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NON-UNIQUENESS OF MINIMAL SURFACES IN A PRODUCT

OF CLOSED RIEMANN SURFACES

VLADIMIR MARKOVI�

Abstract. We show that for every large enough g there exists a Fuchsian repre-
sentation ρ : π1(Σg) →

∏3
i=1 PSL(2,R) which yields multiple minimal surfaces in

the corresponding product of closed Riemann surfaces.

1. Introduction

1.1. Minimal surfaces in products. Denote by Σg a surface of genus g ≥ 2, and
let Tg denote the Teichmüller space of marked complex structures on Σg. Each
Fuchsian representation ρ : π1(Σg) →

∏n
i=1 PSL(2,R) yields the energy functional

Eρ : Tg → (0,∞), given as the sum of energies of the corresponding harmonic
di�eomorphisms (see below). It is well known by the work of Schoen-Yau [13] that
Eρ is proper on Tg. Consequently, Eρ achieves its global minimum and therefore it
has at least one stationary point. Schoen [12] proved that this is the only stationary
point of Eρ providing n = 2 (the same trivially holds when n = 1). The purpose of
this paper is to address the case n > 2.

Theorem 1.1. For every large enough g ≥ 2, there exists a Fuchsian representation
ρ : π1(Σg) →

∏3
i=1 PSL(2,R) such that Eρ : Tg → (0,∞) has at least two stationary

points.

Remark. Labourie conjectured that given a Hitchin representation of π1(Σg) in a split
real Lie group, there exists a unique equivariant minimal surface in the corresponding
symmetric space (in [6] he proved this conjecture when n = 2). Theorem 1.1 disproves
the analogous conjecture for Fuchsian (Hitchin) representations of π1(Σg) to the semi-

simple Lie groups
∏3

i=1 PSL(2,R). This shows that the theorem of Collier-Tholozan-
Toulisse [3] about the maximal representations into Hermitian Lie groups can not be
extended to Lie groups of rank greater than two. Another corollary of Theorem 1.1
is that there is no convex Riemannian metric on the Teichmüller space for which
the energy functional is geodesically convex (this energy functional is de�ned at the
beginning of Section 2).

1.2. The New Main Inequality does not generalize. Given a di�eomorphism
f : S → S ′ between Riemann surfaces S and S ′, we let Belt(f) denote the Beltrami
dilatation of f . Then Belt(f) is a (−1, 1) form on S which is expressed as Belt(f) =
fz̄
fz
dz̄
dz
, in local coordinates. A holomorphic quadratic di�erential φ on S is a (2, 0) form

(φ = φ dz2 in local coordinates).
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Lemma 1.1. For every g su�ciently large, there exist

• closed Riemann surfaces S and S ′ of genus g,

• mutually homotopic di�eomorphisms fi : S → S ′, i = 1, 2, 3,

• holomorphic quadratic di�erentials φi on S, satisfying the condition

φ1 + φ2 + φ3 = 0,

such that the following strict inequality

(1) Re
3∑
i=1

∫
S

φi
µi

1− |µi|2
>

3∑
i=1

∫
S

|φi|
|µi|2

1− |µi|2

holds, where µi = Belt(fi).

Remark. The lemma does not hold when n = 2. It was shown in [8] that in this
case the right hand side of (1) is always greater or equal than the left hand side (we
called this The New Main Inequality since it generalizes the classical Reich-Strebel
Inequality). But this is as far as it goes, as Lemma 1.1 shows.

1.3. Outline. There are various proofs of the uniqueness of minimal di�eomorphisms
between Riemann surfaces (see the works of Brendle [2], Micallef-Wolfson [10], and
Lee [7]). However, the corresponding estimates for establishing the uniqueness of
minimal surfaces in the product of three (or more) closed Riemann surfaces do not
close (making this a supercritical case). In this paper we construct an explicit example
of a minimal surface in the product of three closed hyperbolic Riemann surfaces which
is not a global minimum of the energy functional. The strict inequality (1) conveys
the failure of the energy functional to achieve its minimum at this minimal surface.
The content of Section 2 is to prove Theorem 1.1 assuming Lemma 1.1 (the argu-

ment closely follows [8]). We construct the minimal surface h : S → M1×M2×M3,
where hi : S → Mi is the harmonic di�eomorphism whose Hopf di�erential is
equal to tφi. Then S is a stationary point of the corresponding energy functional
Et : Tg → (0,∞). However, the strict inequality (1) implies Et(S ′) < Et(S) provid-
ing that t is large enough. Therefore, energy functional does not achieve its minimum
at S. The remainder of the paper is devoted to proving Lemma 1.1 (harmonic maps
do not feature any longer).
In sections 3-6 we prove the version of Lemma 1.1 in which the Riemann surfaces

S is replaced with the unit disc. In Section 3 we de�ne the notion of an admissible
path of Beltrami di�erentials µ(t) = tµ̇ + t2µ̈ + o(t2), and formulate Lemma 3.1
which is an in�nitesimal version of Lemma 1.1. This lemma claims the existence of
suitable, mutually equivalent, admissible paths of Beltrami di�erentials on D. Using
the explicit formula for solving the Beltrami equation on C, in Section 4 we explain
how to build equivalent paths µi(t) of admissible Beltrami di�erentials only in terms
of µ̇i.
The proof of Lemma 3.1 (and therefore of Lemma 1.1) is explicit. We construct

concrete holomorphic functions φi, and Beltrami dilatations µi, on D so that (1) holds.
The functions φi are squares of quadratic polynomials, and µi's are then constructed
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so that (1) holds. In Section 5 we construct the corresponding Beltrami dilatations,
and estimate the integrals from (1) for an arbitrary quadratic polynomial. In Section
6 we write down the three polynomials and complete the proof of Lemma 3.1. In
Section 7 we extend the result from D to any closed Riemann surface of su�ciently
large injectivity radius (using standard approximation).
Throughout the paper we only use basic and classical computations and tools, the

extent of which is the formula for solving the Beltrami equation, and the occasional
use of the Stokes theorem (everything follows easily from �rst principles). We use z
to denote the complex variable on C, or a local complex parameter on a Riemann
surface. Also, we let z = x+ iy, where i is the imaginary unit.

