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UNIQUENESS OF MINIMAL DIFFEOMORPHISMS
BETWEEN SURFACES

VLADIMIR MARKOVIC

Abstract. We prove that there exists at most one minimal dif-
feomorphism in a given homotopy class between any two closed
Riemannian surfaces. This results was previously known only un-
der the assumption that the Riemannian metrics have constant
Gaussian curvature. Along the way, we prove the New Main In-
equality which substantially strengthens the classical Reich-Strebel
inequality for quasiconformal maps.

1. Introduction

1.1. Uniqueness of minimal diffeomorphisms. A map f : (M1, σ1)→
(M2, σ2) between two Riemannian manifolds is called minimal if graph(f)
is a minimal submanifold of the product Riemannian manifold (M1 ×
M2, σ1×σ2). When f is a diffeomorphism it is called a minimal diffeo-
morphism (in this case the inverse map f−1 is also a minimal diffeo-
morphism). Minimal maps are closely related to harmonic maps but
are more subtle. In general, much less is known regarding the existence
and (especially) uniqueness of minimal maps.

The most studied case is that of minimal diffeomorphisms between
Riemannian surfaces. Let F : (M1, σ1) → (M2, σ2) be a homeomor-
phism between Riemannian surfaces M1 and M2. The basic questions
are whether there exists a minimal diffeomorphism homotopic to F ,
and whether such a diffeomorphism is unique. Much like in the case of
harmonic maps, assuming that the Riemannian metrics σ1 and σ2 have
negative Gaussian curvature yields the existence of a minimal diffeo-
morphism in the prescribed homotopy class. The proof is an adaptation
of the standard Schoen-Yau method from [13].

Furthermore, if both σ1 and σ2 have constant (negative) Gaussian
curvatures then it is a theorem of Schoen (see Proposition 2.12 in [12])
that f is unique in its homotopy class (this argument relies on the
work of Micallef-Wolfson [9], see also the paper by Wan [16]). This
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result has been extended and generalized in various directions. Brendle
[1] showed the uniqueness of minimal diffeomorphisms between certain
domains in the hyperbolic plane, while Labourie [4] proved that given a
Hitchin representation in a split real Lie group of rank two, there exists
a unique equivariant minimal surface in the corresponding symmetric
space. See also the work of Lee [5] extending the Schoen’s result to
certain other maps beside diffeomorphisms, and the work by Lee-Wang
[6], [7] discussing the uniqueness of minimal sub-manifolds in higher
dimensions.

However, all proofs of the uniqueness of the minimal diffeomorphism
f depend heavily on the assumption that the curvatures of σi’s are
constant. The purpose of this paper is to show that the uniqueness
result holds for arbitrary Riemannian metrics σ1 and σ2. In particular,
the assumption that the curvature is constant is redundant (nor do we
need to assume that the curvatures are negative).

Theorem 1.1. Let (M1, σ1) and (M2, σ2) denote two closed Riemann-
ian surfaces of genus at least two. There exists at most one minimal
diffeomorphism f : (M1, σ1)→ (M2, σ2) in any given homotopy class.

Remark. It is well known that a harmonic map between negatively
curved closed manifolds is unique in its homotopy class. In general,
this uniqueness result does not hold without the curvature assumption.
It is therefore somewhat surprising that a harmonic diffeomorphism
between closed Riemannian surfaces is unique in its homotopy class.
Theorem 1.1 can been seen as an analogue of Theorem 4 from [8],
but the present argument is significantly more involved which is not
surprising given the subtle nature of minimal maps.

Adding the assumption that the curvatures are negative we obtain
both the existence and the uniqueness of minimal diffeomorphisms.
The following theorem follows immediately from the existence result
discussed above and Theorem 1.1.

Theorem 1.2. Let F : (M1, σ1) → (M2, σ2) be a homeomorphism be-
tween two negatively curved closed Riemannian surfaces. Then there
exists a unique minimal diffeomorphism f : (M1, σ1) → (M2, σ2) ho-
motopic to F .

1.2. The New Main Inequality. Given a diffeomorphism f : S →
S ′, between Riemann surfaces S and S ′, we let µf denote the Beltrami
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dilatation of f . Recall that µf is a (−1, 1) form on S which is expressed

as µf = fz̄
fz

dz̄
dz

, in local coordinates.

