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Abstract. We prove that every unstable equivariant minimal surface in Rn produces a
maximal representation of a surface group into

Qn
i=1 PSL(2,R) together with an unstable

minimal surface in the corresponding product of closed hyperbolic surfaces. To do so,
we lift the surface in Rn to a surface in a product of R-trees, then deform to a surface in
a product of closed hyperbolic surfaces. We show that instability in one context implies
instability in the other two.

1. Introduction

1.1. Minimal surfaces in products of hyperbolic surfaces. Let ⌃g denote a closed
surface of genus g � 2 and let Tg be the Teichmüller space of marked complex structures
on ⌃g. Let (X, d) be the hyperbolic plane, an R-tree, or product thereof with an action
� : ⇡1(⌃g) ! Isom(X, d). For every Riemann surface structure S on ⌃g, with universal
cover S̃, and �-equivariant Lipschitz map f : S̃ ! (X, d), there is a well-defined notion of
Dirichlet energy E(S, f) (see Section 2 for details). For admissible �, there is an essentially
unique �-equivariant harmonic map h : S̃ ! (X, d), which satisfies

E(S, h) = inf
f

E(S, f).

This gives a function E� : Tg ! R, by E�(S) = E(S, h). When S is a critical point of E�,
we say that h is minimal; if X is a manifold and h is an immersion, this is equivalent to
h(S) being a minimal surface.

One case of interest is when � is a product of Fuchsian representations into PSL(2,R)n
(also called a maximal representation), in which case each component of the harmonic map
is a di↵eomorphism, and critical points correspond to genuine minimal surfaces in a product
of hyperbolic surfaces. The work of Schoen-Yau [22] implies that in this case, E� is proper,
and therefore admits a global minimum, which is a stable critical point. For n = 2, Schoen
proved that this is the unique critical point of E� [23].

However, the first author proved in [16] that uniqueness fails when n � 3, assuming
the genus g is large enough. See also the paper [15], which provides a strengthening of
Schoen’s result for n = 2. The main goal of this paper is to show that unstable equivariant
minimal surfaces in Rn yield unstable minimal surfaces in products of hyperbolic surfaces.
In particular, this strengthens the result from [16], while providing a simpler and more
revealing proof. When n � 3, there are many unstable equivariant minimal surfaces in Rn;
most notably, unstable minimal surfaces in tori, which Meeks [18], Hass-Pitts-Rubenstein
[7], and Traizet [24] have shown to be abundant, lift to unstable equivariant minimal surfaces
in Rn.

We say that a critical point of E� is unstable if there exists a C2 path in Tg starting at
the point and at which the second derivative of E� along the path is negative.
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Theorem A. Let n � 3. For every genus g � 2, there exists a maximal representation

� : ⇡1(⌃g) !
Qn

i=1 PSL(2,R) such that E� : Tg ! (0,1) admits an unstable critical point.

In particular, there are at least two minimal surfaces in the product of hyperbolic surfaces

determined by �.

Labourie conjectured that for a Hitchin representation into a simple split real Lie group G
of non-compact type, there exists a unique equivariant minimal surface in the corresponding
symmetric space. Labourie proves existence in general [12], and that uniqueness holds when
the rank of G is 2 [13] (see also [1], where Collier-Tholozan-Toulisse prove the analogous
statement for maximal representations into Hermitian Lie groups of rank 2). The conjecture
remains open in rank at least 3, and [16] suggests that this is the critical case.

The key idea of the proof of Theorem A is to reduce it to finding unstable minimal
surfaces in products of R-trees (Theorem B2 below). The unstable minimal surfaces are
provided by Theorems C and D. We explain in the forthcoming subsections.

1.2. Minimal surfaces in products of R-trees. We give the definitions about harmonic
maps to R-trees in Section 2.2. Throughout the paper, let S be a Riemann surface structure
on ⌃g and QD(S) the space of holomorphic quadratic di↵erentials on S. The Riemann
surface structure S lifts to a Riemann surface structure on the universal cover of ⌃g, which
we denote S̃. Given a non-zero � 2 QD(S), there are two natural ways of producing
an equivariant harmonic map. First, the leaf space of the vertical singular foliation of
the lift �̃ to S̃ is an R-tree (T�, d). The action of ⇡1(⌃g) on S̃ descends to an action
⇢ : ⇡1(⌃g) ! Isom(T�, d) by isometries. The quotient map ⇡ : S̃ ! (T�, d) is harmonic and
⇢-equivariant, with Hopf di↵erential �/4.

On the other hand, it is proved independently by Hitchin [8], Wan [25], and Wolf [27]
that there is a unique hyperbolic structure M� on ⌃g such that the identity map from S
to M� is harmonic with Hopf di↵erential �. Moreover Wolf shows that as t ! 1, Mt�

converges in a certain sense to the rescaled tree (T�, 2d) (see [28] for the precise statement).
Now let �1, . . . ,�n be n nonzero holomorphic quadratic di↵erentials on the same surface

S, and let X be the product of the R-trees (T�i , 2di) arising from the construction above.
Let ⇢ : ⇡1(⌃g) ! Isom(X) be the product of the actions ⇢i on each factor. The energy
function E⇢ on Tg associated to ⇢ is then the sum of the energy functions E⇢i associated to
each component. Also for each positive t > 0, let M t

i be the hyperbolic structures associated
to t�i. We set Et

⇢ to be the energy functional for the product of Fuchsian representations
associated to the M t

i .
S is a critical point for E⇢ if and only if it is a critical point for Et

⇢ for every t > 0. In
other words, minimality of the harmonic map into the product of surfaces is equivalent to
the minimality of the equivariant harmonic map into the product of R-trees. The condition
occurs precisely when

Pn
i=1 �i = 0.

Let n � 2. For i = 1, . . . , n, let �i be nonzero holomorphic quadratic di↵erentials on the
Riemann surface S such that

Pn
i=1 �i = 0.

Theorem B1. S is not a (local) minimum for E⇢ if and only if there exists t > 0 such that

S is not a (local) minimum for Et
⇢. In this case, for all s > t, S is not a (local) minimum

for Es
⇢.

Remark 1.1. If n = 2, Schoen’s result shows that the only critical point of Et
⇢ is a minimum,

and so by (1), the same is true of E⇢. This was first proved by Wentworth who showed that,
provided existence, the equivariant minimal surface in a product of two R-trees is unique
[26, Theorem 1.6].
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Remark 1.2. It appears to be unknown whether the energy functional on Teichmüller
space for harmonic maps to R-trees is C2. It is always C1, and real analytic near a Riemann
surface such that the Hopf di↵erential of the harmonic map has only simple zeros (this is a
generic condition) [17].

Theorem B1 can give critical points of Et
⇢ that are not minima, but this is not quite

strong enough to prove Theorem A, which is about unstable critical points. To that end,
we give a notion of instability in products of R-trees that will be suitable for our purposes.
Let S be a critical point for E⇢ with harmonic map ⇡ = (⇡1, . . . ,⇡n). Given C1 vector
fields V1, . . . , Vn on S, let r 7! fr

1 , . . . , f
r
n : S ! S be their flows, and construct the map

⇡r = (⇡1�fr
1 , . . . ,⇡n�fr

n). For any C1 path of Riemann surfaces r 7! Sr, there is a Beltrami
form µ representing a point TSTg that is tangent to our path at r = 0.

Definition 1.3. We define a quadratic form L : TSTg ⇥H0(S, TS)n ! R by

L(µ, V1, . . . , Vn) =
d2

dr2
|r=0E(Sr,⇡r),

where r 7! Sr is any path tangent to µ at r = 0.
The self-maps index of S for E⇢ is the maximal dimension of TSTg ⇥ H0(S, TS)n on

which L is negative definitef. If the index is positive, we say that S is unstable.

