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HARMONIC MAPS AND THE SCHOEN CONJECTURE

VLADIMIR MARKOVIC

Abstract. We show that every quasisymmetric homeomorphism of the
circle ∂H2 admits a harmonic quasiconformal extension to the hyperbolic
plane H2. This proves the Schoen Conjecture.

1. Introduction

1.1. Statements of Results. A central question in the theory of harmonic
maps is when the homotopy class (with prescribed boundary values) of a
map F : M → N between two negatively curved Riemannian manifolds
contains a harmonic map. When F has finite total energy the existence and
uniqueness of such harmonic maps is known (for example see [12]).

When F does not have finite total energy the problem is harder and much
less is known. The case that has been studied the most is when M and N are
both equal to the hyperbolic space Hn. In [11] Schoen made the following
conjecture which has been driving this subject since.

Conjecture 1 (Schoen). Every quasisymmetric homeomorphism u : ∂H2 →
∂H2 admits a unique harmonic quasiconformal extension f : H2 → H2.

The uniqueness part of this conjecture was established in [7] by Li and
Tam. In [7] and [8] they proved that every diffeomorphism u : ∂H2 →
∂H2 admits a harmonic quasiconformal extension to H2. There exists an
extensive literature about this topic (for example, see [15], [14], [6], [1], [9],
for further results related to the existence part of the conjecture).

Remark. The 3-dimensional version of this conjecture has been settled in
[10]. But the methods used in that argument rely on the quasiconformal
rigidity in higher dimensions and are not applicable to the 2 dimensional
situation.

A harmonic quasiconformal map f : H2 → H2 is determined by its bound-
ary values which are given by a quasisymmetric homeomorphism u : ∂H2 →
∂H2. However, quantifying how f depends on u is difficult. To illustrate the
subtlety of this issue in [10] we constructed a sequence of diffeomorhisms
un : ∂H2 → ∂H2, that converge to the identity in the C0 sense but the
corresponding harmonic quasiconformal extensions degenerate on compact
sets in H2 and we can not extract any sort of limit (this behavior is very
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different than in the case of harmonic functions on H2, where the boundary
map effectively controls the behavior of a harmonic function inside the disc).

Remark. When we write C = C(K1,K2, ...), we mean that the constant C
depends only on K1,K2, .... We use this policy throughout the paper.

In the remainder of this paper we prove the following theorem which takes
care of the main difficulty we described above.

Theorem 1.1. For every K > 1 there exists a constant C = C(K) with
the following properties. We let g : H2 → H2 be any K-quasiconformal
homeomorphism and assume that there exists a harmonic quasiconformal
homeomorphism f : H2 → H2 that agrees with g on the boundary ∂H2.
Then

sup
z∈H2

d(g(z), f(z)) ≤ C,

where d(·, ·) denotes the hyperbolic distance.

We say that a homeomorphism u : ∂H2 → ∂H2 is K-quasisymmetric if it
admits a K-quasiconformal extension to H2. Theorem 1.1 implies that the
set of K-quasisymmetric homeomorphisms of ∂H2 that admit harmonic qua-
siconformal extensions is closed with respect to pointwise convergence. That
is, if un is a sequence of K-quasisymmetric maps that admit harmonic and
quasiconformal extensions, and if un pointwise converges to (a necessarily)
K-quasisymmetric map u, then u also admits a harmonic quasiconformal
extension (this is a standard argument and it follows from Cheng’s lemma
[2] and the Azrela-Ascoli theorem).

The following theorem is an immediate corollary of Theorem 1.1 and
the result of Li and Tam [7] that every diffeomorphism of ∂H2 admits
a harmonic quasiconformal extension. It is a well known fact that ev-
ery K-quasisymmetric homeomorphism of ∂H2 is a pointwise limit of K-
quasisymmetric diffeomorphisms.

Theorem 1.2. Every quasisymmetric map of ∂H2 admits a harmonic qua-
siconformal extension to H2.

The theory of harmonic maps between hyperbolic surfaces is closely re-
lated to Teichmüller theory. A corollary of Theorem 1.2 is that the Te-
ichmüller space of any Riemann surface S (including the Universal Te-
ichmüller space) can be parametrized by the space of bounded holomorphic
quadratic differentials by taking the Hopf differential of the harmonic map-
ping representing a given homotopy class (see [14]). In particular, we have
the following corollary of the uniqueness result of Li and Tam and Theorem
1.2 .

Theorem 1.3. A quasiconformal map between any two complete hyperbolic
Riemann surfaces is isotopic to a unique harmonic quasiconformal map.
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1.2. The Unit Disc Model of the Hyperbolic Plane and Harmonic
Maps. We identify the hyperbolic plane H2 with the unit disc D in the
complex plane and the boundary ∂H2 with the unit circle S1. The density
of the hyperbolic metric is

σ(z) =
2

1− |z|2
, z ∈ D.

A C2 map f : D→ D is harmonic if it satisfies the equation

fzz̄ + 2
(σw
σ
◦ f
)
fzfz̄ = 0.

For a harmonic map f by

Hopf[f ] = (σ2 ◦ f)fzfz̄,

we denote the Hopf Differential. Then Hopf[f ] is a holomorphic function on
D. We let

BQD(D) = {Φ holomorphic on D : sup
z∈D

σ−2(z)
∣∣Φ(z)

∣∣ = ||Φ||∞ ≤ ∞}

denote the space of bounded holomorphic quadratic functions on D. Wan
showed in [15] that a harmonic map f : D→ D is quasiconformal if and only
if Hopf[f ] ∈ BQD(D).

1.3. The Polar Coordinates and the Laplacian of the Distance
Function. Each z ∈ D is written in Euclidean polar coordinates as z = reiθ

for some (r, θ) ∈ [0, 1)×(−π, π]. We also introduce the geodesic polar coordi-
nates (ρ, θ) ∈ [0,∞)×(−π, π]. If z ∈ D has Euclidean polar coordinates (r, θ)
then its geodesic polar coordinates are (ρ, θ), where ρ(z) = ρ(r) = d(z, 0)
denotes the distance with respect to the hyperbolic metric.