Let φ denote a holomorphic quadratic differential on S. Then φ is a
(2, 0) form (φ = φ dz2 in local coordinates). Suppose that f : S → S
is a diffeomorphism homotopic to the identity. The classical Reich-
Strebel Inequality [11] states:

(1) Re

∫
S

µf
1− |µf |2

φ ≤
∫
S

|µf |2

1− |µf |2
|φ|.

In this paper we prove the substantially stronger inequality which
we call the New Main Inequality.

Lemma 1.1. Suppose f1, f2 : S → S ′ are mutually homotopic dif-
feomorphisms between Riemann surfaces S and S ′. Then for every
holomorphic quadratic differential φ on S, we have:

(2)

∣∣∣∣∣∣
∫
S

φ

(
µf1

1− |µf1 |2
−

µf2

1− |µf2 |2

)∣∣∣∣∣∣ ≤
∫
S

|φ|
(
|µf1 |2

1− |µf1 |2
+
|µf2 |2

1− |µf2 |2

)
.

The New Main Inequality is stronger than the Reich-Strebel inequal-
ity. In particular, we derive (1) from (2) by letting f = f1, and f2 be
the identity mapping on S.

Remark. The New Main Inequality holds for arbitrary homotopic (rel
boundary) quasiconformal maps f1, f2 : S → S ′, where S and S ′ are
any two Riemann surfaces (possibly non-compact, possibly with bound-
ary). This extension can be proved from Lemma 1.1 by standard ap-
proximation techniques. This extended New Main Inequality and its
ramifications to the theory of quasiconformal maps are not being dis-
cussed further in this paper.

The Reich-Strebel inequality is a generalization of the classical Groet-
zch argument and its proof is based on the extremal length method.
On the other hand, the proof of the New Main Inequality follows from
the Schoen uniqueness theorem for minimal diffeomorphisms between
hyperbolic Riemann surfaces and the solvability of certain PDE’s in-
volving the Hopf differentials of harmonic diffeomorphisms between
hyperbolic Riemann surfaces (this theory was developed by Wan [15],
Tam-Wan [14], and Wolf [17]). Thus, we produce a completely different
proof of the Reich-Strebel inequality.
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1.3. Organization of the paper. From now on, all surfaces are as-
sumed to be closed, and all maps are assumed to be orientation preserv-
ing. Furthermore, given a Riemannian surface (M,σ), after passing to
new local coordinates, we always assume that M is a Riemann surface
and σ a conformal metric.

In Section 2 we compute the difference between the total energies
of different mappings, and use this to compute useful upper and lower
bounds. In Section 3 we prove prove Theorem 1.1 combining these
estimates with the New Main Inequality.

In Section 4 we first recall two facts specific to harmonic diffeomor-
phism between Riemann surfaces endowed with the hyperbolic metrics.
The first one is that the total energy of the pair of harmonic diffeo-
morphisms, which define the minimal diffeomorphism, minimizes the
energy over the Teichmuüller space. The second one is the existence
of a harmonic diffeomorphism with prescribed Hopf’s differential. We
then prove Lemma 1.1 using these facts and some estimates from Sec-
tion 2.

2. The energy of a map

Let S and M denote two Riemann surfaces and suppose M is en-
dowed with a conformal metric σ. Throughout this section we assume
that h : S →M is a smooth map. Let

|∂h|2 = (σ ◦ h)|hz| |dz|2, |∂̄h|2 = (σ ◦ h)|hz̄|2 |dz|2.
Define the energy density

e(h) = |∂h|2 + |∂̄h|2,
and the (total) energy of h

E(h) =

∫
S

e(h).

We also set
H(h) = (σ ◦ h)hz(hz̄) dz

2.

Observe that H(h) is a (not necessarily holomorphic) quadratic differ-
ential on S.

We note the following elementary proposition.

Proposition 2.1. If h is a diffeomorphism then the pointwise inequal-
ities

(3) |∂̄h|2 ≤ |H(h)| < |∂h|2,
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hold everywhere on S.

Remark. We reiterate that the second inequality in (3) is strict.

The following proposition is used later in the proof of the New Main
Inequality.