1.4. A few comments regarding the strategy for proving Theorem 1.1. Let
us say a few words about the strategy of the proof, and in particular about the con-
nections between the New Main Inequality and the behavior of the energy functional
at it's stationary points. Let h : S → M1 ×M2 ×M3 be the minimal surface where
hi : S → Mi is the harmonic di�eomorphism whose Hopf di�erential is equal to φi
(in partucular, φ1 + φ2 + φ3 = 0). Then S is a stationary point of the corresponding
energy functional E : Tg → (0,∞). After computing the second variation of the
energy functional E, one veri�es the following.

Observation. If S is a local minimum of E, then given any mutually equivalent ad-
missible paths µi : [0, t0] → BD(S) of Beltrami di�erentials, the inequality

Re
3∑
i=1

∫
D

φiµ̈i dxdy ≤
3∑
i=1

∫
D

|φi||µ̇i|2 dxdy (?)

holds (here µi(t) = tµ̇i + t2µ̈i + o(t2)).

The inequality (?) does not feature the metric on the target surfaces which makes
it robust and easier to work with (in fact, it holds for the energy functional de�ned
with respect to any conformal Riemannian metric and not just the hyperbolic metric
which is the one we work with here). Furthermore, if (?) does not hold for some choice
of µi's and φi's, then S is a stationary point which is not a local minimum of E. This
last statement motivates our strategy. Namely, in Lemma 3.1 we �nd examples when
(?) fails to hold (the formula (7) is the negation of (?) in the case when S is replaced
with D).
Lemma 3.1 is proved in the case when S is replaced by the unit disc. So, the most

direct way of showing that S may not be a local minimum of E would be to prove
the version of Lemma 3.1 (and the inequality (7) in particular) in the case when D
is replaced by S. But this is somewhat awkward to do (although not impossible).
Instead, we �rst observe that (7) yields the formula (9), which is then routinely
shown to imply (1) which holds on S. We then use (1) to prove that S is not a global
minimum of E.

Remark. Technically we do not show that S fails to be a local minimum of E (we
only show that the stationary point S is not a global minimum). This is the cost of
not proving (7) in the case when D is replaced by S.
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2. Harmonic diffeomorphisms between closed Riemann surfaces

Let h : S → M denote a di�eomorphism between Riemann surfaces S and M of
genus g, and let σ denote the density of the hyperbolic metric on M . Set

|∂h|2 = (σ2 ◦ h)|hz| dxdy, |∂̄h|2 = (σ2 ◦ h)|hz̄|2 dxdy.

De�ne the energy density form

e(h) = |∂h|2 + |∂̄h|2,

the (total) energy of h

E(h) =

∫
S

e(h),

and set

Hopf(h) = (σ2 ◦ h)hz(hz̄) dz
2.

Then, h is harmonic if and only if Hopf(h) is a holomorphic quadratic di�erential on
S (which we call the Hopf di�erential of h).

2.1. Minimal surfaces in products. For each i = 1, 2, 3, �x the following:

• Riemann surfaces Mi of genus g endowed with complete hyperbolic metrics
with conformal densities σi,

• orientation preserving homeomorphisms Gi : Σg →Mi.

SetM = M1×M2×M3, and G : Σg →M , where G = (G1, G2, G3). For each marked
Riemann surface S ∈ Tg, let hi : S → (Mi, σi) be the harmonic di�eomorphism
homotopic to Gi. Denote by h : S → M the corresponding product map h =
(h1, h2, h3), and let

E(h) =
3∑
i=1

E(hi).

De�nition 2.1. Given a pair (M,G) we de�ne the function EM,G : Tg → (0,∞) by
letting EM,G(S) = E(h).

We say that h : S →M is a minimal surface if S is a stationary point of the function
EM,G : Σg → (0,∞). In this section we use Lemma 1.1 to prove the following theorem.

Theorem 2.1. For every large enough g ≥ 2, there exist Riemann surfaces Mi,
and homeomorphisms Gi : Σg → Mi, i = 1, 2, 3, such that the corresponding energy
functional E(M,G) : Tg → (0,∞) has at least two critical points.

2.2. Proof of Theorem 1.1. Theorem 2.1 is just a restatement of Theorem 1.1.
Indeed, each homeomorphism Gi : Σg → Mi yields the Fuchsian representation
ρi : π1(Σg) → PSL(2,R). De�ne the Fuchsian representation ρ : π1(Σg) →∏3

i=1 PSL(2,R), as the product of Fuchsian representations ρi. Furthermore, we
have the identity Eρ = EM,G. Theorem 1.1 now follows from Theorem 2.1.
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2.3. Proof of Theorem 2.1. Fix Riemann surfaces S, S ′, di�eomorphisms fi :
S → S ′, and holomorphic quadratic di�erentials φi satisfying the assumptions and
conclusions of Lemma 1.1. For every t > 0, we let (M t

i , σ
t
i) be the hyperbolic Riemann

surface, and hti : S → (M t
i , σ

t
i) the harmonic di�eomorphism, such that Hopf(hti) =

tφi. The existence of such h
t
i was established independently (and by di�erent means)

by Hitchin [5], Wolf [16], and Wan [14] (see also Theorem 4.2 in [8]). Identify Σg with
S, and set Gt

i = hti. Below we consider the induced function Et = E(Mt,Gt) : Tg → R.
Note that S is the critical point of each function Et because

Hopf(ht) = Hopf(ht1) + Hopf(ht2) + Hopf(ht3) = 0

where ht : S →M t is the corresponding product map. In other words, ht is a minimal
surface. The idea of this proof is to show that for t large enough Et does not achieve
its minimum at S. Thus, the global minimum of Et provides another critical point of
Et which proves the theorem.
We begin by observing that the inequality

Et(S ′) ≤
3∑
i=1

E(hti ◦ f−1
i )

holds because the total energy of the di�eomorphism hti ◦ f−1
i : S ′ → M t

i is greater
or equal than the energy of the harmonic di�eomorphism in its homotopy class.
Therefore, we derive

(2) Et(S ′)− Et(S) ≤
3∑
i=1

(
E(hti ◦ f−1

i )− E(hti)
)
.

