P ⊂ Σ and D ⊂ M, of p and (µ0, ν0) respectively, and the map Λ given by
(44), such that 0C2 is a regular value of Λ when restricted to P ×D.

Proof. Suppose first that fz(p) 6= 0. Then we can choose vector fields N1 and N2

such that Λ(p, µ0, ν0) 6= (0, 0). Therefore, 0C2 is a regular value of Λ because it
is not in the image of Λ when we restrict it to a sufficiently small neighborhood
P ×D.

If fz(p) = 0 we apply Proposition 5.3 to get the correct map Λ. Since being
surjective is an open condition, there exists a neighborhood P ×D such that 0C2 is
a regular value for Λ on P ×D.

�

Keeping (µ0, ν0) fixed, we obtain the corresponding neighborhoods Pp and Dp for
each p ∈ Σ. Extracting a finite subcover P1, ..., Pk of Σ, we get finitely many neigh-
borhoods Dj of the point (µ0, ν0). We intersect them and obtain the neighborhood
D of (µ0, ν0) such that Λj is a submersion when restricted to Pj ×D.

We show that D \M0 is an open, dense, and connected subset of D. In view of
Proposition 5.2 that is enough to prove Lemma 5.2. Set

Pj = Λ−1
j (0C2),

and X = Σ×D. It follows from Claim 5.1 that Pj = Λ−1
j (0) is a Banach submanifold

of Pj ×D, and thus a Banach submanifold of X .
Let π : X → D denote the projection onto the second coordinate Then

(45) D ∩M0 ⊂ π

 k⋃
j=1

Pj

 .

This is clear because if p is a branched point of f then fz(p) = 0 and thus

Λj(p, µ, ν) = (0, 0). Therefore π−1(D ∩M0) is contained in the union
⋃k
j=1 Pj



30 VLADIMIR MARKOVIC

of finitely many submanifolds of X of codimension four (or zero if some Pj is
empty). Repeating the exact same argument as in Subsection 1.9 above, one shows

that D \ π
(⋃k

j=1 Pj
)

is open, dense, and connected in D. Together with (45) this

yields the proof of Lemma 5.2.

5.3. Proof of Proposition 5.3. Suppose (µ, ν) ∈M is real analytic and let p ∈ Σ.
Fix a complex parameter z near p such that z(p) = 0. Then, near 0 we have

fz(z) = zkG(z)

where G(z) is a local section of E such that G(0) 6= 0, and k ≥ 0.
Choose vectors fields N1, N2 with values in TMC, such that

(46) (N1 ◦ f)(p), (N2 ◦ f)(p), G(p) ∈ Ep, are linearly independent.

Suppose
.
ν ∈ TM(M) and let V = G(

.
ν). Since fz(p) = 0, we have

(47) dΛ(
.
ν) = (〈∇zV, (N1 ◦ f)〉(p), 〈∇zV, (N2 ◦ f)〉(p)) .

The derivative dΛ has more terms which come from differentiating 〈·, ·〉 and Nj ◦ f ,
but since fz(p) = 0 all these extra terms vanish.

Thus, to prove Proposition 5.3 it suffices to show that given any pair of complex
numbers λ1, λ2 there exists

.
ν such that for G(

.
µ) = V we have 〈∇zV, (Nj ◦ f)〉(p) =

λj , j = 1, 2. The proof then follows from (47).
The proof is by contraposition (and very similar to the proof of Lemma 4.2 in

the previous section). Suppose that for some λ1 and λ2 there is no such
.
ν. In view

of (47) (and by duality), there exist α, β ∈ C, not both of them zero, such that

(48) 〈∇zV, (α(N1 ◦ f) + β(N2 ◦ f)) 〉(p) = 0

for every V = G(
.
ν). We invoke the Reproducing Formula from Lemma 3.3 (also

see Appendix A). We find the corresponding reproducing kernel K : Σ \ {p} → E,
such that

(49) 〈∇zW, (α(N1 ◦ f) + β(N2 ◦ f)) 〉(p) =

∫
Σ

〈JW,K〉 dA,

for every section W of F (or E). Moreover, K ∈ Lr(E) for every 1 ≤ r < 2. We note
that K is not identically zero since we can find a section W so that the left-hand
side of (49) is not zero (see Claim 4.1).

From (48) we conclude that ∫
Σ

〈JV,K〉 dA = 0,

for every V = G(
.
ν). Since V is “real” (meaning that V is a section of F) we

conclude

(50)

∫
Σ

〈JV,Re(K)〉 dA =

∫
Σ

〈JV, Im(K)〉 dA = 0.
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Then, by the same argument as in the proof of Lemma 4.2, we show using (50) that
Re(K) = Re(Z1) and Im(K) = Re(Z2), where Z1 and Z2 are meromorphic sections
of L which have at most the first order poles at p (for Zj ∈ Lr(E) for every r < 2).

In Appendix A we apply the ∂ method and compute K manually. Let

(α(N1 ◦ f) + β(N2 ◦ f)) = N.

In a local chart where p = 0, we obtain (see formula (69) in Appendix A)

(51) K(z) =
N(0)

z
+B(z),

where B is a local C1 section of E.
On the other hand, Z1 and Z2 are meromorphic sections of L which have at most

the first order poles at p. Recall that near z = 0 we have fz(z) = zkG(z), for some
local section G(z) of L. Thus, for z near p = 0, we have

(52) Zj(z) =
cjG(0)

z
+Dj(z)

for some complex numbers c1 and c2, and bounded local sections Dj of E.
Since Re(K) = Re(Z1) and Im(K) = Re(Z2), from (51) and (52) we find

Re

(
N(0)

z

)
= Re

(
c1G(0)

z

)
, Im

(
N(0)

z

)
= Re

(
c2G(0)

z

)
,

because B and Dj are bounded sections near z = 0. Replacing z = 1 in the first
equality, and z = i in the second yields

Re (N(0)) = Re (c1G(0)) , −Re (N(0)) = Im (c2G(0)) ,

and we conclude Re (c1G(0)) = −Im (c2G(0)). Similarly we get Im (c1G(0)) =
Re (c2G(0)). This shows c1 = i c2 and

N(0) = c1G(0).

This means that N(p) and G(p) are linearly dependent because N is a linear com-
bination of (N1 ◦ f)(p) and (N2 ◦ f)(p). But this contradicts (46) and we are
finished.

6. Somewhere injective maps

In this section we prove Lemma 5.1 which says that M \ J is an open, dense,
and connected subset of M. First we show that for a typical regular point p of f ,
the set f−1(f(p)) consists of finitely many pre-images which are all regular points.
We call them super-regular points.

6.1. Super Regular points. Recall that Σreg(f) is the regular set of a harmonic
map f . Suppose f(p) = f(q) for two regular points p, q ∈ Σreg(f). We say that
the inner products µ(p) and µ(q) are conformal to each other via f , if the tangent
planes df(TpΣ) and df(TqΣ) agree in Tf(p)M , and if the push forward f∗µ(p) is a
scalar multiple of f∗µ(q).

Definition 6.1. Define the set ΣSR(f) ⊂ Σ by letting x0 ∈ ΣSR(f) if

f−1(f(x)) = {x0, x1, ..., xk} ⊂ Σreg(f),

and the restrictions µ(xi) and µ(xj) are not conformal via f when i 6= j. We let
(p, µ, ν) ∈ SR ⊂ Σ×M if p ∈ ΣSR(fµ,ν).
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The following are the key properties of SR and ΣSR.

Proposition 6.1. The set SR is open in Σ ×M. Moreover, ΣSR(f) is an open
and dense subset of Σ.

Proof. It is elementary to see that SR is open in Σ×M (by the same token ΣSR(f)
is open in Σ). It remains to prove ΣSR(f) is dense in Σ.

For a fixed f = fµ,ν , we define A = A(µ, ν) ⊂ Σ by letting x ∈ A if f−1(f(x)) ⊂
Σreg(f). Clearly, A is an open subset of Σ.

Claim 6.1. A is dense in Σ.

Proof. If not, there exists an open set Ω ⊂ Σ \ A which consists of regular points
of f . Then, for every x ∈ Ω the set f−1(f(x)) contains a singular point of f . We
show this is impossible.

By reducing Ω we may assume that the restriction of f to Ω is an embedding
into M . We then find a small neighborhood N ⊂ M of the patch f(Ω), such that
the nearest point projection π : N → f(Ω) is well defined. Set S = f−1(N). Then
S ⊂ Σ is an open set.

Let g = π ◦ f . Then g : S → f(Ω) is a map between 2-dimensional manifolds.
Observe that if y ∈ S is a singular point of f , then y is a singular point for g. By
our assumption, for each u ∈ f(Ω) the set f−1(u) contains a singular point of f .
Therefore each f−1(u) contains a singular point of g. Thus, each point in f(Ω) is
the image of a singular point y ∈ S of the map g.

On the other hand, the ordinary Sard’s theorem implies that the image of the
set of singular points of g has measure zero in f(Ω) (this refers to the 2-dimensional
measure). Therefore, the set of singular values can not be the whole of f(Ω). This
is a contradiction and we conclude that A is dense.

�

We now show that ΣSR(f) is dense in A. Together with the previous claim
this proves the proposition. Note that the set f−1(f(x)) is finite providing x ∈
A. Indeed, if |f−1(f(x))| = ∞, then the (closed) set f−1(f(x)) contains its own
accumulation point, at which the rank of df is necessarily strictly less than two
(because f can not be injective near such a point).

We show that on a dense subset of A the conformality condition holds. Suppose
on the contrary that on an open subset Ω ⊂ A we have that for every p ∈ Ω there
exists q ∈ f−1(f(p)) such that µ(p) and µ(q) are conformal to each other via f .
By reducing the size of Ω if necessary, we may also assume that |f−1(f(x))| is a
constant function on Ω, and that the restriction of f to Ω is an embedding (here
we use that |f−1(f(x))| is finite when x ∈ A).

With these assumptions, we can find a continuous function f : Ω→ Σreg(f) such
that f(p) = f(q), where q = h(p). Moreover h : Ω → Σreg(f) is a diffeomorphism
onto its image and f = f ◦ h on Ω. In particular, µ(p) and µ(h(p)) are conformal
via f . This means that the metrics µ and h∗µ are pointwise conformally equivalent
on Ω, and thus h is a conformal map.

