CAT 2021

Problem Sheet 1

Simplicial Complexes

(1) For each pair $i \leq k$ of non-negative integers, how many faces of codimension i does the solid k-simplex $\Delta(k)$ have?
(2) Either prove the following, or find a counterexample: if K is a simplicial complex and $L \subset K$ a subcomplex with $L \neq K$, then the complement $K-L$ is also a subcomplex of K.
(3) Consider any homeomorphism from $|\Delta(k)|$ to a closed k-dimensional disk for $k \geq 1$; where must this homeomorphism send the subspace $|\partial \Delta(k)|$?
(4) Let M be a finite metric subspace of an ambient metric space (Z, d). Show, for each $\epsilon>0$, that the associated Čech complex $\mathbf{C}_{\epsilon}(M)$ is a subcomplex of the Vietoris-Rips complex $\mathbf{V R}_{2 \epsilon}(M)$. Then, show that - no matter what Z we had chosen - this $\mathbf{V R}_{2 \epsilon}(M)$ is itself a subcomplex of $\mathbf{C}_{2 \epsilon}(M)$.
(5) (Bonus! No need to solve this or hand it in, but think about how you might try to approach $i t)$. Let M be a finite subset of points in Euclidean space \mathbb{R}^{n} (with its standard metric). As a function of n, can you find the smallest δ so that $\mathbf{V R}_{\epsilon}(M)$ is always a subcomplex of $\mathbf{C}_{\delta}(M)$? [Here the Čech complex has been constructed with respect to the ambient Euclidean space \mathbb{R}^{n}]

