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Abstract. We analyze the optimal exercise of an American call executive stock option (ESO) written on a stock
whose drift parameter falls to a lower value at a change point, an exponentially distributed random
time independent of the Brownian motion driving the stock. Two agents, who do not trade the
stock, have differing information on the change point and seek to optimally exercise the option by
maximizing its discounted payoff under the physical measure. The first agent has full information
and observes the change point. The second agent has partial information and filters the change
point from price observations. This scenario is designed to mimic the positions of two employees
of varying seniority, a fully informed executive and a partially informed less senior employee, each
of whom receives an ESO. The partial information scenario yields a model under the observation
filtration \widehat \BbbF in which the stock drift becomes a diffusion driven by the innovations process, an \widehat \BbbF -
Brownian motion also driving the stock under \widehat \BbbF , and the partial information optimal stopping value
function has two spatial dimensions. We rigorously characterize the free boundary PDEs for both
agents, establish shape and regularity properties of the associated optimal exercise boundaries, and
prove the smooth pasting property in both information scenarios, exploiting some stochastic flow
ideas to do so in the partial information case. We develop finite difference algorithms to numerically
solve both agents' exercise and valuation problems and illustrate that the additional information of
the fully informed agent can result in exercise patterns which exploit the information on the change
point, lending credence to empirical studies which suggest that privileged information of bad news
is a factor leading to early exercise of ESOs prior to poor stock price performance.
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pasting, stochastic flows, Kalman--Bucy filter
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1. Introduction. In this paper we consider two pure optimal stopping problems involving
a constant volatility stock whose drift parameter suffers a change point. At an exponentially
distributed random time \theta (the change point), independent of the Brownian motion W driving
the stock, its drift falls from its initial constant value \mu 0 to a lower constant value \mu 1 < \mu 0.
The two problems we study are distinguished by full information, in which the change point
is observed, or by partial information, in which the change point is not observable, and so is
filtered from observations of the stock price.

The optimal stopping problems arise from the exercise of an executive stock option (ESO),
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1008 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

an American call on a stock that is not traded by the option holders. Such a scenario is
sometimes referred to as a ``pure buyer's position,"" wherein an agent acquires an option, is
not able to hedge the option due to trading restrictions, and seeks only to optimally exercise
the claim. The objective we use for this completely unhedgeable payoff is to maximize the
discounted payoff under the physical measure \BbbP over stopping times of the agent's filtration.
Our two ESO-holding agents thus differ only in the respective filtrations to which each has
access, and one of our goals is to understand how this information differential affects their
exercise strategies. Our aim is to capture a firm specific disastrous event, which happens at
a random time and is immediately known by the firm's top executives, but it is not revealed
publicly, at least not immediately, and thus it is unknown to less senior employees. Recent
examples of such disastrous events could be the Volkswagen emissions scandal (``Dieselgate""),
the Facebook--Cambridge Analytica data scandal, or Boeing 737 MAX groundings.

The first agent has ``full information."" He observes the change point process Y \in \{ 0, 1\} 
(the indicator that the change point has occurred) as well as the Brownian motion W , so
his filtration, \BbbF (the ``large"" filtration, or background filtration), is the augmentation of the
filtration generated by (W,Y ). In this case, the (random) drift process of the stock is \mu (Y ),
given by a linear function of the change point process Y \in \{ 0, 1\} , such that at all times the
drift is equal to one of the distinct values (\mu 0 before the change point, \mu 1 afterwards; see
(2.5)).

The second agent has ``partial information."" She does not observe the change point and
filters Y (and thus the change point) from stock price observations. The partially informed
agent's filtration, \widehat \BbbF (the observation filtration), is thus the augmentation of the stock price
filtration, and \widehat \BbbF \subset \BbbF . In this partial information scenario, the filtered change point process\widehat Y turns out to be a diffusion in [0, 1] driven by the innovations process \widehat W , which is the\widehat \BbbF -Brownian motion also driving the stock under the observation filtration. In this case, the
random drift turns out to be \mu (\widehat Y ), featuring the same linear function as in the full information
case, but now of the filtered process \widehat Y (see (2.11)). The process \widehat Y , adapted to the stock price
filtration, turns out to be a functional of the path history of the stock price.

For both the full and partial information problems, we carry out a detailed and rigorous
free boundary analysis of the associated value function for the option. For each problem
this involves a classical program of steps, which we generalize from the (typical) constant
drift case to each of our two random drift scenarios, as follows. The two-state drift of the
full information problem naturally leads to a pair of value functions (one for each possible
initial drift state i \in \{ 0, 1\} ) characterizing the ESO value. Equally naturally, in the partial
information problem, dependent on the diffusion \widehat Y \in [0, 1], the value function depends on a
variable y \in [0, 1], representing the initial value of the change point process (in addition to
the usual temporal and stock price dependence).

We first derive basic convexity, monotonicity, and time decay properties of the value
functions (Lemma 3.1 (full information) and Lemma 4.2 (partial information)), the latter
using some stochastic flow ideas applied to \widehat Y (y), the filtered change point process viewed
as a function of its initial value y. From these results we infer the form of the continuation
and stopping regions, the existence and form of optimal exercise thresholds, and (later) their
limiting values as we approach the ESO maturity time.

We show that, for the full information problem, there is a pair of ordered, nonincreasing,
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1009

time-dependent exercise boundaries x\ast 0(\cdot ) \geq x\ast 1(\cdot ), such that optimal early exercise can occur in
the state where the drift is \mu i, i \in \{ 0, 1\} , when the stock breaches x\ast i (\cdot ) from below, or if such a
breach is triggered by the change point. On the other hand, in the partial information case the
exercise boundary x\ast (\cdot , \cdot ) is a surface, with an additional spatial, nonincreasing dependence
on the variable y \in [0, 1], arising from the dependence of the drift on the filtered change
point process, and such that the partial information exercise surface lies between the full
information exercise thresholds. This can lead to an interesting range of possible exercise
patterns (such as immediate exercise by the fully informed agent in response to the change
point, a strategy unavailable to the agent who does not see the jump in drift), which we
describe (and later examine numerically). We also consider how our stopping problems are
changed with the inclusion of an option vesting period. In practice, vesting periods during
which the option holder is not permitted to exercise are used by the company to maintain the
employee's incentives or exposure to the stock price.

We then give a rigorous characterization of the ESO value functions in terms of free
boundary PDEs (Proposition 3.5 (full information) and Proposition 4.6 (partial information))
with associated smooth pasting conditions at the exercise thresholds (Theorem 3.6 (full in-
formation) and Theorem 4.7 (partial information)). Using these results we are able to derive
Doob--Meyer decompositions of the supermartingales which represent the discounted ESO
value processes (Theorem 3.7 (full information) and Lemma 4.8 (partial information)). These
in turn are used in proving the results on the limiting values of the boundaries as we ap-
proach maturity T (Proposition 3.4 (full information) and Lemma 4.5 (partial information)).
Although not needed elsewhere, we also show that the boundaries for the full information
problem are continuous over [0, T ), as stated in Proposition 3.4.

Our mathematical results are obtained by implementing, broadly speaking, the classical
program for obtaining properties of American options (see, for example, Karatzas and Shreve
[31, Chapter 2] for the American put in the Black--Scholes model) and carefully modifying and
extending these arguments to our random drift scenarios, augmenting them in places with new
tools, such as the stochastic flow ideas mentioned above. These results are novel compared to
existing literature, as we now describe.

The full information case has some similarities with papers on American option valuation
with regime switching, such as the infinite horizon put in Guo and Zhang [28] and the finite
horizon put in Buffington and Elliott [8] (who assume all required regularity properties of
the value function). Le and Wang [34] also treat the American put with regime switching,
and do prove the smooth pasting property, by extending a fairly involved iterative procedure
originally due to Bayraktar [4]. As well as being lengthy, some steps exploit the boundedness
of the put payoff function, so it is not clear if they are directly applicable to our model. Here,
therefore, we exploit our explicit one-switch scenario and show how more classical techniques
can be extended to the random drift case, both for the free boundary characterization and
then for the smooth pasting property. The latter requires an analysis of the optimal stopping
time given a particular starting state, and here we use our derived structures for the stopping
and continuation regions.

In the partial information case, our results are entirely new. The rigorous characterization
of the value function as a solution of a free boundary PDE with an associated smooth pasting
condition, has not been demonstrated before to the best of our knowledge. We achieve this,
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1010 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

also show that the exercise surface is decreasing in time and in the initial value y \in [0, 1]
of the filtered change point process, and give its limiting terminal value. An infinite horizon
American put with partial information on a switching dividend process was studied by Gapeev
[25], but the regularity of the value function and the smooth pasting property were assumed to
hold. We resolve these issues in our partial information problem. Note that, with our objective
of maximizing the discounted expected payoff under the physical measure, our problems map
to conventional American option pricing problems under a martingale measure, but with a
random dividend yield. Thus, our results also give the required regularity for the problems
studied in [25].

Finally, there is a strand of papers (D\'ecamps, Mariotti, and Villeneuve [14, 15], Klein
[32], Ekstr\"om and Lu [19], and Ekstr\"om and Vannest\r al [20]) which study optimal stopping
problems in a partial information scenario when a drift parameter is assumed to take on
one of two values, but the agent is unsure which value pertains in reality. These models
correspond to the limit that the parameter of the exponential time in our model approaches
zero, so an explicit change point is absent (they are models of an uncertain drift, as opposed
to uncertainty in the timing of a change of drift). This renders them simpler than our partial
information model, because the dependence of the filtered process on the entire history of the
stock disappears. These papers are then able to reduce the dimensionality of the problem
under some circumstances, a simplification not available in our model.

We complete the picture by solving both problems numerically, using finite difference
schemes, and carry out simulations to illustrate some of the exercise patterns that can occur.
The partial information case is substantially more difficult numerically due to the second
spatial dimension, but with a single Brownian driver, resulting in a reduced rank diffusion
matrix, and the degeneracy of some of the diffusion and drift coefficients at certain boundaries
of the domain. This setting requires a novel, tailored approximation scheme for the efficient
numerical solution. We propose a first order monotone and a second order nonmonotone
penalized backward differentiation formulae (BDF) scheme on nonuniform meshes and prove
convergence for the former. Numerical tests demonstrate the stability and achievable accuracy
for the scheme.

One of our motivations for studying these issues is a strand of literature in empirical
finance which attributes early ESO exercise prior to poor stock performance in part to privi-
leged information, particularly on imminent bad news. Early studies (Huddart and Lang [29]
and Carpenter and Remmers [10]) provide some evidence that this is the case. More recent
works that partition the exercises according to the particular exercise strategy employed find
much stronger evidence of informed exercise (Brooks, Chance, and Cline [7], Cicero [12], and
Aboody et al. [1]): exercises accompanied by a sale of stock are followed by negative abnormal
returns (while other exercises are not). We were thus motivated to construct a model where
complete or incomplete information on an adverse event could be compared in the exercise
of an American call. Here, we think of the fully informed agent as a senior executive who
observes the change point, while the partially informed agent is thought of as a less senior
employee who is not privy to board meetings sharing imminent bad news. Our setup considers
a stock price whose drift will jump to, and remain at, a lower value. We do not consider a
model where the drift can switch repeatedly between two values, as this would not capture a
seismic piece of adverse news, though a rigorous analysis of such a model would be interesting
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1011

and could potentially be built upon our analysis here.
We use our model to conduct a study of mean postexercise returns for agents with full and

partial information, motivated by the empirical work of Brooks, Chance, and Cline [7]. Our
simulations (in section 7) support the conjecture that indeed the difference between average
postexercise returns for fully and partially informed agents is significantly negative. For our
simulations, the difference between mean postexercise returns for fully and partially informed
agents varies between about  - 3.8\% and  - 9.7\%, depending on the expected stock return \mu 0

and volatility, covering the range of values reported by Brooks, Chance, and Cline [7]. Our
model thus provides theoretical support for the tests conducted in the empirical literature to
evidence so-called insider exercises.

Our analysis leads to our being able to characterize exercise scenarios and to point out
scenarios where the change point can induce exercise for the fully informed agent, but of
course not necessarily for the partially informed agent, since the change point is not seen.
We illustrate this in section 7, where we provide simulations of various exercise scenarios
and show that the agent with full information has considerable advantage in exercise timing.
An exercise surface x\ast (t, y), t \in [0, T ], y \in [0, 1], for the agent with partial information, and
thresholds x\ast 0(t), x

\ast 
1(t), t \in [0, T ], for the full information case are computed and shown to be

consistent with the theoretical results in earlier sections.
The informational advantage demonstrated in the exercise strategies is reflected in the

respective ESO values the agents place on their options. We document that the additional
value the agent with full information places on his ESO is significant in magnitude. The early
exercise value as a proportion of the European value can be very many times greater for the
agent with full rather than only partial information. In Table 2, we also report comparative
statics for the ESO value as we vary stock parameters \mu 0, \mu 1, \sigma , and \lambda . ESO values for both
agents decrease as the expected return in the bad state, \mu 1, decreases or there is a greater
probability of a downward jump. However, the early exercise values increase, indicating that
the ability to time the exercise of the option is more valuable when the expected return
following the change point is worse, or when the chance of entering the bad state is higher.
We also report ESO values when option vesting is included in the model and note that, as
expected, the early exercise value drops for both agents, while the informational advantage of
the agent with full information is still present.

The rest of the paper is organized as follows. In section 2 we introduce the model and
the optimal stopping problems under both information scenarios, and we carry out a filtering
procedure to derive the model dynamics with respect to the stock price filtration. In sections 3
and 4 we analyze the full and partial information problems, respectively. Section 5 gives a
brief discussion of how a vesting period impacts upon exercise. In section 6 we construct
and describe numerical methods for solving the two optimal stopping problems, including
convergence results. We apply the finite difference methodology in section 7 to perform
simulations to compare the exercise patterns of the agents, undertake an analysis of post-
exercise returns, and provide ESO valuation.

2. Stock price with a drift change point. We model a stock price whose drift will jump
to a lower value at a random time (a change point). The goal is to investigate differences in
the ESO exercise strategy between a fully informed agent who observes the change point and
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1012 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

a partially informed agent who has to filter the change point from stock price observations.
In particular, we seek to explore whether the fully informed agent can exploit his additional
information in the exercise strategy.

The setting is a complete probability space (\Omega ,\scrF ,\BbbP ) equipped with a filtration \BbbF :=
(\scrF t)t\in \bfT satisfying the usual hypotheses of right-continuity and augmentation by all the \BbbP -null
sets of \scrF . The time set T will be the finite interval T = [0, T ] for some T < \infty . The filtration
\BbbF will sometimes be referred to as the background filtration. It represents the large filtration
available to a perfectly informed agent, and all processes will be assumed to be \BbbF -adapted in
what follows.

Let W denote a standard (\BbbP ,\BbbF )-Brownian motion. Let \theta \in \BbbR + be a nonnegative random
time, independent of W , with initial distribution \BbbP [\theta = 0] =: y0 \in [0, 1) and subsequent
distribution

\BbbP [\theta > t| \theta > 0] = e - \lambda t, \lambda \geq 0, t \in T.

Thus, conditional on the event \{ \omega \in \Omega : \theta (\omega ) > 0\} \equiv \{ \theta > 0\} , \theta has exponential distribution
with parameter \lambda . Define the single-jump c\`adl\`ag process Y by

(2.1) Yt := 1\{ t\geq \theta \} , t \in T,

so that Y0 = 1\{ \theta =0\} with \BbbE [Y0] = y0. We may (and do) take \BbbF to be the \BbbP -augmentation of

\BbbF W,Y , the filtration generated by the pair (W,Y ). By Karatzas and Shreve [30, Proposition
2.7.7] this filtration is indeed right-continuous, because (W,Y ) is a strong Markov process.

We associate with Y the (\BbbP ,\BbbF )-martingale M (Y ) (the compensated jump process), defined
by

(2.2) M
(Y )
t := Yt  - Y0  - \lambda 

\int t

0
(1 - Ys) ds, t \in T.

A stock price process X with constant volatility \sigma > 0 has a drift which depends on the
process Y . We are given two real constants \mu 0 > \mu 1 such that the drift value falls from \mu 0 to
the lower value \mu 1 at the change point. Define the constant \eta > 0 by

(2.3) \eta :=
\mu 0  - \mu 1

\sigma 
.

The stock price dynamics with respect to (\BbbP ,\BbbF ) are given by

(2.4) dXt = (\mu 0  - \sigma \eta Yt)Xt dt+ \sigma Xt dWt.

Thus, the drift process \mu (Y ) of the stock is given by

(2.5) \mu (Yt) := \mu 0  - \sigma \eta Yt = \mu 0(1 - Yt) + \mu 1Yt =

\biggl\{ 
\mu 0 on \{ t < \theta \} = \{ Yt = 0\} ,
\mu 1 on \{ t \geq \theta \} = \{ Yt = 1\} , t \in T.

Note in particular that for y0 = 0 the change point \theta is almost surely strictly positive, and
the stock evolution almost surely begins with the higher drift value \mu 0.
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1013

We assume that the values of the constants y0, \mu 0, \mu 1, \sigma , \lambda are given. Finally, there is also
a cash account paying a constant interest rate r \geq 0. Dividends could also be included, and
there are several possibilities as to how these could be modeled, but for simplicity we do not
do so. For example, a constant dividend yield could be included with minor adjustments by
reinterpreting the drifts as being the net of dividends.

We may write the stock price evolution as

(2.6) dXt = \sigma Xt d\xi t,

where \xi is the volatility-scaled return process given by

(2.7) \xi t :=
1

\sigma 

\int t

0

dXs

Xs
=
\Bigl( \mu 0

\sigma 

\Bigr) 
t - \eta 

\int t

0
Ys ds+Wt =:

\int t

0
hs ds+Wt, t \in T,

with the process h defined by

(2.8) ht :=
\mu 0

\sigma 
 - \eta Yt, t \in T,

so h and W are independent. The process \xi will be used as an observation process in a filtering
algorithm in section 2.2.

Define the observation filtration \widehat \BbbF = ( \widehat \scrF t)t\in \bfT as the \BbbP -augmentation of the filtration gen-
erated by the stock price (equivalently by the process \xi in (2.7)):

\widehat \scrF t := \sigma (\scrF X
t \cup \scrN ), t \in T,

where \scrF X
t := \sigma (Xs : 0 \leq s \leq t), and \scrN denotes the \BbbP -null sets of \scrF . We have \widehat \BbbF \subset \BbbF 

and, moreover, it turns out that the filtration \widehat \BbbF is right-continuous,1 as we shall justify in
Remark 2.3.

An ESO on X is an American call option with strike K \geq 0 and maturity T , and so has
payoff (Xt  - K)+ if exercised at t \in T. We assume the ESO holder receives the cash payoff
on exercise. We consider two agents in this scenario, each of whom is awarded at time zero
an ESO on X, and who have access to different filtrations but are identical in other respects.
In practice, employees holding such ESOs are prohibited from trading the company stock X
(see Carpenter [9] and section 16c of the Securities and Exchange Act), and this motivates
our assumption that neither agent trades the stock.

The first agent has full information. He knows the values of all the model parameters
and has full access to the background filtration \BbbF , so in particular can observe the Brownian
motion W and the one-jump process Y . The second agent has partial information. She also
knows the values of the constant model parameters and observes the stock price X, but not
the one-jump process Y . The partially informed agent's filtration is therefore the observation
filtration \widehat \BbbF . The only difference between the agents is that the partially informed agent does
not know the value of the process Y , which she will filter from stock price observations.

1This is a consequence of the strong Markov property of the pair (X, \widehat Y ), where \widehat Y is the filtered estimate

of Y given \widehat \BbbF .D
ow
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1014 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

We have assumed that the stock volatility is constant and in particular does not depend
on the single-jump process Y . If we allowed the volatility process to depend on Y , then with
continuous stock price observations the partially informed agent could infer the value of Y
from the rate of increase of the quadratic variation of the stock. This would remove the
distinction between the agents and thus nullify our intention of building a model where the
agents have distinctly different information on the performance of the stock. In principle, the
constant volatility assumption could be relaxed to allow the volatility to depend on Y , but only
at the expense of requiring a necessarily more complicated model of differential information
between the agents. For instance, the partially informed agent could be rendered ignorant of
the values \mu 0, \mu 1, so these could be modeled (for example) as random variables whose values
would be filtered from price observations. This would have significant ramifications for the
tractability of the ESO optimal stopping problems, and our constant volatility model is the
simplest model one can envisage with differential information on a change point.

2.1. The ESO optimal stopping problems. We assume that each agent will maximize,
over stopping times of their respective filtration, the discounted expectation of the ESO payoff
under the physical measure \BbbP . Given the absence of trading opportunities, the ESO payoff
constitutes a completely unhedgeable claim, so the agents each face a pure exercise deci-
sion. In this case, for simplicity, we take the most straightforward objective possible. This
objective was used in Monoyios and Ng [40], where ESO valuation with inside information
was considered. It also appears in works which consider American options in the absence of
classical hedging opportunities, sometimes called a pure buyer's position: an agent holds a
long position in an American option but, for reasons of (say) liquidity or transaction costs,
does not hedge this position (see Ekstr\"om and Vannest\r al [20], for example). If we were to
allow the agents to trade other securities, one could envisage adding risk aversion by con-
sidering utility-based valuation and hedging, yielding combined optimal stopping and control
problems. Such ESO problems have been considered for constant drift models by Leung and
Sircar [35, 36] and Grasselli and Henderson [27] using classical utility, and by Leung, Sircar,
and Zariphopoulou [37] using forward utility. These works take the required regularity of
value functions as given. Utility-based valuation of European claims on nontraded assets in a
random parameter framework has been considered by Monoyios [39], where both traded and
nontraded assets are geometric Brownian motions with unobserved constant drifts modeled as
Gaussian random variables. Filtering then leads to a random parameter basis risk model that
is significantly less tractable than its constant parameter counterpart. As both our informa-
tion models have random parameters, their rigorous treatment via a risk-averse utility-based
methodology, including verification of regularity where needed, is an open problem left for
future research. Our contribution here is thus to use our risk-neutral objective, in a random
parameter framework, to give a fully rigorous free boundary PDE treatment of both the full
and partial information ESO problems. The absence of risk aversion in our model gives us the
tractability we need for our analysis and arguably focuses on the informational, as opposed
to risk aversion, aspects of the agents' exercise and valuation decisions.

