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Abstract
The barcode of a persistence module serves as a complete combinatorial invariant
of its isomorphism class. Barcodes are typically extracted by performing changes
of basis on a persistence module until the constituent matrices have a special form.
Here we describe a new algorithm for computing barcodes which also keeps track of,
and outputs, such a change of basis. Our main result is an explicit characterisation
of the group of transformations that sends one barcode basis to another. Armed with
knowledge of the entire space of barcode bases, we are able to show that any map of
persistence modules can be represented via a partial matching between bars provided
that neither source nor target admits nested bars in its barcode. We also generalise the
algorithm and results described above to work for zizag modules.

Keywords Persistence module · Barcode basis · Quiver representation

Mathematics Subject Classification 55N31 · 16G20

1 Introduction

Persistence modules appear in different forms and guises across many areas of mathe-
matics. In recent years, particular interest and focus has come from their extensive use
in topological data analysis (TDA) in general and persistent homology in particular.
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In this paper, we examine persistence modules of the form (V•, f•):

V0
f1

V1
f2 · · · f�−1

V�−1
f�

V�, (1)

where each Vi is a vector space of finite dimension ni (over an underlying field F) and
each fi : Vi−1 → Vi is a linear map. We study three different aspects.

1.1 Computing barcode bases

The first is the central question of finding a barcode basis for (V•, f•). This amounts to
a choice of basis for each Vi with respect towhich the linearmaps fi have a particularly
nice form — they admit at most a single 1 in each row and column, with all other
entries being 0. The existence of such bases and matrix representations is well known
(Gabriel 1972). We say that the matrices are in barcode form and the corresponding
basis of

⊕�
i=0 Vi is a barcode basis, since the barcodes familiar from TDA can easily

be extracted.
Algorithms to compute barcode bases in TDA typically take as input a filtered chain

complex as in Zomorodian and Carlsson (2005), where one has recourse to matrix
representations of the boundary operators. Algorithms for general persistencemodules
include the well-known (Carlsson and de Silva 2010) and much more recently, (Hang
andMio 2020) and (Henselman-Petrusek 2017). Here we present a new algorithm that
takes as its input a matrix representation A• = (A1, . . . , A�) relative to some initial
basis of the persistence module (V•, f•) and outputs a sequence g = (g0, . . . , g�) of
change of basis matrices gi for each of the Vi so that the new matrix representation
A′• = (A′

1, . . . , A
′
�) with A′

i = gi · Ai · g−1
i−1 is in barcode form. Our algorithm in

Sect. 3.2 is explicit and elementary in the sense that every intermediate step amounts
to performing standard (row or column) operations on the constituent Ai ’s. The key
difficulty here is that column operations on Ai often force new matrix operations on
Ak for k < i , and similarly row operations on Ai often require changes in Ak for
k > i .

1.2 The space of barcode bases

Our second goal is to describe the set of all barcode bases1 of (V•, f•). We show that
this set can naturally be identified as the stabiliser of a matrix representation A• of
(V•, f•), and hence as a subgroup of the product

G := GL(n0; F) × · · · × GL(n�; F),

where GL(d; F) indicates the general linear group of invertible d × d matrices with
entries in F. Writing

[i1, j1] � [i2, j2] whenever i1 ≤ i2 ≤ j1 ≤ j2

1 This set has a natural topology when working over a field with topology such as R or C.
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and Mat(m × n; F) for the set of m × n matrices with coefficients in F, we show in
Theorem 4.4 that the set of barcode bases is in one-to-one correspondence with

∏

0≤i≤ j≤�

GL(di j ; F) ×
∏

[i1, j1] [i2, j2]
Mat(di1 j1 × di2 j2; F).

Here di j is the multiplicity of the interval [i, j] in the barcode of (V•, f•). If the matrix
representation is already in barcode form, then the elements in GL(di j ; F) correspond
to changes of basis for the sub-vector space of Vi spanned by the basis elements
corresponding to the bars [i, j], and the elements in Mat(di1 j1 × di2 j2; F) represent
the changes to basis vectors in Vi2 corresponding to intervals [i2, j2] obtained by
adding vectors from Vi2 which correspond to intervals [i1, j1].

1.3 Simplifyingmaps of persistencemodules

We now turn attention to our third problem. Given a map of persistence modules

φ : (V•, f•) → (W•, h•),

we seek barcode bases for source and target in terms of which φ assumes its simplest
form, in the sense that we now specify. An interval [i, j] represents a submodule
canonically isomorphic to the interval module I[i, j]•. It is an elementary observation
that such a module can be mapped non-trivially to another interval module I[i ′, j ′]•
if and only if [i ′, j ′] � [i, j]; and in this case the non-zero map is unique up to a
non-zero scalar. In the simplest case, φ induces a partial matching where each bar in
the source is mapped to exactly one in the target or mapped to zero. Surprisingly, we
show in Theorem 5.3 that such a partial matching exists (after a change of barcode
bases) whenever neither source nor target admit a pair of strictly nested intervals
in their respective barcode decompositions.2 In an example we also show that these
conditions are necessary.

1.4 Zigzagmodules

Finally, we generalise the algorithm and theorems described above to zizag modules
of a fixed type τ : the linear maps of the persistence module (1) can go either for-

ward Vi−1
fi−→ Vi or backward Vi−1

qi←− Vi according to pattern fixed by τ . Such
modules are also classified in terms of sums of interval modules. Our algorithm can
be adapted to compute barcode bases of zizag modules of any type. Next, we intro-
duce a generalisation of the order � that depends on the type τ . This order takes into
account that the order � has to be reversed when all the arrows in (1) are reversed.
With this order in place, we can once again classify the set of all barcode bases, see
Theorem 6.11. Similarly when considering maps of zizag modules, we generalise the

2 Two bars [i, j] and [i ′, j ′] are strictly nested if i < i ′ and j ′ < j .
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notion of strictly nested bars, which once again depends on the type τ . Excluding such
nested bars, we are able to obtain barcode bases of the source and target zizag modules
in terms of which the map is described by a partial matching on the set of bars; see
Theorem 6.14.