The harmonic maps equation can be expressed with respect to the ge-
odesic polar coordinates. To simplify notation in the rest of the text we
let

ρ = ρ ◦ f, and θ = θ ◦ f,

for a harmonic map f . Assuming this notation, we state the following well
known equation (for example see formula (6.1) in [5])

∆ρ(z) =
1

2
sinh(2ρ(z))|∇θ(z)|2, when ρ(z) 6= 0,

where ∆ and∇ denote respectively the Laplacian and the gradient computed
with respect the hyperbolic metric.

Remark. In [5] Han computed the above formula for ∆ρ(z) with respect to
the Euclidean metric on the z-plane. Our formula follows from Han’s by
dividing it by σ2(z).
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Although the function ρ is not C2 at the point where ρ(z) = 0, the
function ρ2 is C2 everywhere on D. We compute

∆ρ2 =
1

4σ2
(ρ2)zz̄ =

ρzρz̄
2σ2

+ 2ρ∆ρ =
|ρz|2

2σ2
+ 2ρ∆ρ,

since ρ is real valued and
(
ρz
)

= ρz̄. The inequality

(1) ∆ρ2(z) ≥ ρ(z) sinh(2ρ(z))|∇θ(z)|2, for every z ∈ D,

follows.
The first observation that follows from (1) is that ρ2 is subharmonic. In

fact, the main idea behind the argument (which is explained below) comes
from comparing this inequality and the Green’s formula we state next.

1.4. The Green’s Formula. We state the following corollary of the second
Green’s Identity. This has been proved as Theorem 4.2 in [13] (see also [10]
and references therein). We sketch the proof for the sake of completeness.

Proposition 1.1. For a C2 function F on D, the following holds true

(2) F (0) +
2

π

∫
rD

∆F (z) log
r

|z|
dxdy

(1− |z|2)2
=

1

2π

∫
S1

F (z) |dz|,

where z = x + iy, and ∆F is the Laplacian of F (computed with respect to
the hyperbolic metric).

Proof. Recall that 1
2 log(r/|z|) = gr(z, 0), where gr(·, ·) is the Green’s func-

tion on the product rD × rD. Let ε > 0. By the second Green’s Identity
applied to the functions F and gr on the annulus 0 < ε ≤ |z| ≤ r, we find∫

rD\εD

∆F (z)gr(z, 0)
4dxdy

(1− |z|2)2
=

∫
|z|=ε

gr(z, 0)
∂F

∂~n
(z)

2|dz|
(1− ε2)

−
∫
|z|=r

F (z)
∂gr
∂~n

(z, 0)
2|dz|

(1− r2)
−
∫
|z|=ε

F (z)
∂gr
∂~n

(z, 0)
2|dz|

(1− ε2)
,

where ∂
∂~n is the derivative along the unit (with respect to the hyperbolic

metric) outward pointing vector that is normal to the corresponding oriented
boundary component. We replace 1

2 log(r/|z|) = gr(z, 0), and explicitly
compute its partial derivative along ~n. The lemma follows by letting ε →
0. �

Next, we express this formula in the Euclidean polar coordinates. This is
the version we will use. Set

R(r) = [0, r]× (−π, π].
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Then

(3) F (0) +
2

π

∫
R(r)

t∆F (teiθ) log
r

t

dtdθ

(1− t2)2
=

1

2π

π∫
−π

F (reiθ) dθ.

1.5. The Normalizations. Once and for all fix K > 1. In the remainder
of this paper g : D → D denotes an arbitrary K-quasiconformal homeo-
morphism that happens to share the same boundary values as a harmonic
quasiconformal homeomorphisms of D. We will denote this harmonic map
by f : D → D. In addition (after simultaneously precomposing and post-
compising f and g by suitable Möbis transformations of D) we may suppose
the following.

• The distance between f and g is nearly achieved at the origin, that
is

sup
z∈D

d(f(z), g(z)) ≤ d(f(0), g(0)) + 1.

• The map g fixes the origin, that is g(0) = 0, and also f maps the
origin to the segment [0, 1), that is 0 ≤ f(0) < 1.
• The distance between f(0) and g(0) = 0 is at least 1, that is ρ(0) ≥ 1

(if ρ(0) < 1 then Theorem 1.1 holds for such g and f).

These assumptions are standing in the remainder of this article.

1.6. The Main Idea. We are left with the task of finding an upper bound of
ρ(0) (that depends only on K). We choose to analyze the distance function
ρ(z), z ∈ D, with the assumption that ρ(0) is close to being the supremum
of the distance between f and a K-quasiconformal map g. The benefit of
making this choice is that we can a-priori bound from above the growth of
ρ(z).

Lemma 1.1. For any z ∈ D the inequality

ρ2(z) ≤ ρ2(0) + 3K2ρ(0)
(
ρ(z) + 4

)2
holds.

Proof. It was proved (see Theorem 5.1 in [3]) that every K-quasiconformal
homeomorphism is a (K, 3K) quasi-isometry in terms of the hyperbolic met-
ric. Applying this to the map g we derive the inequality

d(g(z), 0) = d(g(z), g(0)) ≤ Kρ(z) + 3K.

By the triangle inequality and using the previous estimate we get

ρ(z) = d(0, f(z)) ≤ d(0, g(z)) + d(f(z), g(z)) ≤
(
Kρ(z) + 3K

)
+
(
ρ(0) + 1

)
.

Squaring the above inequality (and since K ≥ 1) we obtain

ρ2(z) ≤
(
ρ(0)+(Kρ(z)+4K)

)2
= ρ2(0)+2Kρ(0)

(
ρ(z)+4

)
+K2

(
ρ(z)+4

)2
.