For t \in [0, T ], let \scrT t,T denote the set of \BbbF -stopping times with values in [t, T ], and let \widehat \scrT t,T
denote the corresponding set of \widehat \BbbF -stopping times. For any such starting time t \in [0, T ], the
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1015

fully informed agent's ESO value process is V , an \BbbF -adapted process defined by

(2.9) Vt := ess sup
\tau \in \scrT t,T

\BbbE 
\Bigl[ 
e - r(\tau  - t)(X\tau  - K)+

\bigm| \bigm| \bigm| \scrF t

\Bigr] 
, t \in [0, T ].

We shall call (2.9) the full information problem.
Similarly, the partially informed agent's ESO value process is U , an \widehat \BbbF -adapted process

defined by

(2.10) Ut := ess sup
\tau \in \widehat \scrT t,T \BbbE 

\Bigl[ 
e - r(\tau  - t)(X\tau  - K)+

\bigm| \bigm| \bigm| \widehat \scrF t

\Bigr] 
, t \in [0, T ].

We shall call (2.10) the partial information problem.
Naturally, the salient distinction between (2.9) and (2.10) is the filtration with respect to

which the stopping time and essential supremum are defined. For the full information problem
(2.9) the stock dynamics will be (2.4). For the partial information problem (2.10) we must
derive the model dynamics under the observation filtration. This is done in section 2.2 below.

Recipients of company ESOs are often contractually restricted from exercising their options
during a vesting period, [0, tv), so that stopping times may lie in the interval [tv, T ]; see, for
example, Carpenter, Stanton, and Wallace [11]. Later, in section 5, we outline how the
problems may be modified to incorporate vesting, and in section 7.3 we demonstrate the
impact of vesting on ESO values.

Remark 2.1 (formal equivalence to random-dividend no-arbitrage valuation). The optimal
stopping problems (2.9) and (2.10), formulated under the physical measure \BbbP with some
random stock drift \mu (\cdot ), of course map formally to problems written under a martingale
measure \BbbQ where the stock drift will be r - \delta (\cdot ), for some random dividend yield \delta (\cdot ), related
to \mu (\cdot ) by \mu (\cdot ) = r  - \delta (\cdot ). The results we obtain are thus applicable to classical no-arbitrage
valuation with a random dividend yield.

The scenario we have set up, with a drift value for a log-Brownian motion which switches at
a random time to a new value, has obvious similarities with the so-called ``quickest detection
of a Wiener process"" problem, which has a long history and is discussed in Chapter VI
of Peskir and Shiryaev [41] (see Gapeev and Shiryaev [26] for a recent example involving
diffusion processes). The difference between these problems and ours is that our objective
functional will be the expected discounted payoff of an ESO, so errors in detecting the change
point are transmitted through the prism of the ESO exercise decision. In contrast, the classical
change point detection problem has some explicit objective functional which directly penalizes
a detection delay or a false alarm (where the change point is incorrectly deduced to have
occurred).

2.2. Dynamics under the observation filtration. Let the signal process be Y in (2.1),
and take the observation process to be \xi in (2.7), with the augmented filtration generated by
\xi equivalent to the augmented stock price filtration \widehat \BbbF .

Introduce the notation \widehat \phi t := \BbbE [\phi t| \widehat \scrF t], t \in T, for any process \phi . In particular, we are
interested in the filtered estimate of Y , defined by

\widehat Yt := \BbbE [Yt| \widehat \scrF t], t \in T.
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1016 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

A standard filtering procedure gives the stock price dynamics with respect to the observation
filtration \widehat \BbbF , along with the dynamics of \widehat Y , resulting in the following lemma. We give a short
proof for completeness.

Lemma 2.2 (observation filtration dynamics). With respect to the observation filtration \widehat \BbbF 
the stock price follows

(2.11) dXt = (\mu 0  - \sigma \eta \widehat Yt)Xt dt+ \sigma Xt d\widehat Wt,

where \widehat W is the innovations process, given by

(2.12) \widehat Wt := \xi t  - 
\int t

0

\widehat hs ds = \xi t  - 
\mu 0

\sigma 
t+ \eta 

\int t

0

\widehat Ys ds, t \in T,

where, analogously to (2.8), \widehat ht := \mu 0

\sigma  - \eta \widehat Yt, t \in T, and \widehat W is a (\BbbP , \widehat \BbbF )-Brownian motion.

The filtered process \widehat Y has dynamics given by

(2.13) d\widehat Yt = \lambda (1 - \widehat Yt) dt - \eta \widehat Yt(1 - \widehat Yt) d\widehat Wt, \widehat Y0 = \BbbE [Y0] = y0 \in [0, 1).

Proof. We use the innovations approach to filtering, as discussed in Rogers and Williams
[45, Chapter VI.8] or Bain and Crisan [2, Chapter 3], for instance.

By Theorem VI.8.4 in [45], the innovations process \widehat W , defined by (2.12), is a (\BbbP , \widehat \BbbF )-
Brownian motion. Using (2.12) in the stock price SDE (2.6) then yields (2.11).

It remains to prove (2.13). For any bounded, measurable test function f , write ft \equiv f(Yt),
t \in T, for brevity. Define a process (\scrG ft)t\in \bfT , satisfying \BbbE 

\bigl[ \int t
0 | \scrG fs| 

2 ds
\bigr] 
< \infty for all t \in T,

such that

M
(f)
t := ft  - f0  - 

\int t

0
\scrG fs ds, t \in T,

is a (\BbbP ,\BbbF )-martingale. With h,W independent, we have the (Kushner--Stratonovich) funda-
mental filtering equation (see Theorem 3.30 in [2], for example)

(2.14) \widehat ft = \widehat f0 + \int t

0

\widehat \scrG fs ds+

\int t

0

\Bigl( \widehat fshs  - \widehat fs\widehat hs\Bigr) d\widehat Ws, t \in T.

Take f(y) = y. Then the martingale M (f) = M (Y ), as defined in (2.2), so that \scrG f = \lambda (1 - Y )
and the filtering equation (2.14) reads as

(2.15) \widehat Yt = y0 + \lambda 

\int t

0
(1 - \widehat Ys) ds+ \int t

0
(\widehat Yshs  - \widehat Ys\widehat hs) d\widehat Ws, t \in T,

where we have used \widehat Y0 = \BbbE [Y0] = y0.
Now,

(2.16) \widehat Ytht = \BbbE 
\Bigl[ 
Yt

\Bigl( \mu 0

\sigma 
 - \eta Yt

\Bigr) \bigm| \bigm| \bigm| \widehat \scrF t

\Bigr] 
=
\Bigl( \mu 0

\sigma 

\Bigr) \widehat Yt  - \eta \BbbE [Y 2
t | \widehat \scrF t] =

\Bigl( \mu 0

\sigma 
 - \eta 
\Bigr) \widehat Yt, t \in T,
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1017

the last equality a consequence of Y 2 = Y .
On the other hand,

(2.17) \widehat Yt\widehat ht = \widehat Yt\BbbE \Bigl[ \mu 0

\sigma 
 - \eta Yt

\bigm| \bigm| \bigm| \widehat \scrF t

\Bigr] 
=
\Bigl( \mu 0

\sigma 

\Bigr) \widehat Yt  - \eta 
\Bigl( \widehat Yt\Bigr) 2 , t \in T.

Using (2.16) and (2.17) in (2.15) then yields the integral form of (2.13).

Remark 2.3 (right-continuity of observation filtration).Note that \widehat Y in (2.13) is an \widehat \BbbF -adapted
diffusion in [0, 1] with an absorbing state at \widehat Y = 1. Note also that, since observations of the
stock price are sufficient to specify \widehat Y , the observation filtration is also the \BbbP -augmentation of
the filtration generated by the two-dimensional diffusion (X, \widehat Y ). Then Karatzas and Shreve
[30, Proposition 2.7.7] guarantee that \widehat \BbbF is right-continuous, as it is the augmented filtration
generated by the strong Markov process (X, \widehat Y ).

3. The full information ESO problem. In this section we focus on the full information
problem defined in (2.9). Define the (continuous) reward process R as the discounted payoff
process:

(3.1) Rt := e - rt(Xt  - K)+, t \in T.

The reward process is assumed to satisfy

(3.2) \BbbE 

\Biggl[ 
sup

t\in [0,T ]
Rt

\Biggr] 
< \infty .

The discounted full information ESO value process is \widetilde V , given by

(3.3) \widetilde Vt := e - rtVt = ess sup
t\in \scrT t,T

\BbbE [R\tau | \scrF t], t \in T.

Classical optimal stopping theory for continuous time processes, as described in Karatzas
and Shreve [31, Appendix D], characterizes the solution to problem (3.3) as follows. First,
by [31, Proposition D.2], \widetilde V is a (\BbbP ,\BbbF )-supermartingale. Further, by [31, Proposition D.3
and Corollary D.4], there exists a c\`adl\`ag modification \widetilde V 0 of \widetilde V , called the Snell envelope of
R, that by [31, Theorem D.7] satisfies \widetilde V 0

t = \widetilde Vt almost surely, for all t \in [0, T ], and is the
smallest c\`adl\`ag (\BbbP ,\BbbF )-supermartingale that dominates (in the sense of [31, Definition D.5], so
\BbbP [\widetilde V 0

t \geq Rt \forall 0 \leq t \leq T ] = 1) the reward R. Then, by [31, Theorem D.9], a stopping time
\tau \ast \in \scrT is optimal for problem (3.3) starting at time zero if and only if \widetilde V 0

\tau \ast = R\tau \ast almost
surely, and if and only if the stopped supermartingale (\widetilde V 0

\tau \ast \wedge t)t\in [0,T ] is a (\BbbP ,\BbbF )-martingale.
Finally, under (3.2) and with a continuous reward process, [31, Theorem D.12] gives that the
smallest optimal stopping time in \scrT t,T for the problem (3.3) is \tau \ast (t), the first time that the
Snell envelope coincides with the reward, and so is given by

(3.4) \tau \ast (t) := inf\{ \tau \in [t, T ) : \widetilde V 0
\tau = R\tau \} \wedge T, t \in [0, T ].

Given this characterization of the full information ESO problem via the Snell envelope, from
now on we identify the discounted ESO value process with the Snell envelope and adopt the
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1018 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

standard notational convention of not distinguishing between them, so \widetilde V \equiv \widetilde V 0. The ESO
value process is then given by Vt = ert \widetilde Vt, t \in [0, T ], with the understanding that \widetilde V is the Snell
envelope of the reward. With this standard convention, the optimal stopping time in (3.4) is
given by the first time the ESO value process hits the payoff:

\tau \ast (t) = inf\{ \tau \in [t, T ) : V\tau = (X\tau  - K)+\} \wedge T, t \in [0, T ].

3.1. Full information value function. Introduce the value function v : [0, T ] \times \BbbR + \times 
\{ 0, 1\} \rightarrow \BbbR + for the full information optimal stopping problem (2.9) as

(3.5) v(t, x, i) := sup
\tau \in \scrT t,T

\BbbE 
\Bigl[ 
e - r(\tau  - t)(X\tau  - K)+

\bigm| \bigm| \bigm| Xt = x, Yt = i
\Bigr] 
, i = 0, 1, t \in [0, T ],

and write vi(\cdot , \cdot ) \equiv v(\cdot , \cdot , i), i = 0, 1. Thus, the value function in the full information scenario
is a pair of functions of time and current stock price, such that v0(t, x) (respectively, v1(t, x))
represents the value of the ESO to the insider at time t \in [0, T ] given Xt = x and Yt = 0
(respectively, Yt = 1). In other words, the value process V in (2.9) has the representation

(3.6) Vt = v(t,Xt, Yt) = (1 - Yt)v0(t,Xt) + Ytv1(t,Xt), t \in [0, T ].

Very general results on optimal stopping in a continuous-time Markov setting (see, for instance,
El Karoui, Lepeltier, and Millet [22]) imply that each vi(\cdot , \cdot ), i = 0, 1, is a continuous function
of time and current stock price, and the process (e - rtv(t,Xt, Yt))t\in [0,T ] is the Snell envelope
of the reward process R.

In what follows, we first establish, in Lemma 3.1, some elementary properties of the full
information value function, so as to then characterize the nature of the continuation and
stopping regions in Corollary 3.3. As we shall see, the two-drift model leads to two ordered
exercise thresholds x\ast i : [0.T ] \rightarrow [K,\infty ), i = 0, 1, and we shall establish that these thresholds
are right-continuous on [0, T ). Later, using the free boundary system (Proposition 3.5) and
smooth pasting property (Theorem 3.6) satisfied by the value function, as well as the Doob--
Meyer decomposition of the supermartingale characterizing the discounted ESO value process
(Theorem 3.7), we shall obtain the limiting values x\ast i (T - ) of the exercise boundaries, given
in Proposition 3.4, where we also show that the exercise boundaries are continuous on [0, T ).

With respect to \BbbF , the dynamics of the stock are given in (2.4). For 0 \leq s \leq t \leq T , define
the accumulation factor

(3.7) Hs,t := exp

\biggl\{ \biggl( 
\mu 0  - 

1

2
\sigma 2

\biggr) 
(t - s) - \sigma \eta 

\int t

s
Yu du+ \sigma (Wt  - Ws)

\biggr\} 
, 0 \leq s \leq t \leq T.

Then, given Xs = x \in \BbbR +, the stock price at t \in [s, T ] is Xt \equiv Xs,x
t , given by

Xt \equiv Xs,x
t = xHs,t, 0 \leq s \leq t \leq T.

When s = 0, write Ht \equiv H0,t and Xx
t \equiv X0,x

t , so that

Xx
t = xHt, t \in [0, T ].
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1019

For use further below, also define the accumulation factor when the stock is exclusively in
state i \in \{ 0, 1\} by

(3.8) H
(i)
s,t := exp

\biggl\{ \biggl( 
\mu i  - 

1

2
\sigma 2

\biggr) 
(t - s) + \sigma (Wt  - Ws)

\biggr\} 
, 0 \leq s \leq t \leq T, i = 0, 1,

and, as before, for s = 0 write H
(i)
t \equiv H

(i)
0,t , i = 0, 1 for t \in [0, T ].

Note, in particular, that if the stock starts at time zero at X0 = x, and the change point
occurs in [0, T ], then the stock price at t \in [\theta , T ] (thus at or beyond the change point) is
Xt \equiv Xx

t given by

(3.9) Xt = x exp(\sigma \eta \theta )H
(1)
t , 0 \leq \theta \leq t \leq T.

With these definitions in place, the value function in (3.5) is expressed in the form

(3.10) vi(t, x) = sup
\tau \in \scrT t,T

\BbbE 
\Bigl[ 
e - r(\tau  - t)(xHt,\tau  - K)+

\bigm| \bigm| \bigm| Yt = i
\Bigr] 
, (t, x) \in [0, T ]\times \BbbR +, i = 0, 1,

where Ht,\tau is the process in (3.7) over the interval [t, \tau ]:

(3.11) Ht,\tau := exp

\biggl\{ \biggl( 
\mu 0  - 

1

2
\sigma 2

\biggr) 
(\tau  - t) - \sigma \eta 

\int \tau 

t
Yu du+ \sigma (W\tau  - Wt)

\biggr\} 
, \tau \in [t, T ].

Now, the Brownian increment W\tau  - Wt in the interval [t, \tau ] is identical in Law to W\tau  - t - W0 =
W\tau  - t. Further, the integral over Y in (3.11) may be rewritten according to

\int \tau 
t Yu du =\int \tau  - t

0 Yt+s ds, and the absence of memory property of the exponential distribution (\BbbP [\theta >
t + s| \theta > t] = \BbbP [\theta > s] for any s, t \geq 0) means that Law(Yt+s| Yt = i) = Law(Ys| Y0 = i).
Therefore, in (3.10), the integral of Y over [t, \tau ] with conditioning on the value of Yt may be
replaced by one over [0, \tau  - t] with conditioning on the value of Y0. In other words, stationarity
of Brownian increments and the memoryless property of the exponential distribution imply
that optimizing over \scrT t,T is equivalent to optimizing over \scrT 0,T - t, so the value function in (3.10)
may be recast into the form

(3.12) vi(t, x) = sup
\tau \in \scrT 0,T - t

\BbbE 
\bigl[ 
e - r\tau (xH\tau  - K)+

\bigm| \bigm| Y0 = i
\bigr] 
, (t, x) \in [0, T ]\times \BbbR +, i = 0, 1.

Thus, the ESO value with maturity T and starting time t \in [0, T ] is the same as the ESO value
with maturity T - t and initial time zero. This recasting of the ESO value will be helpful below
in demonstrating some properties of the value function and is frequently utilized in American
option valuation problems (see, for example, the proof of Proposition 31 in Detemple [16,
Chapter 4] for the same recasting in the (simpler) case of a stock with constant drift).

The following lemma gives the elementary properties of the full information value function.

Lemma 3.1 (convexity, monotonicity, time decay: full information). The functions v(\cdot , \cdot , i) \equiv 
vi : [0, T ] \times \BbbR +, i = 0, 1, in (3.12) or (3.5) characterizing the full information ESO value
function (and the ESO value process via (3.6)) have the following properties:

1. For i = 0, 1 and t \in [0, T ], the map x \rightarrow vi(t, x) is convex and nondecreasing.
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1020 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

2. For any fixed (t, x) \in [0, T ]\times \BbbR +, v0(t, x) \geq v1(t, x).
3. For i = 0, 1 and x \in \BbbR +, the map t \rightarrow vi(t, x) is nonincreasing.

Proof.
1. Convexity and monotonicity of the map x \rightarrow vi(t, x) follow from the representation

(3.12), along with convexity and monotonicity properties of the payoff function x \rightarrow 
(x - K)+ and the linearity of the map x \rightarrow Xx

\tau = xH\tau . For example, to show convexity,
consider 0 \leq x1 < x2 < \infty and some \gamma \in [0, 1]. For each i \in \{ 0, 1\} we then have, on
using (3.12), that

\gamma vi(t, x1) + (1 - \gamma )vi(t, x2)

= sup
\tau \in \scrT 0,T - t

\BbbE 
\bigl[ 
e - r\tau 

\bigl( 
\gamma (x1H\tau  - K)+ + (1 - \gamma )(x2H\tau  - K)+

\bigr) \bigm| \bigm| Y0 = i
\bigr] 

\geq sup
\tau \in \scrT 0,T - t

\BbbE 
\bigl[ 
e - r\tau ((\gamma x1 + (1 - \gamma )x2)H\tau  - K)+

\bigm| \bigm| Y0 = i
\bigr] 

= vi(t, \gamma x1 + (1 - \gamma )x2),

where the inequality follows from convexity of the payoff function. This establishes
convexity of x \rightarrow vi(t, x). Monotonicity is established in the same manner.

2. At maturity we have v0(T, x) = v1(T, x) = (x  - K)+ for all x \in \BbbR +. For t \in [0, T ),
using the representation (3.10) and the definition (3.8) for i = 0, we have

v0(t, x) = sup
\tau \in \scrT t,T

\BbbE 
\Bigl[ 
e - r(\tau  - t)(xHt,\tau  - K)+

\bigm| \bigm| \bigm| Yt = 0
\Bigr] 

= sup
\tau \in \scrT t,T

\BbbE 

\Biggl[ 
e - r(\tau  - t)

\biggl( 
xH

(0)
t,\tau exp

\biggl( 
 - \sigma \eta 

\int \tau 

t
Yu du

\biggr) 
 - K

\biggr) +
\bigm| \bigm| \bigm| \bigm| \bigm| Yt = 0

\Biggr] 
.(3.13)

Now, if Yt = 0 (so \theta > t), then for any \BbbF -stopping time \tau \in [t, T ) we have
\int \tau 
t Yu du =

(\tau  - \theta )1\{ \tau \geq \theta \} \leq \tau  - t, which implies that

Ht,\tau \equiv H
(0)
t,\tau exp

\biggl( 
 - \sigma \eta 

\int \tau 

t
Yu du

\biggr) 
\geq H

(0)
t,\tau e

 - \sigma \eta (\tau  - t) = H
(1)
t,\tau .

Using this in the representation (3.13), we have

v0(t, x) \geq sup
\tau \in \scrT t,T

\BbbE 
\Bigl[ 
e - r(\tau  - t)(xH

(1)
t,\tau  - K)+

\bigm| \bigm| \bigm| Yt = 0
\Bigr] 
.

But xH
(1)
t,\tau is also the value of the stock at time \tau given Xt = x and Yt = 1 (since the

drift appearing in H(1) is \mu 1), so we have

v0(t, x) \geq sup
\tau \in \scrT t,T

\BbbE 
\Bigl[ 
e - r(\tau  - t)(xHt,\tau  - K)+

\bigm| \bigm| \bigm| Yt = 1
\Bigr] 
= v1(t, x), t \in [0, T ).

3. This is the classical time decay property of American claims, which follows from the
representation (3.12) and the fact that \scrT 0,T - t\prime \subseteq \scrT 0,T - t for t\prime \geq t. That is, given
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1021

the time-homogeneity of the stock price model (that is, the absence of explicit time
dependence in the model parameters), the possible stopping strategies starting at the
later time t\prime are a subset of the available strategies starting at an earlier time, leading
immediately to vi(t

\prime , x) \leq vi(t, x) for any fixed x and t\prime \geq t. This time decay property
is well known to hold in time-homogeneous models, as discussed by Ekstr\"om [17] and
Monoyios and Ng [40].