1.5 Outline

We take the view that a persistence module (V•, f•) is a quiver representation. In
Sect. 3, we provide a constructive proof (and concomitant algorithm) of Gabriel’s
decomposition theorem for persistence modules. In Sect. 4 we identify the set of all
barcode bases with a stabiliser of the action of the group G on the set of all possible
matrix representations of (V•, f•). In Sect. 5 we study maps between persistence
modules by viewing them as representations of ladder quivers with relations. Gabriel’s
theorem no longer applies here; however, using similar arguments as in Asashiba et al.
(2018), we are able to prove a finite decomposition when source and target have no
nested bars. Finally, in Sect. 6 we extend our results to any quiver of type A, that is
zigzag persistence modules.

1.6 Related work

Asmentioned above, there are several well known algorithmswhich compute barcodes
of persistence modules. Some start with chains on a filtered simplicial complex, some
deal with more general persistence modules and in some cases zizag modules.

There are two algorithms that explicitly deal with computing the barcode bases
associated to the interval decomposition. In Carlsson et al. (2019) the authors use
matrix factorisation techniques to obtain bases in which the matrices are in echelon
form.This technique also applies to zizagmodules. InGregorio et al. (2021) the authors
inductively compute interval bases using basis completions techniques at each step,
but they do not deal with the zizag case. Neither of these papers attempts to compute
the set of barcode bases associated with the persistence module, and the algorithm we
describe here takes a different approach to reducing matrices in barcode form. Most
recently, the authors of Hang et al. (2021) use U-match matrix factorisation to reduce
computational complexity and memory storage in computing barcodes.

It was shown in Escolar andHiraoka (2016) that maps between persistencemodules
of length less than 5 admit a tractable classification in the sense that the associated
ladder persistence modules are always of finite type. In contrast, the authors of Buchet
and Escolar (2018) find an infinite class of indecomposable non-isomorphic ladder
persistence module whenever the length is greater then 5. In Asashiba et al. (2018)
the authors outline an algorithm which computes the decomposition into a sum of
indecomposables for ladder persistence modules of length < 5.
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2 Persistencemodules and barcode bases

A persistence module, for the purposes of this paper, is a finite collection (V•, f•) of
finite-dimensional vector spaces Vi over a fieldF alongwithF-linear maps fi arranged
as follows:

V0
f1

V1
f2 · · · f�−1

V�−1
f�

V�.

The number � + 1 is called the length of (V•, f•). The direct sum of (V•, f•) with
another persistence module (W•, h•) of the same length is defined pointwise — in
other words, the vector space at its i-th position is Vi ⊕ Wi for each admissible index
i , and similarly the corresponding linear map is given by fi ⊕ hi . We call (V•, f•)
isomorphic to (W•, h•) if there are invertible linear maps φi : Vi → Wi so that the
square

Vi−1
fi

φi−1 ∼

Vi

φi∼

Wi−1 hi
Wi

commutes for each index i in {1, . . . , �}. Isomorphisms from (V•, f•) to itself are called
automorphisms, and these evidently form a group under composition. We denote this
group by Aut(V•, f•).

The interval module corresponding to a pair of non-negative integers i ≤ j is the
persistence module I[i, j]• given by

0 · · · 0 F · · · F 0 · · · 0,

where the contiguous string of F’s spans {i, i + 1, . . . , j − 1, j}, all intermediate
F → F maps are identities, and all other vector spaces are trivial. The importance of
interval modules stems from the following result (Zomorodian and Carlsson 2005).

Theorem 2.1 For each persistence module (V•, f•) of length �+1, there exists a finite
set of non-negative integer pairs

Bar(V•, f•) := {i1 ≤ j1, . . . , ik ≤ jk} ,

(with [i p, jp] ⊂ [0, �] for all 1 ≤ p ≤ k), called the barcode of (V•, f•), and an
integermultiplicity dip jp > 0 so that (V•, f•) is isomorphic to a direct sum of interval
modules:

(V•, f•) 

k⊕

p=1

I[i p, jp]di p jp• . (2)
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Here the i-th summand on the right side is to be interpreted as the di p jp -fold direct
sum of the interval module I[i p, jp]• with itself.

This interval decomposition theorem follows from Gabriel’s foundational result
on the decomposability of quiver representations (Gabriel 1972) — since (V•, f•)
is a representation of a type-A�+1 quiver. Our goal here is to provide an explicit
algorithm which not only furnishes such the isomorphism (2), but can also be readily
implemented on a computer.

To this end, fix a persistence module (V•, f•) of length �+1 and set ni := dimF Vi
for each i ∈ {0, . . . , �}. Without loss of generality, we may select a basis family

B := {Bi ⊂ Vi | 0 ≤ i ≤ �} ,

where each Bi forms an ordered basis for the vector space Vi . This choice amounts to
fixing an isomorphism Vi 
 F

ni for each i . Thus, every linear map fi : Vi−1 → Vi
can be represented (in terms of the chosen bases Bi−1 and Bi fromB) as a matrix Ai

of size ni × ni−1 with entries in F; consequently, (V•, f•) is isomorphic to

F
n0

A1
F
n1

A2 · · · A�−1
F
n�−1

A�
F
n� . (3)

In light of Theorem 2.1, we are particularly interested in a special class of basis
families.

Definition 2.2 Anm×n matrix A of rank r is in barcode form if there exists a strictly
increasing function c : {1, . . . , r} → {1, . . . , n} so that

Ai j =
{
1 if j = c(i),

0 otherwise.

Thus, a matrix is in barcode form whenever its entries lie in {0, 1}, with at most one
non-zero term in each row and column, and the r non-zero terms appear in the first r
rows and in strictly increasing column order.

Abasis familyB is called anbarcodebasis for (V•, f•) if all of the Ai are in barcode
form. The natural basis arising from an interval decomposition of a persistencemodule
is a barcode basis.

Example 2.3 Consider, for instance, the persistence module of length 4 given by the
barcode containing 0 ≤ 3 along with 0 ≤ 1 and 1 ≤ 3, each with multiplicity one:

With respect to the basis family obtained by ordering these intervals from top to bot-
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tom, the matrices Ai are given by

A1 =
[ ]1 0
0 1
0 0

A2 =
[ ]
1 0 0
0 0 1 , A3 =

[ ]
1 0
0 1 ,

and all three are evidently in barcode form. Conversely, one can also recover the
interval decomposition immediately from these three matrices.