The following equality was proved in Proposition 2.3 in [8] (which is a restating of
(1.1) in [11])

E(hti ◦ f−1
i )− E(hti) = −4 Re

∫
S

tφi
µi

1− |µi|2
+ 2

∫
S

e(hti)
|µi|2

1− |µi|2
,

where µi = Belt(fi) (recall that e(hti) denotes the energy density form of hti). Com-
bining this with (2), we conclude that

(3) Et(S ′)− Et(S) ≤ −4 Re
3∑
i=1

∫
S

tφi
µi

1− |µi|2
+ 2

3∑
i=1

∫
S

e(hti)
|µi|2

1− |µi|2
.

Dividing all terms in (3) by 4t yields

(4)
Et(S ′)− Et(S)

4t
≤ −Re

3∑
i=1

∫
S

φi
µi

1− |µi|2
+

3∑
i=1

∫
S

(
e(hti)

2t

)
|µi|2

1− |µi|2
.

Claim 1. Let ρ denotes the density of the hyperbolic metrics on S. There exists a
constant Ci > 0 such that

ρ−2e(hti)

2t
≤ Ci, for every t ≥ 1.
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Furthermore,
ρ−2e(hti)

2t
→ ρ−2|φi|, t→∞,

almost everywhere on S.

Proof. Let

ai = max
p∈S

ρ−2(p)|φi(p)|.

It follows from Proposition 10 of Wan [14] that

max
p∈S

ρ−2e(hti)(p) ≤ 1 +
√

1 + 4(tai)2.

Dividing both sides by 2t yields

ρ−2e(hti)

2t
≤ 1

2
+

√
1

4
+ a2

i = Ci,

assuming t ≥ 1. The second part of the claim follows from Lemma 2.2 in Wolf [15] (in
fact, the convergence is uniform in t, and locally uniform on the surface away from
the zeroes of φi). �

Using Claim 1, and applying the Dominated Convergence Theorem, we obtain

3∑
i=1

∫
S

(
e(hti)

2t

)
|µi|2

1− |µi|2
→

3∑
i=1

∫
S

|φi|
|µi|2

1− |µi|2
, t→∞.

Thus, for every δ > 0 there exists tδ su�ciently large so that

3∑
i=1

∫
S

(
e(htδi )

2tδ

)
|µi|2

1− |µi|2
≤

3∑
i=1

∫
S

|φi|
|µi|2

1− |µi|2
+ δ.

Replacing this into (4) yields the inequality

(5)
Et(S ′)− Et(S)

4tδ
≤ −Re

3∑
i=1

∫
S

φi
µi

1− |µi|2
+

3∑
i=1

∫
S

|φi|
|µi|2

1− |µi|2
+ δ.

It remains to observe that for δ small enough the right hand side of inequality (5) is
strictly negative. In particular, letting t = tδ for any such δ, and using Lemma 1.1,
yields

Et(S ′)− Et(S) < 0,

meaning that Et = E(Mt,Gt) : Tg → (0,∞) does not achieve its global minimum at S.
The proof is complete.

3. Admissible Paths Of Beltrami Differentials

In this section we prove Lemma 3.2 which is the version of Lemma 1.1 on the
unit disc D. The proof of Lemma 3.2 is based on Lemma 3.1 which can be seen as
in�nitesimal version of Lemma 1.1.
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3.1. The Normal Solution to the Beltrami equation. The space of Beltrami
di�erentials L∞1 (D) is de�ned as the unit ball in the Banach space L∞(D). Every
Beltrami di�erential µ ∈ L∞1 (D) yields the unique quasiconformal homeomorphism
fµ : C→ C with the following properties:

(1) Belt(fµ) = µ on D∗ and Belt(fµ) = 0 outside D∗,
(2) fµ(z)− z = O(1), when |z| is large.

We refer to fµ as the Normal Solution to the Beltrami equation. Note that the
restriction of fµ to D∗ = C \D is conformal. Recall the classical equivalence relation
on L∞1 (D).

De�nition 3.1. We say that µ, ν ∈ L∞1 (D) are equivalent (and write µ ∼ ν) if
fµ = f ν on D∗.

3.2. Admissible paths. A path in L∞1 (D) is a continuous map µ : [0, t0] → L∞1 (D)
where t0 > 0 (here we used µ to denote both paths and elements in L∞1 (D), but this
should not cause any confusion). A collection of paths µi : [0, ti] → L∞1 (D), ti > 0,
are mutually equivalent if µi(t) ∼ µj(t), for every i, j, and every t ≤ mini ti.

De�nition 3.2. A path µ : [0, t0]→ L∞1 (D) is admissible if there exists µ̇, µ̈ ∈ L∞(D)
such that

(6) ||µ(t)− tµ̇− t2µ̈||∞ = o(t2).

We letH1(D) denote the set of integrable holomorphic functions on D. The purpose
of the following three sections is to prove the following lemma.

Lemma 3.1. There exist mutually equivalent admissible paths

µi : [0, t0] → L∞1 (D) ∩ C∞0 (D),

and functions φi ∈ H1(D), i = 1, 2, 3, with the property

φ1 + φ2 + φ3 = 0,

such that the strict inequality

(7) Re
3∑
i=1

∫
D

φiµ̈i dxdy >

3∑
i=1

∫
D

|φi||µ̇i|2 dxdy

holds (here C∞0 (D) denotes smooth functions with compact support in D).