3.2. Full information continuation and stopping regions. Define the continuation regions
\scrC i and stopping regions \scrS i when the one-jump process Y is in state i \in \{ 0, 1\} by

\scrC i := \{ (t, x) \in [0, T )\times \BbbR + : vi(t, x) > (x - K)+\} , i = 0, 1,

\scrS i := \{ (t, x) \in [0, T )\times \BbbR + : vi(t, x) = (x - K)+\} , i = 0, 1.

Since the functions vi(\cdot , \cdot ) are continuous, the continuation regions \scrC i, i = 0, 1, are open sets
and their respective complements \scrS i, i = 0, 1, are closed sets. At maturity, by definition one
cannot continue, so exercise takes place if the terminal stock price exceeds the strike.

Remark 3.2 (minimal conditions for early exercise: full information). If the drift process \mu (Y )
of the stock in (2.5) satisfies \mu (Y ) \geq r almost surely, then the reward process is a (\BbbP ,\BbbF )-sub-
martingale, so no early exercise is optimal, and the American ESO value coincides with that
of its European counterpart. In particular, if \mu 0 \geq r, then we expect no early exercise when
Y = 0 (thus before the change point).

The properties in Lemma 3.1 imply that for each i = 0, 1, the boundary between \scrC i,\scrS i

will take the form of a nonincreasing critical stock price function (or exercise boundary)
x\ast i : [0, T ) \rightarrow [K,\infty ), with x\ast 0(t) \geq x\ast 1(t) \geq K for all t \in [0, T ). The optimal exercise policy
when Y is in state i \in \{ 0, 1\} is to exercise the ESO the first time the stock price crosses
x\ast i (\cdot ) from below, unless the change point occurs at a juncture when the exercise boundaries
are strictly ordered and the stock price satisfies x\ast 1(\theta ) \leq X\theta < x\ast 0(\theta ), in which case the
change point causes the system to immediately switch from being in \scrC 0 to \scrS 1, and the ESO is
exercised immediately after the change point. At the maturity time itself, exercise takes place
if the terminal stock price exceeds the strike, so the exercise boundaries may be extended
to maturity by defining x\ast i (T ) := K, i = 0, 1 (though as we shall see shortly in Proposition
3.4 there exists the possibility of a discontinuity in the boundaries at maturity, with x\ast i (T - )
possibly not equal to K). We formalize these properties in the corollary below.

Corollary 3.3. For i = 0, 1, if \mu i < r, then there exist two nonincreasing right-continuous
functions x\ast i : [0, T ) \rightarrow [K,\infty ), i = 0, 1, satisfying

(3.14) x\ast 1(t) \leq x\ast 0(t), t \in [0, T ),

such that the continuation and stopping regions in state i \in \{ 0, 1\} are given by

\scrC i = \{ (t, x) \in [0, T )\times \BbbR + : x < x\ast i (t)\} , i = 0, 1,(3.15)

\scrS i = \{ (t, x) \in [0, T )\times \BbbR + : x \geq x\ast i (t)\} , i = 0, 1.(3.16)
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1022 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

The smallest optimal stopping time for the full information problem (2.9) starting at time zero
is \tau \ast (0) \equiv \tau \ast , given by

\tau \ast = inf
\bigl\{ 
t \in [0, T ) : 1\{ Yt=0\} Xt \geq x\ast 0(t) + 1\{ Yt=1\} Xt \geq x\ast 1(t)

\bigr\} 
\wedge T.

For i = 0, 1, if \mu i \geq r, then the exercise thresholds satisfy x\ast i (t) = +\infty for t \in [0, T ), in
accordance with Remark 3.2.

At maturity, regardless of the values of \mu i, i = 0, 1, we have x\ast i (T ) = K, i = 0, 1.

Before giving the proof of this corollary, we state in Proposition 3.4 below some further
properties of the exercise boundaries, which it is natural to give here, and which we shall
prove later, after establishing free boundary PDEs and smooth pasting properties for the
value functions in sections 3.3 and 3.4, along with the Doob--Meyer decomposition of the
Snell envelope of the reward process (that is, the discounted full information ESO process) in
section 3.5.

When \mu i < r, i = 0, 1, so that bounded exercise thresholds exist prior to maturity, it turns
out that the exercise boundaries are continuous over [0, T ), with a possible discontinuity at
T , as we show below in Proposition 3.4. This mirrors the classical situation in the Black--
Scholes model for an American call, in which the critical stock price satisfies x\ast \mathrm{B}\mathrm{S}(T - ) =
max(K, (r/\delta )K) and x\ast \mathrm{B}\mathrm{S}(T ) = K, where \delta is the dividend yield (see, for example, Detemple
[16, Chapter 4, Proposition 33]). The proposition below shows that these formulae extend
to the random dividend yield case, where the dividend yield can switch from its initial value
to another, and where we invoke Remark 2.1 to map our problem to a classical no-arbitrage
valuation of an American call. A similar remark will pertain to the partial information problem
as well, where the random dividend yield will depend on a diffusion with values in [0, 1].

Proposition 3.4. Suppose, for i = 0, 1, that \mu i < r. The optimal exercise boundaries
x\ast i (\cdot ), i = 0, 1, for the full information ESO problem are continuous over [0, T ), with limiting
values as we approach maturity given by

(3.17) lim
t\uparrow T

x\ast i (t) \equiv x\ast i (T - ) = max

\biggl( 
K,

r

r  - \mu i
K

\biggr) 
, i = 0, 1.

At maturity itself, we have x\ast i (T ) = K for i = 0, 1.

The proof of this proposition will be given later in section 3.5, after we establish the free
boundary PDE for the full information value function in Proposition 3.5, the smooth pasting
condition in Theorem 3.6, as well as the Doob--Meyer decomposition of the Snell envelope
process in Theorem 3.7, these results being utilized in the proof of Proposition 3.4.

We now turn to proving Corollary 3.3.

Proof of Corollary 3.3. For i = 0, 1, take \mu i < r, as the case \mu i \geq r is covered by Remark
3.2. First, if early exercise has not occurred prior to maturity, then it will occur at maturity,
provided the stock price is not below the strike, so we have terminal critical stock prices
x\ast i (T ) = K, i = 0, 1.

Next, let us show that the continuation and stopping regions have the threshold forms
shown in in (3.15) and (3.16), respectively. Fix i \in \{ 0, 1\} and t \in [0, T ), and suppose
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1023

that (t, x) \in [0, T ) \times \BbbR + is such that (t, x) \in \scrS i, so we have vi(t, x) = x  - K. Now take
\=x > x. We want to show that (t, \=x) \in \scrS i. Suppose, to the contrary, that (t, \=x) /\in \scrS i, so that
vi(t, \=x) > \=x - K. But we also have, with \=\tau denoting the time interval to the optimal exercise
time for starting state (t, \=x, i) in the representation (3.12), that

vi(t, \=x) = \BbbE 
\bigl[ 
e - r\=\tau (\=xH\=\tau  - K)+

\bigm| \bigm| Y0 = i
\bigr] 

= \BbbE 
\bigl[ 
e - r\=\tau (xH\=\tau + (\=x - x)H\=\tau  - K)+

\bigm| \bigm| Y0 = i
\bigr] 

\leq \BbbE 
\bigl[ 
e - r\=\tau (xH\=\tau  - K)+

\bigm| \bigm| Y0 = i
\bigr] 
+ \BbbE [ e - r\=\tau (\=x - x)H\=\tau 

\bigm| \bigm| Y0 = i]

\leq vi(t, x) + (\=x - x)\BbbE [ e - r\=\tau H\=\tau 

\bigm| \bigm| Y0 = i]

< vi(t, x) + \=x - x

= \=x - K.

Above, the first inequality follows from the inequality (a+b)+ \leq a++b+, the second inequality
follows from the suboptimality of \=\tau for starting state (t, x, i), and the third inequality is due
to the strict supermartingale property of (e - rtHt)t\in [0,T ] when \mu i < r, which we now show.

If Y0 = 0, then for t \in [0, T ] we have, with \scrE (\cdot ) denoting the stochastic exponential,

e - rtHt = e - (r - \mu 0)t\scrE (\sigma W )t exp

\biggl( 
 - \sigma \eta 

\int t

0
Ys ds

\biggr) 
\leq e - (r - \mu 0)t\scrE (\sigma W )t, t \in [0, T ],

which for \mu 0 < r yields a strict supermartingale. If Y0 = 1, the argument is yet simpler, as in
that case we obtain

e - rtHt = e - (r - \mu 1)t\scrE (\sigma W )t, t \in [0, T ],

again yielding a strict supermartingale. We thus obtain vi(t, \=x) < \=x  - K, which contradicts
vi(t, \=x) > \=x - K. Hence, (t, \=x) \in \scrS i, which establishes (3.15) and (3.16).

Next, let us show that the exercise boundaries are nonincreasing. Fix i \in \{ 0, 1\} and
(t, x) \in (0, T )\times \BbbR + such that (t, x) \in \scrC i, so that vi(t, x) > (x - K)+ and x < x\ast i (t). Consider
a time t0 satisfying 0 \leq t0 < t < T . By the time decay property in Lemma 3.1 we have
vi(t0, x) \geq vi(t, x), and therefore

vi(t0, x) - (x - K)+ \geq vi(t, x) - (x - K)+ > 0,

so that we also have (t0, x) \in \scrC i. In other words, x < x\ast i (t) =\Rightarrow x < x\ast i (t0), which can only
be true if x\ast i (\cdot ) is nonincreasing.

Let us now show the ordering of the boundaries as expressed in (3.14). Suppose [0, T )\times 
\BbbR + \ni (t, x) \in \scrC 1, so that x < x\ast 1(t) and v1(t, x) > (x - K)+. We then have, using the ordering
of the value functions established in Lemma 3.1, that v0(t, x) \geq v1(t, x) > (x - K)+, so that
we also have (t, x) \in \scrC 0 and hence x < x\ast 0(t), which implies that x\ast 0(t) \geq x\ast 1(t) over [0, T ).

Finally, let us show that the exercise boundaries are right-continuous over [0, T ). Fix
i \in \{ 0, 1\} and t \in [0, T ), and consider a sequence (tn)n\in \BbbN of times converging from above to
t, that is, tn \downarrow t as n \rightarrow \infty . Since x\ast i (\cdot ) is nonincreasing, we know that the right-hand limit
x\ast i (t+) exists. Now, for each n \in \BbbN , (tn, x\ast i (tn)) \in \scrS i, and because the stopping region \scrS i
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1024 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

is a closed set, we get that (t, x\ast i (t+)) \in \scrS i. Then, recalling that \scrS i has the up-connected
representation (3.16), we see that we have x\ast i (t+) \geq x\ast i (t). But we also have the reverse
inequality x\ast i (t+) \leq x\ast i (t) from the fact that x\ast i (\cdot ) is nonincreasing, so we obtain x\ast i (t+) =
x\ast i (t), showing that x\ast i (\cdot ) is right-continuous.

3.3. Full information free boundary system. Let us now proceed to the free boundary
characterization of the full information value function. Define differential operators \scrL i, i =
0, 1, acting on functions f \in C1,2([0, T ]\times \BbbR +), by

\scrL if(t, x) :=

\biggl( 
\partial 

\partial t
+ \mu ix

\partial 

\partial x
+

1

2
\sigma 2x2

\partial 2

\partial x2
 - r

\biggr) 
f(t, x), i = 0, 1.

The free boundary problem for the full information value function then involves a pair of
coupled PDEs as given in Proposition 3.5 below. The proof illustrates that a classical ap-
proach, akin to the proof of Theorem 2.7.7 of Karatzas and Shreve [31] in the Black--Scholes
model, can be extended in our random drift scenario. This is in marked contrast to the much
more involved proof of the free boundary system satisfied by finite maturity American put
options in regime switching models given by Le and Wang [34, Proposition 1]. To the best
of our knowledge, our result below constitutes the first time the classical method of proof is
extended to a finite horizon American option model with regime switching (for example, no
such regularity is established in Buffington and Elliott [8]).

Proposition 3.5 (free boundary problem: full information). The full information value func-
tion v(t, x, i) \equiv vi(t, x), i = 0, 1, defined in (3.5) is the unique solution in [0, T ]\times \BbbR + \times \{ 0, 1\} 
of the free boundary problem

\scrL 0v0(t, x) =  - \lambda (v1(t, x) - v0(t, x)) , 0 \leq x < x\ast 0(t), t \in [0, T ),(3.18)

\scrL 1v1(t, x) = 0, 0 \leq x < x\ast 1(t), t \in [0, T ),(3.19)

vi(t, x) = x - K, x \geq x\ast i (t), t \in [0, T ), i = 0, 1,(3.20)

vi(T, x) = (x - K)+, x \in \BbbR +, i = 0, 1,(3.21)

lim
x\downarrow 0

vi(t, x) = 0, t \in [0, T ), i = 0, 1.(3.22)

Proof. It is clear that vi(\cdot , \cdot ), i = 0, 1, satisfy the boundary conditions (3.20), (3.21), and
(3.22). It remains to verify the PDEs (3.18) and (3.19). To this end, take a pair of points
(ti, xi) \in \scrC i, i = 0, 1, and a pair of rectangles \scrR i := (t\mathrm{m}\mathrm{i}\mathrm{n}

i , t\mathrm{m}\mathrm{a}\mathrm{x}
i ) \times (x\mathrm{m}\mathrm{i}\mathrm{n}

i , x\mathrm{m}\mathrm{a}\mathrm{x}
i ), i = 0, 1, with

(ti, xi) \in \scrR i \subset \scrC i, i = 0, 1. Let \partial \scrR i, i = 0, 1, denote the boundaries of these rectangles, and
denote by \partial 0\scrR i := \partial \scrR i \setminus [\{ t\mathrm{m}\mathrm{i}\mathrm{n}

i \} \times (x\mathrm{m}\mathrm{i}\mathrm{n}
i , x\mathrm{m}\mathrm{a}\mathrm{x}

i )] the so-called parabolic boundaries of these
rectangles. With this setup, consider the terminal-boundary value problem

\scrL 0f0 =  - \lambda (f1  - f0) in \scrR 0; f0 = v0 on \partial 0\scrR 0,(3.23)

\scrL 1f1 = 0 in \scrR 1; f1 = v1 on \partial 0\scrR 1.(3.24)

Classical theory for parabolic PDEs (for example, Friedman [24, Chapter 3]) guarantees the
existence of a unique solution to (3.23)--(3.24) with all derivatives appearing in \scrL i, i = 0, 1,
being continuous. We wish to show that fi and vi agree on \scrR i, i = 0, 1, respectively.
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1025

With (ti, xi) \in \scrR i, i = 0, 1, given, define stopping times \tau i, i = 0, 1, by

\tau i := inf\{ \rho \in [0, t\mathrm{m}\mathrm{a}\mathrm{x}
i  - t) : (ti + \rho , xiH\rho ) \in \partial 0\scrR i\} \wedge (t\mathrm{m}\mathrm{a}\mathrm{x}

i  - t), i = 0, 1,

and processes N i, i = 0, 1, by

N i
\rho := e - r\rho fi(ti + \rho , xiH\rho ), 0 \leq \rho \leq t\mathrm{m}\mathrm{a}\mathrm{x}

i  - t, i = 0, 1,

where H\rho \equiv H0,\rho is the accumulation factor in (3.7) for the interval [0, \rho ]. The stopped
processes (N i

\rho \wedge \tau i)0\leq \rho \leq t\mathrm{m}\mathrm{a}\mathrm{x}
i  - ti , i = 0, 1, are (\BbbP ,\BbbF )-martingales by virtue of the It\^o formula and

the system (3.23)--(3.24) satisfied by fi, i = 0, 1, and therefore

(3.25) fi(ti, xi) = N i
ti = \BbbE [N i

\tau i ] = \BbbE [e - r\tau ivi(ti + \tau i, xiH\tau i)], i = 0, 1,

where we have used the boundary conditions in (3.23)--(3.24) to obtain the last equality for
each i = 0, 1.

But \scrR i \subset \scrC i, i = 0, 1, implies that (ti + \tau i, xiH\tau i) \in \scrC i, i = 0, 1, which implies that
\tau i, i = 0, 1, must be less than or equal to the smallest optimal stopping time for starting state
(ti, xi), i = 0, 1, that is,

\tau i \leq \tau \ast i (ti, xi) := inf\{ \rho \in [0, T  - ti) : vi(ti + \rho , xiH\rho ) = (xiH\rho  - K)+\} \wedge (T  - ti), i = 0, 1.

Now, the stopped processes

e - r(\rho \wedge \tau \ast i (ti,xi))vi

\Bigl( 
ti + (\rho \wedge \tau \ast i (ti, xi)), xiH\rho \wedge \tau \ast i (ti,xi)

\Bigr) 
, 0 \leq \rho \leq T  - ti, i = 0, 1,

are martingales, so this and the optional sampling theorem yield that

(3.26) \BbbE 
\bigl[ 
e - r\tau ivi(ti + \tau i, xiH\tau i)

\bigr] 
= vi(ti, xi).

Then (3.25) and (3.26) show that, for each i = 0, 1, fi and vi agree on \scrR i (and hence also on
\scrC i since \scrR i \subset \scrC i and (ti, xi) \in \scrR i were arbitrary). Thus, vi, i = 0, 1, satisfy the PDEs (3.18)
and (3.19).

Finally, to show uniqueness, let gi, i = 0, 1, defined on the closure of \scrC i, i = 0, 1, respec-
tively, be solutions to the system (3.18)--(3.22). For starting states (0, xi, i), i = 0, 1, such
that xi < x\ast i (0), i = 0, 1, define

Li
t := e - rtgi(t, xiHt), t \in [0, T ], i = 0, 1,

as well as the smallest optimal stopping times for vi(0, xi), i = 0, 1, given by

\tau \ast 0 (x0) := inf\{ t \in [0, T ) : x0H
(0)
t \geq x\ast 0(t)\} \wedge inf\{ t \in [0, T ) : x0H

(1)
t e\sigma \eta \theta \geq x\ast 1(t)\} \wedge T,

\tau \ast 1 (x1) := inf\{ t \in [0, T ) : x1H
(1)
t \geq x\ast 1(t)\} \wedge T.

In the first equation above, the early exercise times on the right-hand side correspond to exer-

cise before the change point (for x0H
(0)
t \geq x\ast 0(t)) and after the change point (for x0H

(1)
t e\sigma \eta \theta \geq 

x\ast 1(t)), where we have used the form (3.9) of the stock price after the change point.
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1026 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

The It\^o formula yields that each (Li
t\wedge \tau \ast i (xi)

)t\in [0,T ] is a martingale. Then optional sampling,

along with the fact that \tau \ast i (xi), i = 0, 1, attain the respective suprema in (3.12) starting at
time zero, yields that

gi(0, xi) = Li
0 = \BbbE [Li

\tau \ast i (xi)
]

= \BbbE 
\Bigl[ 
e - r\tau \ast i (xi)gi(\tau 

\ast 
i (xi), xiH\tau \ast i (xi))

\Bigr] 
= \BbbE 

\Bigl[ 
e - r\tau \ast i (xi)(xiH\tau \ast i (xi)  - K)+

\Bigr] 
= vi(0, xi), i = 0, 1,

so that the solution is unique.

3.4. Full information smooth fit condition. Proposition 3.5 shows that for i = 0, 1, each
vi(\cdot , \cdot ) is C1,2([0, T )\times \BbbR +) in the corresponding continuation region \scrC i. In the stopping region
we know that vi(t, x) = x  - K, which is also smooth. At issue then is the smoothness of
vi(\cdot , \cdot ) across the exercise boundaries x\ast i (\cdot ). This is settled by the smooth pasting property
in Theorem 3.6 below. This property has been established for an American put in a model
with multiple regime-switching by Le and Wang [34, Lemma 8], though the method of proof is
complicated, relying on extending an iterative procedure first developed by Bayraktar [4], and
depends upon the boundedness of the put payoff as well. Our proof is more direct, exploiting
our specific one-switch model, and showing how classical techniques developed for the Black--
Scholes model (see, for example, the proof of Lemma 2.7.8 in Karatzas and Shreve [31]), which
proceed by analyzing properties of the smallest optimal stopping time from a given starting
state, can be extended to the random drift scenario.

Theorem 3.6 (smooth pasting: full information value function). The functions vi(\cdot , \cdot ), i =
0, 1, satisfy the smooth pasting property at the optimal exercise thresholds x\ast i (\cdot ):

\partial vi
\partial x

(t, x\ast i (t)) = 1, t \in [0, T ), i = 0, 1.

Proof. It entails no loss of generality in this proof if we use the starting time t = 0, so for
simplicity of presentation we do so and write vi(x) \equiv vi(0, x), i = 0, 1, x \in \BbbR +, and x\ast i \equiv x\ast i (0)
for brevity.

For x \in \BbbR + and for each i \in \{ 0, 1\} , the map x \rightarrow vi(x) is convex and nondecreasing, so
we have 0 \leq v\prime i(x) \leq 1 in the continuation region at time zero, \scrC 0

i := \{ x \in \BbbR + : x < x\ast i \} , and
thus v\prime i(x

\ast 
i - ) \leq 1. We also have v\prime i(x) = 1 in the corresponding stopping region \scrS 0

i := \{ x \in 
\BbbR + : x \geq x\ast i \} and thus v\prime i(x

\ast 
i+) = 1. Hence, the proof will be complete if we can show that

v\prime i(x
\ast 
i - ) \geq 1.
First consider the case i = 1, that is, the stock price evolution begins in the low-drift

regime, so the change point happens at the initial time. The stock drift is thus equal to
\mu 1 throughout [0, T ] and the relevant value function is v1(\cdot ). Denote by \tau 1(x) the smallest
optimal stopping time given an initial stock price x \in \BbbR +, given by the first time the stock
breaches the boundary x\ast 1(\cdot ),

\tau 1(x) := inf\{ t \in [0, T ) : xH
(1)
t \geq x\ast 1(t)\} \wedge T,
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1027

where H(1) is the process in (3.8) for s = 0 and i = 1, giving the multiplicative random factor
by which the stock price appreciates, so that, given Y0 = 1 and X0 = x, the stock price at
t \in [0, T ] is Xt \equiv Xx

t , given by

Xt = xH
(1)
t = x exp

\biggl[ \biggl( 
\mu 1  - 

1

2
\sigma 2

\biggr) 
t+ \sigma Wt

\biggr] 
, t \in [0, T ].