To put our quest for a constructive proof of Theorem 2.1 on a firm algebraic footing,
let X be the set of all the possible matrix-sequences A• which can arise in (3). It is a
(strict) subset of the product of matrices of the appropriate dimensions:

X ⊂
�∏

i=1

Mat (ni × ni−1; F) . (4)

Writing GL(n; F) for the group of all n × n invertible matrices over F, consider the
product

G :=
�∏

i=0

GL(ni ; F), (5)

which acts naturally via a change-of-basis action on X : the group element g :=
(g0, . . . , g�) sends each matrix-sequence A• in X to the new sequence (gA)• given
by

(gA)i := gi · Ai · g−1
i−1 (6)

for each admissible index i . This is equivalent to replacing the original basis family
B = {Bi } with the new basis family gB = {gi Bi }. Thus, X is the free orbit of A•
under this G-action. So our first task, solved in Sect. 3, translates to discovering some
g ∈ G that transforms a given basis family B of (V•, f•) to a barcode basis.

3 Constructing a barcode basis

Throughout this section, we fix a persistence module (V•, f•) expressed as a sequence
of matrices A• as in (3) with respect to an arbitrary (i.e., not necessarily barcode) basis
familyB.

3.1 Barcode bases via elementary matrix operations

To conveniently describe relevant elements of G, we fix notation for matrices which
implement certain fundamental row and column operations.
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Definition 3.1 For each dimension n > 0, distinct indices 1 ≤ p, q ≤ n, and scalar
λ ∈ F, let enp,q(λ) denote the elementary matrix in GL(n; F) which has 1’s all along
its diagonal, λ in the (p, q)-th position, and zeros everywhere else.

Since the dimension n will be clear from context, we omit it from the superscript
and simply write ep,q(λ) to indicate the relevant elementary matrix. The following
standard facts about such matrices will be freely used in the sequel —

(1) multiplying a matrix on the left by ep,q(λ) implements the following elementary
row operation

Row(p) ← Row(p) + λ · Row(q)

which we denote Rp←q(λ); similarly,
(2) multiplying amatrix on the right by ep,q(λ) implements the following elementary

column operation

Col(q) ← Col(q) + λ · Col(p),

which we denote Cq←p(λ); and finally,
(3) the inverse of ep,q(λ) is ep,q(−λ).

Remark 3.2 Consider the element g = (g0, . . . , g�) ∈ G for which gi = ep,q(λ) and
all the other g j are identitymatrices. The action of this g on a givenmatrix sequence A•
is to simultaneously perform Cp←q(λ) on Ai and Rq←p(−λ) on Ai−1 while leaving
all the other A j ’s invariant.

The following result plays an essential part in our constructive proof of Theorem2.1.
In its statement and beyond, we will use A(p, q) to indicate the entry in the p-th row
and q-th column of a given matrix A.

Lemma 3.3 Assume that the first �−1matrices {Ai | 1 ≤ i < �} of (3) are in barcode
form, and that the lastmatrix A� has a pivot in the (r , q) position, i.e., A�(r , q) = 1and
all other entries in the q-th column are zero. If there is a nonzero entry α := A�(r , p)
in the same row r but some other column p > q, then there exists g ∈ G with g� = Id
so that (gA)• equals A• except A� where the α entry is replaced by zero.

Proof We proceed by induction on �, noting that the case � = 1 is immediately true
since there is only one matrix in sight. Assume that the statement holds up to � − 1.
The r -th row of A� contains a pivot 1 in the q-th column and some α �= 0 in the p-th
column. To eliminate this offending α, we perform Cp←q(−α) on A� by performing
the basis change ep,q(−α) on V�−1. Since A�(r , q) is assumed to be a pivot, the
only resulting difference in A� is that the (r , p)-th entry changes from α to 0. But
by Remark 3.2, we are also compelled to perform Rq←p(α) on the preceding matrix
A�−1. This results in a new matrix A′

�−1, and there are now 2 cases to consider, of
which only the second requires the inductive hypothesis:

Case 1: if the p-th row of A�−1 is identically zero, then our row operation has had
no effect whatsoever; thus, A′

�−1 = A�−1 is still in barcode form and we have arrived
at the desired result.
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Case 2: If the p-th row of A�−1 is nonzero, then since q < p and A�−1 is in barcode
form, we see that the q-th row of A�−1 must also be non-zero. Then by Definition 2.2
theymust have pivot ones in distinct columns, say c andd respectively, and furthermore
c < d. Thus, after we have performed Rq←p(α) on A�−1, the resulting matrix A′

�−1
has the form

A′
�−1 =

c d
⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

0 1 0 · · · 0 α 0 q
0 0
...

...

0 0
0 0 0 · · · 1 0 p

By induction, there exists a g ∈ ∏�−1
i=0 GLni (F) with g�−1 = Id so that gi Ai g

−1
i−1 is

still in barcode form for 1 ≤ i ≤ � − 2, and

g�−1A�−1g
−1
�−2 =

c d
⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

0 1 0 · · · 0 0 0 q
0 0
...

...

0 0
0 0 0 · · · 1 0 p

is again in barcode form. Furthermore, since g�−1 = Id, thematrix A� is left unchanged
by this change of basis. The desired basis change is (g0, g1, . . . , g�−2, ep,q(−α), Id).

�
Proposition 3.4 Given the sequence of matrices A• as in (6), there is a g ∈ G such
that (gA)• has all its matrices in barcode form.

Proof When � = 1, we may diagonalise the matrix A1 via standard row and column
operations. Proceeding by induction for � > 1, assume the existence of some group
element

g′ = (g0, . . . , g�−1) ∈
�−1∏

i=0

GLni (F)

satisfying the following property: the matrices gi Ai g
−1
i−1 are in barcode form for 1 ≤

i ≤ � − 1.
Consider g = (g′, Idn�

), which evidently lies in G. Replacing A• by (gA)• if nec-
essary, we may assume that A• has its first �−1 matrices in barcode form. Performing
row operations on A� has no impact on the previous matrices, as it corresponds to mul-
tiplying A� on the left by some g�. Thus, we may assume without loss of generality
that all previous matrices are in barcode formwhile A� itself is in reduced row echelon
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form. By Lemma 3.3, there is a basis change g ∈ G which zeroes out each non-pivot
entry whilst maintaining the barcode form of the previous matrices. Applying these
basis changes gets us to the desired barcode basis. �
Remark 3.5 If B is the basis family with respect to which (V•, f•) has matrix form
A•, then gB is a barcode basis where g ∈ G is as in Proposition 3.4.Wemay therefore
regard it as a constructive analogue of Theorem 2.1.