Replacing the inequalities (ρ(z) + 4) < (ρ(z) + 4)2, ρ(0) ≥ 1 and K ≤ K2,
in the previous inequality yields the lemma. �
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Remark. The conclusion of the lemma is that ρ2(z) grows at a bounded
(in terms of K) rate. In fact, the growth of the quotient ρ2(z)/ρ2(0) is
negligible when ρ2(z) is small comparing to ρ(0).

Combining this with the Green’s identity (3) we can bound the integral
of ∆ρ2 as follows

2

π

∫
R(r)

t∆ρ2(teiθ) log
r

t

dtdθ

(1− t2)2
≤ 3K2ρ(0)

(
ρ(r) + 4

)2
.

On the other hand, the inequality (1) suggests the estimate∫
R(r)

t∆ρ2(teiθ) log
r

t

dtdθ

(1− t2)2
≥ O

(
ρ(0) sinh(2ρ(0))

)
,

when r stays bounded (in terms of K). Combining the previous two inequal-
ities suggests the estimate

sinh(2ρ(0)) ≤ O
(
ρ(r)

)2
.

Thus, in order to prove Theorem 1.1 it would suffice to show that such an
estimate actually holds for some r = r(K). We do just that in the rest of
the paper.

1.7. The Outline and Organization. Now we briefly mention the main
steps in the proof and the motivation behind them. The main result of
Section 2 is the estimate

(4)

∫
Er2

(∣∣θ(r2eiθ)
∣∣− ∣∣θ(eiθ/2)∣∣)2 dθ ≤ Ψ(r,K)

sinh
(
ρ(0)

) ,
which holds for every r ∈ (1/

√
2, 1) and where Ψ(r,K) is a function which

we will compute explicitly. Here Er is the set of θ’s for which ρ2(teiθ) does
not dip below ρ2(0)/4 for any 0 ≤ t ≤ r. The only ingredients that are used
to prove (4) are the Green’s formula and the lower bound (1) on ∆ρ2 that
we stated above. The inequality (4) can be rewritten in the form

sinh
(
ρ(0)

)
≤ Ψ(r,K)∫

Er2

(∣∣θ(r2eiθ)
∣∣− ∣∣θ(eiθ/2)∣∣)2 dθ ,

which explains the motivation behind proving it. Namely, this inequality
gives us a way of estimating ρ(0) from above (only in terms of K) which is
the content of the remainder of this paper.

In order to complete the proof of the main theorem, it is clear that the
remaining step is to bound from below the integral on the left hand side of
(4) for some r = r(K). To do this we first need to find a lower bound for
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∣∣. In Section 3 we find such a bound for θ ∈ Ur, where Ur is the set

of θ’s for which ρ2(reiθ) is relatively close to ρ2(0), that is when

ρ2(reiθ) ≥ ρ2(0)−K2ρ(0)
(
ρ(r) + 4

)2
.

Remark. Note that for θ to be in Ur we do not require that the defining
inequality holds on the entire segment [0, reiθ), which we do for θ ∈ Er.
This is why it will be more demanding to estimate below the measure of Er
than the measure of Ur.

When θ ∈ Ur, then for ρ(r) large we will show that θ(reiθ) is very close to
(θ ◦ g)(reiθ) (this will follow from the assumption that the distance between
f and g is nearly maximized at 0). This will yield the estimate∣∣θ(reiθ)

∣∣ ≥ |eiθ − eiθ0 |K
16K

− o(1− r), θ ∈ Ur,

where the constants standing behind the notation o(1 − r) depend only on
K. This estimate, together with the upper bound on θ

(
eiθ/2

)
(which we

discuss below), then yields the integral estimate

(5)

∫
T

(∣∣θ(reiθ)
∣∣− ∣∣θ(eiθ/2)∣∣)2

dθ ≥ q = q(K) > 0,

for every measurable set T ⊂ Ur, of measure at least π
4 and for every r ≥

r0(K). This gets us closer to the desired lower bound on the integral on the
left hand side in (4).

In order to apply (5) to estimate from below the integral in (4) it remains
to prove that the set Ur ∩Er has measure at least π/4. We show this is true
when ρ(0) is large enough. In Section 4 we prove the following inequality

(6) sup
z∈D
|∂f |(z) ≤ C sup

z∈D
d
(
f(z), g(z)

)
+B(K),

where C is a universal constant and B(K) depends only on K. This inequal-
ity follows readily from the following two cornerstones in this subject. The
first is Wolf’s work [16] in which he accurately describes the image f(γ),
where γ is a segment of a horizontal trajectory of Hopf[f ] that is away from
a zero of Hopf[f ]. The second is the Wan’s result [15] that provides an upper
bound of |∂f | in terms of ||Hopf[f ]||∞.

We then use inequality (6) in Section 5 to finish the proof of Theorem
1.1. First we use (6) to find an upper bound for θ

(
eiθ/2

)
, when θ ∈ E1/2.

We prove that θ
(
eiθ/2

)
is smaller than any ε > 0 providing that ρ(0) is

large enough. Also, using (6) we show that the set Er has almost the full
measure in (−π, π] when ρ(0) is large enough. In particular we show that
the set Ur ∩Er has measure at least π/4 when ρ(0) is large. This is enough
to show from (4) and (5) that

sinh
(
ρ(0)

)
≤ Ψ(r0(K),K)

q(K)



8 VLAD MARKOVIC

holds.

1.8. Acknowledgment. I thank the referee and Yunhui Wu for comments
and corrections.

2. Estimating
∫

∆ρ2

The purpose of this subsection is to derive a lower bound for the integral
of ∆ρ2 on the disc rD for certain r ∈ (0, 1) and then use it to establish the
estimate (4) from the outline above . Our result is summarized in Lemma
2.1 below.

For every θ we derive the inequality

(7)
∣∣θ(reiθ)

∣∣ ≤ ∣∣θ(eiθ/2)∣∣+

r∫
1
2

|∇θ(teiθ)| 2dt

1− t2
.