But then, the Riemann surface Σµ covers another closed Riemann surface of
genus ≥ 2, or it admits an anti-holomorphic involution! This is well known provid-
ing that f is a minimal map (by Gulliver-Osserman-Royden [12]), and is borderline
known in general. We state and prove this fact in Lemma 10.1 in Appendix C.
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So, if the metrics µ and h∗µ are pointwise conformally equivalent on an open set
then Σµ is exceptional. But such pairs (µ, ν) have already been excluded from M.
This proves that there is no such set Ω and we are done.

�

6.2. The map Θ. Let P,Q ⊂ Σ be two disjoint open embedded discs in Σ. For
δ > 0, we let

D(P,Q, δ) = {(µ, ν) ∈M : dµ(f(P ), f(Q)) > δ, and P,Q ⊂ ΣSR(fµ,ν)}.

It follows from Proposition 6.1 that D(P,Q, δ) is an open subset of M. By Proposi-
tion 6.1 we know that for each (µ, ν), the set ΣSR(fµ,ν) is dense in Σ, and therefore
non-empty.

Thus, each (µ, ν) ∈M is contained in some D(P,Q, δ), for some discs P , Q, and
some δ > 0. In view of Proposition 5.2, to show that M \ J is connected it suffices
to prove that every D \ J is connected. Here D is a connected component of some
D(P,Q, δ).

In the rest of the proof of Lemma 5.1 we assume that M = D. Set Y = Σ2 ×
(P ×Q××M). Here Σ2 = Σ × Σ and we let M2 = M ×M . Define the map
Θ : Y →M2 ×M2 by

Θ(r, s, p, q, µ, ν) = (f(r), f(s), f(p), f(q)) ,

where we abbreviate f = fµ,ν .
Let

L = {((u1, u2), (v1, v2)) ∈ (M2 ×M2) : u1 = v1 and u2 = v2}.

The significance of Θ and L is contained in the fact

(53) π−1(J ) ⊂
k⋃

i,j=1

Θ−1(L),

where π : Y →M is the projection onto the last factor. Indeed, suppose (µ, ν) ∈ J .
Since M = D and P,Q ⊂ ΣSR(f), it follows that for each pair of points (p, q) ∈
P × Q there exists a pair of points (r, s) ∈ Σ × Σ such that f(p) = f(r) and
f(q) = f(s). Thus Θ(r, s, p, q, µ, ν) ∈ L.

6.3. Proof of Lemma 5.1. To complete the argument we need another transver-
sality lemma which is proved in the next section.

Lemma 6.1. The restriction of Θ to the set Θ−1(L) is a submersion. In particular,
Θ is transverse to L.

We already know M \ J is open (for J is clearly closed). It remains to show it
is dense and connected. Fix (p, q, µ, ν) ∈ P ×Q×M, and define θ : Σ2 →M2×M2

by θ(r, s) = Θ(r, s, p, q, µ, ν).
Again using the Parametric Transversality Theorem (see Theorem 19.1 in [3]),

we conclude that for a generic (p, q, µ, ν) ∈ P × Q ×M the corresponding map θ
is transverse to L. But L is of codimension six, while Σ2 has dimension four, thus
θ(Σ2) is disjoint from L. This implies that (µ, ν) does not belong to J . This is
true for generic (p, q, µ, ν), and therefore a generic pair (µ, ν) does not live in J .
We have just established that J is nowhere dense.
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The previous argument can be pushed further to show that M \ J is connected.
The argument goes the same way as in the proof of Theorem 1.1, and the subsequent
proof that M \M0 is connected. We briefly rehearse it again.

Let γ : [0, 1] → M be a path whose endpoints lie in M \ J . We show that γ
can be perturbed (while keeping its endpoints fixed) to be entirely contained in
M \ J . First, we partition [0, 1] into sufficiently small intervals whose image under
γ is contained in a sufficiently small subset of M which fits into a single chart in
the model Banach space for M.

Suppose (µi, νi) ∈M, i = 0, 1, are contained in this chart, and suppose (µ0, ν0) ∈
M \ J . We show that one can perturb (µ1, ν1) ever so slightly so that the straight
line connecting (µ0, ν0) and the perturbed (µ1, ν1) is contained in M \ J .

Let U ⊂ (P ×Q×M) be a small neighborhood of (µ1, ν1) and consider the map
β :
(
[0, 1]× Σ2

)
× U →M2 ×M2 given by

β(t, r, s, p, q, µ, ν) = Θ (t(r, s, p, q, µ0, ν0) + (1− t)(r, s, p, q, µ, ν)) .

Here t(r, s, p, q, µ0, ν0)+(1−t)(r, s, p, q, µ, ν) is the corresponding element of Σ2×U ,
for fixed t ∈ [0, 1].

The map β is a submersion since Θ is. Again using the Parametric Transversality
Theorem, we conclude that for a generic point in (p, q, µ, ν) ∈ U the map δ :
[0, 1]× Σ2 →M2 ×M2, given by

δ(t, r, s) = β(t, r, s, p, q, µ, ν),

is transverse to L. Since the dimension of [0, 1]×Σ2 is five and the codimension of
L is six, it follows that δ([0, 1]× Σ) is disjoint from L. This implies that the path

π (β(t, r, s, p, q, µ, ν))) ⊂M \ J
connects (µ0, ν0) and (µ, ν). Recall that π : Y →M is the projection onto the last
factor.

As promised, we managed to perturb (µ1, ν1) to a nearby point (µ, ν) such that
the straight line connecting (µ0, ν0) and (µ, ν) is entirely contained in M \ J . The
rest of the argument is identical as before. This completes the proof of Lemma 5.1.

7. Proof of Lemma 6.1

7.1. The derivative of Θ. Consider the derivative dΘ : TY → F2 × F2. The
tangent space TY splits as T (Σ2×P ×Q)×TM. The restriction dΘ : T (Σ2×P ×
Q)×{0} → F2×F2 is given by dfr × dfs× dfp× dfq, where df ’s are the derivatives
of f at the corresponding points. Since all four points are regular, the image of dΘ
contains every quadruple of vectors (Z1, Z2, Z3, Z4) ∈ F2 × F2 which are tangent
to the surface f(Σ) at the corresponding points.

Let
.
ν ∈ TM(M), and G(

.
ν) = V . The restriction of dΘ to TM(M) is given by

(see (22))

(54) dΘ
(
0,

.
ν
)

= (V (r), V (s), V (p), V (q))) .

Suppose Θ(r, s, p, q, µ, ν) ∈ L. Then p, q ∈ ΣSR(fµ,ν), and the pairs µ(p) and
µ(r), and µ(q) and µ(s), are not conformal via f . In particular, all four points
p, q, r, s are regular for f and f(p) 6= f(q).

To simplify the notation, we rename the points as z1 = p, z2 = r, w1 = q,
w2 = s. The proof of Lemma 6.1 is by contraposition. We already observed that
all tangential vectors in F2×F2 are being picked up by dΘ. Suppose the lemma is
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wrong. Then, there are four vectors Zi ∈ Fzi and Wi ∈ Fwi , not all of them zero,
such that

(1) Zi and Wi are normal to the surface f(Σ) at the points f(zi) and f(wi)
respectively,

(2) for every V such that JV = G(
.
ν), the following holds

(55)

2∑
i=1

(〈V (zi), Zi〉+ 〈V (wi),Wi〉) = 0.

We now invoke the Reproducing Formula from Lemma 3.2. Applying this for-
mula four times in a row, and adding up the results, we find a smooth section
X : Σ \ {z1, z2, w1, w2} → F, such that

(56)

2∑
i=1

(〈W (zi), Zi〉+ 〈W (wi),Wi〉) =

∫
Σ

〈JW,X〉 dA,

for every W ∈ Γ(F). Moreover, JX(p) = 0 for every p ∈ Σ \ {z1, z2, w1, w2} and
X ∈ Lp(Γ(F)) for every p ≥ 1. Furthermore, X is not identically equal to zero
because there are sections W ∈ Γ(F) such that the left-hand side in (56) is not
zero.

On the other hand, from (55) and (56) we conclude that

(57)

∫
Σ

〈JV,X〉 dA = 0,

for every JV = G(
.
ν).

Until now we had the assumption that fµ,ν is somewhere injective, but we do
not anymore. The main issue here is that when we choose a variation

.
ν supported

in some neighborhood of the point f(z1), then G(
.
ν) is not supported only in a

neighborhood of z1, but also in a neighborhood of z2 and any other point which is
mapped to f(z1).

The kernel X may have singularities at z1 and z2, while the other preimages of
f(z1) do not figure very much in the computation because X is smooth at those
points. However, since µ(z1) and µ(z2) are not conformal via f , we can choose
such

.
ν so that G(

.
ν) is zero at z2 but non-zero at z1. This way we eliminate the

singularity of X at z1. Repeating this shows that X is a global Jacobi field which
is not possible unless X ≡ 0.

7.2. The time derivative of the tension field. Let Ω be a small neighborhood
of z1 such that f : Ω → M is an embedding. We let (u1, u2, u3) denote local
coordinates near f(z1) ∈M such that

(1) f(z1) = (0, 0, 0),

(2) the surface f(Ω) is tangent to the plane u3 = 0 at f(z1),

(3) ν13 = ν23 = 0 and ν33 = 1, when restricted to the plane u3 = 0,

Set f−1(f(z1)) = {z1, z2, z3, ..., zm}. For ε > 0, we let D(ε) denote the disc of
radius ε in the plane u3 ≡ 0, and let Dε = D(ε) × (−

√
ε,
√
ε). Since zk ∈ Σreg(f),

for ε small enough we have
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f−1 (Dε) =

m⋃
k=1

Ωk,

where Ωk = Ωk(ε) is the corresponding neighborhood of zk.
Near each zk the reproducing kernel X can be expressed as a linear combination

of the sections f−1
(

∂
∂uj

)
, j = 1, 2, 3. We let Xk denote the restriction of X to the

neighborhood Ωk, and by Xj
k we denote the real valued function on Ωk such that

Xk = X1
k f
−1

(
∂

∂u1

)
+X2

k f
−1

(
∂

∂u2

)
+X3

k f
−1

(
∂

∂u3

)
.

In local coordinates on Σ (not necessarily holomorphic), the tension field τ is
given by

(58) τγ(f, µ, ν) = µij
(

∂2fγ

∂xi∂xj
− µΓkij

∂fγ

∂xk
+ νΓγαβ(f)

∂fα

∂xi

∂fβ

∂xj

)
where γ = 1, 2, 3, and we use the standard summation convention. Here µij are the
components of the inverse of the metric tensor µ. From here on easily computes
Gγ(

.
ν) to be (see [7] and Section 7 in [29])

(59) Gγ(
.
ν) = µij

.