3.2 Algorithms

Here we describe algorithms which implement the constructions of Lemma 3.3 and
Proposition 3.4. In particular, the main algorithm CompPers described below accepts
as input an initial sequence of matrices A• as in (3) and puts them in barcode form. The
sub-computations which we require frequently have been isolated into concomitant
subroutines, described as follows.

(1) The first subroutine ColOp implements the inductive strategy underlying our
proof of Lemma 3.3; in particular, this algorithm acts as step k of the inductive
procedure described in the proof of that lemma.

(2) The second subroutine Reduce takes as input a sequence A• for which the
first � − 1 matrices are in barcode form together with an invertible matrix
g ∈ ∏�−1

i=0 GL(ni ; F). It then reduces the final matrix A� until it is in barcode
form, while maintaining the barcode form of all previous matrices and suitably
updating the basis change g.

(3) Finally, themain algorithmCompPers(A•) takes as input an arbitrary sequence of
matrices A• and produces as output g ∈ G together with (gA)• in barcode form.
From these matrices we can directly access all intervals in barcode of (V•, f•).

Algorithm 1: ColOp
Input: A•, g, k, r , q, p
Output: Updated A• and basis change g, zeroing out Ak (r , p)

1 Cp←q (−α) on Ak
2 Rq←p(α) on Ak−1
3 gk = ep,q (−α)

4 if k = 0 or p-th row of Ak−1 = 0 then
5 return (A•, g)
6 end
7 else
8 Find pivot columns c < d of the pivot rows q < p of Ak−1
9 return (ColOp (A•, g, k − 1, q, c, d) )

10 end

Remark 3.6 The computational complexity of CompPers(A•) can be expressed in
terms of n = max0≤i≤� ni and �. The cost of placing all the Ai in reduced row
echelon form via Gaussian elimination is O(n3�). Furthermore, performing column
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Algorithm 2: Reduce
Input: A•, g, where A• has its first � − 1 matrices in reduced form
Output: A• in reduced barcode form and updated g

1 row reduce (A�)

2 Append g with corresponding g�

3 while there are A�(r , p) �= 0 terms with A�(r , q) = 1 a pivot do
4 A•, h =ColOp(A•, g, �, r , q, p)
5 g = hg
6 end
7 return (A•, g)

Algorithm 3: CompPers
Input: A•
Output: Reduced A• with corresponding change of basis g

1 A′• = {A1}
2 g = (Idn0 )
3 for 1 ≤ i ≤ � − 1 do
4 A′•, g =Reduce(A′•, g)

5 A′•.append(Ai+1g
−1
i )

6 end
7 return (Reduce(A′•, g))

operations to further reduce these matrices requires at most O(n2) operations on
each matrix. And column operations on Ai will, in the worst case, require down-
stream column operations on Ai−1 . . . A1. Thus, for column operations, we have a

O(n2
∑�

i=1 i) = O(n2 �(�−1)
2 ) = O(n2�2) complexity. Combining these factors, the

total complexity of the algorithm is

O(n3� + n2�2).

At each step of the algorithm,we performan elementary basis change on a single vector
space Vi , which amounts to multiplying a matrix gi ∈ GL(Vi ) by an elementary
matrix., This incurs an O(n) cost; thus, if we also wish to keep track of the basis
changes, then the total complexity of CompPers becomes

O(n4� + n3�2).

We conclude with an illustrative example of how CompPers acts on a sequence of
input matrices.

Example 3.7 Consider

A• =
⎛

⎝

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ ,

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

⎡

⎣
1 0 1
0 1 1
0 0 0

⎤

⎦

⎞

⎠
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To put A3 in barcode form, we must zero out the terms A3(1, 3) and A3(2, 3) using
column operations. At each step, we will be performing row and column operations
on matrices of A•, amounting to basis changes on the vectors spaces V0, V1 and V2.
For conciseness sake, we will not keep track of the basis changes done along the way,
and will simply be performing operations on the matrices to put them in barcode form.

We begin by zeroing out the A3(2, 3) term.
1: C3←2(−1) on A3, inducing R2←3(1) on A2, giving us matrices

[ ]1 0 0
0 1 0
0 0 0

,

[ ]1 0 0
0 1 1
0 0 1

,

[ ]1 0 1
0 1 0
0 0 0

2: C3←2(−1) on A2, inducing R2←3(1). We see here that the third row of A1 is
zero, so we are in Case 1 of Lemma 3.3, and so we are done.

We have achieved our goal of zeroing out A3(2, 3) whilst keeping the previous
matrices in barcode form, making no other changes to A3. It remains to zero out the
A3(1, 3) term.

1: C3←1(−1) on A3, inducing R1←3(1) on A2 giving us matrices

[ ]1 0 0
0 1 0
0 0 0

,

[ ]1 0 1
0 1 0
0 0 1

,

[ ]1 0 0
0 1 0
0 0 0

2: C3←1(−1) on A2, inducing R1←3(1) on A1. Since the third row of A1 is zero,
this operations has no impact on A1, giving us matrices

[ ]1 0 0
0 1 0
0 0 0

,

[ ]1 0 0
0 1 0
0 0 1

,

[ ]1 0 0
0 1 0
0 0 0

and so we are done.

4 The space of barcode bases

Let A• ∈ X be a sequence of matrices as in (3) arising from an arbitrary choice of
basis for some persistence module (V•, f•). Consider the group G from (5), recalling
that G acts on X via change of basis. Our quest to describe all possible barcode bases
for (V•, f•) begins with a formula for the stabiliser of the chosen matrices A• under
this G-action. Namely, we seek the subgroup of G given by

Stab(A•) :=
{
g ∈ G | gi · Ai · g−1

i−1 = Ai for all 1 ≤ i ≤ �
}

. (7)
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To describe Stab(A•), we employ two binary relations on the set of all intervals which
might possibly arise in the barcode decomposition of (V•, f•) à la Theorem 2.1.