Proposition 2.2. Suppose h is a diffeomorphism and η : S → R a
bounded measurable function on S. Then

(4)

∫
S

e(h) η ≤ 2

∫
S

|H(h)| η

+ ||η||∞A(M,σ),

where ||η||∞ denotes the essential supremum of η and A(M,σ) the σ-
area of M .

Proof. Since |∂h|2 − |∂̄h|2 is the Jacobian of h, we have∫
S

(|∂h|2 − |∂̄h|2) = A(M,σ).

This yields the estimate∫
S

(|∂h|2 − |∂̄h|2) η ≤ ||η||∞A(M,σ),

which can be written as∫
S

e(h) η ≤ 2

∫
S

|∂̄h|2 η

+ ||η||∞A(M,σ).

But, from (3) we have the pointwise estimate |∂̄h|2 ≤ |H(h)(z)|. Re-
placing this into the previous inequality proves the proposition.

�

2.1. Variation of the total energy. Let S ′ denote another Riemann
surface and f : S → S ′ a diffeomorphism. In this subsection we esti-
mate (above and below) the difference E(h ◦ f−1)− E(h).

Proposition 2.3. The difference between the total energies of h and
h ◦ f−1 is computed as

(5) E(h ◦ f−1)− E(h) = −4 Re

∫
S

H(h)
µf

1− |µf |2

+ 2

∫
S

e(h)
|µf |2

1− |µf |2
.
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Proof. This proposition is elementary and well known (for example
see (1.1) in [11]). The interested reader can first verify the following
pointwise identity (see [2] for useful formulas)

e(h ◦ f−1) =
(
e(h) ◦ f−1

)
Jf−1 + 2

(
e(h) ◦ f−1

)
Jf−1

(|µf |2 ◦ f−1)

1− (|µf |2 ◦ f−1)

− 4 Re

((
H(h) ◦ f−1

)
Jf−1

(µf ◦ f−1)

1− (|µf |2 ◦ f−1)

)
,

where Jf−1 denotes the Jacobian of f−1. The proposition then follows
by integration.

�

We are interested in the following corollary which provides the lower
bound on E(h ◦ f−1)− E(h).

Corollary 2.1. Suppose that f : S → S ′ is not a biholomorphism.
Then the strict inequality

(6) E(h ◦ f−1)−E(h) > −4 Re

∫
S

H(h)
µf

1− |µf |2

+ 4

∫
S

|H(h)|
|µf |2

1− |µf |2

holds. On the other hand, if f is biholomorphic then E(h◦f−1) = E(h).

Proof. From (3) we deduce the strict pointwise inequality e(h) > 2|H(h)|
everywhere on S. Replacing this in the second integral on the right
hand side of the equality (5), and using the fact that |µf | is positive
on a set of positive measure proves the first part of the corollary. On
the other hand, the equality E(h ◦ f−1) = E(h) is obvious when f is a
biholomorphism.

�

Next, we produce the upper bound on E(h ◦ f−1)− E(h).

Corollary 2.2. We have

E(h ◦ f−1)− E(h) ≤ −4 Re

∫
S

H(h)
µf

1− |µf |2

+ 4

∫
S

|H(h)|
|µf |2

1− |µf |2

(7)

+
||µf ||2∞

1− ||µf ||2∞∞
A(M,σ).
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Proof. From (4) we find∫
S

e(h)
|µf |2

1− |µf |2
≤ 2

∫
S

|H(h)|
|µf |2

1− |µf |2
+

∣∣∣∣∣∣∣∣ |µf |21− |µf |2

∣∣∣∣∣∣∣∣
∞
A(M,σ)

= 2

∫
S

|H(h)|
|µf |2

1− |µf |2
+

||µf ||2∞
1− ||µf ||2∞

A(M,σ).

Applying this inequality to the second integral on the right hand side
of the equality (5) proves the corollary.

�

3. Proof of Theorem 1.1

3.1. Harmonic and minimal diffeomorphisms. We begin by re-
calling the definitions of harmonic and minimal diffeomorphisms. A
diffeomorphism h : S → (M,σ) is a harmonic map if and only if H(h)
is a holomorphic quadratic differential on S. In this case we refer to
H(h) as the Hopf differential.