Set x = x\ast 1 \geq K (the last inequality due to the fact that exercise below the strike is never
optimal), fixed for the remainder of the proof for the case i = 1, and define

\tau 1(x - \epsilon ) := inf\{ t \in [0, T ) : (x - \epsilon )H
(1)
t \geq x\ast 1(t)\} \wedge T

for \epsilon \geq 0, so that \tau 1(x) \equiv 0 and \tau 1(x - \epsilon ) is nondecreasing in \epsilon . Because x\ast 1(\cdot ) is nonincreasing,
we have

(3.27) \tau 1(x - \epsilon ) \leq inf\{ t \in [0, T ) : (x - \epsilon )H
(1)
t \geq x\} \wedge T.

The Law of the Iterated Logarithm for the Brownian motion W (Karatzas and Shreve [30,

Theorem 2.9.23]) implies that \BbbP [sup0\leq t\leq aH
(1)
t > 1] = 1 for every a > 0, so there will exist

a sufficiently small \epsilon > 0 such that sup0\leq t\leq a(x  - \epsilon )H
(1)
t \geq x almost surely for every a > 0.

Thus, the right-hand side of (3.27) tends to zero as \epsilon \downarrow 0, and therefore

(3.28) \tau 1(x - \epsilon ) \downarrow 0 as \epsilon \downarrow 0 almost surely.

Using the fact that \tau 1(x  - \epsilon ) will be suboptimal for the starting state (X0, Y0) = (x, 1), we
have

v1(x) - v1(x - \epsilon )(3.29)

\geq \BbbE 
\Bigl[ 
e - r\tau 1(x - \epsilon )

\Bigl( 
(xH

(1)
\tau 1(x - \epsilon )  - K)+  - ((x - \epsilon )H

(1)
\tau 1(x - \epsilon )  - K)+

\Bigr) \Bigr] 
\geq \BbbE 

\biggl[ 
e - r\tau 1(x - \epsilon )

\Bigl( 
(xH

(1)
\tau 1(x - \epsilon )  - K)+  - ((x - \epsilon )H

(1)
\tau 1(x - \epsilon )  - K)+

\Bigr) 
1\{ (x - \epsilon )H

(1)
\tau 1(x - \epsilon )

\geq K\} 

\biggr] 
= \epsilon \BbbE 

\biggl[ 
e - r\tau 1(x - \epsilon )H

(1)
\tau 1(x - \epsilon )1\{ (x - \epsilon )H

(1)
\tau 1(x - \epsilon )

\geq K\} 

\biggr] 
.

We now take the limit as \epsilon \downarrow 0. Using (3.28), we almost surely have lim\epsilon \downarrow 0H
(1)
\tau 1(x - \epsilon ) = 1 and,

since it is never optimal to exercise below the strike, lim\epsilon \downarrow 0 1\{ (x - \epsilon )H
(1)
\tau 1(x - \epsilon )

\geq K\} = 1. Using these

properties, along with the uniform integrability of (H
(1)
t )t\in [0,T ], in (3.29), we compute

v\prime 1(x - ) = lim
\epsilon \downarrow 0

1

\epsilon 
(v1(x) - v1(x - \epsilon )) \geq 1,

which completes the proof in the case i = 1.
Now consider the case i = 0, so that the stock begins at time zero in the high-drift state

with drift \mu 0. The early exercise scenarios bifurcate into two possibilities, either (i) before the

D
ow

nl
oa

de
d 

10
/3

0/
20

 to
 1

63
.1

.8
1.

58
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1028 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

change point or (ii) at or after the change point. Recall that, given Y0 = 0 and X0 = x, the
stock price at t \in [0, \theta ] (so up to the change point) is Xt \equiv Xx

t , given by

Xt = xH
(0)
t = x exp

\biggl[ \biggl( 
\mu 0  - 

1

2
\sigma 2

\biggr) 
+ \sigma Wt

\biggr] 
, 0 \leq t \leq \theta ,

while at or after the change point the stock price is given by

Xt = xH
(1)
t exp(\sigma \eta \theta ), 0 \leq \theta \leq t,

and observe that for t = \theta the stock price is xH
(1)
\theta e\sigma \eta \theta = xH

(0)
\theta . The smallest optimal stopping

time starting from (0, X0, Y0) = (0, x, 0) is then \tau 0(x), given by

(3.30) \tau 0(x) := inf\{ t \in [0, T ) : xH
(0)
t \geq x\ast 0(t)\} \wedge inf\{ t \in [0, T ) : xH

(1)
t e\sigma \eta \theta \geq x\ast 1(t)\} \wedge T.

The first time on the right-hand side of (3.30) corresponds to early exercise before the change
point if the stock breaches x\ast 0(\cdot ), while the second time corresponds to early exercise at or after
the change point if the stock breaches x\ast 1(\cdot ). The latter scenario includes the possibility of early

exercise at the change point itself, in which case the stock price on exercise is xH
(1)
\theta e\sigma \eta \theta =

xH
(0)
\theta \in [x\ast 1(\theta ), x

\ast 
0(\theta )).

As we did for the case i = 1, set x = x\ast 0 \geq K, fixed for the remainder of the proof, and
define

\tau 0(x - \epsilon ) := inf\{ t \in [0, T ) : (x - \epsilon )H
(0)
t \geq x\ast 0(t)\} \wedge inf\{ t \in [0, T ) : (x - \epsilon )H

(1)
t e\sigma \eta \theta \geq x\ast 1(t)\} \wedge T

for \epsilon \geq 0, so that \tau 0(x) \equiv 0 and \tau 0(x  - \epsilon ) is nondecreasing in \epsilon . Now, regardless of whether
exercise occurs before the change point or not, because the exercise boundaries are non-
increasing and because x\ast 1(t) \leq x\ast 0(t) for all t \in [0, T ), we always have

(3.31) \tau 0(x - \epsilon ) \leq inf\{ t \in [0, T ) : (x - \epsilon )H
(0)
t \geq x\} \wedge T,

which is the analogue of (3.27) for the case i = 0. With (3.31) in place, the rest of the proof
follows the same arguments as in the i = 1 case, so we obtain v\prime 0(x - ) \geq 1, and the proof of
smooth fit is complete.

3.5. Doob--Meyer decomposition of full information Snell envelope. With the free
boundary PDE and smooth pasting condition established for the full information value func-
tion, we can now turn to the proof of Proposition 3.4, characterizing the continuity over [0, T )
and left limits x\ast i (T - ), i = 0, 1, of the exercise boundaries as we approach maturity. The key
to rigorously establishing this result turns out to be the Doob--Meyer decomposition of the
supermartingale that is the full information Snell envelope, in other words, the discounted
full information ESO value process. This in turn leads to the decompositions below for the
discounted processes (e - rtvi(t,Xt))t\in [0,T ], i = 0, 1, where we recall the representation (3.6) for
the ESO value process V in terms of the processes (vi(t,Xt))t\in [0,T ], i = 0, 1.D
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1029

Theorem 3.7 (Doob--Meyer decomposition of full information Snell envelope). The processes
(e - rtvi(t,Xt))t\in [0,T ], i = 0, 1, admit the decomposition

(3.32) e - rtvi(t,Xt) = vi(0, X0) +M i
t  - Ai

t, t \in [0, T ], i = 0, 1,

where

M i
t := \sigma 

\int t

0
e - rsXs

\partial vi
\partial x

(s,Xs) dWs, t \in [0, T ], i = 0, 1,

are (\BbbP ,\BbbF )-martingales, and

Ai
t :=

\int t

0
e - rs ((r  - \mu i)Xs  - rK)1\{ Xs\geq x\ast 

i (s)\} ds, t \in [0, T ], i = 0, 1,

are nondecreasing finite variation processes.
Consequently, the exercise boundaries x\ast i (\cdot ), i = 0, 1, satisfy

(3.33) (r  - \mu i)x
\ast 
i (t) - rK \geq 0 for Lebesgue-almost every t \in [0, T ), i = 0, 1,

and in particular we have the terminal left-limit lower bounds

(3.34) x\ast i (T - ) \geq 
\biggl( 

r

r  - \mu i

\biggr) 
K, i = 0, 1.

Proof. We have identified the full information discounted ESO value process (e - rtVt)t\in [0,T ]

with the Snell envelope of the reward process, the smallest c\`adl\`ag (\BbbP ,\BbbF )-supermartingale
which dominates the reward process. We recall the representation (3.6) of the value process
V in terms of the value function processes (vi(t,Xt))t\in [0,T ], i = 0, 1, and also recall that
the process Y is equal to either 0 (before the change point) or 1 (from the change point
onwards). The smooth fit condition in Theorem 3.6, along with the free boundary PDE
system in Proposition 3.5, guarantees that the first partial derivatives \partial vi(\cdot , \cdot )/\partial x, i = 0, 1,
are continuous, even across their respective exercise boundaries x\ast i (\cdot ). We know also from
Proposition 3.5 that the second partial derivatives \partial 2vi(\cdot , \cdot )/\partial x2, i = 0, 1, are continuous in
their respective continuation regions \scrC i, i = 0, 1, and equal to zero in their respective stopping
regions \scrS i, i = 0, 1. Though these second derivatives might not be continuous across their
respective exercise boundaries, we may nevertheless apply the generalized It\^o formula for
convex functions (for instance, Karatzas and Shreve [30, Theorem 3.7.1]) to the (discounted)
ESO value process. In differential form, we have

d(ertVt) = e - rt \{ (1 - Yt) ( dv0(t,Xt) - rv0(t,Xt) dt+ \lambda (v1(t,Xt) - v0(t,Xt)) dt)

+ Yt ( dv1(t,Xt) - rv1(t,Xt) dt)\} ,

where, of course, the term involving \lambda is due to the possibility of the change point occurring in
the next instant. Then, using the generalized It\^o rule on the functions vi(\cdot , \cdot ) and integrating
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1030 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

over [0, t] for t \in [0, T ], we obtain

e - rtVt  - V0 = (1 - Yt)

\biggl( 
\sigma 

\int t

0
e - rsXs

\partial v0
\partial x

(s,Xs) dWs

 - 
\int t

0
e - rs ((r  - \mu 0)Xs  - rK)1\{ Xs\geq x\ast 

0(s)\} ds

\biggr) 
+ Yt

\biggl( 
\sigma 

\int t

0
e - rsXs

\partial v1
\partial x

(s,Xs) dWs

 - 
\int t

0
e - rs ((r  - \mu 1)Xs  - rK)1\{ Xs\geq x\ast 

1(s)\} ds

\biggr) 
, t \in [0, T ].(3.35)

In applying the generalized It\^o rule to obtain (3.35), we have used the aforementioned prop-
erties of the functions vi(\cdot , \cdot ), i = 0, 1 (that is, the PDEs satisfied by these functions in the
respective continuation regions, along with their analytic forms in the respective stopping
regions), with the second derivative of a convex function considered as a measure (see, for
example, Karatzas and Shreve [30, equation (3.6.47)]).

Now, in (3.35), the stochastic integral terms are (\BbbP ,\BbbF )-martingales, since the discount fac-
tor and partial derivative terms are bounded and the stock price process is square-integrable:
\BbbE [X2

t ] < \infty for any t \in [0, T ]. Then, recalling once again the representation (3.6) for the value
process V , we have that in both (3.6) and (3.35) above, one either has Yt = 0 or Yt = 1 on a
mutually exclusive basis, so only one of the martingales in (3.35) contributes at any particular
time. The same also applies to the finite variation terms on the right-hand side of (3.35),
which is thus the (unique) Doob--Meyer decomposition of the supermartingale (e - rtVt)t\in [0,T ]

into a martingale minus a nondecreasing process. This establishes the decompositions in
(3.32), and also the nondecreasing property of the finite variation processes in (3.35), and
thus in (3.32). Since \BbbP [Xt \geq x\ast i (t)] > 0 for i = 0, 1 and for Lebesgue-almost every t \in [0, T ),
the nondecreasing property implies that the exercise boundaries must satisfy (3.33) and, in
particular, (3.34) must hold.

We can now establish Proposition 3.4.

Proof of Proposition 3.4. It is clear that at maturity itself, exercise will not occur below
the strike, so we must have x\ast i (T ) = K, i = 0, 1.

We have established in Corollary 3.3 that the exercise thresholds x\ast i (\cdot ), i = 0, 1, are non-
increasing and right-continuous over [0, T ), with lower bounds x\ast i (T - ), i = 0, 1, given in
(3.34). With \mu i < r, i = 0, 1, we first refine this lower bound to be the right-hand side of
(3.17), then we show that in fact we have the equality (3.17). For \mu i < r, i = 0, 1, we can
distinguish two cases:

\bullet for 0 \leq \mu i < r, we have x\ast i (T - ) \geq (r/(r  - \mu i))K \geq K;
\bullet for \mu i < 0 \leq r, because it is never optimal to exercise below the strike, we have
x\ast i (T - ) \geq K > (r/(r  - \mu i))K.

We thus have, in all cases, the refined lower bound

x\ast i (T - ) \geq max

\biggl( 
K,

\biggl( 
r

r  - \mu i

\biggr) 
K

\biggr) 
, i = 0, 1.D
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1031

We now show that in fact we have the equality (3.17). Suppose, to the contrary, that we
have x\ast i (T - ) > max (K, (r/(r  - \mu i))K) , i = 0, 1. For each i = 0, 1, consider a value xi \in 
(max (K, (r/(r  - \mu i))K) , x\ast i (T - )). Then, for 0 \leq t < T , we have (t, xi) \in \scrC i, i = 0, 1, so
that vi(t, x) > (xi  - K)+ = xi  - K. Using temporal continuity of vi(\cdot , \cdot ), we thus obtain
vi(T, x) = limt\uparrow T vi(t, x) > xi - K. But, on the other hand, we know that at maturity we have
vi(T, x) = (xi  - K)+ = xi  - K, so we have a contradiction. Thus, (3.17) holds.

Finally, let us show that the exercise thresholds x\ast i (\cdot ), i = 0, 1, are left-continuous over
[0, T ), thus establishing the claimed continuity. To prove left-continuity we shall suppose
x\ast i (ti - ) > x\ast i (ti), i = 0, 1, for some ti \in (0, T ) and obtain a contradiction. Under this
assumption, take xi :=

1
2(x

\ast 
i (ti - ) + x\ast i (ti)) > x\ast i (ti) \geq K, i = 0, 1 (of course, not the same xi

as in the previous paragraph). Observe that (ti, xi) \in \scrS i, i = 0, 1, but that (t, xi) \in \scrC i, i = 0, 1,
for t \in (0, ti). For each i = 0, 1, let t \in (0, ti) and x \in (xi, x

\ast 
i (t)) be given, so that (as for xi)

we have (ti, x) \in \scrS i, i = 0, 1, but (t, x) \in \scrC i, i = 0, 1, for t \in (0, ti).
Now use the fact that vi(\cdot , \cdot ) solves a given PDE in \scrC i, as follows: for v0(\cdot , \cdot ), use (3.18)

along with the ordering of the value functions and time decay (properties 2 and 3 in Lemma
3.1), while for v1(\cdot , \cdot ), use (3.19) and time decay to conclude that

1

2
\sigma 2x2

\partial 2vi
\partial x2

(t, x) \geq rvi(t, x) - \mu ix
\partial vi
\partial x

(t, x), (t, x) \in \scrC i, i = 0, 1.

Now consider separately the cases (i) \mu i < 0 \leq r and (ii) 0 \leq \mu i < r. In case (i) we have

 - \mu ix
\partial vi
\partial x (t, x) > 0; using this and vi(t, x) > x  - K in \scrC i, we conclude that \partial 2vi

\partial x2 (t, x) \geq \epsilon > 0
for some \epsilon > 0. In case (ii), using that x \rightarrow vi(\cdot , x) is nondecreasing and convex, so that
0 \leq \partial vi

\partial x (t, x) \leq 1, and once again using vi(t, x) > x - K, we get

1

2
\sigma 2x2

\partial 2vi
\partial x2

(t, x) \geq rvi(t, x) - \mu ix > r(x - K) - \mu ix = (r - \mu i)x - rK, (t, x) \in \scrC i, i = 0, 1.

But x > x\ast i (ti) implies that (with 0 \leq \mu i < r), (r  - \mu i)x - rK > (r  - \mu i)x
\ast 
i (ti) - rK \geq 0, on

using (3.33), and so once again we conclude that \partial 2vi
\partial x2 (t, x) \geq \epsilon > 0 for some \epsilon > 0.

Thus, in either case we have

\partial 2vi
\partial x2

(t, x) \geq \epsilon > 0 for all t \in (0, ti), x \in (xi, x
\ast 
i (t)), i = 0, 1.

Then, with \varphi (\xi ) := (\xi  - K)+ = \xi  - K (in the region of interest) and x \in (xi, x
\ast 
i (ti - )) (so that

(t, x) \in \scrC i for t \in (0, ti) but (ti, x) \in \scrS i), we compute

vi(t, x) - \varphi (x) =

\int x

x\ast 
i (t)

\int u

x\ast 
i (t)

\biggl( 
\partial 2vi
\partial x2

(t, \xi ) - \varphi \prime \prime (\xi )

\biggr) 
d\xi du \geq 1

2
\epsilon (x - x\ast i (t))

2, i = 0, 1,

where we have used the value-matching and smooth pasting relations vi(t, x
\ast 
i (t)) = \varphi (x\ast i (t))

and \partial vi
\partial x (t, x

\ast 
i (t)) = \varphi \prime (x\ast i (t)). Finally, letting t \uparrow ti and using the continuity of vi(\cdot , \cdot ), we get

vi(ti, x) \geq xi  - K + 1
2\epsilon (x  - x\ast i (ti - ))2 > xi  - K, which implies that (ti, x) \in \scrC i, i = 0, 1. But

this contradicts our earlier assertion that (ti, x) \in \scrS i, i = 0, 1, and the proof is complete.
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1032 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

4. The partial information ESO problem. We now turn to the partial information prob-
lem (2.10), over \widehat \BbbF -stopping times, with model dynamics given by Lemma 2.2. In particular,
the stock price drift is \mu (\widehat Y ), defined by

\mu (\widehat Yt) := \mu 0  - \sigma \eta \widehat Yt, t \in [0, T ],

which we see is the partial information analogue of the full information drift in (2.5).
The partial information value function u : [0, T ]\times \BbbR + \times [0, 1] \rightarrow \BbbR + is defined by

(4.1) u(t, x, y) := sup
\tau \in \widehat \scrT t,T \BbbE 

\Bigl[ 
e - r(\tau  - t)(X\tau  - K)+

\bigm| \bigm| \bigm| Xt = x, \widehat Yt = y
\Bigr] 
, t \in [0, T ],

subject to the (\BbbP , \widehat \BbbF )-dynamics of the two-dimensional diffusion (X, \widehat Y ) as given in (2.11) and
(2.13), and the ESO value process U in (2.10) is given as

Ut = u(t,Xt, \widehat Yt), t \in [0, T ].

For 0 \leq s \leq t \leq T , write (Xt, \widehat Yt) \equiv (Xs,x,y
t , \widehat Y s,y

t ) for the value of this diffusion given
(Xs, \widehat Ys) = (x, y). Define

Gs,y
t := exp

\biggl\{ \biggl( 
\mu 0  - 

1

2
\sigma 2

\biggr) 
(t - s) - \sigma \eta 

\int t

s

\widehat Y s,y
u du+ \sigma (\widehat Wt  - \widehat Ws)

\biggr\} 
, 0 \leq s \leq t \leq T,

so we have

(4.2) Xs,x,y
t = xGs,y

t , 0 \leq s \leq t \leq T.

When s = 0, write (Xx,y
t , \widehat Y y

t ) \equiv (X0,x,y
t , \widehat Y 0,y

t ) and Gy
t \equiv G0,y

t for t \in [0, T ], so that

Xx,y
t = xGy

t , t \in [0, T ].

The partial information value function in (4.1) is thus

u(t, x, y) = sup
\tau \in \widehat \scrT t,T \BbbE 

\Bigl[ 
e - r(\tau  - t)(xGt,y

\tau  - K)+
\Bigr] 
, (t, x, y) \in [0, T ]\times \BbbR + \times [0, 1].

Using the time-homogeneity of the diffusion (X, \widehat Y ), optimizing over \widehat \scrT t,T is equivalent to

optimizing over \widehat \scrT 0,T - t, so the value function can be recast into the form

(4.3) u(t, x, y) = sup
\tau \in \widehat \scrT 0,T - t

\BbbE 
\bigl[ 
e - r\tau (xGy

\tau  - K)+
\bigr] 
.

From this representation, elementary properties of the ESO partial information value function
can be derived, largely in a similar manner to the proof of Lemma 3.1 in the full information
case (but proving monotonicity in y is more involved, as we shall see).
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1033

Remark 4.1 (minimal conditions for early exercise: partial information). Similarly to the full
information case, if the drift process \mu (\widehat Y ) of the stock satisfies \mu (\widehat Y ) \geq r almost surely, then
the reward process is a (\BbbP , \widehat \BbbF )-submartingale, so no early exercise is optimal, and the American
ESO value coincides with that of its European counterpart.