Definition 4.1 Let� be the binary relation on
{[i, j] ∈ Z

2 | 0 ≤ i ≤ j ≤ �
}
given by

[a, b] � [c, d] whenever a ≤ c ≤ b ≤ d.

(Although this relation � is reflexive and anti-symmetric on its domain, it is not
transitive and hence does not form a partial order.)

The second binary relation is the standard lexicographic order.

Definition 4.2 Let � be the lexicographic ordering on
{[i, j] ∈ Z

2 | 0 ≤ i ≤ j ≤ �
}
,

given by

[a, b] � [c, d] ⇐⇒ a < c or a = c and b ≤ d.

This yields a total order on the set of all possible bars in the interval decomposition
of our persistence module (V•, f•).
Remark 4.3 The binary relation � is compatible with the lexicographical order � in
the sense that [a, b] � [c, d] implies [a, b] � [c, d].

Given a barcode basis B, we may totally order its bars using the lexicographic
order, arbitrarily ordering bars with the same start and end point. This in turn yields
a natural ordering of the bases Bi . The matrix representation of such bases is unique.
Indeed, the first d0i basis vectors of Bi are part of [0, i] bars, then the next d0,i+1
basis vectors are those part an [0, i + 1] bar, and so on following the lexicographic
ordering until finally the di,� basis vectors part of an [i, �] bar. This yields a matrix
representation for which Ai is of the form

Ai =

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

M0
M1

. . .

Mi

, (8)

where

Mj =

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

Idd j,i

0 Idd j,i+1

. . .

Idd j,�

is a matrix of dimension (
∑�

k=i d jk) × (
∑�

k=i−1 d jk). As such, bases that have been
ordered in the above way are barcode bases in the usual sense; we call these ordered
barcode bases of (V•, f•) and devote the remainder of this section to completely
characterising them.

123



E. Jacquard et al.

Theorem 4.4 For each pair [i, j] in {0, 1, . . . , �} with i ≤ j , let di j equal the mul-
tiplicity of i ≤ j in the barcode of (V•, f•), with the understanding that di j = 0
whenever [i, j] is not in Bar(V•, f•). Then there is a bijection of sets:

Stab(A•) ∼=
∏

[i, j]
GL(di j ; F) ×

∏

[i1, j1] [i2, j2]
Mat(di1 j1 × di2 j2; F).

(The induced group structure on the right side is given in Corollary 4.5 below)

Proof Elements in the same orbit have isomorphic stabilisers, so without loss of gen-
erality we may assume A• is given by the matrix representation of the linear maps in
a ordered barcode basis. An element g = (g0, . . . , g�) of G lies in Stab(A•) if and
only if we have an equality of matrix products

gi · Ai = Ai · gi−1

for each i ∈ {1, . . . , �}. Set ki := rank Ai and note that since Ai is in barcode form,
there is a strictly increasing function ci : {1, . . . , ki } → {1, . . . , ni−1} so that the
unique nonzero entry in the p-th row of Ai lies in column ci (p). The product gi · Ai

on the left side of our equality has as its q-th column either the c−1
i (q)-th column of

gi (if q lies in the image of ci ), or is identically zero otherwise. Conversely, for p ≤ ki
the matrix Ai · gi−1 on the right side has as its p-th row the c(p)-th row of gi−1, and
its rows corresponding to p > ki are identically zero.

Therefore, requiring these two products to be equal amounts to imposing three types
of constraints on the entries of gi−1 and gi :

(1) gi (p, q) = 0 whenever p > ki ≥ q.
(2) gi−1(p, q) = 0 whenever p ∈ Img(ci ) and q /∈ Img(ci ).
(3) gi−1(ci (p), ci (q)) = gi (p, q) whenever both p and q are ≤ ki .

Recalling that (V•, f•) is the persistencemodule representedby A•,wehave abijection
[
intervals [i, j] in the
barcode of (V•, f•)

]

←→

[
sequences {pk | i ≤ k ≤ j} with
ck(pk) = pk−1 for i + 1 ≤ k ≤ j

]

Let [i1, j1] and [i2, j2] be two intervals in the barcode decomposition of (V•, f•),
and denote their corresponding sequences by {p•} and {q•}. It follows from constraint
(3) above that gk(pk, qk) remains constant whenever k ranges over the indices in
[i, j] := [i1, j1] ∩ [i2, j2]. In other words, we have

gk(pk, qk) = gk′(pk′ , qk′) for all k, k′ ∈ [i, j]. (9)

The following observation is crucial.

Claim: The entry gk(pk, qk) is zero for all k ∈ [i, j] whenever [i1, j1] � [i2, j2].
To prove this claim, note that if i2 < i1 holds then pi1 > ki1 ≥ qi1 , so gi1(pi1, qi1) = 0
by constraint (1) above. Thus the claim extends to all k in [i, j] by (9). Similarly, if
j2 < j1 then p j2 ∈ Img(c j2) but q j2 /∈ Img(c j2), whence g j2(p j2 , q j2) = 0 by
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constraint (2). Once again, this extends to all k ∈ [i, j] by (9), and so the claim is
proved.

Returning to the main argument, for each pair [i1, j1] � [i2, j2] of intervals in the
barcode of (V•, f•), we may select some k ∈ [i1, j1] ∩ [i2, j2]. We denote by g[i2, j2]

[i1, j1]
the submatrix of gk spanned by all entries gk(pk, qk) for which {p•} and {q•} are
sequences corresponding to intervals of type [i1, j1] and [i2, j2] respectively. Thus,
g[i2, j2]
[i1, j1] has exactly di1 j1 rows and di2 j2 columns; and from (9) we know that it forms

a submatrix of gk for all k in [i1, j1] ∩ [i2, j2]. It follows from our claim that each gk
is block upper-triangular:

gk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g[0,k]
[0,k] g

[0,k+1]
[0,k] · · · · · · g[0,�]

[0,k] 0 · · · · · · · · · 0

0 g[0,k+1]
[0,k+1] · · · · · · g[0,�]

[0,k+1] 0 · · · · · · · · · 0

0 0
. . .