Set

(8) Θ(reiθ) =
∣∣∣∣∣θ(reiθ)

∣∣− ∣∣θ(eiθ/2)∣∣∣∣∣ .
Then (7) becomes

Θ(reiθ) ≤
r∫

1
2

|∇θ(teiθ)| 2dt

1− t2
.

The Cauchy-Schwarz inequality yields

Θ2(reiθ) ≤ 4

r∫
1
2

|∇θ(teiθ)|2 dt

(1− t2)2
,

and furthermore we obtain

(9) Θ2(reiθ) ≤ 8

r∫
1
2

t|∇θ(teiθ)|2 dt

(1− t2)2
, for every

1

2
≤ r < 1.

Remark. We want to relate the integral on the right hand side of (9) to the
surface integral in the Green’s formula (3). However, this integral in (3) is
of the form

∫
t log(r/t)∆ρ2(teiθ). This explains why we multiplied the term

|∇θ(teiθ)|2 by t and why we had to integrate from 1/2 to r in (7) (and not
from 0 to r).

To further estimate the integral on the right hand side we restrict to a
certain set of θ’s.

Definition 2.1. Fix 0 < r < 1. We let

Er = {θ ∈ (−π, π] : ρ2(teiθ) ≥ ρ2(0)

4
for every 0 ≤ t ≤ r}.
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Assuming θ ∈ Er we get

r∫
1
2

t|∇θ(teiθ)|2 dt
(1− t2)2

≤ 2

ρ(0) sinh
(
ρ(0)

) r∫
1
2

ρ(teiθ) sinh
(
2ρ(teiθ)

) t|∇θ(teiθ)|2 dt
(1− t2)2

.

Recall the inequality (1)

∆ρ2(z) ≥ ρ(z) sinh(2ρ(z))|∇θ(z)|2, for every z ∈ D,

which provides the lower bound for the Laplacian ∆ρ2. Replacing (1) in the
previous inequality we obtain

(10)

r∫
1
2

t|∇θ(teiθ)|2 dt
(1− t2)2

≤ 2

ρ(0) sinh
(
ρ(0)

) r∫
1
2

t∆ρ2(teiθ) dt

(1− t2)2
, θ ∈ Er.

Putting (9) and (10) together we get for every 1/2 ≤ r < 1 the following
inequality

(11) Θ2(reiθ) ≤ 16

ρ(0) sinh
(
ρ(0)

) r∫
1
2

t∆ρ2(teiθ)
dt

(1− t2)2
, θ ∈ Er.

Integrating both sides of the inequality (11) over the set Er we find that∫
Er

Θ2(reiθ) dθ ≤ 16

ρ(0) sinh
(
ρ(0)

) ∫
[ 1
2
,r]×Er

t∆ρ2(teiθ)
dtdθ

(1− t2)2
,

and since t∆ρ2(teiθ) ≥ 0, for 1/2 ≤ r < 1 we derive

(12)

∫
Er

Θ2(reiθ) dθ ≤ 16

ρ(0) sinh
(
ρ(0)

) ∫
R(r)

t∆ρ2(teiθ)
dtdθ

(1− t2)2
,

where R(r) = [0, r]× (−π, π].

We still need to insert the log(r/t) term in the integral on the right hand
side of (12). Replacing r by r2 in (12) we get the estimate

(13)

∫
Er2

Θ2(r2eiθ) dθ ≤ 16

ρ(0) sinh
(
ρ(0)

) ∫
R(r2)

t∆ρ2(teiθ)
dtdθ

(1− t2)2

whenever 1/2 ≤ r2 < 1. Using that for 0 ≤ t < r2 the inequality

1 ≤ log(r/t)

log(1/r)
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holds, we find∫
R(r2)

t∆ρ2(teiθ)
dtdθ

(1− t2)2
≤
(

log
1

r

)−1 ∫
R(r2)

t log
r

t
∆ρ2(teiθ)

dtdθ

(1− t2)2

≤
(

log
1

r

)−1 ∫
R(r)

t log
r

t
∆ρ2(teiθ)

dtdθ

(1− t2)2
.

Applying (13) to estimate from below the left hand side in the previous
inequality, we conclude

(14)

∫
Er2

Θ2(r2eiθ) dθ ≤
16(log 1

r )−1

ρ(0) sinh
(
ρ(0)

) ∫
R(r)

t log
r

t
∆ρ2(teiθ)

dtdθ

(1− t2)2
.

The following lemma is the main result of this section.

Lemma 2.1. For every r ∈ [ 1√
2
, 1) the estimate

(15)

∫
Er2

Θ2(r2eiθ) dθ ≤
24πK2

(
ρ(r) + 4

)2
(log 1

r )−1

sinh
(
ρ(0)

) ,

holds.

Proof. Using the Green’s formula (3), we estimate the integral on the right
hand side in (14) and get∫

Er2

Θ2(r2eiθ) dθ ≤
8π(log 1

r )−1

ρ(0) sinh
(
ρ(0)

)
 1

2π

π∫
−π

ρ2(reiθ) dθ − ρ2(0)

 .

From Lemma 1.1 we conclude for every (r, θ) ∈ [0, 1]×(−π, π], the inequality

ρ2(reiθ) ≤ ρ2(0) + 3K2ρ(0)
(
ρ(r) + 4

)2
,

holds. Replacing this into the previous inequality yields the lemma.
�

3. Geometry of a K-quasiconformal Homeomorphism

We show in this section that θ(reiθ) and (θ ◦ g)(reiθ) are very close to
each other providing that θ ∈ Ur and that ρ(r) is small comparing to ρ(0).
This will give a lower bound for |θ(reiθ)| when θ ∈ Ur.

3.1. The Set Ur. We define Ur as follows.

Definition 3.1. For 0 < r < 1, we let

Ur = {θ ∈ (−π, π] : ρ2(reiθ) ≥ ρ2(0)−K2ρ(0)
(
ρ(r) + 4

)2}.
Remark. Compare the definition of Ur with the bound on the growth of
ρ2(z) from Lemma 1.1 from Section 1.
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Lemma 3.1. For each 0 ≤ r < 1, we have

|Ur| ≥
π

2
,

where |Ur| is the Lebesgue measure of Ur.