Lemma 4.2 (convexity, monotonicity, time decay: partial information). The function u :
[0, T ] \times \BbbR + \times [0, 1] in (4.1) characterizing the partial information ESO value function has
the following properties:

1. For (t, y) \in [0, T ]\times [0, 1], the map x \rightarrow u(t, x, y) is convex and nondecreasing.
2. For (t, x) \in [0, T ]\times \BbbR +, the map y \rightarrow u(t, x, y) is nonincreasing.
3. For (x, y) \in \BbbR + \times [0, 1], the map t \rightarrow u(t, x, y) is nonincreasing.

Proof. The proofs of the first and third properties are virtually identical to the proofs of
the corresponding properties for the full information case in Lemma 3.1: that is, convexity
and monotonicity of x \rightarrow u(t, x, y) follow directly from the corresponding properties of the
payoff map x \rightarrow (x - K)+, while the time decay property that t \rightarrow u(t, x, y) is nonincreasing
follows directly from the fact that the exercise opportunities at an earlier time contain all the
exercise opportunities available at a later time, given the time-homogeneity of the diffusion
(X, \widehat Y ). That is, in (4.1) we have \widehat \scrT t,T \supseteq \widehat \scrT t\prime ,T for t\prime \geq t (equivalently, in (4.3), we have\widehat \scrT 0,T - t \supseteq \widehat \scrT 0,T - t\prime ).

Let us focus therefore on the second claim, that the map y \rightarrow u(t, x, y) is nonincreasing.
In (4.3), the quantity Gy

\tau is the value at \tau \in \widehat \scrT 0,T - t of the process Gy given by

(4.4) Gy
t := exp

\biggl( \biggl( 
\mu 0  - 

1

2
\sigma 2

\biggr) 
t+ \sigma \widehat Wt  - \sigma \eta 

\int t

0

\widehat Y y
s ds

\biggr) 
, t \in [0, T ].

From (4.4) and (4.3), the desired monotonicity of the map y \rightarrow u(t, x, y) will follow if we
can show that the process \widehat Y y \equiv \widehat Y (y), seen as a function of the initial value y, that is, as a
stochastic flow, is nondecreasing with respect to y:

(4.5)
\partial \widehat Yt
\partial y

(y) \geq 0 a.s., t \in [0, T ].

The meaning of (4.5) is that for almost all \omega \in \Omega , we consider the process \widehat Y with initial value
y \in [0, 1) as a function of y, so we have Yt(y) \equiv Yt(y, \omega ), and the theory of stochastic flows
(for example, Kunita [33, Chapter 4]) guarantees that we may choose versions of \widehat Y (y) which,
for each t \in [0, T ] and almost all \omega \in \Omega , are diffeomorphisms in y from [0, 1) \rightarrow [0, 1]. In other
words, the map y \rightarrow \widehat Y (\omega , y) is smooth, and one can compute the derivative of \widehat Y (\omega , y) with
respect to y for almost all \omega \in \Omega . We do this in Proposition 4.3 below, to give (4.5), and this
completes the proof.

4.1. The filtered change point stochastic flow. Consider the solution to the SDE (2.13)
for \widehat Y for some initial condition \widehat Y0 = y \in [0, 1). Write \widehat Y (y) = (\widehat Yt(y))t\in [0,T ] for this process.
Using the theory of stochastic flows (see, for instance, Kunita [33, Chapter 4]), we may choose
versions of \widehat Y (y) which, for each t \in [0, T ] and almost all \omega \in \Omega , are diffeomorphisms in y
from [0, 1) \rightarrow [0, 1]. In other words, the map y \rightarrow \widehat Y (y) is smooth. (See El Karoui, Jeanblanc-
Picqu\'e, and Shreve [21] and Monoyios and Ng [40] for other applications of these ideas to
American claims and ESOs, respectively.)

D
ow

nl
oa

de
d 

10
/3

0/
20

 to
 1

63
.1

.8
1.

58
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1034 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

We wish to show the property (4.5). To achieve this, we shall look at the flow of the
so-called likelihood ratio \Phi , defined for \^Y \in [0, 1) by

(4.6) \Phi t :=
\widehat Yt

1 - \widehat Yt , t \in [0, T ].

To examine the flow of \Phi , it turns out to be helpful to define the measure \BbbP \ast \sim \BbbP on \widehat \scrF T by

(4.7) \Gamma t :=
d\BbbP \ast 

d\BbbP 

\bigm| \bigm| \bigm| \bigm| \widehat \scrF t

= \scrE (\eta \widehat Y \cdot \widehat W )t, t \in [0, T ],

where \scrE (\cdot ) denotes the stochastic exponential, and (\widehat Y \cdot \widehat W ) \equiv 
\int \cdot 
0
\widehat Ys d\widehat Ws denotes the stochastic

integral. Since \widehat Y is bounded, the Novikov condition is satisfied and \BbbP \ast is indeed a probability
measure equivalent to \BbbP .

By Girsanov's Theorem the process

W \ast 
t := \widehat Wt  - \eta 

\int t

0

\widehat Ys ds, t \in [0, T ],

is a (\BbbP \ast , \widehat \BbbF ) Brownian motion. Using this along with the It\^o formula, the dynamics of (X,\Phi )
with respect to (\BbbP \ast , \widehat \BbbF ) are given by

dXt = \mu 0Xt dt+ \sigma Xt dW
\ast 
t ,(4.8)

d\Phi t = \lambda (1 + \Phi t) dt - \eta \Phi t dW
\ast 
t .(4.9)

Equations (4.8) and (4.9) exhibit an interesting feature in that X and \Phi become decoupled
under \BbbP \ast . Similar measure changes have been employed by D\'ecamps, Mariotti, and Ville-
neuve [14, 15], Klein [32], and Ekstr\"om and Lu [19] for related optimal stopping problems
involving an investment timing decision or an optimal liquidation decision when a drift pa-
rameter is assumed to take on one of two values, but the agent is unsure which value pertains
in reality. This corresponds to \lambda \downarrow 0 in our setup, and both X and \Phi become geometric
Brownian motions with respect to (\BbbP \ast , \widehat \BbbF ), yielding an easier problem in that \Phi becomes a
deterministic function of X. This property, when combined with the linear payoff function in
these papers, allows for a reduction in dimension under some circumstances in those works.
In our problem, \Phi depends on the entire history of the Brownian paths, as exhibited in (4.10)
below, and hence on the history of the stock price, given that we are in the observation filtra-
tion with driving Brownian motion \widehat W . This, combined with the nonlinear call payoff, makes
the aforementioned dimension reduction impossible, and the numerical solution of the partial
information ESO problem is made more complex.

With \Phi 0 = \phi , here is the result which quantifies the derivative of \Phi (\phi ) and hence of \widehat Y (y)
with respect to their respective initial conditions, a property which was used in the proof of
Lemma 4.2.

Proposition 4.3. Define \Phi by (4.6), and define the exponential (\BbbP \ast , \widehat \BbbF )-martingale \Lambda by

\Lambda t := \scrE ( - \eta W \ast )t, t \in [0, T ].
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1035

Let \Phi (\phi ) denote the solution of the SDE (4.9) with initial condition \Phi 0 = \phi \in \BbbR +. Then \Phi (\phi )
has the representation

(4.10) \Phi t(\phi ) = e\lambda t\Lambda t

\biggl( 
\phi + \lambda 

\int t

0

e - \lambda s

\Lambda s
ds

\biggr) 
, t \in [0, T ],

so that

(4.11)
\partial \Phi t

\partial \phi 
(\phi ) = e\lambda t\Lambda t, t \in [0, T ].

Consequently, if \widehat Y (y) denotes the solution to (2.13) with initial condition \widehat Y0 = y \not = 1, then

(4.12)
\partial \widehat Yt
\partial y

(y) = e\lambda t\Lambda t

\Biggl( 
1 - \widehat Yt(y)
1 - y

\Biggr) 2

\geq 0, t \in [0, T ].

Proof. It is straightforward to show that \Phi (\phi ) as given in (4.10) solves the SDE (4.9) with
initial condition \Phi 0 = \phi , and the formula (4.11) follows immediately. Then, using

\widehat Yt(y) = \Phi t(\phi )

1 + \Phi t(\phi )
, y =

\phi 

1 + \phi 
, t \in [0, T ],

an exercise in differentiation yields (4.12).

Observe that the second term on the right-hand side of (4.10) depends on the whole
history of (\Lambda s)s\in [0,t] over the time interval [0, t], so that \Phi (and hence \widehat Y ) are path-dependent.
As we are working in the observation filtration, these processes depend on the history of the
stock price itself. This can be made explicit in some circumstances, as we show for \Phi in
(4.30) of section 4.5, where the integral term is written in terms of the stock price path. This
path-dependence is a consequence of the filtering algorithm, and in particular that we are
continuously computing an updated version at each time of the conditional expectation of a
process given observations of the stock up to that time. It is not uncommon for this updating
to generate path-dependence. This is the ``learning"" aspect of the filtering algorithm. For some
special parameter values, the path-dependence can sometimes disappear. In this example, for
\lambda = 0 we lose the history-dependent term in (4.10), reducing to the uncertain two-value drift
model alluded to after (4.9).

Remark 4.4 (completing the proof of Lemma 4.2). Equation (4.12) as derived in the above
proof is a \BbbP \ast -almost sure relation, and so also holds under \BbbP since these measures are equiva-
lent. This is enough to complete the proof of Lemma 4.2, as claimed earlier.

4.2. Partial information free boundary problem. The properties in Lemma 4.2 imply
that there exists a function x\ast : [0, T ]\times [0, 1] \rightarrow [K,\infty ), the optimal exercise boundary, which
is decreasing in time and also in y, such that it is optimal to exercise the ESO as soon as
the stock price exceeds the threshold x\ast (t, y). Thus, the optimal exercise boundary in the
finite horizon ESO problem under partial information is a surface, and the continuation and
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1036 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

stopping regions \widehat \scrC , \widehat \scrS for the partial information problem are given by\widehat \scrC := \{ (t, x, y) \in [0, T ]\times \BbbR + \times [0, 1] : u(t, x, y) > (x - K)+\} 
= \{ (t, x, y) \in [0, T ]\times \BbbR + \times [0, 1] : x < x\ast (t, y)\} ,\widehat \scrS := \{ (t, x, y) \in [0, T ]\times \BbbR + \times [0, 1] : u(t, x, y) = (x - K)+\} 
= \{ (t, x, y) \in [0, T ]\times \BbbR + \times [0, 1] : x \geq x\ast (t, y)\} .

The following lemma gives the left-limiting terminal value x\ast (T - , y) of the exercise surface.
As in the full information case, this requires for its proof the free boundary characterization
of the value function along with a smooth pasting property and also the Doob--Meyer decom-
position of the (partial information) Snell envelope, so the proof of the lemma will be given
in section 4.4, once the required preparation is in place.

Lemma 4.5. The partial information exercise surface x\ast (\cdot , \cdot ) has left-limiting value as we
approach maturity, given by

(4.13) x\ast (T - , y) = max

\biggl( 
K,

\biggl( 
r

r  - (\mu 0  - \sigma \eta y)

\biggr) 
K

\biggr) 
, y \in [0, 1], \mu 0  - \sigma \eta y < r.

Observe that, since the drift of the stock under the observation filtration is \mu (\widehat Y ) :=
\mu 0  - \sigma \eta \widehat Y , the limiting value in (4.13) is

x\ast (T - , y) = max

\biggl( 
K,

\biggl( 
r

r  - \mu (y)

\biggr) 
K

\biggr) 
,

where \mu (y) is the \widehat \BbbF -drift of the stock when the filtered change point is equal to y \in [0, 1].
The last condition in (4.13) therefore corresponds to the region of the state space where the
filtered stock drift is less than the interest rate, and Lemma 4.5 is in a similar spirit to the
full information result in Proposition 3.4, where we replace the distinct values i = 0, 1 of the
change point process by the continuum of values in [0, 1] for filtered change point process.

Also, by Remark 2.1, if we invoke a fictitious ``dividend yield"" \delta (\cdot ) := r  - \mu (\cdot ), then we
have x\ast (T  - y) = max(K, (r/\delta (y))K), so the classical result for the exercise boundary value
at (T - ) for no-arbitrage call valuation extends to the scenario with a random dividend yield
\delta (\widehat Y ), the same pattern we saw in the full information problem with random drift \mu (Y ).

We now turn to the free boundary characterization of the partial information value func-
tion. Let \scrL 

X,\widehat Y denote the generator under \BbbP of the two-dimensional process (X, \widehat Y ) with
respect to the observation filtration \widehat \BbbF , with dynamics given by (2.11) and (2.13). Thus, \scrL 

X,\widehat Y
is defined by

\scrL 
X,\widehat Y f(t, x, y) := (\mu 0 - \sigma \eta y)xfx+

1

2
\sigma 2x2fxx+\lambda (1 - y)fy +

1

2
\eta 2y2(1 - y)2fyy  - \sigma \eta xy(1 - y)fxy,

acting on any sufficiently smooth function f : [0, T ]\times \BbbR + \times [0, 1]. Define the operator \scrL by

\scrL :=
\partial 

\partial t
+ \scrL 

X,\widehat Y  - r.

The partial information free boundary problem for the ESO is then as follows.
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1037

Proposition 4.6 (free boundary problem: partial information). The partial information ESO
value function u(\cdot , \cdot , \cdot ) defined in (4.1) is the unique solution in [0, T ]\times \BbbR + \times [0, 1] of the free
boundary problem

\scrL u(t, x, y) = 0, 0 \leq x < x\ast (t, y), t \in [0, T ), y \in [0, 1],(4.14)

u(t, x, y) = x - K, x \geq x\ast (t, y), t \in [0, T ), y \in [0, 1],(4.15)

u(T, x, y) = (x - K)+, x \in \BbbR +, y \in [0, 1],(4.16)

lim
x\downarrow 0

u(t, x, y) = 0, t \in [0, T ), y \in [0, 1].(4.17)

Proof. It is clear that u satisfies the boundary conditions (4.15), (4.16), and (4.17). To
verify (4.14), take a point (t, x, y) \in \widehat \scrC (so that x < x\ast (t, y)) and a rectangular cuboid \scrR =
(t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x})\times (x\mathrm{m}\mathrm{i}\mathrm{n}, x\mathrm{m}\mathrm{a}\mathrm{x})\times (y\mathrm{m}\mathrm{i}\mathrm{n}, y\mathrm{m}\mathrm{a}\mathrm{x}), with (t, x, y) \in \scrR \subset \widehat \scrC . Let \partial \scrR denote the boundary
of this region, and let \partial 0\scrR := \partial \scrR \setminus (\{ t\mathrm{m}\mathrm{i}\mathrm{n}\} \times (x\mathrm{m}\mathrm{i}\mathrm{n}, x\mathrm{m}\mathrm{a}\mathrm{x})\times (y\mathrm{m}\mathrm{i}\mathrm{n}, y\mathrm{m}\mathrm{a}\mathrm{x})) denote the so-called
parabolic boundary of \scrR . Consider the terminal-boundary value problem

(4.18) \scrL f = 0 in \scrR , f = u on \partial 0\scrR .

Classical theory for parabolic PDEs (for instance, Friedman [24, Chapter 3]) guarantees the
existence of a unique solution to (4.18), with all derivatives appearing in \scrL being continuous.
We wish to show that f and u agree on \scrR .

With (t, x, y) \in \scrR given, define the stopping time \tau \in \widehat \scrT 0,t\mathrm{m}\mathrm{a}\mathrm{x} - t by

\tau := inf\{ \rho \in [0, t\mathrm{m}\mathrm{a}\mathrm{x}  - t) : (t+ \rho , xGy
\rho ,
\widehat Y y
\rho ) \in \partial 0\scrR \} \wedge (t\mathrm{m}\mathrm{a}\mathrm{x}  - t),

where the process Gy is defined in (4.4), and define the process N by

N\rho := e - r\rho f(t+ \rho , xGy
\rho , \widehat Y y

\rho ), 0 \leq \rho \leq t\mathrm{m}\mathrm{a}\mathrm{x}  - t.

The stopped process (N\rho \wedge \tau )0\leq \rho \leq t\mathrm{m}\mathrm{a}\mathrm{x} - t is a (\BbbP , \widehat \BbbF )-martingale by virtue of the It\^o formula and
the system (4.18) satisfied by f , and therefore

(4.19) f(t, x, y) = Nt = \BbbE [N\tau ] = \BbbE [e - r\tau u(t+ \tau , xGy
\tau ,
\widehat Y y
\tau )],

where we have used the boundary condition in (4.18) to obtain the last equality.
Since \scrR \subset \widehat \scrC , (t+ \tau , xGy

\tau , \widehat Y y
\tau ) \in \widehat \scrC , so \tau must satisfy

\tau \leq \tau \ast (t, x, y) := inf\{ \rho \in [0, T  - t) : u(t+ \rho , xGy
\rho , \widehat Y y

\rho ) = (xGy
\rho  - K)+\} \wedge (T  - t).

In other words, \tau must be less than or equal to the smallest optimal stopping time \tau \ast (t, x, y)
for the starting state (t, x, y). Now, the stopped process

e - r(\rho \wedge \tau \ast (t,x,y))u
\Bigl( 
t+ (\rho \wedge \tau \ast (t, x, y)), xGy

\rho \wedge \tau \ast (t,x,y),
\widehat Y y
\rho \wedge \tau \ast (t,x,y)

\Bigr) 
, 0 \leq \rho \leq T  - t,

is a martingale, so this and the optional sampling theorem yield that

(4.20) \BbbE 
\Bigl[ 
e - r\tau u(t+ \tau , xGy

\tau , \widehat Y y
\tau )
\Bigr] 
= u(t, x, y).
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Then (4.19) and (4.20) show that f and u agree on \scrR (and hence also on \widehat \scrC since \scrR \subset \widehat \scrC and
(t, x, y) \in \scrR were arbitrary). Thus, u satisfies (4.14).

Finally, to show uniqueness, let g defined on the closure of \widehat \scrC be a solution to the system
(4.14)--(4.17). For starting state (0, x, y) such that x < x\ast (0, y) define

Lt := e - rtg(t, xGy
t ,
\widehat Y y
t ), t \in [0, T ],

as well as the optimal stopping time for u(0, x, y), given by

\tau \ast (x, y) := inf\{ t \in [0, T ) : xGy
t \geq x\ast (t, \widehat Y y

t )\} \wedge T.

The It\^o formula yields that (Lt\wedge \tau \ast (x,y))t\in [0,T ] is a martingale. Then optional sampling, along
with the fact that \tau \ast (x, y) attains the supremum in (4.3) starting at time zero, yields that

g(0, x, y) = L0 = \BbbE [L\tau \ast (x,y)]

= \BbbE 
\Bigl[ 
e - r\tau \ast (x,y)g(\tau \ast (x, y), xGy

\tau \ast (x,y),
\widehat Y y
\tau \ast (x,y))

\Bigr] 
= \BbbE 

\Bigl[ 
e - r\tau \ast (x,y)(xGy

\tau \ast (x,y)  - K)+
\Bigr] 

= u(0, x, y),

so that the solution is unique.

4.3. Partial information smooth fit condition. We establish, in Theorem 4.7 below, a
smooth pasting property for the partial information value function. This is a natural property
one might expect to hold but to the best of our knowledge has not been established before
in a diffusion model such as our partial information model. In stochastic volatility models,
Touzi [46] has used variational inequality techniques to show the smooth pasting property. It
may be that this method could be adapted to our setting.

We shall employ a method more akin to the classical proof of smooth fit in American
option problems, in a similar spirit to Karatzas and Shreve [31, Lemma 2.7.8] (for the case
of the Black--Scholes put) or Monoyios and Ng [40, Theorem 3.4] (in a model with inside
information). The proof of Theorem 4.7 is simplified by using the measure \BbbP \ast \sim \BbbP defined in
(4.7). Because the proof involves analyzing the first time the stock almost surely breaches a
surface, and as we are working in the observation filtration, any early exercise crossing point
must ultimately depend only on the stock price path, so moving to a measure where X has
constant drift (equal to \mu 0 under \BbbP \ast , recall the SDE (4.8)) simplifies matters.

Put explicitly, any optimal early exercise time will be the first time t \in [0, T ) that we
have Xt \geq x\ast (t, \widehat Yt). In this relation, the process \widehat Y depends on the history of the stock price,
through the history-dependence of the process \Phi \equiv \widehat Y /(1  - \widehat Y ) in (4.10) (see also (4.30) in
section 4.5, where we make explicit the dependence of \Phi on the history of the stock price), so
the early exercise crossing point is indeed dependent only on the stock price (albeit in a path-
dependent manner), and this makes our method of proof work. This in turn can ultimately
be traced to the fact that, under the observation filtration, both the stock X and the filtered
change point process \widehat Y are driven by the same one-dimensional Brownian motion. Put yet
another way, the full information incomplete model with an observed but unhedgeable change
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1039

point has been rendered into a complete model with two diffusion processes driven by one
Brownian motion. This is a not uncommon feature in filtering models. The price one pays for
this induced market completeness is that the second factor \widehat Y depends on the entire history of
the stock price, also a not uncommon feature of models with filtering---this is the ``learning""
aspect of filtering coming to the fore.

Theorem 4.7 (smooth pasting: partial information value function). The partial information
value function defined in (4.1) satisfies the smooth pasting property

\partial u

\partial x
(t, x\ast (t, y), y) = 1, t \in [0, T ), y \in [0, 1],

at the optimal exercise threshold x\ast (t, y).

Proof. In this proof it entails no loss of generality if we set r = 0 and t = 0, but this
considerably simplifies notation, so let us proceed in this way. Write u(x, y) \equiv u(0, x, y) and
x\ast (y) \equiv x\ast (0, y) for brevity.