...
...

...
...

...
...

...
...

... 0 · · · · · · · · · · · · 0 g[k,�−1]
[k,�−1] g

[k,�]
[k,�−1]

0 0 · · · · · · · · · · · · · · · 0 0 g[k,�]
[k,�]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

The fact that gk must be invertible forces the diagonal blocks to be invertible, while
the off-diagonal blocks remain entirely unconstrained. The map

Stab(A•) →
∏

[i, j]
GL(di j ; F) ×

∏

[i1, j1] [i2, j2]
Mat(di1 j1 × di2 j2; F),

which sends each g to this distinguished collection of invertible g[i, j]
[i, j] and arbitrary

g[i2, j2]
[i1, j1] furnishes the desired bijection. �

Using the block upper triangular form of the matrices gk described in the argument
above, we may immediately obtain the group structure of Stab(A•).

Corollary 4.5 For g, h ∈ Stab(A•), we have

(gh)
[i2, j2]
[i1, j1] =

∑

[a,b]
g[a,b]
[i1, j1]h

[i2, j2]
[a,b] ,

with the sum being indexed over intervals that satisfy [i1, j1] � [a, b] � [i2, j2].
If F is the field of real or complex numbers, as a subgroup of

∏�
i=0 GLni (F),

the group Stab(A•) is a Lie group. Theorem 4.4 immediately allows us to obtain its
dimension.

Corollary 4.6 If F is the field of real or complex numbers, Stab(A•) is a Lie group of
dimension

∑

[i1, j1]�[i2, j2]
di1 j1di2 j2
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As stated at the start of this section, our task here is to determine the space of all
possible ordered barcode bases for a given persistence module (V•, f•).

We denote by B = {B = (Bi )0≤i≤� | Bi ⊂ Vi is an ordered basis} the set of all
possible ordered bases of (V•, f•). Having fixed an initial basisB ∈ B, we know the
group G from (5) acts freely and transitively on the set B, so that any element of B

may be expressed as gB for some unique g ∈ G. Thus, once we have fixed an initial
basisB, the set Bmay be identified with G. Then as subset of B, the set of all possible
ordered barcode bases of (V•, f•) can be identified as a subset of the group G.

Recall, X is the set of all possible matrix-sequences as defined in (4). For each
possible basis B ∈ B, we define A(B)• ∈ X to be the matrix representation of
the linear maps f• in the chosen basis B. This assignment prescribes the matrix
representation map

A()• : B �→ X ,

and finding all possible ordered barcode bases for (V•, f•) amounts to determining all
bases B ∈ B for which A(B)• is as in (8). Furthermore, this map is equivariant in
the sense that A(gB)• = (gA(B))• for each g ∈ G, where g acts via the basis action
defined in (6).

The following result makes the link between the stabiliser of A• and the set of
ordered barcode bases of a persistence module (V•, f•).

Proposition 4.7 Given apersistencemodule (V•, f•) togetherwith an ordered barcode
basis B with matrix representation A•, the set of all ordered barcode bases is given
by the orbit Stab(A•)B.

Proof Let B′ be another ordered barcode basis. As seen above, two ordered barcode
bases have the same matrix representations (8), so that A(B′)• = A•. As previously
stated, G acts freely and transitively on B so that there exists a unique g ∈ G for
which B′ = gB. We then have A• = A(B)• = A(gB′)• = gA(B′)• = gA•, so
that g ∈ Stab(A•) which implies B′ ∈ Stab(A•)B. �

As such, we may identify the set of all ordered barcode bases of a persistence
module (V•, f•) with Stab(A•), which was fully characterised in Theorem 4.4.

Remark 4.8 The automorphism group AutQ(M) of a representation M of a general
quiver Q has been described, for instance in (Brion 2012, Section 2.2). It is known
that AutQ(M) is a semi-direct product of the form

U �

r∏

i=1

GL(mi , F).

Here M = ⊕r
i=1 M

mi
i is a decomposition of M into indecomposable summands Mi ,

while U is unipotent normal subgroup of AutQ(M) (see (Brion 2012, Prop 2.2.1)).
Viewed from this context, the main content of Theorem 4.4 is an explicit description
of U in the special case where Q is a type-A quiver. In particular, U is generated by
matrices which have the form (10), but with identity blocks along the diagonal. This
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explicit description of U in the type-A case plays a crucial role in subsequent results
which appear in this paper.

5 Simplifyingmaps of persistencemodules

We now shift our interest to maps of persistence modules φ• : (V•, f•) �→ (W•, h•),
where V• and W• are persistence modules of length � + 1. We recall that each such
φ• is a collection of linear maps φi : Vi �→ Wi satisfying φi ◦ fi = hi ◦ φi−1. In other
words, the following diagram commutes:

V0
f1

φ0

V1
f2

φ1

· · · f�−1
V�−1

f�

φ�−1

V�

φ�

W0 h1
W1 h2

· · ·
h�−1

W�−1 h�

W�

Our objective here is to show that if neither V• nor W• admits a pair of strictly nested
bars in its barcode, then there exist barcode bases of V• and W• in which φ induces
a partial matching of the bars. To make this precise, we first describe the nestedness
condition.

Definition 5.1 Abar [i2, j2] is strictly nested in a bar [i1, j1], denoted [i2, j2] ⊂ [i1, j1]
if i1 < i2 ≤ j2 < j1. This is best represented as

i1 j1

i2 j2

Note that two intersecting bars are strictly nested if and only if they are not related by
�.

Before stating the main result, we remark that the data of our map φ• can be
interpreted as a representation of the rectangle quiver of length � + 1:

• • · · · • •

• • · · · • •

Such representations have been called ladder persistence modules in the literature
(Escolar and Hiraoka 2016). When treating φ as a ladder persistence module, we will
denote it (V•,W•, φ•). We may therefore seek to decompose φ• into a direct sum of
indecomposable ladder persistence modules.