The following lemma is an immediate corollary. Before we state and prove it, we
recall the de�nition:

De�nition 3.3. We say that µ̇, ν̇ ∈ L∞(D) are in�nitesimally equivalent, and write
µ̇ ≈ ν̇, if ∫

D

φµ̇ dxdy =

∫
D

φν̇ dxdy, for every φ ∈ H1(D).
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Lemma 3.2. There exist mutually equivalent Beltrami dilatation µi ∈ L∞1 (D) ∩
C∞0 (D), and holomorphic functions φi ∈ H1(D), i = 1, 2, 3, with the property

(8) φ1 + φ2 + φ3 = 0

such that the strict inequality

(9) Re
3∑
i=1

∫
D

φi
µi

1− |µi|2
dxdy >

3∑
i=1

∫
D

|φi|
|µi|2

1− |µi|2
dxdy

holds.

Proof. Let µi(t) be the admissible paths from Lemma 3.1. From the admissibility
condition, we get ∣∣∣∣∣∣∣∣ µi(t)

1− |µi(t)|2
− (tµ̇i + t2µ̈i)

∣∣∣∣∣∣∣∣
∞

= o(t2).

Using this, we obtain

(10) Re
3∑
i=1

∫
D

φi
µi(t)

1− |µi(t)|2
dxdy = tRe

3∑
i=1

∫
D

φiµ̇i dxdy + t2 Re
3∑
i=1

∫
D

φiµ̈i dxdy + o(t2),

and

(11)
3∑
i=1

∫
D

|φi|
|µi(t)|2

1− |µi(t)|2
dxdy = t2

3∑
i=1

∫
D

|φi||µ̇i|2 dxdy + o(t2).

Since µi(t) ∼ µj(t) for every t, it is well known that µ̇i ≈ µ̇j for every i, j ∈ {1, 2, 3}.
Therefore, for every φ ∈ H1(D) the equality∫

D

φµ̇i dxdy =

∫
D

φµ̇j dxdy ∀i, j ∈ {1, 2, 3}

holds . Combining this with (8) yields

Re
3∑
i=1

∫
D

φiµ̇i dxdy = 0.

Replacing this in (10) gives

(12) Re
3∑
i=1

∫
D

φi
µi(t)

1− |µi(t)|2
dxdy = t2 Re

3∑
i=1

∫
D

φiµ̈i(t) dxdy + o(t2).

We now appeal to Lemma 3.1. Combining the strict inequality (7) with (12) produces
the strict inequality

Re
3∑
i=1

∫
D

φi
µi(t)

1− |µi(t)|2
dxdy > t2

3∑
i=1

∫
D

|φi||µ̇i|2 dxdy + o(t2).
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Putting this together with (11) gives

Re
3∑
i=1

∫
D

φi
µi(t)

1− |µi(t)|2
dxdy >

3∑
i=1

∫
D

|φi|
|µi(t)|2

1− |µi(t)|2
dxdy + o(t2).

Letting µi = µi(t) for a small enough t proves the existence of mutually equivalent
µ1, µ2, µ3 ∈ L∞1 (D) ∩ C∞0 (D) satisfying the inequality (9) and we are done.

�

4. Equivalent paths of Beltrami differentials

To prove Lemma 3.1 we need to construct certain mutually equivalent admissible
paths of Beltrami di�erentials. This construction is underpinned by classical methods
in the theory of quasiconformal maps. In this section we state and prove what we
need to carry out this task.
Given two in�nitesimally equivalent µ̇, ν̇ ∈ L∞(D), we construct an admissible path

of Beltrami di�erentials µ(t) = tµ̇+ t2µ̈+ o(t2) which is equivalent with the path tν̇,
and which satis�es the property (2) from Proposition 4.2. This property expresses
integration of the second derivative µ̈ in terms of the integration of the �rst derivative
µ̇ and T (µ̇) (here T is the Beurling transform).

4.1. Cauchy's and Beurling's transforms. We begin by recalling Cauchy's and
Beurling's transforms (see [1], [4]). Suppose h ∈ Lp(C) for some p > 2. The Cauchy
transform P is de�ned by

(13) P (h)(z) = − 1

π

∫
C

h(ζ)

ζ − z
dxdy.

The Beurling transform T of h ∈ C2
0 is the Cauchy principal value

(14) T (h)(z) = lim
ε→0

− 1

π

∫
|ζ−z|>ε

h(ζ)

(ζ − z)2
dxdy

 .

(Here C2
0 denote the space of twice continuously di�erentiable functions with compact

support in C.) We recall (see [1], [4])

Proposition 4.1. Assume h ∈ L∞(C) has compact support. Then P (h) and T (h)
are well de�ned, and P (h)(z) → 0 when |z| → ∞. Furthermore, the equalities
(P (h))z = h and (P (h))z = T (h) hold in the sense of distribution. If in addition h is
smooth then P (h) and T (h) are smooth as well.

4.2. The formula for the Normal Solution to the Beltrami equation. Suppose
that µ ∈ L∞1 (D). Recall the Normal Solution fµ : C → C which solves the Beltrami
equation fµz = µfµz , and satis�es the normalization fµ(z) = z + O(1) near ∞. We
can express fµ in terms of the singular operators (see [1], [4])

(15) fµ = z + P (µ) + P (µT (µ)) + P (µT (µT (µ))) + · · · .
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4.3. Building mutually equivalent and admissible paths of Beltrami dif-

ferentials. Recall De�nition 3.3. We note that µ̇, ν̇ ∈ L∞(D) are in�nitesimally
equivalent if and only if

P (µ̇)(z) = P (ν̇)(z), z ∈ D∗.

Proposition 4.2. Suppose µ̇, ν̇ ∈ L∞(D)∩C∞0 (D) are in�nitesimally equivalent (that
is, µ̇ ≈ ν̇). There exists an admissible path µ : [0, t0]→ L∞1 (D) ∩ C∞0 (D) such that

(1) µ(t) ∼ tν̇, for every 0 ≤ t ≤ t0,

(2)
∫
D
φµ̈ dxdy =

∫
D
φ (ν̇T (ν̇)− µ̇T (µ̇)) dxdy.

Proof. Assuming t < (1/||ν̇||∞), we have

f tν̇(z) = z + tP (ν̇)(z) + t2P (ν̇T (ν̇))(z) + t3P (ν̇T (ν̇T (ν̇)))(z) + · · · ,

which we write as

f tν̇(z) = z + tP (ν̇)(z) + t2P (ν̇T (ν̇))(z) +R(t)(z),

where

R(t) = t3P (ν̇T (ν̇T (ν̇))) + t4P (ν̇T (ν̇T (ν̇T (ν̇)))) + · · · .