The map x \rightarrow u(x, y) is convex and nondecreasing, so we have ux(x, y) \leq 1 in the con-
tinuation region \widehat \scrC = \{ (x, y) \in \BbbR + \times [0, 1] : x < x\ast (y)\} , and thus ux(x

\ast (y) - , y) \leq 1. We also
have ux(x, y) = 1 in the stopping region \widehat \scrS = \{ (x, y) \in \BbbR + \times [0, 1] : x \geq x\ast (y)\} , and thus
ux(x

\ast (y)+, y) = 1. Hence, the proof will be complete if we can show that ux(x
\ast (y) - , y) \geq 1.

Recall the measure \BbbP \ast defined in (4.7) and the (\BbbP \ast , \widehat \BbbF )-dynamics of the stock in (4.8). Given
X0 = x, the stock price at time t \in [0, T ] is

Xt = xGt := x exp

\biggl( \biggl( 
\mu 0  - 

1

2
\sigma 2

\biggr) 
t+ \sigma W \ast 

t

\biggr) 
, t \in [0, T ].

For (x, y) \in \BbbR + \times (0, 1), denote by \tau (x, y) the optimal \widehat \BbbF -stopping time for u(x, y), given by
the first time the stock breaches the exercise surface at the prevailing value of \widehat Y . Working
under \BbbP \ast , we thus have

\tau (x, y) = inf\{ t \in [0, T ) : xGt \geq x\ast (t, \widehat Y y
t )\} \wedge T,

where \widehat Y y denotes the filtered change point process with initial condition Y0 = y.
Set x = x\ast (y) \geq K, which will be fixed for the remainder of the proof, and define

\tau (x - \epsilon , y) := inf\{ t \in [0, T ) : (x - \epsilon )Gt \geq x\} \wedge T

for \epsilon \geq 0, and the dependence on y on the right-hand side is of course suppressed in x \equiv x\ast (y).
We have \tau (x, y) \equiv 0 and that \tau (x - \epsilon , y) is nondecreasing in \epsilon . Moreover, because the exercise
surface is nonincreasing in time and in y, we have

(4.21) \tau (x - \epsilon , y) \leq inf\{ t \in [0, T ) : (x - \epsilon )Gt \geq x\} \wedge T.

The Law of the Iterated Logarithm for the Brownian motion W \ast (Karatzas and Shreve [30,
Theorem 2.9.23]) implies that

sup
0\leq t\leq a

Gt > 1, \BbbP \ast -almost surelyD
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1040 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

for every a > 0, so there will exist a sufficiently small \epsilon > 0 such that

sup
0\leq t\leq a

(x - \epsilon )Gy
t \geq x, \BbbP \ast -almost surely

for every a > 0. Thus, the right-hand side of (4.21) tends to zero as \epsilon \downarrow 0, and therefore
\tau (x - \epsilon , y) \downarrow 0 as \epsilon \downarrow 0, \BbbP \ast -almost surely and, since \BbbP \ast \sim \BbbP , this is also true \BbbP -almost surely:

(4.22) \tau (x - \epsilon , y) \downarrow 0 as \epsilon \downarrow 0, \BbbP -almost surely.

Using the fact that \tau (x  - \epsilon , y) will be suboptimal for the starting state (X0, \widehat Y0) = (x, y), we
have

u(x, y) - u(x - \epsilon , y)(4.23)

\geq \BbbE 
\bigl[ \bigl( 
(xG\tau (x - \epsilon ,y)  - K)+  - ((x - \epsilon )G\tau (x - \epsilon ,y)  - K)+

\bigr) \bigr] 
\geq \BbbE 

\Bigl[ \bigl( 
(xG\tau (x - \epsilon ,y)  - K)+  - ((x - \epsilon )G\tau (x - \epsilon ,y)  - K)+

\bigr) 
1\{ (x - \epsilon )G\tau (x - \epsilon ,y)\geq K\} 

\Bigr] 
= \epsilon \BbbE 

\Bigl[ 
G\tau (x - \epsilon ,y)1\{ (x - \epsilon )G\tau (x - \epsilon ,y)\geq K\} 

\Bigr] 
.

We now take the limit as \epsilon \downarrow 0. Using (4.22) we almost surely have lim\epsilon \downarrow 0G\tau (x - \epsilon ,y) = 1 and,
since it is never optimal to exercise below the strike, lim\epsilon \downarrow 0 1\{ (x - \epsilon )G\tau (x - \epsilon ,y)\geq K\} = 1. Using

these properties, along with the uniform integrability of (Gt)t\in [0,T ], in (4.23), we compute

ux(x - , y) = lim
\epsilon \downarrow 0

1

\epsilon 
(u(x, y) - u(x - \epsilon , y)) \geq 1,

which completes the proof.

4.4. Doob--Meyer decomposition of partial information Snell envelope. As was done in
the full information case, with the free boundary PDE and smooth pasting condition estab-
lished for the partial information value function, we can now derive a Doob--Meyer decompo-
sition for the partial information Snell envelope of the reward process, and this allows us to
prove Lemma 4.5 on the left-limiting value of the partial information exercise surface as we
approach maturity.

Recall that the partial information Snell envelope is the c\`adl\`ag supermartingale identified
with the discounted ESO value process (e - rtUt)t\in [0,T ], with Ut = u(t,Xt, \widehat Yt).

Lemma 4.8 (Doob--Meyer decomposition of partial information Snell envelope). The process
(e - rtu(t,Xt, \widehat Yt))t\in [0,T ] admits the decomposition

(4.24) e - rtu(t,Xt, \widehat Yt) = u(0, X0, \widehat Y0) +Mt  - At, t \in [0, T ],

where

Mt :=

\int t

0
e - rs

\Bigl( 
\sigma Xsux(s,Xs, \widehat Ys) - \eta \widehat Ys(1 - \widehat Ys)uy(s,Xs, \widehat Ys)\Bigr) d\widehat Ws, t \in [0, T ],D
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is a (\BbbP , \widehat \BbbF )-martingale, and

At :=

\int t

0
e - rs

\Bigl( 
(r  - \mu 0 + \sigma \eta \widehat Ys)Xs  - rK

\Bigr) 
1\{ Xs\geq x\ast (s,\widehat Ys)\} ds, t \in [0, T ],

is a nondecreasing finite variation process.

Proof. The proof is similar to the corresponding proof of Theorem 3.7 in the full infor-
mation scenario, so we shall be more brief here. Using the generalized It\^o formula for convex
functions, the PDE (4.14) satisfied by u(\cdot , \cdot , \cdot ) in the continuation region \widehat \scrC , and the fact that
u(t, x, y) = x  - K in the stopping region, we obtain the decomposition (4.24). The square-
integrability of the stock price and bounded nature of the derivatives ux, uy in M imply that
M is indeed a martingale. Since the Snell envelope is a supermartingale with a unique Doob--
Meyer decomposition into a martingale minus a nondecreasing process of finite variation, we
conclude that A is a nondecreasing process.

Some observations on the parameter values for which we obtain a bounded exercise surface
are in order. With \mu (\widehat Y ) \equiv \mu 0 - \sigma \eta \widehat Y the partial information stock price drift, the nondecreasing
property of the process A in Lemma 4.8 means that we have ((r - \mu (\widehat Yt))Xt - rK)1\{ Xt\geq x\ast (t,\widehat Yt)\} 
\geq 0 almost surely for all t \in [0, T ], and hence we also have (r  - \mu (\widehat Yt))x\ast (t, \widehat Yt) - rK \geq 0. Now,
suppose we have \mu ( \widehat Yt) \geq r almost surely for all t \in [0, T ]. We then compute that x\ast (t, \widehat Yt) \leq 
 - (r/(\mu (\widehat Yt) - r))K, which is impossible, since the exercise surface cannot lie below the strike.
We conclude that when the stock drift exceeds the interest rate, the finite variation process in
the Doob--Meyer decomposition will be zero, and the ESO value process is a martingale. This
is of course exactly in line with Remark 4.1, that early exercise will not occur if the stock drift
dominates the interest rate, in which case the ESO value process is a martingale and equal to
the European version of the ESO.

We are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. From the nondecreasing property of the process A in Lemma 4.8 we
have ((r - \mu (\widehat Yt))Xt  - rK)1\{ Xt\geq x\ast (t,\widehat Yt)\} \geq 0 almost surely for all t \in [0, T ], and hence we also

have (r  - \mu (\widehat Yt))x\ast (t, \widehat Yt) - rK \geq 0.
Suppose that \mu (\widehat Yt) < r. In this case, we conclude that x\ast (t, \widehat Yt) \geq (r/(r  - \mu (\widehat Yt)))K.

From the fact that the exercise surface is nonincreasing in time, we conclude that we have the
terminal left-limit lower bound

x\ast i (T - , y) \geq 
\biggl( 

r

r  - \mu 0 + \sigma \eta y

\biggr) 
K

for all values of y \in [0, 1] satisfying \mu 0  - \sigma \eta y < r. There are now two cases to consider
separately, which lead to a refinement of this lower bound:

\bullet for 0 \leq \mu 0  - \sigma \eta y < r, we obtain x\ast (T - , y) \geq (r/(r  - \mu 0 + \sigma \eta y))K \geq K;
\bullet for \mu 0  - \sigma \eta y \leq 0 < r, because it is never optimal to exercise below the strike, we have

x\ast (T - , y) \geq K > (r/(r  - \mu 0 + \sigma \eta y))K.
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1042 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

We thus have, in all cases, the refined lower bound

x\ast (T - , y) \geq max

\biggl( 
K,

\biggl( 
r

r  - \mu 0 + \sigma \eta y

\biggr) 
K

\biggr) 
, \mu 0  - \sigma \eta y < r.

We now show that in fact we have equality here, thus establishing (4.13). Suppose, to the
contrary, that we have x\ast (T - , y) > max (K, (r/(r  - \mu 0 + \sigma \eta y))K). Fixing y \in [0, 1], consider
a value x \in (max (K, (r/(r  - \mu 0 + \sigma \eta y))K) , x\ast (T - , y)). Then, for 0 \leq t < T , we have
(t, x, y) \in \widehat \scrC , so that u(t, x, y) > (x - K)+ = x - K. Using temporal continuity of u(\cdot , \cdot , \cdot ), we
thus obtain u(T, x, y) = limt\uparrow T u(t, x, y) > x  - K. But, on the other hand, we know that at
maturity we have u(T, x, y) = (x  - K)+ = x  - K, so we have a contradiction. Thus, (4.13)
holds.

4.5. A comment on a change of state variable. In this section, we illustrate the inherent
complexity of the partial information case, due to its path-dependent structure. Consider the
partial information problem (2.10). We shall change measure to \BbbP \ast defined in (4.7), and this
naturally leads to a change of state variable from (X, \widehat Y ) to (X,\Phi ), with \Phi defined in (4.6).
This leads to the following lemma.

Lemma 4.9. Let \Phi be the likelihood ratio process defined in (4.6). The partial information
ESO value process U in (2.10) satisfies

(4.25) e - (r+\lambda )t(1 + \Phi t)Ut = ess sup
\tau \in \widehat \scrT t,T \BbbE \ast 

\Bigl[ 
e - (r+\lambda )\tau (1 + \Phi \tau )(X\tau  - K)+| \widehat \scrF t

\Bigr] 
, t \in [0, T ],

where \BbbE \ast [\cdot ] denotes expectation with respect to \BbbP \ast in (4.7), and the (\BbbP \ast , \widehat \BbbF )-dynamics of X,\Phi 
are given in (4.8) and (4.9).

Proof. Let Z denote the change of measure martingale defined by

(4.26) Zt :=
1

\Gamma t
=

d\BbbP 
d\BbbP \ast 

\bigm| \bigm| \bigm| \bigm| \widehat \scrF t

= \scrE ( - \eta \widehat Y \cdot W \ast )t, t \in [0, T ],

satisfying

(4.27) dZt =  - \eta \widehat YtZt dW
\ast 
t , Z0 = 1.

The It\^o formula along with the dynamics of \Phi in (4.9) yields that Z is given in terms of \Phi as

(4.28) Zt = e - \lambda t

\biggl( 
1 + \Phi t

1 + \Phi 0

\biggr) 
, t \in [0, T ],

because the right-hand side of (4.28) satisfies the SDE (4.27). Then an application of the
Bayes formula to the definition of U in (2.10) yields the result.

The point of (4.25) is that the state variables in the objective function have decoupled
dynamics under \BbbP \ast (recall (4.8) and (4.9)). However, the problematic feature of the his-
tory dependence of \Phi remains, as exhibited in (4.10), inheriting this feature from the filtered
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change-point process \widehat Y . Indeed, using the solution of the stock price SDE (4.8), the repre-
sentation (4.10) may be converted to one involving the stock price and its history, as follows.

With X0 = x, from (4.8) we have Xt = x exp
\bigl( \bigl( 
\mu 0  - 1

2\sigma 
2
\bigr) 
t+ \sigma W \ast 

t

\bigr) 
, t \geq 0, so that

exp(\sigma W \ast 
t ) =

\biggl( 
Xt

x

\biggr) 
exp

\biggl( 
\mu 0  - 

1

2
\sigma 2

\biggr) 
t, t \geq 0.

Using this relation to compute the process \Lambda = \scrE ( - \eta W \ast ) we get

(4.29) \Lambda t = exp

\biggl( 
 - \eta W \ast 

t  - 1

2
\eta 2t

\biggr) 
=

\biggl( 
Xt

x

\biggr)  - \eta /\sigma 

exp

\biggl( 
\eta \nu 0  - 

1

2
\eta 2
\biggr) 
t, t \geq 0,

where

\nu 0 :=
\mu 0

\sigma 
 - 1

2
\sigma .

Then, with \Phi 0 = \phi , substituting (4.29) into (4.10), we obtain

(4.30) \Phi t(\phi ) = \phi e\kappa t
\biggl( 
Xt

x

\biggr)  - \eta /\sigma 

+ \lambda 

\int t

0
e\kappa (t - s)

\biggl( 
Xt

Xs

\biggr)  - \eta /\sigma 

ds, t \in [0, T ],

where \kappa is a constant given by

\kappa := \lambda + \eta \nu 0  - 
1

2
\eta 2.

The second term on the right-hand side of (4.30) is the awkward history-dependent term which
makes numerical solution of the partial information ESO problem difficult. For \lambda = 0, we see
that \Phi becomes a deterministic function of the current stock price, and this limit corresponds
to a simpler model in which an unknown drift is assumed to take one of two values, but the
agent is unsure which value pertains in reality, and so filtering is used to estimate the drift.
A number of papers have used such a model and exploited the absence of path-dependence to
reduce the dimension of the problem (see D\'ecamps, Mariotti, and Villeneuve [14, 15], Klein
[32], and Ekstr\"om and coauthors [19, 18, 20]). This simplification is not available to us, so
the partial information problem is potentially more challenging to solve numerically.

5. On the effect of a vesting period on ESO exercise. ESOs often include a contractual
feature called a vesting period, a period of time during which option exercise is not permitted.
In this section, we briefly describe the effect of a vesting period on the exercise of ESOs in
the full and partial information models. In section 7 we shall also demonstrate the impact of
vesting on the ESO value.

Suppose there is a vesting period [0, tv), so that the ESO can only be exercised in the
time interval [tv, T ]. Then we seek optimal stopping times, with respect to the appropriate
filtration, lying in the exercise interval [tv, T ]. Thus, for 0 \leq t < tv, the discounted full
information ESO value process is

(5.1) e - rt \v Vt = ess sup
\tau \in \scrT tv,T

\BbbE [R\tau | \scrF t], t \in [0, tv),D
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while for t \in [tv, T ], the vesting period is over, and we have reverted back to our original
problem without a vesting period with value process (Vt)t\in [tv ,T ], given by

(5.2) e - rtVt = ess sup
\tau \in \scrT t,T

\BbbE [R\tau | \scrF t], t \in [tv, T ].

Note that \v Vt \leq Vt for t < tv (the value with vesting is clearly dominated by the one without
vesting, due to the extra exercise opportunities).

Similarly, for t \in [0, tv), the discounted partial information value process is

e - rt \v Ut = ess sup
\tau \in \widehat \scrT tv,T \BbbE [R\tau | \widehat \scrF t], t \in [0, tv),

satisfying \v Ut \leq Ut for t < tv, while for t \in [tv, T ] we are back to our original problem without
a vesting period:

e - rtUt = ess sup
\tau \in \widehat \scrT t,T \BbbE [R\tau | \widehat \scrF t], t \in [tv, T ].

The key overall idea is well expressed by Leung and Sircar [36, section 5.1.1], as follows:
``When a vesting period of tv years is imposed, the employee cannot exercise the ESO during
[0, tv), but the post-vesting exercising strategy will be unaffected.""

In what follows, we examine the situation where we have y0 = 0, \mu 0 > r, \mu 1 < r. Thus, for
the full information problem, no exercise will occur before the strictly positive change point
\theta \sim Exp(\lambda ), as the reward process (Rt)0,\theta over the time interval up to the change point is a
submartingale.

5.1. The full information case. First, consider the case that the change point occurs after
the vesting period has elapsed, that is, \theta \geq tv. For t < tv, no exercise can occur, and at t = tv
we revert back to our original problem, the vesting period having elapsed. The postvesting
exercise strategy will then be as in the no-vesting case.

Next, consider the case \theta < tv, that is, the change point occurs during the vesting period.
For t \in [0, tv) there is no exercise as we are still in the vesting period. At t = tv, we are
now in the low-drift state, so the stock is a geometric Brownian motion with drift \mu 1 < r.
There will now be an exercise boundary (x\ast 1(t))tv\leq t\leq T . If Xtv \geq x\ast 1(tv), then we are in the
exercise region as soon as the vesting period has elapsed, and immediate exercise occurs at
t = tv. If, on the other hand, Xtv < x\ast 1(tv), then there is no immediate exercise at tv,
and exercise occurs the first time that the stock breaches the boundary from below, at time
\=\tau = inf\{ t \in [tv, T ) : Xt \geq x\ast 1(t)\} \wedge T .

Thus, the overall conclusion is that the exercise boundary is infinite over [0, tv), regardless
of when the change point occurs. If the change point has occurred by time tv, then immediate
exercise occurs at time tv if the prevailing stock price at tv is higher than or equal to the
exercise boundary x\ast 1(tv) at that point. If the change point has not occurred by time tv, we
are back to our original problem over the interval [tv, T ].

5.2. The partial information case. Regardless of when the change point occurs, if we are
in the vesting period [0, tv), no exercise can occur, so the partially informed agent's exercise
surface is infinite.
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At t = tv we revert back to our original problem, the vesting period having elapsed. Again,
this is regardless of whether the change point has occurred or not (the partially informed agent
is not aware of the change point having occurred or not and is therefore filtering it from stock
price observations). We now have an optimal exercise surface (x\ast (t, y))tv\leq t\leq T,0\leq y\leq 1, and
exercise occurs the first time that the stock breaches the exercise surface evaluated at the
prevailing value of \widehat Y , that is, at \tau \ast = inf\{ t \in [tv, T ) : Xt \geq x\ast (t, \widehat Yt)\} \wedge T .

In other words, the postvesting exercise strategy will then be as in the no-vesting case,
with the prevesting boundary set to infinity.

6. Numerical scheme and convergence tests. In this section, we describe numerical
schemes for the PDEs in the full and partial information case and present numerical studies to
illustrate the convergence and computational complexity. We present our novel algorithm for
the two-dimensional, degenerate free boundary value problem in the partial information case
in some detail and analyze its convergence properties, while we only state the simple scheme
for the full information case. Note that alternative numerical methods could be employed, for
example, a binomial scheme (nonrecombining for the partial information case) or a Longstaff--
Schwartz Monte Carlo approach. However, the finite difference schemes we propose are far
superior in terms of speed and accuracy.

6.1. The partial information case. We begin by noting that the partial information ESO
value function u(\cdot , \cdot , \cdot ) satisfying (4.14)--(4.17) is also the unique solution in [0, T ]\times \BbbR +\times [0, 1]
of the equivalent linear complementarity problem

min
\bigl( 
 - \scrL u(t, x, y), u - (x - K)+

\bigr) 
= 0, t \in [0, T ), x \in \BbbR +, y \in [0, 1],(6.1)

u(T, x, y) = (x - K)+, x \in \BbbR +, y \in [0, 1],(6.2)

where we repeat for convenience that

(6.3) \scrL =
\partial 

\partial t
+ \scrL 

X,\widehat Y  - r

with

\scrL 
X,\widehat Y f(t, x, y) = (\mu 0  - \sigma \eta y)xfx +

1

2
\sigma 2x2fxx + \lambda (1 - y)fy +

1

2
\eta 2y2(1 - y)2fyy  - \sigma \eta xy(1 - y)fxy

for any sufficiently smooth function f : [0, T ]\times \BbbR + \times [0, 1].
The degeneracy of the equation requires the notion of viscosity solutions for a rigorous

analysis. A general framework of so-called monotone schemes for the approximation of viscos-
ity solutions to nonlinear PDEs was first introduced and analyzed in Barles and Souganidis
[3]. It is well documented in the literature that the monotone approximation of degenerate
diffusion problems in multiple dimensions generally requires complicated, so-called wide sten-
cil schemes (see, for example, Debrabant and Jakobsen [13] and Ma and Forsyth [38]). The
analysis in Reisinger [42] demonstrates clearly that the construction becomes more difficult
when the correlation approaches \pm 1, the above case being such a singular limit of perfect
negative correlation between the driver of X and Y . Moreover, all schemes known to us which
are monotone for general, possibly degenerate multidimensional equations have convergence
order no larger than 1 in the mesh size and time step.
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1046 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

Initial numerical experiments with standard, nonmonotone finite difference schemes for
the above PDE, in particular the 7-point and 9-point stencils for the diffusion term, exhibited
severe instabilities for small mesh sizes.

In the following construction, we take advantage of a problem-specific coordinate trans-
formation which allows us to define a monotone, second order accurate approximation to
the second order terms. This will be supplemented with either monotone and first order, or
nonmonotone and second order, backward differentiation formulae (BDF) for the first order
derivative terms.