We explain that L is well-defined in Section 2.2. L is positive semi-definite on {0} ⇥
H0(S, TS)n, and hence if L is negative definite on a subspace U ⇢ TSTg ⇥ H0(S, TS)n,
then U projects injectively to TSTg⇥{0}. Moreover, for any variations r 7! Sr and r 7! ⇡r,
we have E⇢(Sr)  E(Sr,⇡r), and hence if L(µ, V1, . . . , Vn) < 0, then E⇢(Sr) < E⇢(S) for
small r. See Remark 3.4 below for more motivation for the definition of L.

Theorem B2. The index of Et
⇢ at S is non-decreasing with t, and converges to the self-

maps index of S for E⇢ as t ! 1. Consequently, S is unstable for E⇢ if and only if it is

unstable for Et
⇢, for t su�ciently large.

Toward the proof of Theorem A, we only need the “only if” direction of Theorem B2.
We include the “if” direction and Theorem B1 because they show that R-trees are really
at the heart of the result. A conjecture in Higher Teichmüller theory is that high energy
minimal maps into symmetric spaces converge in an appropriate sense to minimal maps into
buildings (see [10]). This is the higher rank generalization of [28]. If our results extend to
this setting, then this would suggest that any counterexample to the Labourie conjecture
would have to come from an unstable minimal map into a building.

1.3. Equivariant minimal surfaces in Rn. In order to use Theorem B2 to prove Theorem
A, we construct unstable surfaces in products of R-trees. We start by looking in a more
familiar place: Euclidean space Rn.

For i = 1, . . . , n, let ↵i be a non-zero holomorphic 1-form on the Riemann surface S.
Lifting to 1-forms ↵̃i on a universal cover S̃ gives the data of a harmonic map to Rn via
integrating the real parts:

h = (h1, . . . , hn), hi(z) = Re

Z z

z0

↵̃i,

unique up to translation. The map h intertwines the action of ⇡1(⌃g) on S̃ with some non-
trivial homomorphism � : ⇡1(⌃g) ! Rn. The Hopf di↵erential of hi is the square �i = ↵2

i ,
which descends to a holomorphic quadratic di↵erential on S, by the equivariance property.
h is weakly conformal if and only if

Pn
i=1 �i = 0, which is equivalent to h being minimal.
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By the construction of Section 1.2, the Hopf di↵erentials �i also define an action ⇢ of
⇡1(⌃g) on a product X of R-trees and a ⇢-equivariant minimal map ⇡. The map h naturally
factors through ⇡. Let E� and E⇢ be the corresponding energy functionals on Teichmüller
space. In the end we prove the following near-equivalence.

Theorem C. For n � 2 and i = 1, . . . , n, let ↵i be nonzero holomorphic 1-forms on S such

that
Pn

i=1 ↵
2
i = 0,. Let ⇢, and � be as above.

(1) If S is not a (local) minimum for E⇢, then it is not a (local) minimum for E�.

(2) The index of E� at S is equal to the self-maps index of E⇢ for S. In particular, if

S is unstable for E�, then S is unstable for E⇢.

Remark 1.4. As in Theorem B, the statement is not so interesting when n = 2 since every
critical point is a stable minimum.

Remark 1.5. Instability for E� at S is equivalent to instability for the (equivariant) area
functional on the space of all equivariant maps. The second variations for both functionals
have the same index (see [3, Theorem 3.4]).

The final ingredient needed to prove Theorem A is an example of an unstable equivariant
minimal surface in Rn. Fortunately, these aren’t so hard to find: when n = 3, every non-
planar equivariant minimal surface in R3 is unstable, since a constant section of the normal
bundle is destabilizing. Consequently, for any three 1-forms on S whose squares sum to
zero, as long as they span a 2-dimensional space, S will be an unstable point of E� (we
explain the details in Section 5.3).

The most natural example is the lift of a minimal surface in a flat 3-torus; there a many
classical examples, such as the Schwarz P-surface of genus 3 (see [18]). In fact, for every
g � 3, every flat 3-torus contains infinitely many distinct unstable minimal surfaces of genus
g in the same homotopy class (see [18], [7], and [24]).

By inclusion, this gives examples for every n � 3, as long as g � 3. We can also perturb
these examples to give even more. Unfortunately, if g = 2, then the only triples of 1-forms
whose squares sum to zero are scalar multiples of one another, so we cannot use Theorem
C to prove Theorem A in the case g = 2.

1.4. A generalization of Theorem C, and the case g = 2. In the general setting where
we start with n quadratic di↵erentials summing to zero that are not necessarily squares of
abelian di↵erentials, we may have to lift to a branched covering of S in order to get a
harmonic map to Rn. Replacing ⇡1(⌃) with the Deck group of this branched covering, and
� with the corresponding representation of this group, we prove that an analog of statement
(2) from Theorem C still holds.

When n = 3, the minimal surface in R3 arising from a branched cover is no longer
automatically equivariantly unstable for its energy functional, because the normal bundle
is not necessarily equivariantly trivial with respect to the action of the Deck group of the
branched covering. Instead, we find a condition on the quadratic di↵erentials that guarantees
that the bundle is equivariantly trivial, which then yields the following theorem.

Theorem D. Let �1,�2,�3 be holomorphic quadratic di↵erentials on S that are not colinear

and such that �1�2�3 is the square of a cubic di↵erential. Then the corresponding equivariant

minimal surface in the product of R-trees is unstable via self-maps for its energy functional.

We show that the moduli space of solutions to this problem has dimension at least 3g�3
for every genus (Proposition 5.8). In particular, this gives us unstable minimal surfaces in
genus 2, and hence allows us to complete the proof of Theorem A.
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2. Preliminaries

2.1. Harmonic maps to manifolds. Let ⌫ be a smooth metric on S compatible with the
complex structure. Let (M,�) be a closed Riemannian manifold, and h : S ! M a C2 map.
The energy density is the function

(1) e(h) =
1

2
trace⌫h

⇤�,

and the total energy is

(2) E(S, h) =
Z

S
e(h)dA,

where dA is the area form of ⌫. We comment here that the energy density 2-form e(h)dA
does not depend on the choice of compatible metric ⌫, but only on the complex structure. h
is said to be harmonic if it is a critical point for the energy h 7! E(S, h). The Hopf di↵erential
is the quadratic di↵erential on S defined in a local holomorphic coordinate z by

(3) �(h)(z) = h⇤�
⇣ @

@z
,
@

@z

⌘
(z)dz2,

and it is holomorphic provided that h is harmonic. We also consider maps from S̃ !
(M,�) that are equivariant with respect to a representation ⇢ : S̃ ! Isom(M, ⌫). Since ⇢
is acting by isometries, the energy density is invariant under the ⇡1(⌃g) action on S̃ by
deck transformations, and hence descends to a function on S. In this way, we can define a
total energy exactly as in (2), and discuss harmonic maps. Similarly, the Hopf di↵erential
descends to a holomorphic quadratic di↵erential on S.

We give special attention to surfaces and the real line. When the target (M,�) is a
surface with conformal metric �, then in holomorphic coordinates z on S and w on M , we
write ⌫ = ⌫(z)|dz|2, � = �(w)|dw|2, and h as a complex-valued function h(z). The energy
density takes the form

e(h)(z) =
�(h(z))

⌫(z)
(|hz|2 + |hz|2)(z), �(h)(z) = �(h(z))hz(hz)dz

2.

Considering equivariant maps to the real line, again in local coordinates,

e(h)(z) = 2⌫(z)�1|hz|2, �(h) = h2
zdz

2.

For a harmonic map to a product space, the definitions (1) and (3) shows that the
energy density and the Hopf di↵erential are the sum of the energy densities and the Hopf
di↵erentials respectively of the component maps. So for a mapping h = (h1, . . . , hn) into
a product of Riemann surfaces, or an equivariant mapping into Rn, the Hopf di↵erential is
the sum

(4) �(h) =
nX

i=1

�(hi).

h is minimal if � ⌘ 0.
If (M,�) is a negatively curved surface, it is well-known that there is a unique harmonic

map h : S ! (M,�) in the homotopy class of the identity (see [2] for existence, and [6,
Theorem H] for uniqueness). If we work on a di↵erent Riemann surface structure S0 on
⌃g, we get a harmonic map from S0 ! (M,�) in the class of the identity, and the total
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energy depends only on the class of S0 in Teichmüller space. Thus, we get a functional
E : Tg ! (0,1), where E(S0) is the total energy of the harmonic map from S0 ! (M,�). For
a map into a product of surfaces, the energy functional is the sum of the energy functionals
of the component mappings.