Γ
γ

αβ

∂fα

∂xi

∂fβ

∂xj
.

Here
.

Γ
γ

αβ = lim
t→0

∂ νtΓγαβ
∂t

where νt is the metric variation which corresponds to
.
ν.

Assume
.
ν is supported on Dε. Using that ν13 = ν23 = 0 and ν33 = 1 when

u3 = 0, the equalities (57) and (59) yield

(60)

∫
Σ

〈JV,X〉 dA =

m∑
k=1

∫
Ωi

(
µij

.

Γ
3

αβ(f)
∂fα

∂xi

∂fβ

∂xj

)
X3
k dA,

since the pre-image of Dε is the union of Ωk’s.

7.3. Osculating harmonic patches. Possible singularities of X are the points
z1, z2, w1, w2. On the other hand we know that f(z1) = f(z2), f(w1) = f(w2), and
f(z1) 6= f(w1). Thus, the reproducing kernel X is smooth near the point zk when
k > 2. The size of the area of Ωi is either comparable to ε2 if f(Ωk) is tangent to

the plane u3 = 0, or to ε
5
2 if not. Thus

(61)

∫
Ωk

〈JV,X〉 dA = O(ε2).

However, X may have a singularity near z1, and/or z2. In Appendix A we
compute the reproducing kernel for the zeroth derivative near its singularity. From
the formula (70) below, we find that for z near zk, k = 1, 2, the following holds

(62) X(z) =
1

2π

(
log

1

|z|

)
Zk +B(z),
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where B(z) is a C1 section of F near 0, and Zk ∈ Fzk is the vector normal to the
surface f(Σ) at f(zk).

By construction, the patch f(Ω1) is tangent to the plane u3 = 0 at f(z1) (in
particular, Z1 is normal to the plane u3 = 0 because

.
ν12 =

.
ν13 = 0). If f(Ω2) is

not tangent to the plane u3 = 0, then the size of the area of Ω2 is O(ε
5
2 ). Together

with (62) we get ∫
Ω2

〈JV,X〉 dA = o(ε2).

Using this and (61) we rewrite (60) as

(63)

∫
Σ

〈JV,X〉 dA =

2∑
k=1

σ(k)

∫
Ωk

(
µij

.

Γ
3

αβ(f)
∂fα

∂xi

∂fβ

∂xj

)
X3
k dA+O(ε2),

where σ(k) = 1 if f(Ωk) is tangent to u3 = 0, and σ(k) = 0 if not (by definition,
σ(1) = 1).

At the point zk where f(Ωk) is tangent to u3 = 0, we choose local coordinates

(x1, x2) so that at zk we have ∂fα

∂xi
(zk) = 1 if α = i, and 0 otherwise (the metric µ

may not be conformal in these new coordinates). The formula (63) becomes

(64)

∫
Σ

〈JV,X〉 dA =

2∑
k=1

σ(k)

∫
Ωk

(
µij

.

Γ
3

ij(f)

)
X3
k dA+O(ε2),

We are ready to finish the proof of Lemma 6.1.

Remark. We observe that the constant in the O(ε2) notation depends only on the

supremum norm of
.

Γ
3

ij(f).

7.4. Proof of Lemma 6.1. For α, β = 1, 2, we let ϕαβ = ϕβα denote three smooth
real valued functions supported in Dε, such that on D(ε) × (−ε, ε) the functions
ϕαβ do not depend on u3. If f(Ωk) is tangent to the plane u3 = 0, then f(Ωk)
is contained in D(ε) × (−ε, ε) when ε is small enough (recall that Dε = D(ε) ×
(−
√
ε,
√
ε)).

We let
.
ν
αβ

(u1, u2, u3) = −2u3ϕαβ(u1, u2, u3),

and let every other
.
ν
αβ

to be zero. Applying ν13 = ν23 = 0 and ν33 = 1 when
u3 = 0, we get (see [23], [24])

.

Γ
3

αβ = ϕαβ , on D(ε)× (−ε, ε).

Replacing this back into (64) yields

(65)

∫
Σ

〈JV,X〉 dA =

2∑
k=1

σ(k)

∫
Ωk

(
µijϕij(f)

)
X3
k dA+O(ε2),

We now use the fact that the restrictions of the metric µ at the points z1 and
z2 are not conformal to each other via f . By the choice of local coordinates this
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means that the matrix µij(z1) is not a multiple of the matrix µij(z2). Thus we can
choose ϕij uniformly (with respect to ε) bounded above, such that

2∑
i,j=1

µij(z1)ϕij(f(z1)) = 1,

and
2∑

i,j=1

µij(z2)ϕij(f(z2)) = 0.

Together with (62), we conclude the following holds near z1

(66) µij(x1, x2)ϕij(f(x1, x2))X3
1 (x1, x2) =

1

2π

(
log

1

|x|

)
Z3

1 +B(0) +O(|x|),

where |x| =
√
|x1|2 + |x2|2.

On the other hand, near z2 we have

µij(x1, x2)ϕij(f(x1, x2)) = O(|x|),

which yields

(67) µij(x1, x2)ϕij(f(x1, x2))X3
2 (x1, x2) =

(
log

1

|x|

)
O(|x|) = o(1),

where o(1)→ 0 when ε→ 0. Replacing this back into (65) yields

∫
Σ

〈JV,X〉 dA =
1

2π

∫
Ω1

(
log

1

|x|

)
Z3

1 dA(x1, x2) + o(1)Area(Ω2) +O(ε2)

=
1

2π

∫
Ω1

(
log

1

|x|

)
Z3

1 dA(x1, x2) +O(ε2).

Since the left-hand side is equal to 0 by the assumption we made at the beginning,
we conclude Z3

1 = 0. But then Z1 = 0 (for Z1 is a normal vector to the surface
f(Ω1) at f(z1)). Similarly we show Z2, W1, and W2 are zero. This is a contradiction
and we are done.

8. Appendix A

8.1. The first derivative. Fix a vector U ∈ Fp. Our goal is to compute the
reproducing kernel X : Σ \ {p} → E such that

〈(∇zW (p), U〉 =

∫
Σ

〈JW,X〉 dA

for every section W ∈ Γ(F).
Denote by Ω a disc neighborhood of p and by Ω′ an even smaller neighborhood of

p which is compactly contained in Ω. For n ∈ N large, we let µn denote a E-valued
1-form, supported on {|z| < 1

n} ⊂ Ω′, and such that∫
Σ

dζ ∧ µn = U.
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Let Tn ∈ Γ(E) be a section whose support is contained in Ω and such that z ∈ Ω′

we have

Tn(z) = − 1

π

∫
C

dζ ∧ µn
z − ζ

.

Furthermore, we can choose Tn so it converges to a section T : Σ \ {p} → E which
is compactly supported in Ω and such that for z ∈ Ω′ we have

T (z) = − 1

πz
U(p).

Set

Φ1
n =

1

σ2
(∇z∇zTn −∇zµn) , Φ2

n =
1

σ2
R (Tn, fz) fz,

and Φn = Φ1
n+Φ2

n. Here R is the curvature tensor on M (the complexified version),
and σ2 the density of the conformal metric µ on Σµ.

Claim 8.1. For every 1 < p < 2, the sequence of norms ||Φn||p is uniformly
bounded. Moreover, let Ψn = J−1(Φn). Then after passing onto a subsequence if
necessary, Ψn converges to a section Ψ ∈ L2,p(E).

Proof. It follows

∇zTn(z) = µn(z), z ∈ Ω′.

Thus, the section Φ1
n is equal to zero on Ω′. Therefore, the sequence Φ1

n converges
to a smooth section in Γ(E) (because Tn converges to T , and T is smooth away
from p). It follows that ||Φ1

n||p is uniformly bounded.
The sections Φ2

n converge to a section that is smooth away from 0. Near 0, we
have the estimate

||Φ2
n(z)|| ≤ C 1

|z|
for some constant C > 0 and for every n. Thus ||Φ2

n||p is uniformly bounded as
well, when 1 < p < 2 (but not necessarily for p ≥ 2).

The second part of the claim now follows from Proposition 3.1.
�

Let W ∈ Γ(E). In local coordinates, the complexified Jacobi operator is given
by (see [21] or [24])

JW = ∇z∇z −R(W, fz)fz.

Since J is self-adjoint we get∫
Σ

〈JW,Tn〉 dA =

∫
Σ

〈W, ∇z∇zTn〉+

∫
Σ

〈W, R (Tn, fz) fz〉

=

∫
Σ

〈W, Φn〉 dA+

∫
Σ

〈W, ∇zµn〉

=

∫
Σ

〈JW, Ψn〉 dA+

∫
Σ

〈W, ∇zµn〉.

We now compute the second term on the right-hand side. Integration by parts
yields ∫

Σ

〈W, ∇zµn〉 = −
∫

Σ

〈∇zW, µn〉.
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From the defining property of µn (and the fact that the supports of µn shrink to
p) we get ∫

Σ

〈∇zW, µn〉 −→ 〈∇zW (p), U〉.

Replacing this into the above equality yields∫
Σ

〈JW,Tn〉 dA−
∫

Σ

〈JW, Ψn〉 dA −→ −〈∇zW (p), U〉.

Passing onto the subsequence from Claim 8.1, we get

(68)

∫
Σ

〈JW, (Ψ− T )〉 dA = 〈∇zW (p), U〉.

Therefore, X = Ψ−T . The section Ψ ∈ L2,p(E), thus it is C1 on Σ. It follows that

(69) X(z) =
U

πz
+B(z),

where B(z) is a C1 section of E near 0.

8.2. The zeroth derivative. Fix a vector U ∈ Fp. Our second goal is to compute
the reproducing kernel X : Σ \ {p} → F such that

〈(W (p), U〉 =

∫
Σ

〈JW,X〉 dA

for every section W ∈ Γ(F). Following the same argument as above we derive

(70) X(z) =
1

2π

(
log

1

|z|

)
U +B(z),

where B(z) is a C1 section of F near 0.

9. Appendix B

Let T (Σ) be the Teichmüller space of Σ. By T ′(Σ) we denote the set of marked
Riemann surfaces which are not exceptional. We show T ′(Σ) is an open, dense,
and connected subset of T (Σ).