The second order version of the method is not theoretically guaranteed to converge to the
viscosity solution in the degenerate case; however, recent results in Bokanowski and Debrabant
[5] and Bokanowski, Picarelli, and Reisinger [6] show stability of BDF schemes in more regular
cases, and we will demonstrate excellent empirical properties of the scheme below.

6.1.1. Mesh construction and diffusion approximation. We begin by simultaneously
constructing a computational domain [K2/x\mathrm{m}\mathrm{a}\mathrm{x}, x\mathrm{m}\mathrm{a}\mathrm{x}] \times [y\mathrm{m}\mathrm{i}\mathrm{n}, 1  - y\mathrm{m}\mathrm{i}\mathrm{n}] \subset \BbbR + \times (0, 1) and a
nonuniform tensor-product mesh on that domain, where x\mathrm{m}\mathrm{a}\mathrm{x} and y\mathrm{m}\mathrm{i}\mathrm{n} will be chosen so as
to make negligible the impact that imposing approximate data at the boundary has on the
quantities of interest.

We first fix x\mathrm{m}\mathrm{a}\mathrm{x} and a positive integer N to define the x-coordinates of the mesh nodes
by

xi = K exp(\sigma (i - N/2)h), 0 \leq i \leq N,(6.4)

so that xN/2 = K for even N and h is chosen such that xN = x\mathrm{m}\mathrm{a}\mathrm{x}. This nonuniform mesh
is motivated by the observation that the log transform X \rightarrow logX/\sigma leads to a standard
Brownian motion with stochastic drift, i.e., satisfying the SDE

d

\biggl( 
1

\sigma 
logXt

\biggr) 
= d\widehat Wt +

\biggl( 
1

\sigma 

\Bigl( 
\mu 0  - \sigma \eta \widehat Yt\Bigr)  - 1

2
\sigma 

\biggr) 
dt,(6.5)

and turns the differential operator \scrL 
X,\widehat Y into one with constant coefficients in x.

By a similar application of It\^o's formula, one can further derive that, for \^Y \not = 0 or 1,

d

\Biggl( 
1

\eta 
log

\Biggl( \widehat Yt
1 - \widehat Yt

\Biggr) \Biggr) 
=  - d\widehat Wt +

\biggl( 
1

2
\eta (2\widehat Yt  - 1) + \lambda 

1

\eta \widehat Yt
\biggr) 

dt.(6.6)

Inverting the map on the left-hand side, we define a mesh for the y-coordinate by

yj =
exp(\eta (j  - L/2)h)

1 + exp(\eta (j  - L/2)h)
, 0 \leq j \leq L,(6.7)

where L is chosen such that y0 = y\mathrm{m}\mathrm{i}\mathrm{n} (and hence yL = 1  - y\mathrm{m}\mathrm{i}\mathrm{n}), a sufficiently small value,
and centered at yL/2 = 1/2 for even L.

The purpose of these transformations is to fix the principal component of the diffusion
matrix to ( - 1, 1) and facilitate the construction of a monotone, second order, narrow (i.e.,
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1047

using only neighboring mesh points) scheme. More concretely, combining the identities above,
we obtain the following by simple Taylor expansion for smooth f :

(D2f)(t, xi, yj) :=
f(t, xi - 1, yj+1) - 2f(t, xi, yj) + f(t, xi+1, yj - 1)

h2
(6.8)

=
1

2
\sigma 2x2i fxx +

1

2
\eta 2y2j (1 - yj)

2fyy  - \sigma \eta xiyj(1 - yj)fxy

+
1

2
\sigma 2xifx +

1

2
\eta 2yj(1 - yj)(1 - 2yj)fy +O(h2),

where the derivatives on the right-hand side are evaluated at (t, xi, yj).
The important feature of (6.8) is that the second-order part of the operator is approximated

up to order two in h by a one-dimensional finite difference in a diagonal direction, plus some
first order terms.

6.1.2. Drift approximation. We define the drift coefficients in (6.5) and (6.6) by

\mu x(t, x, y) :=
1

\sigma 
(\mu 0  - \sigma \eta y) - 1

2
\sigma , \mu y(t, x, y) :=

\lambda 

\eta 

1

y
 - 1

2
\eta (1 - 2y)

(with the subscripts on \mu x and \mu y not denoting partial derivatives). These are precisely the

the drifts of X and \widehat Y minus the ``correction terms"" from (6.8) which have to be subtracted
from D2 for a consistent discretization of the second order terms in the PDE.

We approximate the first derivative in x, with coefficient \mu x, by an ``upwinding"" approxi-
mation

(\mu xDxf)(t, xi, yj) = (\mu x(t, xi, yj))
+ (D+

x f)(t, xi, yj) + (\mu x(t, xi, yj))
 - (D - 

x f)(t, xi, yj),

where (\cdot )\pm denotes the positive and negative part, respectively, and D\pm 
x is either the one-sided

first order BDF1 approximation defined by

(D
\pm 
x f)(t, xi, yj) := \mp f(t, xi, yj) - f(t, xi\pm 1, yj)

h
= \sigma xfx(t, xi, yj) +O(h),

or the one-sided second order BDF2 approximation

( \widehat D\pm 
x f)(t, xi, yj) := \mp 3f(t, xi, yj) - 4f(t, xi\pm 1, yj) + f(t, xi\pm 2, yj)

2h
= \sigma xfx(t, xi, yj) +O(h2).

Two approximations to the first y-derivative are defined analogously.

6.1.3. Timestepping and overall scheme. Combining the approximations above, for all
points (t, xi, yj) where f is smooth we have

Lf := D2f + \mu xDxf + \mu yDyf = \scrL 
X,\widehat Y f +O(h),\widehat Lf := D2f + \mu x

\widehat Dxf + \mu y
\widehat Dyf = \scrL 

X,\widehat Y f +O(h2).

For the time discretization, we follow Forsyth and Vetzal [23] and Reisinger and Whitley
[44] to define a nonuniform time mesh of M +1 points tm = T  - (

\surd 
T  - mk)2, m = 0, . . . ,M ,
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1048 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

for k =
\surd 
T/M . This transformation is motivated by the square-root behavior of both the

exercise boundary and the value function at the strike close to maturity. The limited regularity
prevents second order convergence of uniform timestepping schemes (see Forsyth and Vetzal
[23]).

Taking into account this time transformation, we introduce either the BDF1 scheme (im-
plicit Euler scheme)

f(tm+1, xi, yj) - f(tm, xi, yj)

k
+ 2mk(Lf  - rf)(tm, xi, yj)

=

\biggl( 
\partial 

\partial t
+ \scrL 

X,\widehat Y  - r

\biggr) 
f(tm, xi, yj) +O(k) +O(h),

where L uses the BDF1 scheme for the drift also, or the BDF2 scheme

 - f(tm+2, xi, yj) + 4f(tm+1, xi, yj) - 3f(tm, xi, yj)

2k
+ 2mk(\widehat Lf  - rf)(tm, xi, yj)

=

\biggl( 
\partial 

\partial t
+ \scrL 

X,\widehat Y  - r

\biggr) 
f(tm, xi, yj) +O(k2) +O(h2),

where \widehat L uses the BDF2 scheme for the drift. The finite difference approximations are therefore
consistent with \scrL in (6.3) of order 1 and 2, respectively.

We can hence define a scheme for the numerical approximation Um = (Um
i,j)i,j to the ESO

value function u in the partial information case in the interior of the mesh by

min

\Biggl( 
Um
i,j  - Um+1

i,j

k
 - 2mk

\bigl( 
(L - rI)Um

\bigr) 
i,j

, Um
i,j  - max(xi  - K, 0)

\Biggr) 
= 0,(6.9)

0 \leq m < M, 0 < i < N, 0 < j < L,

in the case of BDF1, and similarly in the case of BDF2.
From the construction of L, the left-hand side of (6.9) is increasing in Um

i,j , and decreasing

in Um\prime 
i\prime ,j\prime for all (m\prime , i\prime , j\prime ) \not = (m, i, j), and therefore satisfies the definition of monotonicity in

Barles and Souganidis [3]. The monotonicity is violated for the BDF2 scheme due to the
alternating signs in the approximations to the first time and space derivatives. It is shown
in Bokanowski and Debrabant [5] that such schemes still have good stability properties for
American options under Black--Scholes. Although this analysis is not applicable here due to
the degeneracy of the diffusion operator, we observe no stability issues in the numerical tests.
We emphasize that the judicious choice of mesh and discretization of the second derivative
terms is crucial for the stability of the scheme, due again to the degeneracy.

Summarizing, we obtain the following properties of the schemes.

Proposition 6.1. The BDF1 scheme (6.9) is monotone and consistent with (6.1) in the
interior ( - K2/x2\mathrm{m}\mathrm{a}\mathrm{x}, x\mathrm{m}\mathrm{a}\mathrm{x}) \times (y\mathrm{m}\mathrm{i}\mathrm{n}, 1  - y\mathrm{m}\mathrm{i}\mathrm{n}) \times (0, T ), of first order in both h and k. The
BDF2 scheme is nonmonotone and consistent of second order in both h and k.

6.1.4. Boundary and terminal conditions. We have four spatial boundaries with different
characteristics as a result of the degeneracy of the drift and diffusion coefficients at some of the
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1049

boundaries. The appropriate approximation of the boundary conditions is therefore essential
for convergence to the correct solution of the initial boundary value problem. We discuss the
boundaries in some detail in turn.

For x = 0, we set

Um
0,j = 0, 0 \leq m < M, 0 \leq j \leq L.

For x = x\mathrm{m}\mathrm{a}\mathrm{x}, we set

Um
N,j = max(xN  - K,C(tm, xN , yj)), 0 \leq m < M, 0 < j < L,

where C(t, x, y) is the Black--Scholes price of a European call option at time t and for under-
lying asset price X0 = x, with constant interest rate r and dividend yield r  - (\mu 0  - \eta \sigma y),
volatility \sigma , strike K, and maturity T . For those y where we can choose x\mathrm{m}\mathrm{a}\mathrm{x} such that
x \star (T, y) \leq x\mathrm{m}\mathrm{a}\mathrm{x}, the assumed boundary value coincides with the value function exactly. Gen-
erally, if x \star (T, y) > x\mathrm{m}\mathrm{a}\mathrm{x} for some y, but with x\mathrm{m}\mathrm{a}\mathrm{x} several standard deviations away from K,
the approximation error in the region of interest will be small.

For y \rightarrow 0, we have

\scrL 
X,\widehat Y f \rightarrow \mu 0xfx +

1

2
\sigma 2x2fxx + \lambda fy,

which we approximate at (tm, xi, y0) = (tm, xi, y\mathrm{m}\mathrm{i}\mathrm{n}) for 0 < i < N by\Bigl( \mu 0

\sigma 
 - \sigma \eta y\mathrm{m}\mathrm{i}\mathrm{n}  - 

\sigma 

2

\Bigr) 
Dxf +

1

2
D2

xf +
\lambda 

\eta 

1

y\mathrm{m}\mathrm{i}\mathrm{n}
D+

y f,

where D2
xf(tm, xi, y\mathrm{m}\mathrm{i}\mathrm{n}) = (f(tm, xi+1, y\mathrm{m}\mathrm{i}\mathrm{n}) - 2f(tm, xi, y\mathrm{m}\mathrm{i}\mathrm{n}) + f(tm, xi - 1, y\mathrm{m}\mathrm{i}\mathrm{n}))/h

2. As the
coefficient of the first y-derivative is positive, a right-sided difference (i.e., using only points
in the interior of the domain) is appropriate and preserves monotonicity of the scheme.

For y \rightarrow 1, we have

\scrL 
X,\widehat Y f \rightarrow \mu 0xfx +

1

2
\sigma 2x2fxx,

which we approximate at (tm, xi, yL) = (tm, xi, 1 - y\mathrm{m}\mathrm{i}\mathrm{n}) for 0 < i < N by\Bigl( \mu 0

\sigma 
 - \sigma \eta y\mathrm{m}\mathrm{i}\mathrm{n}  - 

\sigma 

2

\Bigr) 
Dxf +

1

2
D2

xf,

using only boundary points.
As y\mathrm{m}\mathrm{i}\mathrm{n} \rightarrow 0, the above approximations are consistent with the equation at y = 0 and

y = 1, respectively. For fixed y\mathrm{m}\mathrm{i}\mathrm{n}, to compute the solution at time tm at a spatial point
(xi, y) \in \{ xi\} \times [0, y\mathrm{m}\mathrm{i}\mathrm{n}), i.e., outside the computational domain, we extrapolate linearly from
y0 = y\mathrm{m}\mathrm{i}\mathrm{n} by Um

i,0 + (y - y0)(U
m
i,1  - Um

i,0)/(y1  - y0). This is of second order accuracy in y\mathrm{m}\mathrm{i}\mathrm{n} as
the solution is smooth in this region. In particular, this is how the value in the regime Y = 0
is computed.

Lastly, the numerical terminal condition at t = T is

UM
i,j = max(xi  - K, 0), 0 \leq i \leq N, 0 \leq j \leq L.
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1050 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

6.1.5. Penalization and Newton iteration. We now consider the penalty approximation

V m+1
i,j  - V m

i,j

k
+ 2mk

\bigl( 
(L - rI)V m

\bigr) 
i,j

+ \rho max
\bigl( 
max(xi  - K, 0) - V m

i,j , 0
\bigr) 
= 0(6.10)

for a penalty parameter \rho > 0 in the case of BDF1, and similarly in the case of BDF2.
Defining P as the (N + 1) \times (L + 1) vector with Pi,j = max(xi  - K, 0) and D(V ) as the

((N +1)\times (L+1))2 diagonal matrix with D(i,j),(i,j)(V ) = 1 if Vi,j < Pi,j and 0 otherwise, this
can be rewritten as\bigl( 

(1 + rmk)I  - 2k(mk)L+ \rho kD(V m)
\bigr) 
V m = kV m+1 +D(V m)P.

The solution of this type of equation by semismooth Newton iterations is discussed in [23].
In the case of the BDF1 scheme,  - L is an M-matrix and hence (1 + rmk)I  - 2k(mk)L is a
strictly diagonally dominant M-matrix. This guarantees on the one hand convergence of the
solution of the penalized solution V = V (\rho ) of (6.10) to U from (6.9) as \rho \rightarrow \infty , and on the
other hand convergence of the Newton iteration in finitely many steps. In practice, we can
choose the penalty parameter very large (e.g., 1010) to make the difference between V and U
negligible, without a negative impact on other properties of the scheme.

We end by stating without detailed proof the convergence result for the first order scheme.

Proposition 6.2. The solution V of the penalized BDF1 scheme (6.10) converges to the
solution u of (6.1) uniformly on compact subsets of (0, T )\times (0,\infty )\times (0, 1) as k, h, y\mathrm{m}\mathrm{i}\mathrm{n} \rightarrow 0
and x\mathrm{m}\mathrm{a}\mathrm{x}, \rho \rightarrow \infty .

Below, we report the number of required Newton iterations, alongside the empirically
observed convergence order.

6.2. The full information case. We begin by observing that the full information ESO
value function v(t, x, i) \equiv vi(t, x), i = 0, 1, satisfying (3.18)--(3.22), is also the unique solution
in [0, T ]\times \BbbR + \times \{ 0, 1\} of the equivalent linear complementarity problem (LCP)

min
\bigl( 
 - \scrL 0v0(t, x) + \lambda (v0(t, x) - v1(t, x)) , v0  - (x - K)+

\bigr) 
= 0, x \in \BbbR +, t \in [0, T ),

min
\bigl( 
 - \scrL 1v1(t, x), v1  - (x - K)+

\bigr) 
= 0, x \in \BbbR +, t \in [0, T ),

vi(T, x) = (x - K)+, x \in \BbbR +, i = 0, 1,

where we repeat for convenience

\scrL if(t, x) =

\biggl( 
\partial 

\partial t
+ \mu ix

\partial 

\partial x
+

1

2
\sigma 2x2

\partial 2

\partial x2
 - r

\biggr) 
f(t, x), i = 0, 1.

We approximate this LCP by

min

\Biggl( 
V 0,m
i  - V 0,m+1

i

k
 - (LV 0,m)i + \lambda (V 0,m

i  - V 1,m
i ), V 0,m

i  - max(xi  - K, 0)

\Biggr) 
= 0,

min

\Biggl( 
V 1,m
i  - V 1,m+1

i

k
 - (LV 1,m)i, V

1,m
i  - max(xi  - K, 0)

\Biggr) 
= 0,

0 \leq m < M, 0 < i < N,
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Table 1
For a sequence of meshes, given are the estimated pointwise errors of the BDF1 and BDF2 schemes, the

resulting convergence orders, the average number of Newton iterations, and the run time.

BDF2 BDF1

N = L M Error Order Avg. iter. CPU (s) Error Order

24 23 1.61 \cdot 10 - 1 - 2.4 0.38 1.52 \cdot 100 -
34 33 7.95 \cdot 10 - 2 2.03 2.5 1.2 1.05 \cdot 100 1.06
46 46 3.71 \cdot 10 - 2 2.20 2.6 2.9 6.79 \cdot 10 - 1 1.26
66 65 2.00 \cdot 10 - 2 1.79 2.6 7.6 4.94 \cdot 10 - 1 0.92
92 91 9.77 \cdot 10 - 3 2.06 2.7 34 3.39 \cdot 10 - 1 1.08

where xi is as in (6.4) and

(LV j,m)i =

\biggl( 
\mu j  - 

1

2
\sigma 2

\biggr) 
V j,m
i+1  - V j,m

i - 1

2h
+

1

2

V j,m
i+1  - 2V j,m

i + V j,m
i - 1

h2
 - rV j,m

i .

Consistency and monotonicity, and hence convergence, follow directly in this case. The
scheme is of first order in k and of second order in h. The computational complexity is
smaller than in the two-dimensional case though, and we therefore do not propose a second
order version. Penalization is now applied separately to the two components, and a Newton
iteration can be applied in a natural way to the system of equations.

6.3. Numerical tests. We discuss here some tests for the numerical performance of the
partial information algorithm. The full information case is straightforward and we do not
report our test results here. In this section, we test in detail the convergence of the finite
difference scheme with respect to the discretization parameters. The financial parameters
chosen are \sigma = 0.3, \lambda = 0.1, \mu 0 = 0.08, \mu 1 =  - 0.05, r = 0.025, T = 10, K = 100. The
truncation parameters were y\mathrm{m}\mathrm{i}\mathrm{n} = 0.02, x\mathrm{m}\mathrm{a}\mathrm{x} = 8K, and the mesh parameters h and k varied
as detailed below.

We list in Table 1 various quantities of interest for different mesh refinements, for both
the BDF1 and BDF2 scheme, where N and L are (as above) the number of mesh intervals
in the x and y directions, and M the number of time steps. The numbers for N and M are
arrived at by the rule N = 2\lceil N0

\surd 
2
n\rceil , n \geq 0, with N0 = 8, and M = \lceil M0

\surd 
2
n\rceil , n \geq 0, with

M0 = 16. This is motivated by the identical convergence order in h and k for each of the
schemes. Then L is determined as explained below (6.7) and is also proportional to N and
M . We ensure, moreover, that N is even for the mesh construction above. Here, N0 and M0

are chosen empirically so that the errors from the time and space discretization are similar.
The fact that we arrived at N = L \approx M for these particular model parameters is coincidental.

The numerical solution is evaluated at (t, x, y) = (0,K, 1/2) and then the error (third and
seventh columns) estimated by extrapolation from the solutions for subsequent mesh refine-
ments; the order (fourth and eighth columns) is then estimated from the errors for consecutive
meshes. The numbers clearly demonstrate first order and second order convergence for the
BDF1 and BDF2 scheme, respectively. This behavior is further illustrated in Figure 1. The
error on the finest level is smaller than 0.01 absolutely, or 1 basis point given a strike of 100.

We also report in Table 1 the number of Newton iterations needed to solve the nonlinear
system, averaged over all time points. For nonuniform meshes, the number is typically higher
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1052 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

Figure 1. Estimated pointwise errors for decreasing time steps as in Table 1. The comparison with lines
of slope  - 1 and  - 2 in the loglog plot demonstrates first and second order convergence of the BDF1 and BDF2
scheme, respectively.

close to maturity due to the singular behavior of the exercise boundary, but this effect is
alleviated by the local refinement.

The total number of unknowns increases by a factor of
\surd 
2
3 \approx 2.8 upon refinement, and this

is a lower bound for the asymptotic increase in computational complexity. In practice, the cost
of solving each linear system within the Newton iteration, involving a sparse block-tridiagonal
matrix, using the default sparse equation solver in MATLAB, increases superlinearly. For
optimized performance a multigrid solver as in Reisinger and Rotaetxe Arto [43] could be
used. Both the iteration count and computational time are very similar between the two
schemes, and we only report the BDF2 ones.

7. Numerical results: ESO exercise and valuation. This section demonstrates numeri-
cally the exercise policies of the agents in section 7.1. In section 7.2, we undertake a study of
postexercise stock returns which supports the approach taken in the empirical literature on
private information. We consider the impact of the information differential on ESO valuation
in section 7.3.