2.2. Harmonic maps to R-trees.

Definition 2.1. An R-tree is a length space (T, d) such that any two points are connected
by a unique arc, and every arc is a geodesic, isometric to a segment in R.

A point x 2 T is a vertex if the complement T\{x} has greater than two components.
Otherwise it is said to lie on an edge.

Let S be a closed Riemann surface of genus g � 2. The horizontal (resp. vertical) foliation
of a holomorphic quadratic di↵erential � on S is the singular foliation whose non-singular
leaves are the integral curves of the line field on S\��1(0) on which � is a negative real
number. The singularities are standard prongs at the zeros. Both foliations come equipped
with transverse measures |Im

p
�| and |Re

p
�| respectively (see [5, Exposé 5] for precise

definitions).
In this paper, we work with the vertical foliation, unless specified otherwise. Lifting to a

singular measured foliation on a universal cover S̃, we define an equivalence relation under
which two points x, y 2 S̃ are equivalent if they lie on the same leaf. The quotient space is
denoted T , and we can push the transverse measure down via the projection ⇡ : S̃ ! T to
form a distance function d such that (T, d) is an R-tree, with an induced action ⇢ : ⇡1(S) !
Isom(T, d).

According to Korevaar-Schoen, for Lipschitz maps f from S̃ to complete and non-
positively curved (NPC) length spaces such as (T, d), there is a well-defined L1 directional
energy tensor gij = gij(f) that generalizes the pullback metric (see [11, Theorem 2.3.2]). In
this way, one can define a measurable energy density function by

(5) e(f) =
1

2
trace⌫gij(f).

For an equivariant Lipschitz map h, the energy density e(h) is invariant under the group,
and we define a total energy as in the smooth setting by

E(S, h) =
Z

S
e(h)dA.

Definition 2.2. We say that a ⇢-equivariant map h : S̃ ! (T, d) is harmonic if, among
other ⇢-equivariant maps, it is a critical point for the energy h 7! E(S, h).

For the projection map ⇡, we can describe the energy density explicitly. At a point on
p 2 S̃ on which �(p) 6= 0, the map locally isometrically factors through a segment in R.
In a small enough neighbourhood around that point, e(⇡) is equal to the energy density of
the locally defined map to R, which is computed as usual via the formula (1). From this,
we see that the energy density has a continuous representative that is equal to ⌫�1|�|/2
everywhere.

The Hopf di↵erential is well-defined for maps f from S̃ to NPC spaces as above: in local
coordinates, it is given by

(6)
1

4
(g11(f)(z)� g22(f)(z)� 2ig12(f)(z))dz

2.

The projection map ⇡ : S̃ ! (T, d) is ⇢-equivariant and harmonic, with Hopf di↵erential
�/4. Instead of the equation (6), one can also see this by using the local isometric factoring.
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As in the case of maps to surfaces, a harmonic mapping into a product of trees is called
minimal if the Hopf di↵erential–which splits as a sum as in (4)–vanishes.

Given (T, d) as above, we always rescale the metric to 2d, which makes it so that the Hopf
di↵erential of ⇡ : S̃ ! (T, 2d) is �. For any other Riemann surface S0 representing a point
in Tg, there is a unique ⇢-equivariant harmonic map from S̃0 ! (T, 2d) (see [29]). Again
like the surface case, the representation ⇢ then defines an energy functional on Teichmüller
space. The same holds for products of R-trees with admissible actions.

Let’s now address the quadratic form L : TSTg ⇥H0(S, TS)n ! R. Given a C1 path of
Riemann surfaces and a flow r 7! fr, we consider

(7) r 7! E(Sr,⇡ � f̃r).
In [19, Section 5], Moore computes the derivative of the two-variable energy for maps from
a surface to a Riemannian manifold. Using the characterization (5), one can word-for-word
redo that computation, but with the measurable density e(⇡ � f̃r), to see that (7) is C1 in
r. Working with a minimal map into a product of trees and n vector fields, one does the
computation n times to get L. We note that it only depends on the tangent vectors and not
the specific path of Riemann surfaces and flow of maps, because a minimal map is a critical
point for the two-variable energy.

3. Minimal surfaces in products of R-trees

We first prove Theorem B2, and then Theorem B1.

3.1. The Reich-Strebel energy formula. Reich-Strebel computed a formula for the dif-
ference of energies of quasiconformal maps (equation 1.1 in [20]). Let h : S ! M and
f : S ! S0 be quasiconformal maps between Riemann surfaces, with a conformal metric on
M . Let µ be the Beltrami form of f , and � the Hopf di↵erential of h, which need not be
holomorphic. Then,

(8) E(S0, h � f�1)� E(S, h) = �4Re

Z

S
� · µ

1� |µ|2 + 2

Z

S
e(h) · |µ|2

1� |µ|2 dA.

The computation goes through just the same when h maps S̃ equivariantly into an R-
tree. For a map h to a tree (T, d) with Hopf di↵erential  , the energy density satisfies
e(h) = 2⌫�1| |. We obtain the Proposition below.

Proposition 3.1. Let h : S̃ ! (T, d) be an equivariant harmonic map to an R-tree with

Hopf di↵erential  , and f : S0 ! S a quasiconformal map. Then the following formula

holds:

(9) E(S0, h � f̃�1)� E(S, h) = �4Re

Z

S
 · µ

1� |µ|2 + 4

Z

S
| | · |µ|2

1� |µ|2 .

In the formula above, f̃ is the lift to S̃ and µ is the Beltrami form.

3.2. Proof of Theorem B2. Let � 2 QD(S) � {0}. For t > 0, let Mt be the hyperbolic
structure with hyperbolic metric �t such that the identity map ht : S ! Mt is harmonic
with Hopf di↵erential t�, let Et

⇢ be the two-variable energy functional for Mt, and Et
⇢ the

corresponding energy functional on Teichmüller space. Similarly, let E⇢ and E⇢ be the
energies for the R-tree (T, 2d) determined by � (with a rescaled metric).

The main step in the proof of Theorem B2 is Lemma 3.2. If we rescale �t by t�1, then
for any Riemann surface structure S0 and C2 map f : S0 ! Mt, the energy with respect
to the target metric t�1�t is t�1Et

⇢(S
0, f). Let r 7! Sr be a path of Riemann surfaces and
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r 7! fr a flow starting at the identity map. Lemma 3.2 shows that the second derivative in
r of the energy of ht � fr on Sr with respect to the target metric t�1�t converges as t ! 1
to the second derivative of the energy of ⇡ � fr : S̃r ! (T, 2d).

Lemma 3.2. For s > t,

1

t

d2

dr2
|r=0Et

⇢(Sr, ht � fr) >
1

s

d2

dr2
|r=0Es

⇢(Sr, hs � fr) >
d2

dr2
|r=0E⇢(Sr,⇡ � f̃r),

and

lim
t!1

1

t

d2

dr2
|r=0Et

⇢(Sr, ht � fr) =
d2

dr2
|r=0E⇢(Sr,⇡ � f̃r).

Toward the proof, we first record the lemma below about the growth of the energy density.

Lemma 3.3. Let e(ht) be the energy density of ht with respect to the target metric �t. Then
for s � t,

(10)
e(ht)

t
� e(hs)

s
,

and the inequality is strict away from the zeros of �. Moreover,

(11) lim
t!1

e(ht)

t
= 2⌫�1|�|.