On the other hand, let hi : S → (Mi, σi), i = 1, 2, be two diffeo-
morphisms. The induced diffeomorphism g = h2 ◦ h−1

1 is minimal if
and only if both hi’s are harmonic, and if H(h1) = −H(h2). Moreover,
every minimal diffeomorphism g : (M1, σ1) → (M2, σ2) arises in this
way (see [12]).

Given a pair of diffeomorphisms hi : S → (Mi, σi), we define the
total energy of the pair (h1, h2) by

E(h1, h2) = E(h1) + E(h2).

Proposition 3.1. Let hi : S → (Mi, σi) be two harmonic diffeomor-
phisms such that H(h1) = −H(h2). Suppose we are given another two

diffeomorphisms ĥi : S ′ → Mi, i = 1, 2, such that at least one of the

diffeomorphisms ĥ−1
i ◦ hi is not biholomorphic. Then

E(h1, h2) < E(ĥ1, ĥ2).

Proof. Define fi : S → S ′ by fi = ĥ−1
i ◦ hi. Then at least one diffeo-

morphism fi, i = 1, 2, is not biholomorphic. Thus, the inequality (6)
from Corollary 2.1 yields the strict inequality

2∑
i=1

(
E(ĥi)−E(hi)

)
>

2∑
i=1

−4 Re

∫
S

H(hi)
µfi

1− |µfi |2

+ 4

∫
S

|H(hi)|
|µfi |2

1− |µfi |2

 .
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Set φ = H(h1) = −H(h2). The previous inequality then becomes

E(ĥ1,ĥ2)− E(h1, h2) > −4 Re

∫
S

φ
µf1

1− |µf1 |2

+ 4

∫
S

|φ|
|µf1 |2

1− |µf1 |2

(8)

+

−4 Re

∫
S

(−φ)
µf2

1− |µf2 |2

+ 4

∫
S

|φ|
|µf2 |2

1− |µf2 |2

 .

Since φ is a holomorphic quadratic differential (because hi’s are har-
monic), we may apply the New Main Inequality (2) from Lemma 1.1,
and conclude that the right hand side in (8) is non-negative. This
implies the strict inequality

E(ĥ1, ĥ2)− E(h1, h2) > 0,

which proves the proposition.
�

3.2. Proof of Theorem 1.1. Suppose g, ĝ : (M1, σ1) → (M2, σ2) are
two homotopic minimal diffeomorphisms. We need to show ĝ = g. Let
hi : S → Mi be the harmonic diffeomorphisms such that g = h2 ◦ h−1

1 ,

and ĥi : S ′ →Mi the harmonic diffeomorphisms such that ĝ = ĥ2◦ ĥ−1
1 .

Set Ai = ĥ−1
i ◦ hi, i = 1, 2.

Claim 1. The diffeomorphisms A1 and A2 are conformal.

Proof. Suppose that at least one of Ai’s is not a conformal diffeomor-
phism. We argue by contradiction. Since g is a minimal diffeomor-
phisms, we have H(h1) = −H(h2). From Proposition 3.1 we find that

E(h1, h2) < E
(
ĥ1, ĥ2

)
.

Likewise, ĝ is a minimal diffeomorphisms so H(ĥ1) = −H(ĥ2). Since
at least one of A−1

i ’s is not a conformal diffeomorphism, again using
Proposition 3.1 we find that

E(h1, h2) > E
(
ĥ1, ĥ2

)
.

The last two inequalities contradict each other which proves the claim.
�

From the definition of Ai’s, we have

g = h2 ◦ h−1
1 = ĥ2 ◦ (A2 ◦ A−1

1 ) ◦ ĥ−1
1 .
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Since ĝ = ĥ2 ◦ ĥ−1
1 , and since g is homotopic to ĝ, we conclude that

A2 ◦ A−1
1 is homotopic to the identity map on S = S ′. But both A1

and A2 are conformal, so it follows that A2 ◦ A−1
1 is the identity map.

This shows that g = ĝ and the theorem is proved.

4. The proof of the new main inequality

4.1. The energy functional on Tg. In this subsection we recall
Schoen’s theorem that a diffeomorphism which is minimal with re-
spect to the hyperbolic metrics (constant curvature −1), is unique in
its homotopy class. In fact we need a quantitative version which states
that the total energy of the pair of harmonic diffeomorphisms (which
define the minimal diffeomorphism) minimizes the energy.