7.1. Difference in exercise policies due to information differential. We are primarily
interested in the difference between the exercise policies for the agents due to the information
differential they have. To illustrate exercise patterns for both agents, we numerically solve for
the thresholds of both types of agents and simulate the stock price to demonstrate exercise
behavior. A set of outputs with various parameter values is plotted in Figure 2. In each
panel we display the stock price, the exercise boundary for the agent with full information,
x\ast i (t); i = 0, 1; t \in [0, T ], and the partially informed agent's exercise boundary, x\ast (t, .); t \in [0, T ]
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1053

Figure 2. Monte Carlo simulations of the stock price, thresholds, and exercise decisions of the agents
with full and partial information. In each panel we display the stock price, the exercise boundary for the full
information case, and the exercise boundary for the partial information model, with \^Y0 = \BbbE [Y0] = y0 = 0.
Exercise decisions of the full information agent and partial information agent with y0 = 0 are marked with
circles and squares, respectively. The option maturity is ten years with a one-year vesting period tv = 1,
and granted at-the-money with X0 = K = 100. In each panel, the shaded background indicates the switch in
drift regime to \mu 1 < \mu 0. In all panels, we take parameter values for the transition intensity \lambda = 10\% and
volatility \sigma = 30\%, and the risk-free rate is r = 2.5\%. In the top left panel, expected returns are given by
\mu 0 = 8\%, \mu 1 =  - 5\%, so that \mu 0 > r > \mu 1 holds. In all other panels, expected returns in the two regimes are
\mu 0 = 2\%, \mu 1 =  - 2\%, so that r > \mu 0 > \mu 1.

with \^Y0 = \BbbE [Y0] = y0 = 0. We set the switch intensity to be \lambda = 10\%, which implies a
probability of 63\% of \mu 0 switching to \mu 1 during the option's life. Given that the ``vast majority
of options are granted at-the-money"" with maturities of ten years (Carpenter, Stanton, and
Wallace [11]) we consider an ESO granted at-the-money with X0 = K = 100 and maturity
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1054 HENDERSON, KLAD\'IVKO, MONOYIOS, AND REISINGER

T = 10 years. We include a vesting period of one year, tv = 1. The shaded area in each panel
denotes the time after the change point has occurred, i.e., the drift has switched from \mu 0 to
\mu 1. Exercise decisions are recorded on each plot for both the partial information agent (with
a square) and the fully informed agent (with a circle).

In the top-left panel, we observe, since \mu 0 > r, x\ast 0(\cdot ) = \infty and no exercise occurs before the
change point. The agent with full information exercises on the change point. The threshold
of the partially informed agent, x\ast (\cdot , \cdot ), rapidly drops from infinity following the change point,
as the filtering puts higher weight on the switch having occurred. The agent with partial
information exercises as the stock price reaches the threshold. However, the fully informed
agent has obtained a far larger option payoff in this scenario.

The remaining three panels consider the case r > \mu 0 > \mu 1. The upper-right panel demon-
strates a scenario where the stock price is not performing as well as in the left panel, and the
agent with partial information never exercises. The agent with full information exercises on
the change point, although the stock price does go slightly higher after that. The agent with
full information has obtained a higher option payoff than the agent with partial information,
as the latter never exercises and the option is out-of-the-money at maturity.

In the lower-left panel, where no change point occurs before option maturity, consistent
with Proposition 3.4, x\ast 0(T - ) = max(K, r

r - \mu 0
K) = 500. In this panel, the stock does very well.

The stock price first reaches the boundary of the partially informed agent and, finally, the much
higher boundary of the agent with full information. Under this scenario, the fully informed
agent has benefited from the additional information (the knowledge that the switch has not
occurred) and has secured a much higher payoff than the agent with partial information.

Finally, the lower-right panel demonstrates a scenario where the agent with full information
exercises in direct response to the switch and benefits from the additional information. In
this panel, the partial information agent has already exercised as the stock price crosses their
boundary. The agent with full information continues to wait as he knows the switch has not
occurred. He then benefits with a larger exercise payoff by exercising exactly at the change
point.

In all panels, we observe that the boundaries respect the mathematical results of sections
3 and 4. The full information boundaries are in accordance with Corollary 3.3 since we can
observe the ordering x\ast 0(t) \geq x\ast 1(t) \geq K for the three panels where r > \mu 0 > \mu 1, and, when
\mu 0 > r, we see x\ast 0(t) = \infty . For any \mu i, we have x\ast i (T ) = K, and x\ast i (T - ) = max(K, r

r - \mu i
K)

for \mu i < r from Proposition 3.4 is also satisfied. In the top-left panel with \mu 0 > r, consistent
with Remark 4.1, we have no early exercise for the agent with partial information. The
exercise boundary for the agent with partial information, x\ast (t, .), is indeed decreasing in t, in
accordance with Lemma 4.2, and the boundaries respect Lemma 4.5.

In Figure 3, we illustrate the complete exercise surfaces generated by the model for the
agents with full and partial information. We plot the full information thresholds, x\ast 0(t), x

\ast 
1(t),

t \in [0, T ], and the partial information surface, x\ast (t, y), t \in [0, T ], y \in [0, 1]. The behavior
with the full and partial information thresholds with respect to time is consistent with that
displayed in Figure 2. For example, consistent with Proposition 3.4, we have for the full infor-
mation boundaries, x\ast 0(10 - ) = 500, x\ast 1(10 - ) = 100. Turning to the behavior of the thresholds
with respect to varying \^Y , the exercise surface for the agent with partial information, x\ast (t, y),
is indeed decreasing in y, in accordance with Lemma 4.2.
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Figure 3. Exercise surfaces under full and partial information against time and y \in [0, 1] the spatial
dependence arising from the filtered process \^Y . The uppermost and lowermost surfaces are those of the agent
with full information: the uppermost surface x\ast 

0(.) in regime 0 with \mu 0, and the lowermost surface x\ast 
1(.) in

regime 1 with \mu 1. These do not depend upon y, so each surface for the full information agent is constant in
the y direction, and has been plotted for comparison with the surface of the agent with partial information.
The exercise surface x\ast (t, y), t \in [0, T ], y \in [0, 1], for the agent with partial information lies between the two
surfaces from the full information problem. The option maturity is ten years and granted at-the-money with
X0 = K = 100. Expected returns in the two regimes are \mu 0 = 2\%, \mu 1 =  - 2\%, transition intensity \lambda = 10\%,
and volatility \sigma = 30\%, and the risk-free rate is r = 2.5\%.

7.2. An application to postexercise returns. In this section, we demonstrate how our
model can be linked to the empirical finance literature on private information and the exercise
of ESOs. In fact, our model provides a consistent theoretical foundation for the empirical
tests conducted in this literature. A body of papers (Aboody et al. [1], Brooks, Chance, and
Cline [7], and Cicero [12]) aim to identify and evidence that executives use private information
when exercising their company ESOs. (Note that these papers, and ours, do not take any
stance on the legality of such exercises.) The idea is ``if the executive has negative information,
the stock (owned by them) would almost surely be sold, and in all likelihood the stock would
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perform poorly for a period of time thereafter."" (Brooks, Chance, and Cline [7, p. 733]).
These studies examine ESO exercise data in which the stock is sold upon exercise. The
general approach is then to examine the long-term abnormal returns after the exercise of
ESOs. If the abnormal returns are significantly negative following exercise, there is support
for the explanation of private information being a factor in exercise decisions. Brooks, Chance,
and Cline [7] match firms with ESO exercises of top executives, believed to hold private
information, to firms with no record of top executive ESO exercises, but with similar firm
characteristics. They observe one year of stock data following each top executive option
exercise and compute the BHAR (buy-and-hold-abnormal returns) to be the so-called insider
returns minus the matched returns. Brooks, Chance, and Cline [7] find strong evidence of
ESO exercise due to insider information, via significant negative differences in the returns.
Insider exercises are linked to significantly negative postexercise returns over the following
year.

We use our model of differential information to generate postexercise returns over the
following year and compare any difference between returns following exercises by our agent
with full information versus our agent with partial information. Our full information agent
knows the change point in the stock price process, when the expected return of the stock
drops. Then, if our model is to be consistent with the approach of Brooks, Chance, and
Cline [7], we need to demonstrate that the difference between the average postexercise returns
from fully and partially informed agents is also negative. To be in line with the literature, we
consider simulated returns for one year following each option exercise, and we only include
exercises which are more than one year before option maturity (exercises closer to maturity
are considered less likely to be information related).

In Figure 4 we display the results of the simulations. The left-hand panel uses volatility
20\%, while the right-hand panel uses 30\%. We keep the expected return after a change point
fixed at \mu 1 =  - 10\%, but take three values for the expected return \mu 0. We first observe
that the mean cumulative log-returns postexercise for the case of full information do not
vary much from the different values of initial expected return \mu 0. Recall from Corollary 3.3,
with full information, and with \mu 0 = 8\%, 18\% > r, exercises occur only in the bad state.
Thus the one-year log-returns are \mu 1  - 0.5\sigma 2 (for the left panel,  - 12\%, and for the right
panel,  - 14.5\%). With \mu 0 = 2\%, there are some early exercises in the good state, and their
occurrence increases with volatility, as shown by the plots. With only partial information,
the cumulative log-returns postexercise vary much more with the value of \mu 0. We see the
postexercise returns are worse the higher the expected return \mu 0. The one-year log-returns
for the partial information case vary between about  - 2.2\% to  - 8.2\% when volatility is 20\%,
and  - 5.3\% to  - 8.4\% for volatility 30\%.

Overall, the simulations support our conjecture that, indeed, exercises by the agent with
full information are followed by significantly negative stock returns, and the difference between
average postexercise returns for fully and partially informed agents is significantly negative.
For our simulations, this difference between mean postexercise returns for fully and partially
informed agents varies between about  - 3.8\% and  - 9.7\%, depending on the expected stock
return \mu 0 and volatility, covering the range of values reported by Brooks, Chance, and Cline [7].
Our model thus provides theoretical support for the tests conducted in the empirical literature
to evidence so-called insider exercises.
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ESO EXERCISE WITH FULL AND PARTIAL INFORMATION 1057

Figure 4. Mean cumulative postexercise returns with full and partial information over one year. In the
left panel, volatility is \sigma = 20\%, and in the right panel, volatility is \sigma = 30\%. The expected return \mu 1 =  - 10\%
is fixed, and expected return \mu 0 = 2, 8, 18\%. The transition intensity is \lambda = 10\%, and the risk-free rate is
r = 2.5\%. The option maturity is ten years and granted at-the-money with X0 = K = 100. Simulations use 1
million price paths.

7.3. ESO valuation. We now turn to the impact of differential information about the
stock price on ESO valuation by the agents themselves. We emphasize that the ESO values
we report represent the value to the individual agent, often termed subjective value in the
literature on ESO compensation (see Carpenter [9]). It is the value under the \BbbP measure.

Table 2 reports the time-zero ESO values for the agent with full information, V = V0,
and for the agent with partial information, U = U0. The table also gives a breakdown of
each ESO value into its European (labeled EV and EU ) and American (labeled AV and AU )
early exercise components. This breakdown shows the value differential arises entirely from
the American early exercise component of the ESO values. As the simulations demonstrate
in section 7.1, the agent with full information uses this knowledge to time his option exercise
advantageously.

The additional value that the agent with full information places on the ESO is significant
in magnitude. Consider the American early exercise value as a proportion of total ESO value
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Table 2
Comparative statics for the full and partial information option values. Each subpanel of six numbers

contains the option values for full information in the left column and partial information in the right column.
Each column contains (from top to bottom) the American component, the European component, and the total
ESO value (sum of European and American). We have, for the full information case, V = EV + AV , and
for the partial information model U = EU + AU . The option maturity is ten years and granted at-the-money
with X0 = K = 100. Parameter values considered are \mu 0 = 2\%, 8\%, 18\%, \mu 1 =  - 2\%, - 5\%, - 10\%, transition
intensity \lambda = 10\%, 20\%, and volatility \sigma = 20\%, 30\%, 40\%, and the risk-free rate is fixed at r = 2.5\%. We fix
y0 = 0.

Read: \lambda = 10\% \lambda = 20\%

AV AU \sigma = 20\% \sigma = 20\%

EV EU \mu 1 \mu 1

V U  - 2\%  - 5\%  - 10\%  - 2\%  - 5\%  - 10\%

\mu 0

2\%

2.9 1.5 5.3 2.7 7.7 3.8 4.2 3.1 7.4 5.3 10.5 7.1

23.1 23.1 19.4 19.4 16.0 16.0 18.9 18.9 13.5 13.5 8.9 8.9

26.0 24.6 24.7 22.1 23.7 19.8 23.0 21.9 20.9 18.8 19.4 16.0

8\%

5.5 0.0 9.8 0.3 14.6 1.3 7.3 0.7 13.0 2.5 19.0 5.0

60.0 60.0 54.5 54.5 48.8 48.8 40.6 40.6 32.9 32.9 25.5 25.5

65.4 60.0 64.2 54.8 63.4 50.0 47.9 41.3 45.9 35.5 44.5 30.5

18\%

12.8 0.4 21.9 1.8 33.3 4.8 16.1 1.8 27.8 5.2 41.5 10.5

210.6 210.6 200.5 200.5 188.6 188.6 122.8 122.8 109.6 109.6 94.9 94.9

223.3 211.0 222.4 202.3 221.9 193.4 138.9 124.6 137.4 114.8 136.4 105.4

\sigma = 30\% \sigma = 30\%

\mu 1 \mu 1

 - 2\%  - 5\%  - 10\%  - 2\%  - 5\%  - 10\%

\mu 0

2\%

3.6 2.5 6.2 4.1 9.4 5.9 5.1 4.2 8.8 7.1 13.0 9.9

32.2 32.2 27.8 27.8 23.2 23.2 27.7 27.7 21.2 21.2 14.7 14.7

35.8 34.7 34.1 32.0 32.6 29.1 32.8 31.9 30.1 28.3 27.7 24.6

8\%

5.7 0.0 10.0 0.2 15.3 0.9 7.8 1.0 13.5 3.2 20.3 6.1

68.7 68.7 62.7 62.7 55.9 55.9 49.5 49.5 41.0 41.0 31.8 31.8

74.4 68.7 72.7 62.9 71.3 56.8 57.3 50.5 54.5 44.2 52.2 37.9

18\%

12.2 0.0 20.9 0.2 32.2 1.2 15.6 0.5 26.5 2.0 40.4 5.5

216.0 216.0 205.8 205.8 193.3 193.3 130.0 130.0 116.4 116.4 100.6 100.6

228.2 216.0 226.7 206.0 225.5 194.5 145.5 130.4 143.0 118.5 141.0 106.0

\sigma = 40\% \sigma = 40\%

\mu 1 \mu 1

 - 2\%  - 5\%  - 10\%  - 2\%  - 5\%  - 10\%

\mu 0

2\%

4.3 3.3 7.3 5.4 11.0 7.7 6.1 5.3 10.3 8.7 15.4 12.5

40.8 40.8 35.9 35.9 30.3 30.3 36.0 36.0 28.7 28.7 20.6 20.6

45.1 44.1 43.2 41.3 41.3 38.0 42.1 41.3 39.0 37.4 36.0 33.1

8\%

6.3 0.0 10.7 0.2 16.4 1.0 8.6 1.5 14.6 4.2 22.1 7.9

77.9 77.9 71.4 71.4 63.8 63.8 58.4 58.4 49.1 49.1 38.6 38.6

84.2 77.9 82.2 71.6 80.3 64.8 67.0 59.8 63.8 53.4 60.7 46.5

18\%

12.3 0.0 20.8 0.0 32.1 0.4 15.8 0.2 26.6 1.1 40.6 3.7

223.5 223.5 213.0 213.0 199.9 199.9 138.3 138.3 124.3 124.3 107.3 107.3

235.8 223.5 233.8 213.1 232.0 200.3 154.1 138.4 150.9 125.4 148.0 111.0D
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for each of the full and partial information cases. For example, with \lambda = 10\%, \mu 0 = 8\%,
\mu 1 =  - 5\%, \sigma = 30\%, the American early exercise value represents 13.8\% (10/72.7) of the
ESO value for full information, and 0.32\% (0.2/62.9) of value for partial information. If
we compare these American-as-proportion-of-total values for the full and partial information
agents, we see that the magnitude is much larger for the agent with full information. In our
example, we see the 13.8\% is about 43 times larger than the 0.32\%. This ratio varies between
around 1.2, up to values as high as 69. There are also some zero values for the American early
exercise value under partial information, which tend to be for high \mu 0 and the best case of
 - 2\% for \mu 1, indicating no early exercises take place. In these scenarios, the agent with full
information gains significantly as he uses his additional information on the change point to
time exercise advantageously.

The table documents how the full and partial information ESO values vary with changes
in stock-specific parameters \mu 0, \mu 1, and \sigma and the transition intensity \lambda . The option values
under full and partial information increase with the value of expected return \mu 0. Under the
partial information model, the American component of value often drops with \mu 0, consistent
with there being relatively few exercises for high values of \mu 0.

Under both full and partial information, option values decrease as \mu 1 decreases. However,
the American component of value increases with | \mu 1| , for both full and partial information,
indicating that the ability to time the exercise of the option is more valuable when the expected
return following a change point is worse. For example, scenarios with a low \mu 0 of 2\%, the
worst case for \mu 1 of  - 10\%, and the transition probability \lambda = 0.2, the American component
of option value can be as high as 40--50\% of ESO value.

Volatility increases the full and partial information option values. The European compo-
nent is increasing in volatility, but the American component can increase or decrease. If \mu 0

is sufficiently high, volatility can reduce the American component of value in both full and
partial information scenarios.

A higher probability of a downward jump in expected return (higher \lambda ) reduces the full and
partial information ESO values. The European component of value is reduced, as a higher
\lambda simply means a greater chance of switching to the bad regime. However, the American
component of value increases with \lambda because the ability to time the exercise becomes more
important when the chance of the bad state is increased. This is true for both the agent with
full and the agent with partial information.

We now turn to briefly examine the impact of vesting on ESO valuation. Section 5
described the effect of a vesting period [0, tv) on option exercise. Table 3 documents the ESO
values for both a three- and a five-year vesting period for a representative subset of market
parameters from Table 2 and fixing volatility at \sigma = 30\%. Hence the ESO values should be
compared to the middle panel of Table 2, where the same volatility is used but no vesting
period.

As we anticipate, the American early exercise values are nonincreasing as tv increases, as
the option becomes unexercisable for a larger share of the life of the option. For example,
when \mu 0 = 2\%, \mu 1 =  - 5\%, \sigma = 30\%, and \lambda = 10\%, the early exercise value for full information
falls from 6.2 to 6 to 5 as tv increases from 0 to 3 years to 5 years. Corresponding early exercise
values in the partial information setting are 4.1, 4.0, 3.8. For some parameters, say when \mu 0

is high, the early exercise value in the case with partial information did not vary with tv, as
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Table 3
The effect of a vesting period of 3 and 5 years on ESO valuation by agents with full and partial information.

We take \sigma = 30\%, and thus values should be compared with the middle panels of Table 2. Each subpanel of six
numbers contains the option values for full information in the left column and partial information in the right
column. Each column contains (from top to bottom) the American component, the European component, and
the total ESO value (sum of European and American). We have, for the full information case, V = EV +AV ,
and for the partial information model U = EU+AU . The option maturity is ten years and granted at-the-money
with X0 = K = 100. We consider vesting periods of tv = 3 years and tv = 5 years. Parameter values considered
are \mu 0 = 2\%, 8\%, 18\%, \mu 1 =  - 2\%, - 5\%, - 10\%, and transition intensity \lambda = 10\%, 20\%, and the risk-free rate
is fixed at r = 2.5\%. We fix y0 = 0.

Read: \lambda = 10\% \lambda = 20\%

AV AU tv = 3 years tv = 3 years

EV EU \mu 1 \mu 1

V U  - 2\%  - 5\%  - 10\%  - 2\%  - 5\%  - 10\%

\mu 0

2\%

3.5 2.5 6.0 4.1 8.6 5.8 4.9 4.2 8.3 7.0 11.5 9.5

32.2 32.2 27.8 27.8 23.2 23.2 27.7 27.7 21.2 21.2 14.7 14.7

35.7 34.7 33.8 31.9 31.8 29.0 32.6 31.9 29.5 28.2 26.2 24.2

8\%

5.6 0.0 9.6 0.2 14.2 0.9 7.5 1.0 12.7 3.2 18.4 6.1

68.7 68.7 62.7 62.7 55.9 55.9 49.5 49.5 41.0 41.0 31.8 31.8

74.3 68.7 72.3 62.9 70.1 56.8 57.0 50.5 53.7 44.2 50.2 37.9

18\%

11.9 0.0 20.1 0.2 30.1 1.2 15.0 0.4 25.3 2.0 37.4 5.4

216.0 216.0 205.8 205.8 193.3 193.3 130.0 130.0 116.4 116.4 100.6 100.6

227.9 216.0 225.9 206.0 223.4 194.5 145.0 130.4 141.7 118.4 138.0 106.0

tv = 5 years tv = 5 years

\mu 1 \mu 1

 - 2\%  - 5\%  - 10\%  - 2\%  - 5\%  - 10\%

\mu 0

2\%

3.3 1.3 5.0 3.8 6.8 5.1 4.3 3.8 6.8 6.0 8.8 7.7

32.2 32.2 27.8 27.8 23.2 23.2 27.7 27.7 21.2 21.2 14.7 14.7

35.5 34.5 32.8 31.6 30.0 28.3 32.0 31.5 28.0 27.2 23.5 22.4

8\%

5.0 0.0 8.2 0.2 11.7 0.9 6.5 1.0 10.6 3.1 14.5 5.9

68.7 68.7 62.7 62.7 55.9 55.9 49.5 49.5 41.0 41.0 31.8 31.8

73.7 68.7 70.9 62.9 67.6 56.8 56.0 50.5 51.6 44.1 46.3 37.7

18\%

10.7 0.0 17.6 0.2 26.0 1.2 13.2 0.4 21.4 2.0 30.6 5.4

216.0 216.0 205.8 205.8 193.3 193.3 130.0 130.0 116.4 116.4 100.6 100.6

226.7 216.0 223.4 206.0 219.3 194.5 143.2 130.4 137.8 118.4 131.2 106.0

these are situations where there are no exercises taking place when there is no vesting period,
and thus additional exercise restrictions via vesting do not alter the agent's value.
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