Proof. Let µt and µs be the Beltrami forms of ht and hs respectively. It is proved in
[27, Proposition 4.3] that away from the zeros of � (at which |µt| = 0 for every t), |µt|
monotonically increases to 1 as t ! 1. A simple computation gives

e(h) =
2t|�|
⌫

cosh log |µt|�1,

and likewise for s. Therefore, (10) is equivalent to the inequality

(12) cosh log |µt0 |�1 � cosh log |µt|�1.

Since |µt| < 1 everywhere, the inequality (12) follows. Using the limiting behaviour of |µt|,
we take t ! 1 to obtain (11). ⇤
Proof of Lemma 3.2. Let (µ, V ) 2 TSTg ⇥H0(S, TS), and let r 7! fr be the flow of V . Let
µr be the Beltrami form of f�1

r , and ↵ the C1 (1,�1)-form and � the C1 function on S
described by

↵(z) =
d2

dr2

����
r=0

µr(z)

1� |µr(z)|2
, �(z) =

d2

dr2

����
r=0

|µr(z)|2

1� |µr(z)|2
.

We use the Reich-Strebel fomula (8). For each t > 0,

1

t

d2

dr2

����
r=0

Et
⇢(Sr, h

t � fr) =
1

t

d2

dr2

����
r=0

⇣
Et
⇢(Sr, h

t � (f�1
r )�1)� Et

⇢(S, h
t)
⌘

=
d2

dr2

����
r=0

⇣
� 4Re

Z

S
� · µr

1� |µr|2
+ 2

Z

S

e(ht)

t
· |µr|2

1� |µr|2
dA

⌘

= �4Re

Z

S
� · ↵+ 2

Z

S

e(ht)

t
· �dA.

On the other hand, by the same computation, but using (9),

d2

dr2

����
r=0

E⇢(Sr,⇡ � f̃r) = �4Re

Z

S
� · ↵+ 4

Z

S
|�(h)| · �.
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By Lemma 3.3, for s > t,
Z

S

e(ht)

t
· �dA >

Z

S

e(hs)

s
· �dA,

so that Lt
t > Ls

s . By Lemma 3.3 again and the dominated convergence theorem,
Z

S

e(ht)

t
· �dA ! 2

Z
|�| · �

in a strictly decreasing fashion as t ! 1. The result follows.
⇤

Moving onto the proof of Theorem B2, we resume the notation from the introduction:
for i = 1, . . . , n, �i are nonzero holomorphic quadratic di↵erentials on S summing to 0.
The product of R-trees (Ti, 2di), which we denote by X, comes equipped with the action
⇢ = (⇢1 ⇥ · · · ⇥ ⇢n). For each positive t > 0, M t

i is the hyperbolic structure such that the
identity map ht

i : S ! M t
i is harmonic and has Hopf di↵erential t�i. The energy functionals

are denoted E⇢ and E⇢ for the trees and Et
⇢ and Et

⇢ for the surfaces.
We define Lt : TsTg ⇥H0(S, TS)n ! R for the harmonic map ht = (ht

1, . . . , h
t
n) in the

same way as L: if r 7! Sr is a path of Riemann surfaces tangent to a Beltrami form µ at
r = 0, and V1, . . . , Vn are vector fields giving rise to flows 7! fr

1 , . . . , f
r
n, then we set

Lt(µ, V1, . . . , Vn) =
d2

dr2
|r=0Et

⇢(Sr, h
t
r),

where hr
t = (ht

1 � fr
1 , . . . , h

t
n � fr

n).

Remark 3.4. The two-variable energy for
Qn

i=1 M
t
i is defined on Tg ⇥

Qn
i=1 Maps(S,M t

i ).
Since any small perturbation of the identity map is a di↵eomorphism, the space on which Lt

acts is canonically isomorphic to the tangent space of Tg⇥
Qn

i=1 Maps(S,M t
i ) at S⇥

Qn
i=1 id.

Remark 3.5. Since S is a critical point for the two-variables energies Et
⇢ and E⇢, the second

order derivatives Lt and L depend only on the first order data µ, V1, . . . , Vn (this is not true
for the second variations of each component harmonic map).

Proposition 3.6. For s > t,
Lt

t
>

Ls

s
> L,

and limt!1
Lt
t = L.

Proof. We invoke Lemma 3.2 n times. ⇤
Lemma 3.7. The index of Lt is equal to the index of Et

⇢.

Proof. Let r 7! Sr be a path of Riemann surfaces, tangent to the Beltrami form µ at r = 0,
and suppose there exists (V1, . . . , Vn) 2 H0(S, TS)n such that Lt(µ, V1, . . . , Vn) < 0. For
each fixed t > 0, the maps r 7! Et

⇢(Sr) and r 7! Et
⇢(Sr, hr

t ) have zero first variation at r = 0.
By the minimizing property for harmonic maps, Et

⇢(Sr)  Et
⇢(Sr, hr

t ) for every r, and it
follows that

1

t

d2

dr2
|r=0E

t
⇢(Sr) 

1

t

d2

dr2
|r=0Et

⇢(Sr, h
r
t ) =

1

t
Lt(µ, V1, . . . , Vn) < 0.

So, the index of Et
⇢ is at least that of Lt.

For the other direction, assume r 7! Sr lowers Et
⇢ to second order, and for each r > 0,

let k = (kr1, . . . , k
r
n) : Sr !

Qn
i=1 M

t
i be the harmonic map in the class of the identity. All
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ht
i’s and kri ’s are orientation-preserving di↵eomorphisms. Set fr

i = (ht
i)

�1 � kri and let Vi be
the infinitesimal generator of the flow r 7! fr

i . Then

1

t
Lt(µ, V1, . . . , Vn) =

1

t

d2

dr2
|r=0E

t
⇢(Sr) < 0,

which gives the result. ⇤

We now deduce Theorem B2.

Proof of Theorem B2. Proposition 3.6 implies that the index of Lt is non-decreasing with
t, and converges to the self-maps index of S for E⇢. We then apply Lemma 3.7 to obtain
the same statement for the index of Et

⇢ at S. ⇤

3.3. Proof of Theorem B1. The proof of Theorem B1 is similar to that of Theorem B2,
so we don’t go through every detail. The main di↵erence is that we replace Lemma 3.2 with
Lemma 3.8 below.

As above, let Mt be the hyperbolic structure on ⌃g with hyperbolic metric �t such that
the identity map has Hopf di↵erential t�, with energy functional Et

⇢, and let E⇢ be the
energy functional for the R-tree (T, 2d) for �.

Lemma 3.8. For all Riemann surfaces S0
,

lim
t!1

Et
⇢(S

0)

t
= E⇢(S

0).

In order to prove the lemma, we recall some facts about the Thurston compactification
of Teichmüller space. Let S be the set of homotopically non-trivial simple closed curves on
⌃g and RS the product space with the weak topology. There is an embedding

` : Tg ⇥ R+ ! RS

that associates the data of a hyperbolic metric � and s 2 R+ to the set of lengths of geodesic
representatives of curves in S with respect to the metric s�. Every singular measured
foliation (F , µ) on S also defines a point in RS , by taking µ-transverse measures of simple
closed curves. Furthermore, there is an injective map

� : QD(S) ! RS

that takes a quadratic di↵erential to its vertical foliation, and then to RS . Note that both
` and � are homogeneous with exponent 1

2 .
According to Thurston and Hubbard-Masur (see [5] and [9]), both ` and � are homeo-

morphisms onto their images, and `(Tg ⇥R+)t �(QD(S)) is homeomorphic to a cone over
a closed ball, which we call C (the cone over the Thurston compactification of Teichmuller
space). The following result can be gleaned from the results of [27].

Theorem 3.9. For any Riemann surface S, let ES : Tg⇥R+tQD(S) ! R+
be the function

that associates to each point in Tg ⇥ R+
the energy of the unique harmonic map isotopic

to the identity from S, and to each point of QD(S) the energy of the unique equivariant

harmonic map to the corresponding R-tree. Then ES is continuous with respect to the

topology on C.