Note that f tν̇ is smooth and Rz̄ ∈ C∞0 (D). Set

µ̈ = ν̇T (ν̇)− µ̇T (µ̇),

and note that µ̈ ∈ C∞0 (D). De�ne

g(t)(z) = z + tP (µ̇) + t2(P (µ̈) + P (µ̇T (µ̇))) +R(t)(z),

Since P (µ̇) = P (ν̇) on D∗, and from the choice of µ̈, we conclude that

(16) g(t)(z) = f tν̇(z), for z ∈ D∗.

Observe that Belt
(
g(t)

)
∈ C∞0 (D) because µ̇, µ̈, Rz̄ ∈ C∞0 (D). Moreover,

(17) Belt(g(t)) = tµ̇+ t2µ̈+ o(t2).

Therefore, g(t) is quasiconformal when t is small enough.
Let t0 be small enough so that both f tν̇ and g(t) are quasiconformal, and set

Belt(g(t)) = µ(t). Then µ : [0, t0] → L∞1 (D) ∩ C∞0 (D) is a well de�ned admissible
path (the admissibility follows from (17)). Moreover, g(t) = fµ(t) (because fµ(t) is
normalised by de�nition, and g(t) by construction). From (16) we conclude that µ(t)
and tν̇ are equivalent (that is, µ(t) ∼ tν̇) for every t. This proves the proposition.

�
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5. The Key Lemma

In the next two sections we prove Lemma 3.1. We choose certain quadratic poly-
nomials to be the corresponding holomorphic functions φ1, φ2, φ3 ∈ H1(D) from the
statement of Lemma 3.1. We then use Proposition 4.2 to construct the corresponding
equivalent and admissible paths of Beltrami di�erentials. Before we carry out this
construction in the next section, we need to explore how Beltrami di�erentials pair
up with quadratic polynomials.
In particular, we need to establish the inequality (7) from Lemma 3.1. In order

to succinctly express this inequality, we introduce the following functional. For a
piecewise smooth function f : D→ C, we de�ne the functional

(18) F(f) =

∫
D

|fz̄|2 dxdy + Re

∫
D

fzfz̄ dxdy.

In the next section we explain how this functional is related to the inequality (7). In
this section we compute the key inequality (20) involving F which will then be used
to derive (7).

Lemma 5.1. Suppose ψ(z) = a + bz + cz2 is a quadratic polynomial which has no
zeroes on the unit circle ∂D. Then for every ε > 0, there exists µ̇ ∈ L∞(D) ∩ C∞0 (D)
such that

(19) P (µ̇)(z) =
1

z
, z ∈ D∗,

and

(20)
∣∣F(ψP (µ̇)

)
− π

(
|a|2 + Re(ac)

)∣∣ ≤ ε.

5.1. An auxiliary proposition.

Proposition 5.1. Let Z ⊂ D be a �nite set of points, and f : D → C a smooth
function. Then for every ε > 0, there exists a smooth function g : D→ C such that

(1) f(z) = g(z) for z in some neighbourhood of ∂D,
(2) g(z) = 0 for z in some neighbourhood of each z0 ∈ Z,
(3) |F(f)−F(g)| ≤ ε/2.

Proof. Without loss of generality we may assume Z = {z0} (this will be evident from
the proof). We split the proof of Proposition 5.1 into two claims.

Claim 2. Suppose f : D → C is a smooth function. For every ε > 0, there exists a
smooth function h : D→ C such that

(1) f(z) = h(z) for z in some neighbourhood of ∂D,
(2) h(z) = f(z0) for z in some neighbourhood of z0,

(3) |F(f)−F(h)| ≤ ε/4.

Proof. Near z0 we have f(z) = f(z0)+R(z), where R(z) = (z−z0)A(z)+(z − z0)B(z),
and A and B are smooth functions near z0. Therefore, there exists K > 0 (depending
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only on f) such that

(21) |R(z)| ≤ K|z − z0|, |Rz̄|(z), |Rz|(z) ≤ K, for |z − z0| small.

Let ρ : D→ [0, 1] be such that

ρ(z) =

{
1, 2r ≤ |z − z0|
0, 0 ≤ |z − z0| ≤ r,

and

(22) ||ρz̄||∞ = ||ρz||∞ ≤
10

r
.

Set

h(z) =

{
f(z), 2r ≤ |z − z0|
f(z0) + ρ(z)R(z), 0 ≤ |z − z0| ≤ 2r.

Then h is smooth and satis�es the properties (1) and (2) from the statement of the
claim assuming r is small enough. It remains to compute F(h). The following two
identities (which hold when |z − z0| ≤ 2r)

hz̄(z) = ρz̄R(z) + ρ(z)Rz̄, hz(z) = ρzR(z) + ρ(z)Rz,

together with (22) and (21), yield the estimate

|hz̄|(z), |hz|(z) ≤ 21K, when |z − z0| ≤ 2r.

Let D2r be the disc of radius 2r centred at z0. Since h = f on D \D2r, we get

|F(f)−F(h)| ≤
∫
D2r

(
|fz̄|2 + |hz̄|2 + |fz||fz̄|+ |hz||hz̄|

)
dxdy = O(r2).

Choosing r small enough so that O(r2) ≤ ε/4 proves the claim.
�

Claim 3. Let h : D→ C be a smooth function which is constant in some neighborhood
of z0. For every ε > 0, there exists a smooth function g : D→ C such that

(1) g(z) = h(z) for z in some neighbourhood of ∂D,
(2) g(z) = 0 for z in some neighbourhood of z0,

(3) |F(g)−F(h)| ≤ ε/4.