Definition 5.2 Three families of ladder persistence modules are defined below:
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(1) Given intervals [i1, j1] � [i2, j2], denote byR[i2, j2]
[i1, j1]• the ladder persistencemodule

whereV• is the intervalmodule I[i2, j2]• whileW• is the intervalmodule I[i1, j1]•;
all vertical maps are 1′s whenever possible and 0 otherwise:

F F · · · F · · · F

F · · · F F · · · F

(2) Given an interval [i, j], let I+[i, j]• denote the ladder persistence module for
which V• is I[i, j]• and W• is 0, with all vertical maps necessarily being 0:

F F · · · F

0 · · · 0 0 · · · 0 · · · 0

(3) And finally, given an interval [i, j], let I−[i, j]• be the ladder persistence module
for which V• is trivial while W• is I[i, j]•, so once again all vertical maps are 0:

0 · · · 0 0 · · · 0 · · · 0

F F · · · F

It is readily seen that these three families of ladder persistencemodules aremutually
non-isomorphic and indecomposable. Therefore, by the Krull-Schmidt theorem, if φ•
were to decompose as a direct sum of modules sourced from these three families, then
such a decomposition would be unique. From such a decomposition, we can obtain
the desired partial matching of the source and target bars: the presence of eachR[i2, j2]

[i1, j1]•
summand matches a bar [i2, j2] of V• to a bar [i1, j1] of W•, whilst the existence of
I+[i, j]• (or I−[i, j]•) summands reveals bars [i, j] in V• (or W•) that are matched
to 0. With this in mind, here is the main result of this section.

Theorem 5.3 Let (V•,W•, φ•) be a ladder persistence module of length � + 1 where
neither V• nor W• admit a pair of strictly nested bars. Then there are integers r [i2, j2]

[i1, j1]
and d±

i j ∈ N for which:

(V•,W•, φ•) 

⊕

[i1, j1]�[i2, j2]

(
R[i2, j2]

[i1, j1]•
)r [i2, j2]

[i1, j1] ⊕
⊕

i≤ j

(
I+[i, j]•

)d+
i j ⊕

⊕

i≤ j

(
I−[i, j]•

)d−
i j

(In Example 5.4 below we show that the assumption precluding nested bars is neces-
sary.)
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Proof The argument proceeds along three basic steps.
Step 1: Representing φ. Consider ordered barcode bases

BV := {
BV ,i ⊂ Vi | 0 ≤ i ≤ �

}
and BW := {

BW ,i ⊂ Wi | 0 ≤ i ≤ �
}

of V• and W•. Let dVi, j and d
W
i, j be the multiplicity of [i, j] bars in the barcodes of V•

and W•. We denote by b• the matrix representations of the maps φ• in these chosen
bases. As in the proof Theorem 4.4, let [i1, j1] and [i2, j2] be two intervals in the
barcode decomposition of (V•, f•), and denote their corresponding sequences by {p•}
and {q•}. Using the commuting relations φk ◦ fk = hk ◦ φk−1, we have φk(pk, qk) =
φk′(pk′, qk′), for all k, k′ ∈ [i, j] = [i1, j1] ∩ [i2, j2], with this coefficient being
zero unless [i1, j1] � [i2, j2]. Assuming this order relation holds, define X [i2, j2]

[i1, j1] , to
be the submatrix of bi obtained by taking the dVi2, j2 columns corresponding to basis

vectors part of an [i1, j1] bar of V , and the dWi1, j1 rows corresponding to basis to

basis vectors part of an [i2, j2] bar of W . From the above observation, X [i2, j2]
[i1, j1] is a

submatrix of bi , bi+1, . . . b j , and is of dimension dWi1, j1 × dVi2, j2 . Thus, the matrices b•
are completely determined by the matrices X [i2, j2]

[i1, j1] and may therefore be represented
as a single block matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X [0,0]
[0,0] X [0,1]

[0,0] . . . X [0,�]
[0,0] 0 . . . 0

0 X [0,1]
[0,1] . . . . . . X [1,�]

[0,1] . . . 0

...
...

. . .

. . .

. . .

X [�,�−1]
[�,�−1] X [�,�]

[�,�−1]
0 0 0 X [�,�]

[�,�]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This is a matrix of size (
∑

dWi, j ) × (
∑

dVi, j ).
Step 2: Admissible Operations. Given two ordered barcode bases BV and Bw

we may define a block matrix as above, which we denote b(BV ,BW ). By Propo-
sition 4.7, the set of ordered all barcode bases of (V•, f•) coincides precisely with
the orbit Stab(A(B1)•)B1, where B1 is an ordered barcode basis. Then given
(h, k) ∈ Stab(A(BV )•) × Stab(A(BW )•), we may consider b(hBV , kBW ). As
seen in the proof of Theorem 4.4, we are able to completely characterise an element

h ∈ Stab(A(BV )•) in terms of the submatrices h[i2, j2]
[i1, j1], so that h may be represented

as a single block matrix
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h[0,0]
[0,0] h

[0,1]
[0,0] . . . h[0,�]

[0,0] 0 . . . 0

0 h[0,1]
[0,1] . . . . . . h[1,�]

[0,1] . . . 0
...

...
. . .

. . .

h[�,�−1]
[�,�−1] h

[�,�]
[�,�−1]

0 0 0 h[�,�]
[�,�]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

of size (
∑

dVi, j ) × (
∑

dVi, j ). The same is true for k ∈ Stab(A(BW )•), whence
b(hBV , kBW ) equals the (matrix) product k · b(BV ,BW ) · h−1. Thus, we are only
allowed to perform the following legal operations on b(BV ,BW ):

(1) Using invertible block diagonal elements h[i1, j1]
[i1, j1] and k

[i1, j1]
[i1, j1] , we may perform any

operations between column and rows corresponding to [i1, j1] bars in our block
matrix.

(2) Using the blockmatrices h[i2, j2]
[i1, j1], we seewemaymodify columns corresponding to

[i2, j2] bars using columns corresponding to [i1, j1] in our blockmatrix, whenever
[i1, j1] � [i2, j2].

(3) Using the block matrices k[i2, j2]
[i1, j1] , we see we may modify rows corresponding to

[i1, j1] bars using columns corresponding to [i2, j2] in our blockmatrix, whenever
[i1, j1] � [i2, j2].