Proof. From the Green’s formula (3) we find

(16) ρ2(0) ≤ 1

2π

π∫
−π

ρ2(reiθ) dθ.

Using the definition of Ur and the upper bound on ρ2 from Lemma 1.1, we
estimate the right hand side in (16) and derive

ρ2(0) ≤
(
ρ2(0)−K2ρ(0)

(
ρ(r) + 4

)2) (2π − |Ur|)
2π

+
(
ρ2(0) + 3K2ρ(0)

(
ρ(r) + 4

)2) |Ur|
2π

.

This gives

K2ρ(0)
(
ρ(r) + 4

)2 ≤ |Ur|
2π

4K2ρ(0)
(
ρ(r) + 4

)2
,

which yields the lemma. �

3.2. Hölder Continuity of Quasiconformal Mappings and Applica-
tions. Recall the following A-Priori bounds on the Hölder continuity con-
stant of g. Namely, for every K-quasiconformal homeomorphism of D that
fixes the origin 0, the following holds:

(17)
|z1 − z2|K

16K
≤
∣∣g(z1)− g(z2)

∣∣ ≤ 16|z1 − z2|
1
K , z1, z2 ∈ D.

This is a standard result and it can be found as Theorem 3.10 in [4].

Lemma 3.2. Let θ0 ∈ (−π, π] be such that g(eiθ0) = 1 ∈ S1. Then for
0 < r < 1 the inequality

∣∣(θ ◦ g)(reiθ)
∣∣ ≥ |eiθ − eiθ0 |K

16K
− 32 arcsin

(
(1− r)

1
K
)

holds.

Proof. By applying the triangle inequality twice, and since (θ ◦ g)(eiθ0) = 0,
we have

∣∣(θ ◦ g)(reiθ)
∣∣ =

∣∣(θ ◦ g)(reiθ)− (θ ◦ g)(reiθ0)
∣∣

≥
∣∣(θ ◦ g)(eiθ)− (θ ◦ g)(reiθ0)

∣∣− ∣∣(θ ◦ g)(reiθ)− (θ ◦ g)(eiθ)
∣∣

≥
∣∣(θ ◦ g)(eiθ)− (θ ◦ g)(eiθ0)

∣∣− ∣∣(θ ◦ g)(eiθ0)− (θ ◦ g)(reiθ0)
∣∣− ∣∣(θ ◦ g)(reiθ)− (θ ◦ g)(eiθ)

∣∣.
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Using the first inequality from (17), we estimate as follows∣∣(θ ◦ g)(eiθ)− (θ ◦ g)(eiθ0)
∣∣ = |g(eiθ)− g(eiθ0)|

≥ |e
iθ − eiθ0 |K

16K
.

By elementary Euclidean geometry, for α, β ∈ [−π, π], the inequality |α−
β| ≤ 16 arcsin

(
|α−β|/16) holds. Combining this with the second inequality

from (17) we have∣∣(θ◦g)(eiθ0)−(θ◦g)(reiθ0)
∣∣ ≤ 16 arcsin

∣∣g(eiθ0)− g(reiθ0)
∣∣

16
≤ 16 arcsin

(
(1−r)

1
K
)
,

and likewise∣∣(θ◦g)(reiθ)−(θ◦g)(eiθ)
∣∣ ≤ 16 arcsin

∣∣g(eiθ)− g(reiθ)
∣∣

16
≤ 16 arcsin

(
(1−r)

1
K
)
.

Combining the previous 4 inequalities proves the lemma.
�

3.3. The next lemma provides an estimate from below of the value of the
function |θ(reiθ)| when θ ∈ Ur .

Lemma 3.3. Assume that r ∈ [0, 1) is such that

(18) ρ(r) ≤
√
ρ(0)

10K
− 4.

Then the estimate∣∣θ(reiθ)
∣∣ ≥ |eiθ − eiθ0 |K

16K
− 32 arcsin

(
(1− r)

1
K
)
− arccos

(
1− e5Ke−

ρ(r)
K

)
holds for every θ ∈ Ur.

Proof. We observe the triangle inequality∣∣θ(reiθ)
∣∣ ≥ ∣∣(θ ◦ g)(reiθ)

∣∣− ∣∣θ(reiθ)− (θ ◦ g)(reiθ)
∣∣.

The lemma will follow from Lemma 3.2 and the inequality (23) below which
we establish in the remainder of this proof.

Consider the geodesic triangle with vertices 0, g(reiθ), f(reiθ) and we let
α denote the angle at the vertex 0. Then

θ(reiθ)− (θ ◦ g)(reiθ) = α.

We estimate |α| from above.

We let z = reiθ. By the cosh formula from Hyperbolic Geometry we have

cosh
(
(ρ ◦ g)(z)

)
cosh

(
ρ(z)

)
− sinh

(
(ρ ◦ g)(z)

)
sinh

(
ρ(z)

)
cosα

(19)

= cosh
(
d(g(z), f(z))

)
.
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Either |α| > π/2 (in which case the lemma holds) or the left hand side in
(19) is greater or equal to

cosh
(
(ρ ◦ g)(z)

)
cosh

(
ρ(z)

)
− cosh

(
(ρ ◦ g)(z)

)
cosh

(
ρ(z)

)
cosα

= cosh
(
(ρ ◦ g)(z)

)
cosh

(
ρ(z)

)
(1− cosα)

≥ exp
(
(ρ ◦ g)(z) + ρ(z)

)
(1− cosα).

The right hand side in (19) is smaller than 2 exp(ρ(0)) (remember, we assume
ρ(0) > 1). Replacing this back into (19) we get

(20) exp
(
(ρ ◦ g)(z) + ρ(z)

)
(1− cosα) ≤ 2 exp

(
ρ(0)

)
.