Proof. To simplify the notation we let h(z0) = V . We may assume that V 6= 0
(otherwise we set g = h and the claim is proved). Fix s > 0 so that the disc Ds is
contained in D. Let r < s be small enough so that h(z) = V , ∀z ∈ Dr. We de�ne
the function ρ : D→ C by

ρ(z) =


0, s ≤ |z − z0|
V

log s
r

log s
|z−z0| , r ≤ |z − z0| ≤ s

V, 0 ≤ |z − z0| ≤ r.
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Note that ρ is piecewise smooth. Set g(z) = h(z)− ρ(z). Then g is piecewise smooth
and it satis�es the properties (1) and (2) in the statement of the claim. We compute
F(g). Since g = h on D \Ds, and since both g and h are constant on Dr, we get

F(g)−F(h) =

∫
Ds\Dr

(|gz̄|2 − |hz̄|2) dxdy + Re

∫
Ds\Dr

(gzgz̄ − hzhz̄) dxdy.

From here we obtain the estimate

|F(g)−F(h)| ≤
∫

Ds\Dr

(
2|ρz̄||hz̄|+ |ρz̄|2 + |ρz||hz̄|+ |ρz̄||hz|+ |ρz̄||ρz|

)
dxdy.

Choose K > 0 so that ||hz||∞, ||hz̄||∞ ≤ K. Then

(23) |F(g)−F(h)| ≤ 10(K + 1)

∫
Ds\Dr

(
|ρz̄|+ |ρz̄|2 + |ρz|+ |ρz̄||ρz|

)
dxdy.

Using the equalities

|ρz|(z) = |ρz̄|(z) =

(
|V |

2 log s
r

)
1

|z − z0|
, for r ≤ |z − z0| ≤ s,

we compute ∫
Ds\Dr

(|ρz̄|+ |ρz|) dxdy = 4π

(
|V |

2 log s
r

) s∫
r

dt = O

(
1

log 1
r

)
,

and ∫
Ds\Dr

(|ρz̄|2 + |ρz̄||ρz|) dxdy = 4π

(
|V |

2 log s
r

)2
s∫
r

1

t
dt

= 4π

(
|V |

2 log s
r

)2 (
log

s

r

)
=
π|V |2

log s
r

= O

(
1

log 1
r

)
.

Replacing this back into (23) shows that

|F(g)−F(h)| = O

(
1

log 1
r

)
.

Choose r small enough so that

|F(g)−F(h)| ≤ ε

8
.

Note that g is piecewise smooth with cracks at the circles ∂Ds and ∂Dr. It remains
to smooth g over these cracks so it satis�es the properties (1), (2), and (3) from the
lemma.
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First, set g0 = g (observe that r and s that were used to de�ne g0 are now �xed).
Let δ ≥ 0 be another parameter, and let Dz(δ) denote the disc of radius δ centered
at z. Set

gδ(z) =
1

Area
(
Dz(δ) ∩ D

) ∫
Dz(δ)∩D

g(w) dudv.

For each small enough δ, the function gδ satis�es the properties (1) and (2) from the
lemma. Note that gδ is smooth with respect to z, and continuous with respect to δ.
Moreover, the �rst derivatives of gδ are uniformly bounded for all δ's, and converge
almost everywhere on D to the corresponding �rst derivatives of g0 = g (which are
bounded, piecewise continuous functions). From the Dominated Convergence Theo-
rem we conclude F(gδ)→ F(g), when δ → 0. Therefore, we can �nd δ small enough
so that gδ also satis�es the property (3) from the lemma.

Remark. The second (and higher order) derivatives of gδ do not stay bounded when
δ → 0.

�

The proof of Proposition 5.1 follows now by applying Claim 2 and Claim 3. Namely,
given a smooth function f : D→ C, using Claim 2 we construct a smooth function h
which is constant in some neighborhood of z0. Then, using Claim 3 we �nd a smooth
function g which is equal to zero in some neighborhood fo z0. Both h and g agree with
f on ∂D. The property (3) in Proposition 5.1 follows by combining the corresponding
properties (3) in the two claims.

5.2. Proof of Lemma 5.1. Set f̂(z) = az̄ + b + cz. Since f̂z̄ ≡ a, and f̂z ≡ c, we
easily compute

(24) F
(
f̂
)

= π
(
|a|2 + Re(ac)

)
.

Note that f̂(z) = a
z

+ b + cz, when |z| = 1. In particular, f̂ can be extended

holomorphically near ∂D. Therefore, we can replace f̂ with a smooth f : D → C so

that f = f̂ on ∂D, fz̄ has compact support in D, and the inequality

(25)
∣∣F(f)− π

(
|a|2 + Re(ac)

)∣∣ ≤ ε

2
,

holds. Let g : D→ C be the function satisfying the properties (1), (2), and (3), from
Proposition 5.1, where we take Z to be set of zeroes of ψ. Therefore

(26)
∣∣F(g)− π

(
|a|2 + Re(ac)

)∣∣ ≤ ε,

and

(27) g(z) =
ψ(z)

z
, z ∈ ∂D.

We de�ne A : C→ C by

A(z) =

{
1
z
, 1 ≤ |z|
g(z)
ψ(z)

, |z| ≤ 1.
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Let us show that A is smooth. This is clearly true away from ∂D, and the zeroes
of ψ. Since g = 0 near the zeroes of ψ, it follows that A = 0 near the zeroes of ψ.
In particular, A is smooth near the zeroes of ψ. It remains to examine the situation
near ∂D. It follows from (27) that A is continuous near ∂D. Since fz̄ is equal to
zero near ∂D, and g = f there, it follows that g is holomorphic near ∂D. Thus, A
is holomorphic on U \ ∂D, where U ⊂ C is some neighbourhood of ∂D. Combining
this with the fact that A is continuous on U shows that A is holomorphic on U . In
particular, A is smooth on U .
Let µ̇(z) = Az̄. Note that µ̇ ∈ L∞1 (D) ∩ C∞0 (D) because fz̄ = 0 near ∂D, and

g = f near ∂D. The function (A − P (µ̇)) is bounded and holomorphic on C. Thus
(A − P (µ̇)) ≡ const. Since both A(z) and P (µ̇)(z) tend to zero when z → ∞, the
identity A ≡ P (µ̇) follows. Returning this into (26) shows∣∣F(ψP (µ̇)

)
− π

(
|a|2 + Re(ac)

)∣∣ ≤ ε,

and we are done.
�

6. Proof of Lemma 3.1

We are now ready to prove Lemma 3.1. We begin by selecting the quadratic
polynomials ψ1, ψ2, ψ3. We then select the corresponding Beltrami di�erentials using
Proposition 4.2. In particular, the property (2) from Proposition 4.2 enables us to
reduce the computations involving µ̈ to the computations involving µ̇. This is how
we reduce the inequality (7) to the inequality (20) which was proved in the previous
section.