By M(Σ) we denote the Moduli space of Riemann surfaces homeomorphic to
Σ (then T (Σ) is its universal cover). Let Σ1 be closed surface. Each topological
type of a branched covering π : Σ → Σ1 with the branch set B ⊂ Σ, yields the
embedding π∗ :M(Σ1, π(B))→M(Σ). The Riemann-Hurwitz formula reads

2g(Σ)− 2 = d(2g(Σ1)− 2) +
∑
p∈Σ

(np − 1)

where g(·) is the the genus, d > 1 the degree of π, and np the order of branching
at the point p. The previous formula implies the inequality

(71) 3g(Σ)− 3 ≥ d(3g(Σ1)− 3) +
3

2
|B|.

On the other hand,

(72) dimCM(Σ) = 3g(Σ)− 3, dimCM(Σ1, π(B)) = 3g(Σ1)− 3 + |B|.
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We first consider the case when the genus of Σ1 is at least two. From (71) and
(72) we get

codimC π
∗ (M(Σ1, π(B))) ≥ 3(d− 1) +

1

2
|B| ≥ 3.

Therefore, the complex codimension ofM(Σ1, B) is at least three. There are finitely
many topological types of branched coverings Σ → Σ1, so we conclude that if
Σµ ∈ M(Σ) is a branched covering of another Riemann surface of genus at least
two, then Σµ lives in the union of finitely many sub-orbifolds of M(Σ), each of
them of real codimension greater or equal to six.

Suppose now that Σ1 is the 2-sphere and d ≤ 4. From (71), and since d ≤ 4, we
derive the estimate 2g(Σ) + 6 ≥ |B|. But dimCM(Σ1, π(B)) = |B| − 3, so in this
case we get

codimCE (M(Σ1, π(B))) = 3g(Σ)− |B| ≥ g(Σ)− 6.

Therefore, the complex codimension of M(Σ1, B) is at least 1 when g(Σ) ≥ 7.
There are finitely many topological types of branched coverings Σ→ Σ1 of degree
at most four. We conclude that if Σµ ∈M(Σ) is a branched covering of the 2-sphere
of degree at most four, then Σµ lives in the union of finitely many sub-orbifolds of
M(Σ), each of them of real codimension greater or equal to two.

The set of Riemann surfaces inM(Σ) that admit an anti-holomorphic involution
agrees with the “Real” Moduli space which is the space of real algebraic curves.
There are finitely many topological types of anti-holomorphic involutions and each
of them contributes a component to the “Real” Moduli space. The dimension of
each component is half the dimension of M(Σ), and we find that if the genus Σ is
≥ 2, the “Real” Moduli space has real codimension greater or equal to three.

Putting this together we see that exceptional surfaces live the union of finitely
many sub-orbifolds of M(Σ), each of them of real codimension greater or equal to
two. The complement of this set is open dense and path connected. Lifting this set
to T yields the proposition.

10. Appendix C

We prove the following lemma.

Lemma 10.1. Suppose there are points x0, x1 ∈ Σreg(f), with disjoint neighbor-
hoods Ω0 and Ω1, and a conformal diffeomorphism h : Ω0 → Ω1 such that f = f ◦h
on Ω0. Then µ is an exceptional metric.

As we said, if the harmonic map f : (Σ, µ) → (M,ν) is minimal this result
was proved by Gulliver-Osserman-Royden [12]. Moore gave a very similar proof
(see page 282 in [23]) incorporating the formula of Micallef-White (see Appendix in
[22]). The proof is essentially based on the classical estimates by Hartman-Wintner.
We explain the main idea in the next subsection.

On the other hand, each harmonic map has its minimal suspension which was
introduced and studied in detail by Wolf [36], [37]. One can readily prove the
general case of Lemma 10.1 by reducing it to the minimal case by replacing the
harmonic map with its harmonic suspension. This is done in the last subsection.

10.1. The minimal case. Suppose f : Σ→ N be a minimal map from a surface Σ
into a Riemannian manifold N of dimension ≥ 3 (but not < 3). Let x0, x1 ∈ Σreg(f)
and consider the local minimal surfaces f(Ω0) and f(Ω1). Assuming f(x0) = f(x1),
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Micallef-White (based on a key observation by Lawson and Osserman) compute the
non-parametric form of f(Ω0) and f(Ω1) near f(x0).

Using the theorem of Hartman-Wintner, they show that up to a certain order
the two surfaces differ by a harmonic polynomial. In particular, if the two surfaces
f(Ω0), f(Ω1) ⊂ N agree on an open set which contains f(x0) = f(x1) as one of its
accumulation points, then f(Ω0) = f(Ω1) in some neighborhood of f(x0) = f(x1).

Since f is minimal, it follows that Σreg(f) is equal to Σ minus finitely many
branch points. Thus, the above argument shows that the minimal map f has
The Unique Continuation Property (in the sense of Gulliver-Osserman-Royden) as
defined in Definition 1.7 in [12]. In the case when f is minimal, the proof of Lemma
10.1 now follows from the following result of Gulliver-Osserman-Royden, assuming
that the diffeomorphism h : Ω0 → Ω1 from Lemma 10.1 is orientation preserving.

Lemma 10.2. Let S be a smooth closed surface and N a smooth manifold, and
suppose we are given a branched immersion f : S → N which has the unique
continuation property. If there are disjoint open sets Ω,Ω′ ⊂ S, and an orientation
preserving diffeomorphism h : Ω → Ω′, such that f ◦ h = f holds on Ω, then there
exists a closed surface S1, a map f1 : S1 → N , and a branched covering π : S → S1,
such that f = f1 ◦ π.

Remark. The covering map π has the same structure as h, while f1 is similar to
f . In particular, suppose S is a Riemann surface and f a harmonic map. If h is
holomorphic then so is π. If f is harmonic, then so is f1.

If every diffeomorphism h : Ω0 → Ω1 from Lemma 10.1 is orientation reversing
(for all choices of Ω0 and Ω1 such that f(Ω0) = f(Ω1)), then using the unique
continuation as above we can show that h extends to an anti-conformal involution
of Σµ. This completes the proof of the lemma when f is minimal.

10.2. The minimal suspension of a harmonic map. Let Φ be the lift of the

Hopf differential Hopf(f) to the universal cover Σ̂. We say that two points z, w ∈ Σ̂
are equivalent, and write z ∼ w, if z and w can be connected by an arc which is

completely contained within a complete vertical leaf of Φ. We let T =
(

Σ̂/ ∼
)

be

the leaf space, and denote by π : Σ̂→ T the corresponding projection. The space T
is an R-tree endowed with the distance given by d(z, w) = m(γ), where γ is any arc
connecting z and w which is transverse to the vertical foliation. By m we denote
the transverse measure coming from Φ.

The projection π : Σ̂ → T is a harmonic map (as the map of Σ̂ into the metric

space (T, d)), and the Hopf differential of p is equal to −Φ. Let f̂ : Σ̂→ M̂ be a lift

of f , and let F : Σ̂→ M̂ × T be given by F (p) = (f̂ , π(p)). The map F is minimal
and it is called the Minimal Suspension of f . The key reason we are interested in F
is because if h : Ω0 → Ω1 is as in the statement of Lemma 10.1, then the equality

(73) F ◦ ĥ = ĥ, holds on Ω̂0,

where ĥ : Ω̂0 → Ω̂1 is a lift to the universal cover (the equality (73) holds because

ĥ : Ω̂0 → Ω̂1 is conformal to begin with, and it would fail without this assumption).
So, we have nearly reduced the problem to the minimal case. The only issue we
need to address is the fact that T is not a manifold.

Recall the following observation by Wolf (see page 450 in [37]). Let q ∈ Σ̂ be

a point which is not a zero of Φ. Then there are open neighborhoods A ⊂ Σ̂ and
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B ⊂ M̂ , of q and f̂(q) respectively, such that the map F factors as F = ι ◦ F1.
Here F1 : A→ B × (−ε, ε) is a harmonic map into the 4-manifold B × (−ε, ε). The
Riemannian metric on B × (−ε, ε) is obtained as the product of the metric ν from
B and the Euclidean metric on (−ε, ε). By ι : (−ε, ε)→ T we denote the isometric
inclusion.

So, although T is not a manifold (it is not even locally compact in general), the
minimal map F1 maps a neighborhood A into the 4-manifold B × (−ε, ε) (this 4-

manifold is then isometrically included in M̂ ×T ). So, for all intense and purposes,
all that matters for us is the map F1. In particular, the identity (73) becomes

(74) F1 ◦ ĥ = ĥ, holds on Ω̂0.

We can now apply the argument from the previous subsection to complete the proof
of Lemma 10.1.

11. The Simple Loop Theorem

The Simple Loop Theorem for surfaces was established by Gabai [10]. Hass
[13] proved it for compact Seifert fibered 3-manifolds. This was generalized by
Rubinstein-Wang [27] to compact graph manifolds. Very recently Zemke [38] proved
the theorem for 3-manifolds that admit a geometric structure modeled on Sol (there
is overlap between results in [27] and [38] but the methods used in these two pa-
pers are entirely different). The Simple Loop Theorem does not hold for higher
dimensional manifolds (in particular, it fails in every closed hyperbolic manifold of
dimension at least four).

A closed 3-manifold is geometric if it is modeled on one of the eight standard
geometries. Combining Theorem 1.2 and the results of Hass, Rubinstein-Wang,
and Zemke, we establish the Simple Loop Theorem for geometric 3-manifolds.

Theorem 11.1. Suppose M is a a closed orientable geometric 3-manifold and S
a closed orientable surface. Assume f : S →M is an incompressible map. Then f
is essential.

The only remaining case of the Simple Loop Conjecture is that of closed mixed
manifold, i.e. closed 3-manifolds which contain essential tori such that at least one
piece of the corresponding JSJ-decomposition is atoridal (hyperbolic). Every mixed
3-manifold admits a metric of non-positive curvature that is strictly negatively
curved on the atoridal part. This was shown by Leeb [17] (see also Theorem 4.3 in
Bridson’s paper [5]). It is expected that the methods of this paper will yield the
result in this remaining case as well (again through the application of Theorem 1.1
which can be extended to cover this case).

Remark. Since every compact 3-manifold essentially embeds into its double (which
is closed), it suffices to prove the Simple Loop Theorem when the target 3-manifold
is closed.