Denote by Σg a smooth surface of genus g. We let Tg denote the
Teichmüller space of marked complex structures on Σg, where Sτ is the
marked Riemann surface corresponding to τ ∈ Tg.

Let Mi, i = 1, 2, denote a pair of Riemann surfaces and denote
by σi the hyperbolic metric on Mi. Also, let Gi : Σg → Mi be a
homeomorphism. For τ ∈ Tg, we let hτi : Sτ → (Mi, σi) denote the
harmonic diffeomorphism homotopic to Gi.

The next theorem follows from Proposition 2.12 in [12].

Theorem 4.1. There exists a unique τ ∈ Tg such that H(hτ1) =
−H(hτ2). Moreover, for every τ ′ ∈ Tg the inequality

(9) E(hτ
′

1 , h
τ ′

2 ) ≥ E(hτ1, h
τ
2)

holds .

We record the following simple corollary.

Corollary 4.1. Let τ ′ ∈ Tg, and let fi : Sτ → Sτ ′ be any diffeomor-
phism, i = 1, 2, such that hτ ◦ f−1

i is homotopic to hτ
′
i . Then

(10) E(hτ ◦ f−1
1 , hτ ◦ f−1

2 ) ≥ E(hτ1, h
τ
2).

Proof. Since a harmonic diffeomorphism has the least total energy in
its homotopy class we obtain the estimate E(hτ

′
i ) ≤ E(hτ ◦ f−1

i ). The
inequality (10) now follows from (9).

�
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4.2. Prescribing the Hopf differential of a harmonic map. We
recall the following theorem proved independently (and using different
means) by Hitchin [3], Wolf [17], and Wan [15] (see also [14]).

Theorem 4.2. Let ψ be a holomorphic quadratic differential on S.
There exists a Riemann surface M and a harmonic diffeomorphism
h : S → (M,σ) with the property that H(h) = ψ, where σ is the
hyperbolic metric σ on M .

Remark. The assumption that σ is the hyperbolic metric is essential in
the previous theorem.

4.3. The proof of Lemma 1.1. Fix Riemann surfaces S, S ′, two mu-
tually homotopic diffeomorphisms f1, f2 : S → S ′, and a holomorphic
quadratic differential φ on S. It remains to prove the inequality (2).

Fix t > 0. Let (Mi, σi) be the hyperbolic Riemann surface, and
hi : S → (Mi, σi), i = 1, 2, the harmonic diffeomorphisms obtained
from Theorem 4.2, such that H(h1) = −H(h2) = tφ. From (10) we
obtain the estimate

(11) E(h1 ◦ f−1
1 , h1 ◦ f−1

2 ) ≥ E(h1, h2).

Combining this with (7) from Corollary 2.2, we get

0 ≤
2∑
i=1

(
E(hi ◦ f−1

i )− E(hi)
)
≤ −4 Re

∫
S

tφ
µf1

1− |µf1 |2

+ 4

∫
S

t|φ|
|µf1 |2

1− |µf1 |2

+

−4 Re

∫
S

t(−φ)
µf2

1− |µf2 |2

+ 4

∫
S

t|φ|
|µf2 |2

1− |µf2 |2


(12)

+ 2π(2g − 2)

2∑
i=1

(
||µfi ||2∞

1− ||µfi ||2∞

)
.

Dividing all terms in (12) by 4t yields
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Re

∫
S

φ
µf1

1− |µf1 |2
+

∫
S

(−φ)
µf2

1− |µf2 |2

 ≤ ∫
S

|φ|
|µf1 |2

1− |µf1 |2
+

∫
S

|φ|
|µf2 |2

1− |µf2 |2

(13)

+
2π(2g − 2)

4t

2∑
i=1

(
||µfi ||2∞

1− ||µfi ||2∞

)
.

The last term on the right hand side of (13) tends to zero when t→∞.
Thus, we get

Re

∫
S

φ
µf1

1− |µf1 |2
+

∫
S

(−φ)
µf2

1− |µf2 |2

 ≤ ∫
S

|φ|
|µf1 |2

1− |µf1 |2
+

∫
S

|φ|
|µf2 |2

1− |µf2 |2
,

which implies The Main New Inequality (2).
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