We now explain how to deduce this theorem from the paper [27]. The first ingredient is
a de-projectivized version of Lemma 4.7 of that paper, whose proof is identical to the proof
of the lemma in the paper.
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Lemma 3.10. Suppose (�n)1n=1 ⇢ Tg leaves all compact subsets of the Teichmüller space,

and let �n be the Hopf di↵erential of the harmonic map from S to (S,�n). Suppose (an)1n=1 ⇢
(R+)S is a chosen sequence. Then `(�n, an) converges in RS

if and only if �(an�n) does,

and in the case of convergence, the two sequences have the same limit.

The second ingredient is the following computation (in which each term is linear in the
scalars an, so the factors of an are superfluous).

Lemma 3.11 (Lemma 3.2 in [27]). In the notation of the previous lemma,

||an�n||L1(S)  ES(an�n)  ||an�n||L1(S) + an|�(⌃g)|.

Proof of Theorem 3.9. For brevity, write E = ES . First, E is continuous on Tg ⇥ R+ and
E(�) = ||�||L1(S), which is certainly continuous on QD(S). To show that E is continuous on
all of C, we just need to show that if `(�n, an) ! �(�), then E(an�n) ! E(�). By Lemma
3.10, �(an�n) ! �(�) (where as above �n is the Hopf di↵erential of the harmonic map to
�n), and since � is a homeomorphism onto its image, an�n ! � as well, so E(an�n) ! E(�).
Finally, since an must tend to zero in order for the sequence an�n to converge in RS , Lemma
3.11 shows that E(an�n) and E(an�n) have the same limit. ⇤

Now the proof of Lemma 3.8 is easy.

Proof of Lemma 3.8. By definition, Et
⇢(S

0) = ES0(�t), and E⇢(S0) = ES0(�), so by the
continuity of ES0 and its homogeneity, we just need to show that `(�t/t) ! �(�) in C. To
prove this, we use Lemma 3.10 applied to the surface S. Indeed, the Hopf di↵erential of
the harmonic map from S to �t/t is � by construction, and since the constant sequence at
� trivially converges to �, Lemma 3.10 implies that `(�t/t) does as well. ⇤

Preparations aside, we prove Theorem B1. We return to all of the notation from the
introduction and the proof of Theorem B2. We don’t recall it in full, but just record here
that the energy functionals are E⇢ for the product of R-trees and Et

⇢ for the product of
surfaces. The proof is quite similar to that of Theorem B2, so we leave the details of the
computations to the reader.

Proof of Theorem B1. Beginning with a Riemann surface S0 such that E⇢(S0) < E⇢(S),
applying Lemma 3.8 n times yields that Et

⇢(S
0) < Et

⇢(S) for su�ciently large t.
Conversely, suppose that there exists t > 0 such that Et

⇢(S
0) < Et

⇢(S), and let k =
(kt1, . . . , k

t
n) : S

0 !
Qn

i=1 M
t
i be the n-tuple of harmonic di↵eomorphisms with lower energy.

Let ht
i be the ith component of the harmonic map ht, and set f t

i = (ht
i)

�1 � kti . Arguing
similarly to the proof of Lemma 3.2, Reich-Strebel formulas (8) and (9) and the monotonicity
on the level of energy densities from Lemma 3.3 show that for s > t,

Et
⇢(S

0)�Et
⇢(S)

t
=

Pn
i=1 Et

⇢(S
0, ht

i � f t
i )�Et

⇢(S)

t

>

Pn
i=1 Es

⇢(S
0, hs

i � f t
i )�Es

⇢(S)

s

>
nX

i=1

E⇢(S0,⇡ � f̃ t
i )�E⇢(S).

It follows from the minimizing property that

Et
⇢(S

0)�Et
⇢(S)

t
>

Es
⇢(S

0)�Es
⇢(S)

s
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and
Et

⇢(S
0)�Et

⇢(S)

t
> E⇢(S

0)�E⇢(S),

and hence the result follows. ⇤

4. Unstable equivariant minimal surfaces in Rn

We recall the setup of Theorem C. For n � 2 and i = 1, . . . , n, let ↵i be nonzero holomor-
phic 1-forms on S such that

Pn
i=1 ↵

2
i = 0. Let � be the action of ⇡1(S) on Rn corresponding

to the 1-forms ↵i, and let ⇢ be the action of ⇡1(S) on a product X =
Q

i(Ti, 2di) of trees
corresponding to the quadratic di↵erentials �i = ↵2

i . We write E� and E⇢ for the associ-
ated two-variable energies, and E� and E⇢ for the energy functionals on Teichmüller space.
Let h = (h1, . . . , hn) and ⇡ = (⇡1, . . . ,⇡n) be the �- and ⇢- equivariant minimal maps
respectively.

4.1. Isometric folding. We begin with the statement (1) from Theorem C. The result is
a consequence of the proposition below.

Proposition 4.1. E⇢ � E�, with equality at S.

The key is that there is a natural map F : X ! Rn intertwining ⇢ and �. To see
why, let’s focus on a single tree Ti. Along a curve parametrizing a non-singular leaf for
the vertical singular foliation of �i, ↵i evaluates the tangent vectors to purely imaginary
numbers. Since dhi = Re(↵̃i), we deduce that hi is constant along the singular vertical
foliation of �̃i. Hence, hi descends to a map Fi : Ti ! R, which we call the folding map of
the tree. The map F = (F1, . . . , Fn) has the required equivariance.

Lemma 4.2. If S0
is any point of Tg, and ⇡0

i the unique ⇢i-equivariant harmonic map

from S̃0
to (Ti, 2di), then the energy density of ⇡0

i is pointwise equal to the energy density of

Fi � ⇡0
i.

Proof. Let  i be the Hopf di↵erential of ⇡0
i. As discussed in Section 2, for any point p

at which  i(p) 6= 0, there exists a neighbourhood ⌦ of p, an open interval I ⇢ R, a map
⇡̂0
i : ⌦ ! I, and an isometric inclusion ◆ : I ! (Ti, 2di) such that in ⌦,

⇡0
i = ◆ � ⇡̂0

i.

By construction, the restriction of Fi|◆(I) : ◆(I) ! R is an isometric embedding. It follows
by continuity that the energy densities are equal everywhere. ⇤
Proof of Proposition 4.1. For any S0 2 Tg, let ⇡0 be the ⇢-equivariant harmonic map to the
product of trees. The map F �⇡0 is a �-equivariant Lipschitz map to Rn. By the minimizing
property for harmonic maps,

E�(S
0)  E�(S0, F � ⇡0).

By the lemma above, E(S0, F � ⇡0) = E⇢(S0), so we have

E⇢ � E�.

Working on the Riemann surface S, hi = Fi � ⇡i for every i, so E�(S) = E�(S0, F � ⇡), and
we have equality. ⇤
Remark 4.3. Maps of the form Fi � ⇡0

i above are subtle. They are harmonic apart from
some preimages under ⇡0

i of the vertices in (Ti, 2di), which are typically disjoint arcs or
connected sums of disjoint arcs. Even though they have finite total energy, a Weyl lemma
cannot be applied because they fail to be twice weakly di↵erentiable on these lines. The
map x 7! |x| on R exhibits this type of behaviour.
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We see immediately from Proposition 4.1 that if S is not a global (resp. local) minimum
of E⇢, then it is not a global (resp. local) minimum of E�. So (1) is proved. Furthermore,
we are very close to proving one direction of (2), once we recall the definition of the self-
maps index, and its basic properties. We do this after collecting some standard facts about
minimal surfaces in Rn.

4.2. Energy and area. Let f be any smooth �-equivariant map from ⌃̃g to Rn. The
di↵erential of f descends to a closed Rn-valued 1-form ✓ on ⌃g, and the cohomology class
of ✓ is prescribed by the representation �. The map f also defines a ⇡1(⌃g)-invariant area

form dAf =
p
det(✓T ✓), and the area of f , which we write A(f), is defined to be the integral

of this form over ⌃g. If S is a Riemann surface structure on ⌃g, then E�(S, f) � A(f), with
equality if and only if f is minimal (in fact, the integrands are equal pointwise).