11.1. Outline of the proof. Suppose f0 : S →M is an incompressible map. The
least area map in this homotopy class is a minimal immersion (which for simplicity
we denote by f0 : S → M). For any finite cover π : Σ → S the corresponding lift
f : Σ → M given by f = f0 ◦ π is a minimal immersion (although it may be the
least area map in its homotopy class anymore). Then, by Theorem 1.1 harmonic
immersions are dense among all harmonic maps homotopic to f . This is how we
utilize the condition that f0 is incompressible.
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Now, suppose that f0 : S → M is not essential. We can find a finite cover
π : Σ → S such that the lift f : Σ → M collapses an embedded pair of pants
Π ⊂ Σ. This means that the map f : Π → M is homotopic to the familiar map
g : Π→ R, which is a degree two holomorphic branched covering of the annulus R
(the map g has a single branch point of order two which is contained inside Π). In
particular, f∗(π1(Σ)) is a cyclic subgroup of π1(M) where f∗ : π1(Σ) → π1(M) is
the induced map between fundamental groups.

By construction, f is an immersion. We vary the metrics on Σ and M , and
consider all harmonic maps fµ,ν in this homotopy class. The idea is that for suitably
chosen metrics on Σ and M , the harmonic map fµ,ν exhibits the behavior similar
to that of the map g (one can think that the restriction of fµ,ν to Π is a slight
perturbation of g). But g is a branched immersion with the branch point of order
two, and as such it can not be approximated by immersions (see [20]). This would
contradict that fµ,ν can be approximated by immersions (which is a consequence
of the assumption that f0 is incompressible as described above).

Remark. Branched immersions can be approximated by immersions if the order of
the branch point is odd. In fact, Anderson gave examples [2] where the branched
immersion and the approximating immersions are all minimal maps. The blow-
down of the Enneper surface provides an example of such behavior.

We actually find finite covers Σ1 → S and M1 →M such that the lift f1 : Σ1 →
M1 semi-collapses a four-holed sphere Σ0 ⊂ Σ1 onto a pair of pants N0 ⊂ N , where
N is an embedded quasi-Fuchsian surface N ⊂ M1 (we use the Surface Subgroup
Theorem to construct such N and the LERF-ness of 3-manifold groups to promote
it to an embedded surface in the finite cover M1).

We choose the appropriate metrics on Σ1 so that the cuffs of Σ0 become pinched.
The metric on M1 are chosen so that N is a totally geodesic surface in M1 and
the cuffs of N0 become pinched. We then show that the limiting harmonic map
f∞ : Σ0 → N0 is a proper harmonic map between the corresponding punctured
surfaces. Harmonic maps between surfaces are well understood which in turn yields
that once fµ,ν is close enough to the limiting map f∞, it can not be approximated
by immersions.

11.2. Collapsed pairs of pants and four holed spheres. Let Π be an immersed
pair of pants in a closed surface S (all immersed surfaces in S are assumed to be
essentially immersed). Denote by Ai ⊂ S, i = −1, 0, 1, the cuffs of Π (which are
immersed closed curves in S). By A we denote the figure eight curve (as in Figure
1) which is also immersed in S.

Definition 11.1. Let f : S → M denote a map and Π an immersed pair of pants
in S. We say that a map f : S → M collapses an immersed pair of pants Π if A
lies in the kernel of f∗ : π1(S)→ π1(M) but the cuffs Ai do not.

Remark. Notice that π1(Π) is a free group of rank two which injects into π1(S).
Moreover, we can choose ai ∈ π1(S) representing the homotopy classes of the
curves Ai, such that a−1a1a0 = 1π1(S). Then, f collapses the immersed pair of
pants Π if and only if there exists a non-trivial element c ∈ π1(M) such that
f∗(a−1) = f∗(a1) = c and f∗(a0) = c−2. Let C ⊂ M be an oriented closed curve
whose homotopy class is represented by c. Then (up to homotopy) f : A1 → C
is orientation preserving homeomorphism, f : A−1 → C is orientation reversing
homeomorphism, and f : A0 → C is an orientation preserving double covering.
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Figure 1. Topological pair of pants with the dotted figure eight curve

Suppose Π′ is another immersed pair of pants in S such that Π and Π′ share the
common cuff A1 (but have no other cuffs in common). Moreover, suppose that Π
and Π′ are on the opposite sides of A1. Then H = Π∪Π′ is an immersed four-holed
sphere.

Definition 11.2. Let f : S → M denote a map and H = Π ∪ Π′ an immersed
four-holed sphere in S (as defined above). We say that f semi-collapses H if it
collapses Π, but the restriction f : Π′ →M is essential.

11.3. The existence of partially collapsed four holed spheres. The connec-
tion between semi-collapsed four-holed spheres and the Simple Loop Problem is
provided by the following lemma.

Lemma 11.1. Suppose f : S → M is an incompressible and non-essential map
from a closed, orientable surface S of genus at least two into M . Then f semi-
collapses an immersed four-holed sphere.

Proof. We first establish the existence of a collapsed pair of pants. Endow S with
a hyperbolic metric and suppose α is a closed geodesic with the smallest self-
intersection number k among all closed geodesics from the kernel of f∗. Since
f is incompressible, one concludes that k > 0. We show that α is the figure eight
curve in an immersed pair of pants which is collapsed by f .

Let E ⊂ R2 be the figure eight curve in the plane (like A in Figure 1). Consider
E as an oriented (singular) planar manifold (it is a regular 1-manifold away from
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the intersection point). It was observed by Koberda-Santharoubanea (see Lemma
4.1 in [16]) that every non-simple closed geodesic in S is the image of a smooth
immersion ι : E → S. This immersion extends to some neighborhood of E which
is homeomorphic to a topological pair of pants Π0. Therefore, ι extends to an
immersion ι : Π0 → S.

Denote by Ei the cuffs of Π0. The curve Ai = ι(Ei), i = −1, 1, is homotopic
to the piecewise geodesic arc which has one non-smooth point and at most k − 1
self-intersection points. Therefore, Ai is homotopic to the closed geodesic αi ⊂ S
which has at most k − 1 self-intersection points. On the other hand, the curve
A0 = ι(E0) is homotopic to the piece-wise geodesic arc which has two non-smooth
points (a bigon) and exactly k−1 self-intersection points. Again, we conclude A0 is
homotopic to to the closed geodesic α0 which has no more than k−1 self-intersection
points.

It remains to observe that αi’s (for i = −1, 0, 1) are not in the kernel of f∗ since
their self-intersection numbers are strictly smaller than k. On the other hand, by
definition α is in the kernel of f∗. Thus, we have constructed an immersed pair of
pants Π (given by ι : Π0 → S) which is collapsed by f .

It remains to construct the second pair of pants Π′ such that the restriction
f : Π′ → M is essential. Fix a1 ∈ π1(S) which represents the homotopy class
determined by the cuff A1. Suppose that the corresponding component of the lift

of Π to the universal cover Ŝ lies to the left of the oriented geodesic axis(a1). We

construct Π′ so that the corresponding lift Π̂′ lies to the right of axis(a1).
Let B ⊂ S be a simple closed curve, and choose b ∈ π1(S) which represents the

homotopy class of B, and such that axis(b) lies to right of axis(a1) (in particular, the
axes of a1 and b are disjoint). Since B is a simple closed curve, we have f∗(b) 6= 0 in
π1(M). Moreover, using the standard ping-pong argument we can find an integer
n ≥ 1 such that the group generated by f∗(a1) and f∗(b

n) is a free group on two
generators.

Let b1 = bn. Then the group generated by a1 and b1 is the fundamental group
of an immersed pair of pants Π′ ⊂ S (because the axes of a1 and b1 are disjoint).
By construction, the restriction of f to Π′ is essential. Also, the pairs of pants Π
and Π′ share the same cuff A1, but do not share any other cuffs. So, H = Π ∪ Π′

is an essentially immersed four-holed sphere which is semi-collapsed by f . This
completes the proof of Lemma 11.1.

�

11.4. Harmonic maps between covers.

Lemma 11.2. Let f : Σ → M be a map whose homotopy class [f ] is admissible,
and suppose that f semi-collapses an embedded four-holed sphere in Σ. Then there
exist:

• finite covers Σ1 and M1 of Σ and M respectively, and the lift f1 : Σ1 →M1

of f ,

• a hyperbolic metric g1 on Σ1,

• a negatively curved Riemannian metric h1 on M1 which can be connected
to the hyperbolic metric h through a path of negatively curved metrics on
M1,
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such that the harmonic map fg1,h1
: Σ1 →M1, homotopic to f1, can not be approx-

imated (in the C2 sense) by a sequence of smooth immersions.

11.5. Proof of Theorem 1.2. Let f0 : S → M be an incompressible map of a
closed, orientable surface S into a closed, orientable 3-manifold M endowed with
the hyperbolic metric h. Schoen-Yau [31], and independently Sacks-Uhlenbeck [28],
showed that there exists a hyperbolic metric g0 on S such that fg0,h : (S, g0) →
(M, h) is the least area (minimal) map in the homotopy class of f0. Building on the
work of Osserman [26], Gulliver [11] proved that fg0,h(S) is an immersed surface.
Together with Gabai’s Simple Loop Theorem for surfaces, this implies that fg0,h is
a minimal immersion (see [13]).

To prove Theorem 1.2 we need to prove that f0 is essential. The proof is by
contraposition. Suppose that f0 is not essential. Then by Lemma 11.1, f0 semi-
collapses a four-holed sphere H = Π ∪ Π′ which is immersed in S. Using the
LERF property for surface groups (proved by Scott [33]), we can find a finite cover
π : Σ→ S where H lifts to an embedded four-holed sphere.

Let f be the lift of f0, that is f = f0 ◦ π (the lift f may not be incompressible
any longer). By g we denote the lift of g0, and by fg,h : (Σ, g) → (M, h) the
corresponding harmonic map in the homotopy class of f . Then fg,h = fg0,h ◦ π,
and so fg,h is a minimal immersion (but fg,h may not be the least area map in the
homotopy class of the lift f).

Since f semi-collapses an embedded four-holed sphere, we can employ Lemma
11.2. There exist finite covers Σ1 and M1, of Σ and M respectively, the lift f1

of f , a hyperbolic metric g1 on Σ1, and a negatively curved Riemannian metric
h1 on M1, such that the harmonic map fg1,h1

: (Σ1, g1) → (M1, h1) can not be
approximated (in the C2 sense) by a sequence of smooth immersions.