6.1. Three polynomials. De�ne the following polynomials of order two

ψ1 = i− 5z + i
25

4
z2, ψ2 = i + 5z + i

25

4
z2, ψ3 = −

√
2 +
√

2
25

4
z2.

The reader can easily verify the identity

(28) ψ2
1 + ψ2

2 + ψ2
3 ≡ 0,

and the equality

(29) π
3∑
i=1

(
|ai|2 + Re(aici)

)
= −21π,

where ψi(z) = ai + biz + ciz
2, i = 1, 2, 3.

6.2. Proof of Lemma 3.1. Letting ψ = ψi, we apply Lemma 5.1 (taking ε to be
equal to π) to obtain the corresponding µ̇i ∈ L∞(D) ∩ C∞0 (D) which satis�es the
identity (19), and the inequality (20). Let ν̇ ∈ L∞(D) ∩C∞0 (D) be any element such
that

(30) P (ν̇)(z) =
1

z
, z ∈ D∗.
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Using Proposition 4.2 we build admissible paths µi(t) : [0, t0] → L∞1 (D) ∩ C∞0 (D),
each of them equivalent to tν̇ for every t (that is, µt ∼ tν̇), and such that

(31)

∫
D

ψ2
i µ̈i dxdy =

∫
D

ψ2
i (ν̇T (ν̇)− µ̇iT (µ̇i)) dxdy.

Summing over i = 1, 2, 3, and using (28), we get

(32)
3∑
i=1

∫
D

ψ2
i µ̈i dxdy = −

3∑
i=1

∫
D

ψ2
i µ̇iT (µ̇i) dxdy = −

3∑
i=1

∫
D

ψ2
i Pz̄(µ̇i)Pz(µ̇i) dxdy

(the second equality follows from Proposition 4.1). Observe the equality

(33)

∫
D

ψ2
i Pz̄(µ̇i)Pz(µ̇i) dxdy =

∫
D

(
ψiP (µ̇i)

)
z̄

(
ψiP (µ̇i)

)
z
dxdy − 1

4

∫
D

(ψ2
i )z(P

2(µ̇i))z̄ dxdy.

From the Stokes theorem (and using again that ψi is holomorphic), we �nd∫
D

(ψ2
i )z(P

2(µ̇i))z̄ dxdy =
1

2i

∫
D

∂̄
(
(ψ2

i )zP
2(µ̇i)

)
dz̄ ∧ dz =

1

2i

∫
∂D

(ψ2
i )zP

2(µ̇i) dz.

Since P (µ̇i) = P (µ̇j) on ∂D for all i, j, and since (ψ2
1)z + (ψ2

2)z + (ψ2
3)z ≡ 0 (which

follows from (28)), we conclude

3∑
i=1

∫
D

(ψ2
i )z(P

2(µ̇i))z̄ dxdy = 0.

Replacing this into (33) we obtain

3∑
i=1

∫
D

ψ2
i Pz̄(µ̇i)Pz(µ̇i) dxdy =

3∑
i=1

∫
D

(
ψiP (µ̇i)

)
z̄

(
ψiP (µ̇i)

)
z
dxdy,

which together with (32) yields

(34)
3∑
i=1

∫
D

ψ2
i µ̈i dxdy = −

3∑
i=1

∫
D

(
ψiP (µ̇i)

)
z̄

(
ψiP (µ̇i)

)
z
dxdy.
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Finally, using (20) and (29) we estimate from below the right hand side of (34)

3∑
i=1

∫
D

ψ2
i µ̈i dxdy = −

3∑
i=1

∫
D

(
ψiP (µ̇i)

)
z̄

(
ψiP (µ̇i)

)
z
dxdy

≥ 20π +
3∑
i=1

∫
D

|
(
ψiP (µ̇i)

)
z̄
|2 dxdy

≥ 20π +
3∑
i=1

∫
D

ψ2
i |µ̇i|2 dxdy

>
3∑
i=1

∫
D

ψ2
i |µ̇i|2 dxdy.

This proves the strict inequality (7), and we are done.

7. Proof of Lemma 1.1

The proof of Lemma 1.1 is based on combining Lemma 3.2 together with the
standard approximation method. In other words, we promote the strict inequality
(9) which holds on D to the inequality (1) which holds on a closed Riemann surface
of a su�ciently large injectivity radius.

Remark. Although the following observation is irrelevant for this paper, we note that
this strategy is not reversible, meaning that it is not possible to promote (1) to (9)
because the Theta projection is a strict contraction in L1 norm as proved by McMullen
[9].

7.1. Theta Projection. In this section Γ always denotes a Fuchsian group acting
on D such that D/Γ ≡ S is a closed Riemann surface.

De�nition 7.1. By L∞1 (Γ) ⊂ L∞1 (D) we denote the set of functions h satisfying the
equivariance condition:

h = (h ◦ A)
A′

A′
,

for every A ∈ Γ.

De�nition 7.2. By QD(Γ) we denote the set of holomorphic functions h on D sat-
isfying the equivariant condition:

h = (h ◦ A)(A′)2,

for every A ∈ Γ.

The Theta Projection Θ : H1(D)→ QD(Γ) is given by

Θ(φ) =
∑
A∈Γ

(φ ◦ A)(A′)2.
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Note that Θ(φ) is a lift of a holomorphic quadratic di�erential from the Riemann
surface S.