As we mentioned before, every K-quasiconformal homeomorphism is a
(K, 3K) quasi-isometry in terms of the hyperbolic metric. Therefore, the
inequality

(21) (ρ ◦ g)(z) ≥ ρ(r)

K
− 3K

holds. Assuming θ ∈ Ur yields

ρ(z) ≥
√

ρ2(0)−K2ρ(0)
(
ρ(r) + 4

)2
.

From the upper bound in (18) we find that K2
(
ρ(r)+4

)2
< ρ(0) and obtain

(22) ρ(z) > ρ(0)− 1.

Feeding (21) and (22) back into (20) yields

1− cosα ≤ 2e3K exp

(
1− ρ(r)

K

)
≤ e5Ke−

ρ(r)
K ,

so

(23) |α| ≤ arccos
(

1− e5Ke−
ρ(r)
K

)
which proves the lemma.

�

3.4. The following is a corollary of Lemma 3.3 and it will be used in the
proof of Theorem 1.1 below.

Lemma 3.4. There exist constants p, q > 0 and 0 < r0 < 1, that depend
only on K, such that for r0 < r < 1, and providing that

100K2
(
ρ(r) + 4

)2
= Ψ1(r,K) ≤ ρ(0),

the estimate ∫
T

(∣∣θ(reiθ)
∣∣− ψ(eiθ)

)2
dθ ≥ q

holds for every measurable set T ⊂ Ur of measure at least π
4 and every

measurable function ψ : S1 → R such that ||ψ||∞ < p.
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Proof. First, choose r0 = r0(K) such that

1

2

|eiθ − eiθ0 |K

16K
> 32 arcsin

(
(1− r0)

1
K
)

+ arccos
(

1− e5Ke−
ρ(r)
K

)
.

Then from Lemma 3.3 we have∣∣θ(reiθ)
∣∣ ≥ 1

2

|eiθ − eiθ0 |K

16K
, θ ∈ Ur,

for r > r0. This implies the inequality∣∣θ(reiθ)
∣∣ ≥ c > 0, θ ∈ Ur and |θ − θo| ≥

π

16
,

for r > r0, where c = c(K) > 0 depends only on K.

Suppose that ψ : S1 → R is a measurable function. Suppose T ⊂ Ur and

let T̂ = T ∩ {eiθ : |θ − θ0| ≥ π
16}. Then∫

T

(∣∣θ(reiθ)
∣∣− ψ(eiθ)

)2
dθ ≥

∫
T̂

(∣∣θ(reiθ)
∣∣− ψ(eiθ)

)2
dθ

≥ |T̂ |
(
c(K)− ||ψ||∞

)2
.

Since by the assumption |T | ≥ π
4 , we conclude |T̂ | ≥ π

8 and the estimate∫
T

(∣∣θ(reiθ)
∣∣− ψ(eiθ)

)2
dθ ≥ π

8

(
c(K)− ||ψ||∞

)2
,

follows.
We set p = c(K)

2 and q = π
32c(K)2, and verify that the inequality in this

lemma holds for our choice of p, q and r0.
�

4. Estimating The Distance Between f and g in Terms of
||Hopf[f ]||∞

In this section we bound by above the partial derivative |∂f | in terms of
the norm of Hopf[f ]. It turns out that the inequality

sup
z∈D
|∂f |(z) ≤ C sup

z∈D
d
(
f(z), g(z)

)
+B(K)

holds, where C is a universal constant and B(K) depends only on K. The
proof below relies on some very standard facts about Hopf Differentials, but
we point out that the Lemma 4.3 can be proved using the Chang’s Lemma
(I thank the referee for pointing this out).
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4.1. In [16] and [17] M. Wolf gave a comprehensive analysis of the degener-
ation of harmonic mappings whose Hopf’s differentials blow up. Although
initially he considered the case of closed Riemann surfaces his analysis is
local in nature and has been widely deployed in studying harmonic maps
between non-compact surfaces. The following lemma follows from Wolf’s
work.

Lemma 4.1. There exists a universal constant c > 0 such that for every
harmonic quasiconformal map f : D→ D there exist points z0, z1 ∈ D, with
the properties d(z0, z1) < 1, and

d
(
f(z0), f(z1)

)
> c
√
||Hopf[f ]||∞.

Proof. Let Hopf[f ] = Φ and write Φ = tΦ0, where t = ||Φ||∞ and ||Φ0||∞ =
1. Let z0 ∈ D be a point where σ−2(z0)|Φ0(z0)| = 1/2. First we state and
proof the following claim.

Claim 1. There exists a universal (independent of Φ0) constant δ > 0 such
that Φ0 has no zeroes in the disk of hyperbolic radius δ centered at z0.

Proof. For the purposes of this proof only we may assume that z0 = 0.
Then |Φ0(z)| ≤ σ2(z) = 4/(1 − |z|2)2, and Φ0(0) = 1

2 , so for Φ ∈ BQD(D)
the functions Φ0 constitute a normal family on D. Since Φ0(0) 6= 0, it
follows that Φ0(z) 6= 0 in some neighborhood of 0. Therefore, there exists a
universal (independent of Φ0) constant δ > 0 such that Φ0 has no zeroes in
the disk of hyperbolic radius δ centered at 0. �

Let z1 be a point in this disc that lies on the horizontal trajectory of Φ0

that passes through 0, and such that

d(0, z1) = min{δ
2
, 1}.