On the other hand, the homotopy class [f1] is admissible. Let g′ be the lift of
g to Σ1. The minimal immersion fg,h : (Σ, g) → (M, h) lifts to the corresponding
minimal immersion fg′,h : (Σ1, g

′) → (M1, h). Since (g′, h) ∈ M, and fg′,h is an
immersion, it follows from Theorem 1.1 and Proposition 1.1 that for every (µ, ν) ∈
MW the harmonic map fµ,ν is an immersion.

Therefore, harmonic immersions are dense in M, and since (g1, h1) ∈ M (for
h and h1 are in the same connected component), we conclude that fg1,h1 can be
approximated (in the C2 sense) by immersions. This is a contradiction and the
proof of the Simple Loop Theorem follows.

12. Nearly hyperbolic metrics on M and harmonic limits

12.1. Nearly hyperbolic metrics from embedded surfaces. Recall that the
hyperbolic metric on the underlying closed 3-manifold M is denoted by h. The
following lemma will be used in the next section to prove Lemma 12.2 which is
stated later in the section.

Lemma 12.1. Denote by ι : N → M a quasi-Fuchsian immersion of an oriented
closed surface N into the 3-manifold M . Let ν denote a hyperbolic metric on N
and let K > 0. Then there exists a finite cover M1 → M , and a negatively curved
Riemannian metric h1 on M1, with the following properties

• the immersion ι lifts to an isometric embedding ι1 : (N, ν)→ (M1, h1),

• the metrics h and h1 live in the same connected component of negatively
curved Riemannian metics on M .
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• the collar NK(ι1(N)) = {p ∈M1 : dh1
(p, ι1(N)) < K} is embedded in M1,

and the metric h1 is hyperbolic on NK(ι1(N)).

Moreover, there exists a finite cover Σ1 → Σ such that the map f : Σ→M lifts to
the map f1 : Σ1 →M1.

Remark. The metric h1 is hyperbolic in the collar NK(ι1(N)) where it agrees with
the pull-back of the hyperbolic metric from the Fuchsian manifold N3. The metrics
h1 and h are equal to each other outside some even larger collar about ι1(N) ⊂M1.
In particular, the sectional curvatures of h1 are uniformly very close to being equal
to −1 on the whole of M1, but h1 is not a slight perturbation of the underlying
hyperbolic metric h on M1.

Proof. The hyperbolic metric ν on N yields the Fuchsian 3-manifold N3 (the corre-
sponding hyperbolic metric on N3 is also denoted by ν). The immersion ι : N →M
can be extended to an immersion ι : N3 → M . Moreover, given any ε > 0, we can
choose the immersion ι : (N3, ν) → (M, h) to be ε-nearly locally isometric map
outside some collar neighborhood of N in N3.

This last claim is proved as follows. Denote by ι̂ : H2 → H3 the lift of the
immersion ι : N → M to the map between the universal covers. Denote by ∂ι̂ :

∂H2 → ∂H3 the corresponding boundary map. Here we identify ∂N̂ with ∂H2

(the boundary of the hyperbolic plane H2) and M̂ with ∂H3 (the boundary of the
hyperbolic 3-space H3). The boundary map ∂ι̂ is quasi-symmetric and is determined
by the homotopy class of the immersion ι : N →M .

We can choose the extension ι : N3 → M such that ι̂ : ∂H3 → ∂H3 is differ-
entiable on ∂H3 \ ∂H2. Then ι is nearly locally isometric away from some collar
neighborhood of N .

Let U ⊂ N3 be a collar neighborhood of N which contains the collar neigh-
borhood NK(N) = {p ∈ N3 : dν(p,N) < K}, and such that ι is ε-nearly lo-
cally isometric map outside U . Applying the LERF property of 3-manifold groups
(proved by Agol [1]), we can choose a finite cover M1 →M such that the immersion
ι : U →M lifts to the embedding ι1 : U →M1.

When ε is small enough (ε depending only on the quasi-symmetric constant of ι̂)
we can interpolate between the Riemannian metrics (ι1)∗ν and h near the boundary
of the embedded collar ι1(U) to obtain a new negatively curved Riemannian metric
h1 on M1. The metric h1 agrees with (ι1)∗ν on the collar NK(ι1(N)) = ι(NK(N)),
and with the hyperbolic metric h outside the embedded collar ι1(U). In particular,
the metrics h1 and h can be connected by a path of negatively curved metrics on
the 3-manifold M1 which is obtained from the pointwise interpolation.

Now that we have found the cover M1, we select the corresponding finite cover
Σ1 → Σ such that f : Σ→M lifts to a map between the covers Σ1 and M1.

�

Whenever feasible we identify N and ι1(N) (since ι1(N) is embedded in M1).

12.2. Extracting the 2-dimensional harmonic limit. The key feature Lemma
11.2 is that for a suitable choice of metrics (after passing to suitable covers) the
sequence of harmonic maps converges to a harmonic map between surfaces. The
following definition lays out the framework for extracting such a sequence.

Definition 12.1. Let ι : N →M be a quasi-Fuchsian immersion of a closed surface
N into M . Suppose Σ0 ⊂ Σ and N0 ⊂ N are essentially embedded subsurfaces and
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h0 : (Σ0, ∂Σ0)→ (N0, ∂N0) a proper map. We say that f partially factors through
the pair of maps (ι, h0) if there exists a map h (homotopic to f) whose restriction
to Σ0 factors as h = ι ◦ h0.

Claim 12.1. Suppose Σ1 and M1 are finite covers of Σ and M respectively, and
f1 : Σ1 → M1 the lift of f : Σ → M . Furthermore, suppose that a quasi-Fuchsian
immersion ι : N → M lifts to the embedding ι1 : N → M1. If f partially factors
through (ι, h0), then f1 partially factors through (ι1, h

0).

Proof. Since the immersion ι : N → M lifts to the embedding ι1 : N → M1, and
f partially factors through (ι, h0), we conclude that Σ0 has a degree one lift to Σ1.
We fix one such degree one lift, and (also) denote it by Σ0 ⊂ Σ1. Furthermore, the
map h lifts to the map h1 : Σ1 →M1, which factors as h1 = ι1 ◦h0 when restricted
to Σ0 ⊂ Σ1. This confirms the claim.

�

Lemma 12.2. Suppose that f : Σ → M partially factors through (ι, h0), where
ι : N → M is a quasi-Fuchsian immersion. Let νn be any sequence of hyperbolic
metrics on N such that the restrictions of νn to N0 converge to the complete hy-
perbolic metric ν∞ on N0. Then there exist finite covers Σn and Mn, of Σ and M
respectively, a hyperbolic metric gn on Σn, and a negatively curved metric hn on
M (in the same connected component as h), with the following properties:

(1) the restrictions of gn to Σ0 converge to the complete hyperbolic metric g∞
on Σ0,

(2) the restrictions fn : Σ0 → Mn converge to a proper harmonic map f∞ :
(Σ0, g∞) → (N0, ν∞), which is an immersion when restricted to some
neighborhood of each cusp in the boundary of Σ0.

Here fn : (Σn, gn)→ (Mn, hn) are the corresponding harmonic maps homotopic to
the lift of f .

Remark. The boundary components of ∂Σ0 and ∂N0 are cusps with respect to the
limiting metrics g∞ and ν∞ respectively. Furthermore, f∞ : (Σ0, g∞)→ (N0, ν∞) is
the unique harmonic map of finite energy homotopic to the fixed map h0 : Σ0 → N0.
The map f∞ is an immersion near each cusp, but it may not be injective there.
Moreover, away from the cusps f∞ may not be an immersion at all.

In the remainder of this section we prove Lemma 11.2 assuming Lemma 12.2
(which is proved in the next section).

12.3. Semi-collapsing the four-holed sphere into a quasi-Fuchsian surface.
The finite covers Σ1 and M1, and the metrics g1 and h1 from Lemma 11.2 will be
chosen from the corresponding sequences in Lemma 12.2. But first, we need to
show that f partially factors through a pair (ι, h0).

Suppose that f : Σ → M semi-collapses an embedded four-holed sphere H =
Π∪Π′ ⊂ Σ. We let Σ0 = H. The cuffs of Π are labelled as A−1, A0, and A1, while
the cuffs of Π′ are A1 = B1, B2, and B3. Thus, the boundary curves of Σ0 are A0,
A−1, B2, and B3.

Proposition 12.1. There exist a quasi-Fuchsian immersion ι : N → M , an em-
bedded pair of pants N0 ⊂ N , and a proper map h0 : (Σ0, ∂Σ0)→ (N0, ∂N0), such
that f partially factors through (ι, h0).
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Figure 2. The map h0 : (Σ0, ∂Σ0)→ (N0, ∂N0) is a proper map
between surfaces with boundary.

Proof. By construction, the restriction of f to Π′ is essential. That is, f(Π′) is a
skewed pair of pants in M (skewed pants are determined by their half-lengths). Sur-
faces constructed by Kahn-Markovic in the proof of the Surface Subgroup Theorem
[15] are nearly geodesic. However, by a minor (and well understood) modification
of the argument one can construct a quasi-Fuchsian immersion ι : N → M of a
closed surface N such that f(Π′) is included in ι(N). More precisely, there exists
an embedded pair of pants N0 ⊂ N , and a homeomorphism h0 : Π′ → N0, such
that the restriction f : Π′ →M is homotopic to ι ◦ h0 : Π′ →M .

Label the cuffs of N0 as C1, C2, and C3. The map h0 is extended to the
map h0 : Σ0 → N0 as follows. Let h0 : A1 → C1 be any orientation preserving
homeomorphism between the two cuffs. We let h0 : A−1 → C1 be any orientation
reversing homeomorphism, and h0 : A0 → C1 an orientation preserving degree two
covering map. We then extend h0 to the interior of Π to obtain the proper map
h0 : (Σ0, ∂Σ0)→ (N0, ∂N0). This extension is possible because f collapses Π.

�

12.4. Proof of Lemma 11.2. Consider the finite covers Σn → Σ and Mn → M ,
and the harmonic maps fn : (Σn, gn)→ (Mn, hn) with respect to the corresponding
metrics from Lemma 12.2. The restrictions fn : Σ0 →Mn converge to the harmonic
map f∞ : (Σ0, g∞) → (N0, ν∞) which is homotopic to h0. We show that for n
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sufficiently large, the map fn can not be approximated by immersions. But first,
we replace the four times punctured sphere Σ0 = (Σ0, g∞) by the four-holed sphere
Σ1 compactly contained in Σ0.