7.2. Preliminary propositions. We make a note of the following elementary propo-
sition. The proof is left to the interested reader.

Proposition 7.1. Let K be a compact subset of D, and let φ ∈ H1(D). For every
ε > 0, there exists d > 0 such that whenever the injectivity radius of S = D/Γ is
greater than d the estimate

(35)
∣∣∣∣(Θ(φ)− φ

)
K

∣∣∣∣
∞ ≤ ε,

holds. (Here
(
Θ(φ)− φ

)
K

is the restriction of Θ(φ)− φ to K).

De�nition 7.3. Suppose µ ∈ L∞1 (D). Let Γ be a Fuchsian group and �x ν ∈ L∞1 (Γ).
We say that µ is ε-extended by ν, if there exists a fundamental domain Ω ⊂ D for Γ
such that ||µ− νΩ||∞ ≤ ε (here νΩ denotes the restriction of ν to Ω).

Remark. Clearly, if µ ∈ L∞1 (D) is ε-extended by any ν ∈ L∞1 (Γ), then the support of
µ must be contained in Ω.

Proposition 7.2. Suppose µi ∈ L∞1 (D), i = 1, 2, 3, are compactly supported in D,
and mutually equivalent (that is, µi ∼ µj for all i, j). The for every ε > 0, there exists
d > 0 such that whenever the injectivity radius of S = D/Γ is greater than d, there
exist νi ∈ L∞1 (Γ) which are mutually equivalent on S (that is, µi ∼ µj), and such that
µi is ε-extended by νi.

Remark. The say νi ∼ νj if νi and νj are Beltrami dilatations of homotopic quasicon-
formal maps out of the Riemann surface S.

Proof. Let K ⊂ D be a compact set containing the supports of all µi's. If the injec-
tivity radius of D/Γ is large enough, then Γ has a fundamental domain Ω containing
K. Let ηi ∈ L∞1 (Γ) be the Beltrami dilatation such that (ηi)Ω = µi on D. Clearly,
µi is 0-extended by ηi. However, ηi's may not be mutually equivalent. But when the
injectivity radius of Γ is large enough, we can replace ηi by νi ∈ L∞1 (Γ) such that
νi ∼ νj ∀i, j, and ||ηi − νi|| ≤ ε. Then µi is ε-extended by νi.
The existence of such νi's follows by a routine compactness argument which we

sketch next (see [4]). Set ν1 = η1. Suppose that for some i we can not �nd νi which
is equivalent to ν1, and such that ||νi − ηi||∞ ≤ ε. Then there exist δ0 > 0, and a
sequence of Fuchsian groups Γk, such that the injectivity radius of D/Γk tends to
∞, and such that the quasiconformal maps gk = f ηi ◦ (f ν1)−1 are not equivariantly
homotopic to a (1 + δ0)-quasiconformal map. But then there exists a sequence of
Möbius transformations Ak, Bk preserving ∂D, such that the maps hk = Ak ◦ gk ◦Bk

converge to a quasiconformal map h0 : D→ D whose restriction to ∂D is not a Möbius
transformation. This can clearly be ruled out by computing the Beltrami dilatation of
gk (we leave the details to the reader). This contradiction proves the proposition. �
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7.3. Proof of Lemma 1.1. Suppose µi ∈ L∞1 (D), and φi ∈ H1(D), are as in Lemma
3.2. Since µi is compactly supported in D there exists a compact setK ⊂ D containing
the supports of all µi's.

Claim 4. Let δ > 0. There exist Γ, and mutually equivalent νi ∈ L∞1 (Γ), such that

(36) Re
3∑
i=1

∫
D

φi
µi

1− |µi|2
dxdy < Re

3∑
i=1

∫
Ω

Θ(φi)
νi

1− |νi|2
dxdy + δ,

and

(37) Re
3∑
i=1

∫
D

|φi|
|µi|2

1− |µi|2
dxdy ≥ Re

3∑
i=1

∫
Ω

|Θ(φi)|
|νi|2

1− |νi|2
dxdy − δ.

Proof. For each ε > 0, let Γ and νi ∈ L∞1 (Γ) be the Fuchsian group and corresponding
Beltrami dilatations Proposition 7.2. We may also assume that Γ and K satisfy the
conclusion of Proposition 7.1. Let Ω be the corresponding fundamental domain for
Γ (in particular, K ⊂ Ω). Combining the fact that µi is ε-extended by νi with the
estimate (35) from Proposition 7.1, we see that for ε small enough the inequality∣∣∣∣∣∣

∫
K

φi
µi

1− |µi|2
dxdy −

∫
Ω

Θ(φi)
νi

1− |νi|2
dxdy

∣∣∣∣∣∣ ≤ δ

3
,

holds. Summing over i = 1, 2, 3, gives∣∣∣∣∣∣
3∑
i=1

∫
K

φi
µi

1− |µi|2
dxdy −

3∑
i=1

∫
Ω

Θ(φi)
νi

1− |νi|2
dxdy

∣∣∣∣∣∣ ≤ δ,

which implies (36) because the support of each µi is contained in K. The inequality
(37) is proved in the same way.

�

Now the endgame. Let δ > 0 be such that

3δ = Re
3∑
i=1

∫
D

φi
µi

1− |µi|2
dxdy −

3∑
i=1

∫
D

|φi|
|µi|2

1− |µi|2
dxdy.

Combining this with the inequalities (36) and (37) from Claim 4 yields the inequality

(38) Re
3∑
i=1

∫
Ω

Θ(φi)
νi

1− |νi|2
dxdy −

3∑
i=1

∫
Ω

|Θ(φi)|
|νi|2

1− |νi|2
dxdy ≥ δ > 0.

Once again we observe that Θ(φi) is a holomorphic quadratic di�erential on S = D/Γ.
Moreover,

Θ(φ1) + Θ(φ2) + Θ(φ3) = Θ(φ1 + φ2 + φ3) = 0.
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Since νi's are the Beltrami dilatations of mutually homotopic di�eomorphisms map-
ping S to another Riemann surface S ′, the inequality (38) yields the proof of Lemma
1.1.
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