Now suppose we are in the setting of Theorem C, so that h is a minimal �-equivariant
map from S̃ to Rn. Let B be the branch locus of h on S.

Lemma 4.4. Let hr be a smooth �-equivariant variation of h such that hr = h in a neigh-

borhood of B. Then for r small enough, there is a smooth variation of Riemann surface

structures Sr such that hr is minimal with respect to Sr.

Proof. For r su�ciently small, the map hr is still an immersion away from B, and hence
uniquely defines a new conformal structure on S�B. Since X is compactly supported away
from B, this conformal structure patches to the conformal structure of S near B, and defines
a new conformal structure Sr on S, with respect to which h is minimal. ⇤

We say that a smooth Rn-valued vector field W on S supported on S � B is a normal
variation of h if it is perpendicular to the image of dh at each point of S �B. For any such
W , let W̃ be the pullback to S̃; then the family hr = h+ rW̃ is a �-equivariant deformation
of h equal to h on a neighborhood of B. Taking the derivative of the corresponding Sr at
r = 0 defines a linear map from the space of normal variations supported on S � B to the
tangent space of Teichmüller space at S. Let V the graph of this map, viewed as a subspace
of TSTg ⇥ ThMap�(⌃̃g,Rn). We have shown that restricted to V , the Hessian of E� at the
critical point (S, h) is equal to the Hessian of A at the critical point h. The latter has the
following formula:

Proposition 4.5 (Theorem 32 in [14]). If W is a normal variation supported in S�B, the

second derivative of the area of any equivariant variation hr with derivative W at r = 0 is

given by the quadratic form

(13) Q(W ) =

Z

S
|(dW )N |2 � |hk,W i|2

where (dW )N is the component of dW normal to the image of dh, k is the vector-valued

second fundamental form of h(S), and the second term is interpreted as the square norm of

the scalar-valued 2-tensor hk,W i.

4.3. Lifting to R-trees via self-maps. In this section, we study energy and area in the
context of the ⇢-equivariant harmonic maps to products of R-trees. Specifically, we relate
Q to the quadratic form L : TSTg ⇥ H0(S;TS)n ! R defined in the introduction, which
defines the self-maps index for E⇢. Let H0

c (S � B, TS) be the subspace of H0(S, TS) of
smooth vector fields supported on S �B.

The key to the proof of the second part of Theorem C is the result below.
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Lemma 4.6. Suppose that W is a normal variation of S with support in S �B, and such

that Q(W ) < 0. Then there exists a harmonic Beltrami form µ on S and vector fields

V1, . . . , Vn 2 H0
c (S �B, TS)n such that

L(µ, V1, . . . , Vn) < 0.

Proof. Denote the coe�cients of W by W i. For each i = 1, . . . , n, let Vi be the vector field
which vanishes on B and is equal to W irxi/|rxi|2 on S �B, where rxi is the gradient of
the coordinate function xi on S, which is nonvanishing on S �B. We point out that Vi has
compact support on S �B.

Let fW
i : R ⇥ S ! S be flow of Vi, so that fW

i (r, ·) = fr
i (·). Then the family H :

R ⇥ S̃ ! Rn defined by Hi(r, p) = hi � fr
i (p) has derivative W at time zero. Moreover,

the family ⇧ : R ⇥ S̃ !
Q

i(Ti, 2di) defined by ⇧i(r, p) = ⇡i � fr
i (p) satisfies Fi � ⇧i = Hi,

where Fi is the folding map from Ti to R. Let ⇡r be the map (⇡1 � fr
1 , . . . ,⇡n � fr).

By Lemma 4.4, there exists a C1 variation of conformal structures r 7! Sr along which
E⇢(Sr,⇡r) = E�(Sr, hr) = A(hr), and we set µ to be the Beltrami form in TSTg tangent to
this path at time zero. If Q(W ) < 0, then taking the second variation of r 7! E⇢(Sr,⇡r)
yields L(µ, V1, . . . , Vn) = Q(W ) < 0. ⇤

4.4. Log cuto↵. In order to construct destabilizing variations for Q, it is helpful to do
away with the condition that W is supported on S�B. First, we need to say what it means
for W to be a normal variation over all of S. The map S � B ! CPn�1, which sends p
to the (one-dimensional) image of (↵1, . . . ,↵n) at p, extends holomorphically to all of S by
clearing denominators. Thus, the normal bundle also extends analytically to all of S. The
quadratic form Q is still finite for normal variations that are not necessarily supported on
S �B.

For normal variations W , which are not necessarily supported on S � B, we will need
to show that one can replace them with variations that are supported on S � B without
changing the value of Q too much. This is the log cut-o↵ trick. If r is the radial coordinate
in C then the function log(r)/ log(��1) + 2, defined between r = � and r = �2, is equal to 1
for r = � and 0 for r = �2 and has Dirichlet energy

1

2

Z �

�2

2⇡

r log(��1)2
=

⇡

log(��1)
.(14)

The point is this this tends to zero as � goes to zero. A good picture is that log r is the
height coordinate on a cylinder conformal to the punctured disk, so our function is an
a�ne function of the height of the cylinder, and its derivative is small. The extension of
this function by 0 and 1 is Lipschitz. For very minor reasons, it will be convenient to use
a smooth cuto↵ function, so we let l�(r) be a perturbation of log(r)/ log(��1) + 2 which
extends smoothly by 0 and 1 and has Dirichlet energy no more than 2⇡/ log(��1).

We use this model to define a cut-o↵ function as follows. For each point pi of B, fix a
holomorphic coordinate zi with zi(pi) = 0. Then, for any value of � small enough that each
zi is defined on the ball of radius � around pi and these balls do not overlap, let ⌘� be the
function on S defined by

• ⌘�(p) = l�(|zi|) if �2  |zi(p)|  � for some i
• ⌘�(p) = 0 if |zi(p)|  �2 for some i
• ⌘�(p) = 1 otherwise.

We now use the log cut-o↵ trick to prove the following lemma.
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Lemma 4.7. Suppose that W is normal variation of h on S. Then given any ✏ > 0, there
is a constant d(✏, Q(W ), sup |W |) such that for all � < d,

(15) |Q(⌘�W )�Q(W )| < ✏.

Proof. For � to be determined, we compute Q(⌘�W ). We first treat the normal term in the
formula (13) applied to the variation ⌘�W :

Z

⌃
|(d(⌘�W ))N |2 =

Z

⌃
|⌘�(dW )N + (Wd⌘�)

N |2

=

Z

�2|z|�
|⌘�(dW )N + (Wd⌘�)

N |2 +
Z

|z|��
|(dW )N |2,

where Wd⌘� is the Rn-valued 1-form W ⌦ d⌘�. Hence,

|Q(⌘�W )�Q(W )| 
Z

�2|z|�
|⌘�(dW )N + (Wd⌘�)

N |2 +
Z

|z|�
|(dW )N |2 +

Z

S
(1� ⌘2� )|W |2|k|2

=

Z

�2|z|�
|⌘�(dW )N + (Wd⌘�)

N |2 +O(�2),

since 1� ⌘2� is supported in |z|  �. By Cauchy-Schwarz and (14),

|Q(⌘�W )�Q(W )| 
Z

�2|z|�
|⌘�(dW )N |2 + |(Wd⌘�)

N |2 + 2|⌘�(dW )N |2|(Wd⌘�)
N |2 +O(�2)

= O(�2) +O
⇣ 1

log ��1

⌘
= O

⇣ 1

log ��1

⌘
.

Thus, we can choose � > 0 so that the di↵erence of second variations is at most ✏. ⇤
A consequence is that we can speak without ambiguity of the index of Q.

Proposition 4.8. The index of Q on the space of all normal variations is equal to the index

of Q on the subspace of normal variations supported in S �B.