Proposition 12.2. There exists a four-holed sphere Σ1, which is compactly and
essentially embedded in Σ0, and a pair of pants N1, which is compactly and essen-
tially embedded in N0, such that the restriction f∞ : (Σ1, ∂Σ1) → (N1, ∂N1) is a
proper map between surfaces with boundary.

Proof. The limiting harmonic map f∞ is an immersion near each cusp on Σ0. More-
over, f∞ is an orientation preserving homeomorphism near the cusps B2, B3, an
orientation reversing homeomorphism near A−1, while it is a degree two orienta-
tion preserving immersion near A0. Let β2, β3 ⊂ Σ0 be two (disjoint) simple closed
curves surrounding the cusps B2 and B3 respectively. We let γ2 = f∞(β2) and
γ3 = f∞(β3). If β2 and β3 are sufficiently close to the corresponding cusps, then
γ2, γ3 ⊂ N0 are disjoint simple closed curves surrounding the cusps C2 and C3 in
the boundary of N0.

The map f∞ is an orientation preserving degree two immersion near A0 that
continuously extends to the point A0 which becomes the branch point of order two.
As such, f∞ is topologically conjugated to the map z → z2 in a small neighborhood
of the cusp A0. Thus, there exists a simple closed curve α0 surrounding the cusp A0

such that f∞(α0) is a simple closed curve surrounding the cusp C1 in the boundary
of N0. We let γ1 = f∞(α0). Then f∞ : α0 → γ1 is a degree two covering map.

We let α−1 = f−1
∞ (γ1). Then α−1 is a simple closed curve surrounding the

cusp A−1 and f∞ : α−1 → γ1 is an orientation reversing homeomorphism. We let
Σ1 ⊂ Σ0 be the essentially embedded four-holed sphere bounded by the curves α0,
α−1, β2, β3. Likewise, we let N1 be the pair of pants bounded by the curves γ1,
γ2, and γ3. The restriction f∞ : (Σ1, ∂Σ1) → (N1, ∂N1) is a proper map between
surfaces with boundary.

�

We show that when n is large the map fn can not be approximated by immer-
sions. The proof is by contraposition. Suppose on the contrary that for every fixed
n, there exists a sequence of immersions gm : Σn → Mn, m ∈ N, approximating
fn. Then the restrictions gm : Σ1 →M approximate the restriction f∞ : Σ1 → N1

uniformly.
The surface N1 is embedded in N , which in turn is embedded in M1. Let

N ⊂ M be a tubular neighborhood of the quasi-Fuchsian surface N such that the
nearest point projection π : N → N is well defined. The restriction gm : Σ1 → M
approximates f∞ on Σ1. On the other hand, f∞ is an immersion near each boundary
component of Σ1, thus we can deform gm ever so slightly (in the C2 sense) so
that the new immersion (also denoted by) gm : Σ1 → M is a vertical lift of fn
with respect to π is some neighborhood of each boundary curve of Σ1 (see [20]).
Moreover, we can arrange that the surface gm(Σ) intersects itself transversally (in
particular, gm(Σ1) intersects itself transversally).

Thus, we can view the new approximating maps gm as proper maps gm :
(Σ1, ∂Σ1) → (N 1, ∂N 1). Here N 1 = π−1(N1), and N 1 homeomorphic to N1 ×
(−1, 1). Consider the double arcs of the immersed (and self-transverse) surface
gm(Σ1) ⊂ N 1. A point in ∂N 1 is an endpoint of such a double arc if and only if it
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lies in the intersection between the curves in gm(∂Σ1) (including the self-intersection
points of such curves).

For m large enough, the curves gm(β2), gm(β3), and gm(α−1) are embedded and
mutually disjoint curves in ∂N 1. Thus they do not yield any intersection points.
On the other hand, the curves gm(α0) and gm(α−1) converge to the same simple
closed curve γ1 when m→∞. We can perturb gm so that gm(α0) ∩ gm(α−1) = ∅.
We do this by pushing γ1 off of itself to obtain a nearby (but disjoint) curve γ′1. We
then perturb gm near the boundary curve α−1 so that the curves gm(α−1) converge
to γ′1.

Therefore, the set of endpoints of double arcs agrees with the set of self-intersection
points of the curve gm(α0). Note that the sequence of curves gm(α0) is contained
in the annulus γ1× (−1, 1) ⊂ ∂N 1. Moreover, gm(α0) intersects itself transversally
and the restrictions gm : α0 → γ1 × (−1, 1) converge to the double covering of the
core curve γ1. This implies that the number of self-intersection points is odd (see
again [20]). Such a thing is only possible if at least one of the double arcs ends in a
branch point. This is a contradiction to the assumption that gm is an immersion,
and the proof is complete.

13. Proof of Lemma 12.2

In the first part of this section we consider a fixed map f : Σ → M , where
(as usual) Σ is a closed surface and M a closed 3-manifold with a fixed negatively
curved metric ν. We let α0, α1, ..., αk ⊂ Σ denote a collection of disjoint simple
closed curves and define the embedded subsurface Ω = Σ \ ∪ki=0αi, which may be
disconnected.

We construct the family of surfaces Σr, and Riemannian metrics µr on Σr, such
that (Σr, µr) converge to the limiting Riemannian surface with nodes (Σ∞, µ∞)
(the “limit” of each curve αi yields a node on Σ∞). We then show that the family
of harmonic maps fr = fµr,ν : (Σr, µr) → (M,ν) converges (after passing onto a
subsequence) to the limiting harmonic map f∞ : (Σ∞, µ∞)→ (M,ν), which opens
up the nodes and “maps” them to the closed geodesics in M homotopic to f(αi).

This is the key step in proving Lemma 12.2. We apply these findings to the
sequence of covers Mn and the associated metrics hn. The metrics gn are chosen as
the hyperbolic metrics conformally equivalent to suitable µr. This implies that the
restrictions of harmonic maps fgn,hn : (Σ0, gn) → (Mn, hn) converge to the map
f∞ : (Σ0, µ∞) → (N0, ν∞), which is the finite energy harmonic map homotopic
to h0. Using the standard theory of harmonic maps between surfaces we then
show that f∞ is proper and an immersion near each cusp in the boundary of the
four-holed sphere Σ0.

13.1. The family of metrics µr. We let γi ⊂ (M,ν) denote the geodesic homo-
topic to f(αi). Note that γi need not be primitive. Let µ be a hyperbolic metric
on Σ such that αi ⊂ Σ are geodesics with respect to µ, and such that

(75) lµ(αi) = lν(γi).

Given r > 0, we construct the surface Σr, and the metric µr on Σr as follows.
Cut out each αi from Σ and insert the Euclidean cylinder Si× [0, r] instead, where
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Si is the circle of circumference lµ(αi) (thus, Si is identified with αi). We let

Σr = Ω ∪
k⋃
i=0

(Si × [0, r]) .

We construct the Riemannian metric µr on Σr by letting it agree with µ on Ω, and
with the Euclidean metric on each cylinder Si × [0, r] (we smooth out µr near the
edges of the cylinder). The equality (75) implies

(76) Area ((Si × [0, r]), µr) = r lµ(γi).

Let h : Σ → M be a map, homotopic to f , which maps αi locally isometrically
onto γi. If γi is primitive then the restriction h : αi → γi will be an isometry, but
in general h : αi → γi is a locally isometric covering map.

Define hr : Σr → M to be the map which agrees with h on Ω, and which we
extend to the map hr : Si× [0, r]→M by letting hr(p, s) = h(p). Here p ∈ Si ≡ αi,
and s ∈ [0, r]. Observe that each restriction hr : Si × [0, r] → M is a harmonic
map, while the restriction of hr to Ω does not depend on r.

Denote by fr : (Σr, µr)→ (M,ν) the homotopic harmonic map. Since harmonic
maps between negatively curved closed manifolds are energy minimizers, we obtain

(77)

∫
Σr

|dfr|2 dAµr ≤
∫
Σr

|dhr|2 dAµr .

The auxiliary map hr is very energy efficient, especially on the cylinders Si× [0, r].
As we shall see, this implies that fr and hr are close to each other. But first, we
estimate the energy of fr on the fixed compact set Ω.

Proposition 13.1. For every r > 0, the inequality∫
Ω

|dfr|2 dAµr ≤
∫
Ω

|dhr|2 dAµr

holds.

Proof. From the Cauchy-Schwartz inequality we obtain

∫
Σr\Ω

|dfr| dAµr ≤
√√√√ ∫

Σr\Ω

|dfr|2 dAµr

√√√√ ∫
Σr\Ω

dAµr

=

√√√√ ∫
Σr\Ω

|dfr|2 dAµr

√√√√r

k∑
i=0

lµ(γi).

The last equality follows from (76). We summarize this as

(78)

∫
Σr\Ω

|dfr| dAµr ≤
√√√√ ∫

Σr\Ω

|dfr|2 dAµr

√√√√r

k∑
i=0

lµ(γi).
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For s ∈ [0, r], set βi(s) = fr (Si × {s}). Then

r

k∑
i=0

lν(γi) ≤
k∑
i=0

r∫
0

lν(βi(s)) ds ≤
∫

Σr\Ω

|dfr| dAµr ,

where in the first inequality we use the estimate lν(βi(s)) ≥ lν(γi) (for γi is a
geodesic). We use this inequality to estimate from below the left-hand side in (78).
We get

(79) r

k∑
i=0

lν(γi) ≤
∫

Σr\Ω

|dfr|2.

But ∫
Σr\Ω

|dhr|2 dAµr =

∫
Σr\Ω

dAµr = r

k∑
i=0

lν(γi)

because |dhr| = 1, since hr projects Si × [0, r] onto γi (locally isometrically when
restricted to each Si × {s}). Combining this with (79) gives∫

Σr\Ω

|dhr|2 dAµr ≤
∫

Σr\Ω

|dfr|2 dAµr ,

which together with (77) yields the proposition.
�

13.2. The harmonic limit map. Suppose g, h : A→ B are homotopic maps be-
tween Riemannian manifolds A and B. We define the distance function d(g, h)(p),

p ∈ A, in the usual way. Lift g and h to the corresponding maps ĝ and ĥ between
the universal covers of A and B respectively, and define d(g, h)(p) as the distance

between ĝ(p) and ĥ(p). Since g and h are homotopic, this distance function is
equivariant and therefore well defined on A. Moreover, the estimate (see page 368
in [30])

(80) ∆d(g, h)(p) ≥ −(|τ(g)|(p) + |τ(h)|(p))
holds, where τ denotes the tension field.