Let γ denote the arc of this horizontal trajectory that connects 0 and z1.
It was shown in [16] (see (b) in Corollary 4.5 in [16]) that for some universal
constant c > 0 we have

lσ(f(γ)) >
c

2

√
t,

where lσ(f(γ)) denotes the hyperbolic length of f(γ). In [17] (see the last
claim in Lemma 2.2 in [17]) it was shown that the geodesic curvature of f(γ)
uniformly tends to 0 when t → ∞. This implies that for every ε > 0 there
exists t0 = t0(ε) (in particular, t0 is independent of Φ0) such that for t > t0
the ratio between the lengths of f(γ) and the geodesic arc with the same
endpoints belongs to the interval [1− ε, 1 + ε]. This yields the estimate

d
(
f(z0), f(z1)

)
> c
√
t

for t large enough. The lemma is proved. �

We can now estimate from below the distance between f and g in terms
of the norm of Hopf[f ].
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Lemma 4.2. There exists a constant b(K) ≥ 0 such that

sup
z∈D

d
(
f(z), g(z)

)
≥ c

2

√
||Hopf[f ]||∞ − b(K),

where c > 0 is the universal constant from Lemma 4.1.

Proof. Using the notation from the proof of Lemma 4.1 we note that there
exists a constant b(K) > 0 such that d

(
g(z0), g(z1)

)
> b(K) (this follows

from the fact that the distance between z0 and z1 is bounded below by
the universal constant δ/2 and the assumption that g is K-quasiconformal).
Then

d
(
f(z0), f(z1)

)
≤ d
(
f(z0), g(z0)

)
+ d
(
g(z0), g(z1)

)
+ d
(
g(z1), f(z1)

)
,

which we rewrite as

d
(
f(z0), g(z0)

)
+ d
(
g(z1), f(z1)

)
≥ d
(
f(z0), f(z1)

)
− d
(
g(z0), g(z1)

)
,

and so by Lemma 4.1

max{ d
(
f(z0), g(z0)

)
, d
(
g(z1), f(z1) } ≥ c

2

√
||Hopf[f ]||∞ − b(K).

The lemma is proved
�

Let

∂f =
(σ ◦ f)

σ
fz.

In [15] T. Wan proved the inequality

(24) 1 ≤ |∂f |2(z) ≤
1 +

√
1 + 4

∣∣∣∣Hopf[f ]
∣∣∣∣2
∞

2
.

Together with Lemma 4.2 this implies the following result.

Lemma 4.3. There exists a constant B(K) ≥ 0 and a universal constant
C > 0, such that

sup
z∈D
|∂f |(z) ≤ C sup

z∈D
d
(
f(z), g(z)

)
+B(K)

Proof. For some universal constant B1 > 0 we have

(25)
1 +

√
1 + 4

∣∣∣∣Hopf[f ]
∣∣∣∣2
∞

2
≤
∣∣∣∣Hopf[f ]

∣∣∣∣
∞ +B1.

By Lemma 4.2 we have∣∣∣∣Hopf[f ]
∣∣∣∣
∞ ≤

(
C sup
z∈D

d
(
f(z), g(z)

)
+B2(K)

)2
for a universal constant C > 0 and a constant B2(K) > 0. Then for B(K) =
B2(K) +B1 + 1 we have∣∣∣∣Hopf[f ]

∣∣∣∣
∞ +B1 ≤

(
C sup
z∈D

d
(
f(z), g(z)

)
+B(K)

)2
,
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which together with (24) and (25) proves the lemma. �

5. Proof of Theorem 1.1

In the first subsection below we use Lemma 4.3 to find an upper bound
for θ

(
eiθ/2

)
when θ ∈ E1/2. In the second subsection (again using Lemma

4.3 ) we show that the set Er has almost the full measure in (−π, π] when
ρ(0) is large enough. We then complete the proof of Theorem 1.1.

5.1. Estimating θ on the Set (0, 1
2) × E1/2. Recall that for 0 < r < 1

the set Er is the set of θ ∈ (−π, π] such that

ρ(teiθ) ≥ ρ(0)

2
, 0 ≤ t ≤ r.

Lemma 5.1. Let ε > 0. There exists L = L(K, ε) > 0 such that for
ρ(0) > L and for every θ ∈ E1/2 we have∣∣θ(eiθ/2)

∣∣ ≤ ε.
Proof. Let γ = [0, 1

2 ] be the geodesic arc in D. Then by Lemma 4.3 we have

(26) lσ
(
f(γ)

)
≤

1
2∫

0

2|∂f |(teiθ) 2dt

1− t2
≤ 4 log 3

(
C(ρ(0) + 1) +B(K)

)
,

where C > 0 and B(K) > 0 are constants from Lemma 4.3 and lσ
(
f(γ)

)
denotes the hyperbolic length.

On the other hand, since θ ∈ E1/2, the curve f(γ) stays outside the
geodesic disc of radius ρ(0)/2 centered at 0. Therefore, the estimate∣∣θ(eiθ/2)− θ

(
0
)∣∣ sinh

(
ρ(0)/2

)
≤ lσ

(
f(γ)

)
holds (recall that the volume element of the hyperbolic metric in the geodesic
polar coordinates is dV = dρ2 + sinh(ρ) dθ2). Since θ(0) = 0 (remember, we
assume f(0) ∈ (0, 1)), using (26) we get∣∣θ(eiθ/2)

∣∣ ≤ 4 log 3
(
C(ρ(0) + 1) +B(K)

)
sinh(ρ(0)/2)

,

and we choose L = L(K, ε) large enough so that the right hand side is
smaller than ε for ρ(0) > L. �

5.2. The Measure of Er. Consider the set R(r) = [0, r] × (−π, π] with
its Lebesgue measure. Let

Xr = { (t, θ) ∈ R(r) : ρ(teiθ) ≤ 3ρ(0)

4
}.
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Proposition 5.1. There exists a constant c = c(K) such that

|Xr| ≥ c(K)(1− r2)
(
2π − |Er|

)
,

holds, where |Xr| is the (two dimensional) Lebesgue measure of Xr ⊂ R(r)
and |Er| the (one dimensional) Lebesgue measure of Er ⊂ (−π, π].

Proof. Suppose θ /∈ Er. Then for some 0 < t ≤ r we have ρ(teiθ) < ρ(0)/2,
so by continuity there exists the smallest number 0 < t1 ≤ r such that
ρ(t1e

iθ) = ρ(0)/2. Let t2 > 0 be the largest number such that t2 < t1
and ρ(t2e

iθ) = 3ρ(0)/4 (such t2 exists by continuity because ρ(0) is strictly
greater than ρ(t1e

iθ)). Observe the inequality ρ(0)/4 ≤ d
(
f(t1e

iθ), f(t2e
iθ)
)
.