Proof. We just need to show that if there is a k-dimensional space of normal variations on
which Q is negative definite, then there is another k-dimensional space of normal variations
supported in S �B on which Q is still negative definite. Let V be a k-dimensional space of
normal variations on which Q is negative definite. Let S(V ) be the unit sphere in V with
respect to any metric on V . Then for � small enough, Q(⌘�W ) < 0 for every W 2 S(V ).
Since this implies ⌘�W 6= 0, the space {⌘�W |W 2 V } is a k-dimensional subspace of normal
variations supported in S �B on which Q is negative definite. ⇤

We may now finish the proof of Theorem C.

Proof of Theorem C (2). Let k be the index of E�, and let W ⇢ TSTg be a k-dimensional
subspace on which the second variation is negative definite. By the implicit function the-
orem, the unique harmonic 1-form in a given cohomology class varies smoothly with the
conformal structure of S. We can integrate this smoothly-varying 1-form to give a smooth
equivariant variation of the harmonic map h. Projecting the variation onto the normal bun-
dle, we get from W a vector space of normal variations of h on which the second derivative of
E� is equal to Q. Since it is assumed to be positive definite, this space is still k dimensional.

By Proposition 4.8, we can replace this with a k-dimensional subspace of normal variations
supported on S � B on which Q is still negative definite. Then by Lemma 4.6, there is a
k-dimensional subspace of TSTg ⇥H0

c (S �B, TS)n on which L is negative definite, and so
the index of E⇢ by self-maps is at least k.
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In the other direction, suppose W 0 is a k-dimensional subspace of TSTg ⇥ H0(S, TS)n

on which L is negative definite. Since L is positive semidefinite on {0} ⇥ H0(S, TS)n,
the projection of W 0 to TSTg is still k-dimensional. For maps to manifolds, the positive
semidefinite property follows from the computation [6, Theorem H], and we get the same
result in our setting by repeating the computation but using the measurable energy density
with the characterization (5). Since E⇢ is an infimum over all maps, we get an upper
bound for E⇢ near S by a smooth function with negative definite Hessian at S. Recall that
Proposition 4.1 says that E�  E⇢, and so the index of E� at S is at least k. ⇤

5. The general case

In this section, we generalize Theorem C to the situation in which the quadratic di↵er-
entials are not necessarily squares of abelian di↵erentials. We then specialize to dimension
3 and give the proof of Theorem D.

5.1. The spectral curve. Let S0 be a point of Tg, and let �1, . . . ,�n be nonzero holo-
morphic quadratic di↵erentials on S0 summing to zero. To this data, there is an associated
spectral curve. By this, we mean a branched covering S of S0 and abelian di↵erentials ↵i

on S that square to the pullback of �i, which is terminal in the sense that if the ↵i lift to
squares on some other branched cover R ! S0, then this factors through a branched cover-
ing from R ! S. It is always a 2n-fold branched covering of S0, but may be disconnected,
for instance if any �i is already a square. By universality, S has n holomorphic involutions
⌧i, each of which negates ↵i and fixes ↵j for j 6= i.

We let ⇢ be the action of ⇡1(S0) on the product X of the R-trees (Ti, 2di) corresponding
to the quadratic di↵erentials �i, and ⇡ the canonical equivariant map from S̃0 to X.

Since S has n abelian di↵erentials whose squares sum to zero, the theory of the previous
section applies. For instance, we can integrate Re(↵̃i) on a simply connected covering space
to get a harmonic map h to Rn, equivariant under a representation � of the Deck group,
and well defined up to a constant on each component of S. The energy density of this map
descends not only to S, but all the way to S0, where it is equal to the energy density of ⇡.

In the spirit of Proposition 4.8, we want to compare the index of E⇢ through self-maps at
S0 to the index of the quadratic form Q associated to h. But to get the right comparison,
we need to restrict Q to a subspace of the space of normal variations. Let G ⇠= (Z/2Z)n be
the group generated by the ⌧i. Let � be the action of G on Rn such that each ⌧i acts by
reflection in the ith coordinate hyperplane. Let NV � be the space of normal variations of
h that are �-equivariant.

Proposition 5.1. The index of E⇢ by self-maps is equal to the index of Q on NV �
.

Proof. Let k be the index of Q on NV �. The first thing we want to do is use Proposition
4.8 to find a k-dimensional space of �-equivariant normal variations on S�B on which Q is
still negative definite. This works fine if we choose our cuto↵ function ⌘� to be ⌧i-invariant.
For instance, we can define ⌘� to be the pull-back to S of the similarly-defined function on
S0; then the dependence of the energy of ⌘� with � is the same up to a factor of 2 coming
from the relation log(|

p
z|) = log(|z|)/2.

Next, for every W in this space, we get n tangential vector fields Vi = W irxi/|rxi|2 on
S, as in Proposition 4.6. Since both W i and dxi transform the same way under each ⌧j , we
have ⌧j(Vi) = ±W i(±rxi)/|rxi|2, where each sign is + if i 6= j and � if i = j. Hence each
Vi descends to a vector field on S0 �B, which we still call Vi.

For each i, let fW
i : R ⇥ S ! S, fW

i (r, ·) = fr
i (·) be the flow of Vi. Let hi be the

component functions of h, hr
i = hi � fr

i , and hr = (hr
1, . . . , h

r
n). The conformal structures Sr
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for which each hr is conformal are still G-invariant, hence descend to conformal structures
(S0)r on ⌃g. Let ⇡r

i = ⇡ � fr
i . Even though the tree Ti no longer folds to R, the energy

density of ⇡r
i on (S0)r is still pointwise equal to the energy density of hr

i on St; indeed,
both are equal to |(fr

i )
⇤Re(↵i)|2. Therefore, the second derivative of E⇢ is equal to Q on

this k-dimensional space so the index of E⇢ by self-maps is at least k.
The other inequality is easier. If the index of E⇢ by self-maps is k, then we can use the

log-cuto↵ trick to find a k-dimensional space of vector fields Vi supported on S0 � B and
variations µi of conformal structure on which L is negative definite. Lifting everything to
S and di↵erentiating the coordinate functions, we get a k-dimensional space of equivariant
variations of h for which the second derivative of energy is negative definite. Taking the
normal components of these variations, and using that energy dominates area, we get a
k-dimensional subspace of NV � on which Q is negative definite. ⇤
5.2. Unstable minimal surfaces in Rn. In order to finish the proof of Theorem A, we
need to construct for each g � 2 and n � 3, either an unstable equivariant minimal surface S
of genus g in Rn, or a surface S0 of genus g whose spectral curve is a (Z/2Z)n-equivariantly
unstable minimal surface in Rn.

If g � 3, then as we discuss in the next section, there are plenty of equivariant minimal
surfaces of genus g in Rn. They are not always unstable; for instance, if the minimal map
is holomorphic with respect to some complex structure on a linear subspace of Rn, then it
is calibrated by the Kähler form, and hence stable. In general, it is not straightforward to
decide if a minimal surface in a flat space is unstable.

A special case is when the equivariant minimal surface is contained in a real 2-plane, and
hence is stable. We call such a minimal surface flat. These at least are easy to identify.

Proposition 5.2. Let �1, . . . ,�n 2 QD(S0) sum to 0, giving a �-equivariant map h : S̃ !
Rn

as before. The vector valued second fundamental form k of h(S̃) vanishes identically if

and only if the quadratic di↵erentials �i are all complex multiples of one another.

Proof. Let h1, . . . , hn denote the coordinate functions of h. Since �i = ((hi)z)2dz2, the
quadratic di↵erentials are all complex multiples of one another if and only if the functions
(hi)z are. In one direction, assume (hi)z = aif(z) for some function f(z) and some complex
constants ai. Then the image of the Rn-valued 1-form dh is contained in a two-dimensional
subspace, and by integrating, we see that image of h is contained in an a�ne subspace of Rn.
In particular, it is totally geodesic, so the second fundamental form is zero. Conversely, if the
second fundamental form is zero, then the image of dh is contained in some two-dimensional
linear subspace, and so the image of hz is contained in the complexification of that subspace,
which is two-dimensional. As h is weakly conformal, hhz, hzi = 0; since the inner product
is nondegenerate on the complexification of any real two-dimensional subspace, this shows
that hz is contained in a complex line (we use analyticity to deduce this as well at the branch
points), and so the functions (hi)z are all complex multiples of one another. ⇤

For the remaining section, we restrict to n = 3. For n � 3, any isometric inclusion of R3

into Rn gives examples in Rn. Let Mg be the moduli space of Riemann surfaces of genus
g, and let En be the total space of the bundle over Mg consisting of n-tuples of quadratic
di↵erentials that sum to 0. Instability of the corresponding equivariant minimal surfaces in
Rn is an open condition on En, so by perturbing the 3-dimensional examples we get many
more.