Proposition 13.2. There exists a constant C > 0, independent of r, such that

(81) d(fr, hr)(p) ≤ C
for every p ∈ Σr. After passing onto a subsequence, we have

fr → f∞, r →∞,
where f∞ : Σ∞ →M is the limiting harmonic map. The Hopf differential Hopf(f∞)
has the second order pole at the node αi. The associated leading coefficient of
Hopf(f∞) is real and equal to 1

4 l2ν(γi).

Proof. From Proposition 13.1 we have the uniform (independent of r) upper bound
on the energy of fr on Ω. Since (M,ν) has strict negative curvature, we conclude
that fr is a normal family of harmonic maps when restricted to Ω. After passing
to a subsequence, we obtain a harmonic limit f∞ : Ω→M .
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Moreover, from the Courant-Lebesgue lemma we find that f∞ is absolutely con-
tinuous on Ω. This implies that for each p ∈ Ω, the estimate

(82) d(f∞, h)(p) ≤ C

holds, for some constant C > 0.
On the other hand, the maps hr and fr are homotopic. Since Σr is a closed

surface the distance function d(hr, fr) achieves its maximum at some point q ∈ Σr.
Then

∆d(hr, fr)(q) ≥ 0.

It follows from (80) that q ∈ Ω. But then, from (82) we conclude d(fr, hr)(p) ≤ C,
that is, the estimate (81) holds.

Having bounded the distance between fr and hr by a constant independent of
r, we conclude that after passing to a subsequence the harmonic limit f∞ : Σ∞ →
M exists. Moreover, the distance function d(h∞, f∞) is uniformly bounded and
subharmonic in the infinite cylinder Si × [0,∞). Let Dµ∞(pm, b) be the disc of
a fixed radius b > 0, where pm ∈ Σ∞ is a sequence of points converging to a
node. Then the sequence of functions d(h∞, f∞)(p), p ∈ Dµ∞(pm, b), converges to
a constant C1 ≤ C.

This implies that on Dµ∞(pm, b), the harmonic map f∞ is very close to R ◦ h∞,
where R : γi → γi is a rotation. Therefore, Hopf(f∞) converges to Hopf(h∞)
on Dµ∞(pm, b) (recall that h∞ is harmonic outside Ω). But Hopf(h∞) is easily
computed and the second part of the proposition follows (see also Section 3 in
[35]).

�

13.3. Proof of Lemma 12.2. According to the assumptions in Lemma 12.2, we
are given a map f : Σ→M which partially factors through (ι, h0). Here ι : N →M
is a quasi-Fuchsian immersion and h0 : Σ0 → N0 a proper map between two
surfaces with boundary (embedded in Σ and N respectively). Moreover, νn denotes
a sequence of hyperbolic metrics onN such that the restrictions of νn toN0 converge
to the complete hyperbolic metric ν∞ on N0 so that the components of ∂N0 are
cusps. We have to find finite covers Σn and Mn, of Σ and M respectively, a
hyperbolic metric gn on Σn, and a negatively curved metric hn on M which satisfy
the corresponding properties.

We apply Lemma 12.1 and obtain the finite covers Σn and Mn, and the corre-
sponding negatively curved metric hn on Mn. The constant K can be anything for
now, but soon we shall specify it (and apply Lemma 12.1 again to construct the
embedded collar of the required size). Quasi-Fuchsian surface N is now embedded
in Mn. It remains to find the metric gn on Σn and verify the stated properties.

To simplify the notation, we temporarily let Σn = Σ′, Mn = M ′, νn = ν′,
and hn = h′. Note that the metric ν′ agrees with h′ when restricted to N . Let
α0, α1, ..., αk ⊂ Σ denote the boundary curves of the embedded subsurface Σ0 ⊂ Σ′.
Then Σ0 is a connected component of Ω = Σ′ \ ∪ki=0αi.

As above, we consider the metric µr on Σ′r, and the corresponding harmonic
maps f ′r : (Σ′r, µr)→ (M ′, h′). We let Σ0

r denote the union of Σ0 and the cylinders
Si × [0, r] attached to its cuffs αi. As per Proposition 13.2, f ′r → f ′∞ when r →∞,
where f ′∞ : (Σ0

∞, µ∞) → (M, h′) is the harmonic map from the punctured surface
(Σ0
∞, µ∞).
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Choose the parameter K from Lemma 12.1 to be equal to the constant C from
(81) in Proposition 13.2. We apply Lemma 12.1 again (and pass onto further covers)
to ensure that for each r, the image f ′r(Σ

0
r) is contained in a fixed embedded collar

U ⊂M ′ around N ⊂M ′.

Claim 13.1. The map f ′∞ maps the punctured surface (Σ0
∞, µ∞) onto the geodesic

subsurface (N0, ν′) of N (the cuffs of N0 are geodesics on N).

Proof. By the choice of the cover M ′, we know that the surface (N, ν′) isometrically
embeds in (M ′, h′). Moreover, the auxiliary maps hr : Σ′r → M ′ can be chosen so
the image hr(Σ

0
r) is contained in N0 ⊂ N for every r.

The metric h′ is hyperbolic on U . Let I : U → U be the reflection through the
totally geodesic subsurface N ⊂ U (we can choose U so it is invariant under this
reflection). Since f ′r(Σ

0
r) is contained in U , the map f ′r = I ◦ f ′r is well defined on

Σ0
r. Furthermore, f ′r : (Σ0

r, µr)→ (M ′, h′) is harmonic (for h′ is invariant under I
on U).

Consider the distance function d(f ′∞, f
′
∞). From (80) we find that d(f ′∞, f

′
∞)

is subharmonic on Σ0
∞. Let pk ∈ Σ0

∞ be a sequence converging to a node. The se-
quence f∞(pk) converges to the corresponding geodesic γi ⊂ N . Hence d(f ′∞, f

′
∞)

tends to zero when we approach the nodes (because I restricts to the identity on
the geodesics γi). By the maximum principle we conclude that d(f ′∞, f

′
∞) ≡ 0,

that is f ′∞ ≡ f ′∞.
This implies that the image f ′∞(Σ0

∞) is contained in the totally geodesic surface
N . Then f ′∞ : (Σ0

∞, µ∞) → (N0, ν′) is the harmonic map from the punctured
surface Σ0 onto the pair of pants N0 (since N0 is convex). �

Remark. In [35] Wolf studied this map in details. As shown by Wolf [35], the map
f ′∞ : (Σ0

∞, µ∞) → (N0, ν′) is uniquely determined by the fact that its Hopf differ-
ential has the second order pole, and that the leading coefficient at the puncture
αi is real and equal to 1

4 l2ν(γi) (see Proposition 13.2). He also shows it is closely
approximated near the cusps by certain model maps which are explicitly computed.
Many other information about this map were provided in [35].

Thus, for fixed n ∈ N, we have shown that the sequence of harmonic maps
fnr : (Σ0

r, µr)→ (N0, νn) converges to the limiting harmonic map fn∞ : (Σ0
∞, µ∞)→

(N0, νn). We now let n → ∞. Then the harmonic maps fn∞ converge (see the
remark at the end of [19]) to a harmonic map f∞ : (Σ0

∞, µ∞)→ (N0, ν∞) between
the corresponding cusped surfaces.

Therefore, Hopf(fn∞) is a sequence of holomorphic quadratic differentials on
the four-holed sphere (Σ0

∞, µ∞) with the second order poles at the cusps. Since
lνn(γi) → 0, it follows from Proposition 13.2 that the limiting holomorphic qua-
dratic differential Hopf(f∞) can have at most first order poles. That f∞ is a proper
map and an immersion near each cusp is readily deduced from standard methods.
Since we could not locate it in the literature, we give a short proof in the following
subsection.

It remains to say that for each n we choose rn large enough so that the sequence
fnrn converges to f∞. We let gn be the hyperbolic metric on Σn which is conformally
equivalent to µrn . This completes the proof of Lemma 12.2.



HARMONIC SURFACES 57

13.4. Finite energy maps between cusped surfaces. Since Hopf(f∞) has at
most first order poles, it follows that f∞ has finite total energy∫

Σ0

e(f∞) dAg∞ <∞.

This is because ||Hopf(f∞)||(p) << e(f∞)(p) only at the points p where f∞ is
very close to being conformal. At those point we use standard estimates from
quasiconformal maps to show that the energy is finite over those areas. We leave
details to the reader.

Schoen-Yau proved in Theorem 1 in [30] that harmonic maps of finite total energy
between cusped surfaces are unique in their homotopy class. This enables us to
construct a new sequence of harmonic maps gn, which converges to the same limit
f∞, and which is slightly more convenient because of the symmetries we enforce.

Let µn denote a hyperbolic on Σ0 such that

(83) lµn(αi) = lνn(γi).

We double Σ0 to obtain the closed surface Σ1 with the hyperbolic metric µn. Like-
wise, the double of N0 is denoted by N1.

The map h0 : Σ0 → N0 yields the corresponding map h : Σ1 → N1 between the
doubles. We choose hn : Σ1 → N1 to be a local isometry in a fixed equidistant
tubular neighborhood of each closed geodesic αi. The restriction of hn near αi
is a locally isometric covering. Moreover, we can arrange that on Σ0 we have
hn → h∞, where h∞ : (Σ0, µ∞)→ (N0, ν∞) is a local isometry in a fixed horocyclic
neighborhood of each cusp in the boundary of Σ0.

Let fn : Σ1 → N1 be the harmonic map homotopic to h. Then the restrictions
of fn to Σ0 converge to the harmonic map f∞ : (Σ0, µ∞) → (N0, ν∞). Moreover,
d(fn, hn) does not achieve its maximum in the equidistant neighborhoods of the
cusps because both fn and hn are harmonic there which implies that d(fn, hn) is
subharmonic there. Thus, for each n the maximum is achieved on some compact
set of uniformly bounded diameter in Σ1.

This shows that d(fn, hn) remains uniformly bounded in n (because both fn and
hn converge to their limits there). Consequently d(f∞, h∞) is a bounded function.
An immediate corollary of this is that f∞ is proper. A standard argument then
shows that f∞ is an immersion near each cusp. Indeed, similarly as in the proof of
Proposition 13.2 we conclude that the function d(f∞, h∞) behaves like a constant
function when approaching a cusp in the boundary of Σ0. Passing to the universal

cover H2, we find that on large discs which are close to a cusp, the lift f̂∞ is close

to ĥ∞ ◦R. Here R is an isometry of H2. Since h∞ is an immersion there, so is f∞.
This completes the proof.
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