CAT 2021

Problem Sheet 1

Simplicial Complexes

- (1) For each pair $i \le k$ of non-negative integers, how many faces of codimension i does the solid k-simplex $\Delta(k)$ have?
- (2) Either prove the following, or find a counterexample: if *K* is a simplicial complex and $L \subset K$ a subcomplex with $L \neq K$, then the complement K L is also a subcomplex of *K*.
- (3) Consider any homeomorphism from $|\Delta(k)|$ to a closed *k*-dimensional disk for $k \ge 1$; where must this homeomorphism send the subspace $|\partial \Delta(k)|$?
- (4) Let *M* be a finite metric subspace of an ambient metric space (*Z*, *d*). Show, for each ε > 0, that the associated Čech complex C_ε(*M*) is a subcomplex of the Vietoris-Rips complex VR_{2ε}(*M*). Then, show that no matter what *Z* we had chosen this VR_{2ε}(*M*) is itself a subcomplex of C_{2ε}(*M*).
- (5) (Bonus! No need to solve this or hand it in, but think about how you might try to approach it). Let *M* be a finite subset of points in Euclidean space Rⁿ (with its standard metric). As a function of *n*, can you find the *smallest* δ so that VR_ε(*M*) is always a subcomplex of C_δ(*M*)? [Here the Čech complex has been constructed with respect to the ambient Euclidean space Rⁿ]