This holds since f(t1e
iθ) lives on the circle of hyperbolic radius ρ(0)/2 and

f(t2e
iθ) is on the circle of hyperbolic radius 3ρ(0)/4.

By construction, for each t ∈ [t2, t1] we have ρ(teiθ) ≤ 3ρ(0)/4, that is
teiθ ∈ Xr. On the other hand, we have

ρ(0)

4
≤ d
(
f(t1e

iθ), f(t2e
iθ)
)
≤

t2∫
t1

2|∂f |(teiθ) 2dt

1− t2

≤ 4|t2 − t1|
1− r2

(
C(ρ(0) + 1) +B(K)

)
,

where C > 0 and B(K) > 0 are constants from Lemma 4.3. This implies
the estimate

|t1 − t2| ≥ c(K)(1− r2)

for some constant c(K) that depends only on K. Since for each θ /∈ Er the
segment [t2e

iθ, t1e
iθ] is contained in Xr, by the last inequality we obtain the

bound

|Xr| > c(K)(1− r2)
(
2π − |Er|

)
which proves the lemma.

�

We can now show that Er has almost full measure when ρ(0) is large.

Lemma 5.2. There exist a constant c = c(K) > 0 such that for every
0 ≤ r < 1 that satisfies the condition

24rK2
(
ρ(r) + 4

)2
c(K)(1− r2)

= Ψ2(r,K) ≤ ρ(0),

the estimate
7π

4
≤ |Er|.

holds.
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Proof. The function ρ2 is subharmonic and (3) implies the inequality

ρ2(0) ≤ 1

2π

π∫
−π

ρ2(teiθ) dθ

for every t ∈ [0, 1). Integrating this inequality over the interval [0, r] yields

0 ≤ 1

2π

∫
R(r)

(
ρ2(teiθ)

ρ2(0)
− 1

)
dtdθ.

We split the integral on the right hand side into the sum of integrals over
the sets Xr and R(r) \Xr. This yields

(27) 0 ≤ 1

2π

∫
Xr

(
ρ2(teiθ)

ρ2(0)
− 1

)
dtdθ +

1

2π

∫
R(r)\Xr

(
ρ2(teiθ)

ρ2(0)
− 1

)
dtdθ.

From Lemma 1.1 we conclude that the following bound holds for every teiθ

ρ2(teiθ)

ρ2(0)
− 1 ≤ 3K2

(
ρ(t) + 4

)2
ρ(0)

.

On the other hand, for (r, θ) ∈ Xr we have

ρ2(teiθ)

ρ2(0)
− 1 ≤ − 7

16
≤ −1

4
.

Using the last two inequalities we estimate the right hand side in (27) and
get

0 ≤ −1

4
|Xr|+

3K2
(
ρ(r) + 4

)2
ρ(0)

(|R(r)| − |Xr|) ,

which implies

(28)
1

4
|Xr| ≤

6πrK2
(
ρ(r) + 4

)2
ρ(0)

.

Here we used
(
|R(r)| − |Xr|

)
≤ |R(r)| = 2πr.

On the other hand, from Proposition 5.1 we have

|Xr| ≥ c(K)(1− r2)
(
2π − |Er|

)
,

and replacing this in (28) yields

2π −
24πrK2

(
ρ(r) + 4

)2
c(K)(1− r2)ρ(0)

≤ |Er|.

Letting

ρ(0) ≥
24rK2

(
ρ(r) + 4

)2
c(K)(1− r2)

,

completes the proof. �
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5.3. The Endgame. From Lemma 2.1 we have

(29)

∫
Er2

Θ2(r2eiθ) dθ ≤
24K2

(
ρ(r) + 4

)2
π(log 1

r )−1

sinh
(
ρ(0)

)
for every θ ∈ Er when 0 < 1/

√
2 ≤ r < 1. It remains to find a positive lower

bound for ∫
Er2

Θ2(r2eiθ) dθ =

∫
Er2

(∣∣θ(r2eiθ)
∣∣− ∣∣θ(eiθ/2)∣∣)2 dθ.

We make the following choices.

• Let

r1 = r1(K) = max{ r0(K),
1√
2
}

denote the constant from Lemma 3.4.
• Let p = p(K) > 0 and q = q(K) > 0 be the constants from Lemma

3.4, and let L(K, p) be the corresponding constant from Lemma 5.1.
• In the remainder of the proof we assume that ρ(0) is big enough so

that the inequality

ρ(0) > max
(
L(K, p), Ψ1(r1,K), Ψ2(r1,K)

)
holds (otherwise we have obtained an upper bound on ρ(0) that de-
pends only on K and Theorem 1.1 would be proved). Here Ψ1(r,K)
is the function from Lemma 3.4 and Ψ2(r,K) is the function from
Lemma 5.2.

Given these choices, by Lemma 5.1 we have∣∣θ(eiθ/2)
∣∣ ≤ p, θ ∈ E 1

2
.

On the other hand, from Lemma 5.2 and Lemma 3.1 we conclude that
|Ur21 ∩ Er21 | ≥ π/4. Thus, from Lemma 3.4 we derive

q(K) ≤
∫

U
r21
∩E

r21

(∣∣θ(r2
1e
iθ)
∣∣− ∣∣θ(eiθ/2)∣∣)2 dθ,

which yields

q(K) ≤
∫
E
r21

(∣∣θ(r2
1e
iθ)
∣∣− ∣∣θ(eiθ/2)∣∣)2 dθ,

Replacing this into (29) yields

sinh
(
ρ(0)

)
≤

24K2
(
ρ(r1) + 4

)2
π(log 1

r1
)−1

q(K)
.

Recall that r1 = r1(K). Theorem 1.1 is proved.
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