5.3. Equivariant minimal surfaces in R3. Every non-flat equivariant minimal surface
in R3 is unstable. Indeed, in dimension 3, the expression |hk,W i|2 in the formula for Q(W )
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is equal to 2|K||W |2, where K is the Gauss curvature of the equivariant minimal surface.
The normal bundle to the minimal surface h(S̃) is a real line bundle on S. Since S is always
orientable, the normal bundle is as well, and hence it is equivariantly trivial. If N is a unit
normal section, and ⌘ is any function on S, then the second variation formula (13) takes
the form

Q0(⌘N) =

Z

⌃
|r⌘|2 � |K|2|⌘|2.

As long as the curvature K is anywhere nonzero, a constant section of N will therefore be
destabilizing: for ⌘ = 1,

Q0(N) =

Z

⌃
�|K|2 < 0.

When g � 3, the moduli space of (S,↵1,↵2,↵3), where S is a Riemann surface of genus g
and ↵i are abelian di↵erentials on S whose squares sum to zero, but are not all mutliples of
one another, is nonempty and has complex dimension 3g (in [4, Section 6] it is shown that
the quotient by the natural free actions of C⇤ and SO(3,C) has dimension 3g � 4). This
proves Theorem A for g � 3.

Remark 5.3. In fact, in [21, Theorem 16], Ros proves that every non-flat minimally im-
mersed surface of genus g in a 3-torus has index at least 2g/3�1. The result easily generalizes
to any non-flat equivariant minimal immersion for any representation, but we emphasize that
it applies only to immersed surfaces.

Unfortunately, there are no non-flat equivariant minimal surfaces of genus 2 in R3, stable
or not. This is because the canonical map lands in P1, so the canonical curve cannot be
contained in a rank 3 quadric (or see the comment after Proposition 5.6). Hence, we are
forced to study �-equivariant deformations of the spectral curve. The key that makes this
work is that the normal bundle of the spectral curve S of (S0,�1,�2,�3) can be equivariantly
trivial even if the �i are not squares (in which case S is just 8 copies of S0).

Proposition 5.4. Suppose that the sextic di↵erential �1�2�3 is the square of a cubic dif-

ferential c. Then there is a �-equivariant deformation of S of constant length 1.

Proof. The cubic di↵erential c distinguishes two components of S; one on which ↵1↵2↵3 = c,
and one on which it is equal to �c. Each ⌧i interchanges the two components of S. The
subgroup � < (Z/2Z)3 preserving the components acts on R3 in an orientation-preserving
way. Indeed, for each element � 2 �, the determinant of the matrix describing the product of
hyperplane reflections is equal to the product of the monodromies of the ↵i under the action
of �. We can use the orientation of R3, together with the orientation of the component of
S, to equivariantly orient the normal bundle. Since the normal bundle is a line bundle, it
therefore has an equivariant section of constant length. ⇤

Remark 5.5. If each �i is the square of an abelian di↵erential ↵i, then clearly �1�2�3 = c2

with c = ↵1↵2↵3.

If the quadratic di↵erentials �i are not complex multiples of one another, then neither
are their lifts ↵i to the spectral curve. Hence, the minimal map from the lift of the spectral
curve is non-flat, so any �-equivariant deformation of constant length will be destabilizing.

The final step is to show that there are non-flat solutions even in genus 2 to the equations
�1�2�3 = c and �1 + �2 + �3 = 0. For any g � 2, let Pg be the moduli space of genus
g Riemann surfaces S together with a triple of quadratic di↵erentials �i summing to zero
whose product is a square and which are not all complex multiples of one another.
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Proposition 5.6. The moduli space P2 has dimension 3.

Proof. Consider the three dimensional family of algebraic curves w2 = z(z � 1)(z � a)(z �
b)(z � c) for (0, 1, a, b, c) distinct complex numbers. This is a finite covering of the moduli
space of genus 2 Riemann surfaces. Every holomorphic quadratic di↵erential on a curve in
this family is of the form p(z)(dz)2/w2 for p(z) a polynomial of degree at most 2. If the
roots of p(z) are branch points of the curve, then the quadratic di↵erential vanishes to order
two at the corresponding point of the curve. For arbitrary a and b, and c to be determined,
let

�1 = z(z � 1)
dz2

w2

�2 = µ(a, b)(z � a)
dz2

w2
,

where µ(a, b) = �b(b� 1)/(b� a) is chosen so that �1 + �2 vanishes at b (equivalently, that
the corresponding quadratic polynomial vanishes at b). A short computation shows that the
other root of the polynomial for �1 + �2 is at a(b� 1)/(b� a), so if this happens to be the
value of c, then the sextic di↵erential �1�2�3 vanishes to order two at each of the six branch
points of the curve (including 1). Hence it is the square of the cubic di↵erential dz3/w2,
which vanishes to order one at each of these points. Including a parameter rescaling �1, �2,
and �3, this shows that P2 has dimension 3. ⇤

For example we could take a = �1, b = i, and c = �i to get a solution on the hyperelliptic
curve w2 = z5 � z. This su�ces for the proof of Theorem A.

Remark 5.7. Note that the triples of quadratic di↵erentials in genus 2 are squares of
abelian di↵erentials since the polynomials z(z�1), etc., are not squares. However, they still
have even order zeros.

Together with [4, Section 6] and the Remark 5.5, this shows:

Proposition 5.8. For every genus g � 2, Pg is nonempty and every component has complex

dimension at least 3g � 3.

We give a self-contained proof of this proposition, since it is very brief in the reference.

Proof. We have already proved this for genus 2. The canonical map of a hyperelliptic
curve of genus 3 is the vanishing locus of a nondegenerate quadric on CP2; diagonalizing
this quadric gives three abelian di↵erentials whose squares sum to zero on the curve. By
Remark 5.5, these give points in P3. Since the hyperelliptic locus has dimension 5, we get
a sixth dimension from rescaling the abelian di↵erentials. This proves the result for g = 3.

In general, taking unramified coverings of a point in P2 shows that Pg is nonempty for
every g. To get the bound on dimension, we observe that Pg is, up to a double cover, the
intersection in the total space of the bundle H0(K3) over Mg (dimension 14(g � 1)) of the
sextic di↵erentials that are squares of cubic di↵erenitals (dimension 8(g�1)) and those that
are the product of three independent quadratic di↵erentials summing to zero (dimension
9(g � 1)). This gives a lower bound on the dimension of 8(g � 1) + 9(g � 1) � 14(g � 1) =
3(g � 1). ⇤
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Ann. Sci. Éc. Norm. Supér. (4), 41(3):437–469, 2008.

[13] François Labourie. Cyclic surfaces and Hitchin components in rank 2. Ann. of Math. (2), 185(1):1–58,
2017.

[14] H. Blaine Lawson, Jr. Lectures on minimal submanifolds. Vol. I, volume 9 of Mathematics Lecture

Series. Publish or Perish, Inc., Wilmington, Del., second edition, 1980.
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Vladimir Marković: University of Oxford, All Souls College, Oxford, OX1 4AL, UK.

Email address: markovic@maths.ox.ac.uk

Nathaniel Sagman: Caltech, 1200 E California Blvd, Pasadena, CA, 91125, USA.

Email address: nsagman@caltech.edu

Peter Smillie: Caltech, 1200 E California Blvd, Pasadena, CA, 91125, USA.

Email address: smillie@caltech.edu