Step 3: Matrix Reduction. We wish to find ordered barcode bases for which the
corresponding matrix b(BV ,BW ) admits at most one non-zero term 1 in each row
and column. From this form, the desired decomposition can be easily extracted: every
1 in a row corresponding to an [i1, j1] bar and column corresponding to an [i2, j2] bar
(with [i1, j1] � [i2, j2]) corresponds to an R[i2, j2]

[i1, j1]• summand. Similarly, zero rows
and columns then yield I−[i, j]• and I+[i, j]• summands respectively.

Let BV , BW be ordered barcode bases of V•, W• so that

b(BV ,BW ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X [0,0]
[0,0] X [0,1]

[0,0] . . . X [0,�]
[0,0] 0 . . . 0

0 X [0,1]
[0,1] . . . . . . X [1,�]

[0,1] . . . 0
...

...
. . .

. . .

. . .

X [�,�−1]
[�,�−1] X [�,�]

[�,�−1]
0 0 0 X [�,�]

[�,�]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We seek stabiliser elements (h, k) so that B(hBV , kBW ) = kB(BV ,BW )h−1 is in
barcode form. To this end, we perform basis changes using legal operations of type
(1), (2) and (3). We process the column-blocks of this matrix from left to right, in each
case starting from the diagonal block and working our way upwards. We will denote
each treated matrix that has been put in adequate form by P [i2, j2]

[i1, j1] .
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That is, we start with X [0,0]
[0,0] , putting it in Smith normal form using basis changes h[0,0]

[0,0]
and k[0,0]

[0,0] . Now assume we wish to treat X [i2, j2]
[i1, j1] , where all matrices below it and to its

left have been treated. That is, we have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0 · · · P [i1, j1]
[i1, j1] · · · X [i2, j2]

[i1, j1]
...

P [i2, j2]
[i2,�]
0
...

0

Given non-intersecting bars [a, b] � [c, d], we have either [a, b] � [c, d] or [a, b] ⊂
[c, d]. Then by hypothesis, given P [a,b]

[i1, j1] to the left of X
[i2, j2]
[i1, j1] , we have [a, b] � [i2, j2].

So we may zero out rows of X [i2, j2]
[i1, j1] in which P [a,b]

[i1, j1] has 1’s using operations of type
(2). Similarly, given P [i2, j2]

[a,b] below X [i2, j2]
[i1, j1] , we may zero out corresponding columns

using operations of type (3). The non-zero columns of the resulting matrix X̃ [i2, j2]
[i1, j1]

have 0’s below them, and non-zero rows have 0’s to their left.
Then using basis changes h[i2, j2]

[i2, j2] and k
[i1, j1]
[i1, j1] , we may put A in Smith normal form,

without adding non-zero terms in any rows below and column to its left, preserving
the desired structure. �

Example 5.4 We illustrate the difficulties imposed by strictly nested bars in the context
of Theorem 5.3. Consider the map φ• : V• �→ W• where V• has barcode

1 4

2 3

and W• has barcode
0 3

with associated ordered barcode basesBV ,BW , and φ• is given by the block matrix
representation

b(BV ,BW ) =
[1, 4] [2, 3][ ]
1 1 [0, 3]
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Since [2, 3] ⊂ [1, 4], stabiliser changes of basis forBV are invertible diagonal matri-
ces

[
a 0
0 b

]
, and stabiliser changes of basis forBW are invertible matrices [ c ]. As such,

(V•,W•, φ•) which will never be expressible as a direct sum of modules as in Theo-
rem 5.3, since there is no change of basis which will allow us to transform this matrix
into either [ 0 1 ] or [ 1 0 ]. The same is true if V• has barcode

1 4

and W• has barcode
0 3

1 2

with associated ordered barcode basesBV ,BW , and φ• is given by the block matrix
representation

[1, 4][ ]
1 [0, 3]
1 [1, 2]

Thus, if the nested condition is violated on either V• or W•, a decomposition as in
Theorem 5.3 is not always possible.

Remark 5.5 Thenon-nestedness hypothesis on the bars ofV• andW• fromTheorem5.3
is quite restrictive. There are, however, several scenarios of interest where it is satisfied:

(1) The 0-th persistent homology of a point cloud satisfies the hypothesis because all
bars have left endpoint 0.

(2) Similarly, the 1st persistent homology of a filtered graph admits no strictly nested
bars because all bars have right endpoint ∞.

(3) More generally, the n-th persistent homology of an n-dimensional filtered complex
satisfies the non-nestedness criterion. One may consider, for instance, the Linial-
Meshulammodel of random simplicial complexes (Linial andMeshulam 2006). A
random simplicial complex chosen from this model on a given vertex set consists
of every possible simplex of dimension < n, with candidate n-simplices being
included independently with uniform probability p ∈ [0, 1]. The n-th persistent
homology of any filtration of such a random complex satisfies the hypothesis.

Theorem 5.3 applies in all such cases.
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6 Zizagmodules

In this section, we wish to generalise the previous work to representations of any type
A quiver, in other words zizag persistence modules. The nomenclature we adpot here
is extracted from (Carlsson and de Silva 2010). A zizag module is given by a sequence

V0
p1

V1
p2 · · · p�−1

V�−1
p�

V�

where each
pi←−−→ is either a forwardmap

fi−−→ or a backwardsmap
qi←−−. The direction

of the arrows define the type τ of the zizagmodule, which is the direction of the arrows
of the underlying type A quiver. For example,

V0
f1

V1
q2

V2

has type τ = f q. We denote zizag modules as (V•, p•, τ ).
The interval module of type τ corresponding to a pair of non-negative integers

i ≤ j is the zizag module Iτ [i, j]• given by

0 · · · 0 F · · · F 0 · · · 0,

where the contiguous string of F’s spans {i, i + 1, . . . , j − 1, j}, all intermediate
F ←→ F maps are identities in the direction depending on τ , and all other vector
spaces are trivial. Zizag modules also decompose into interval modules: this follows
from the main result of Gabriel (1972), and is established more directly in Carlsson
and de Silva (2010). In particular, every zigzag module (V•, p•, τ ) is isomorphic to a
direct sum

(V•, p•, τ ) ∼=
⊕

0≤i≤ j≤�

(Iτ [i, j])di j ,

for some uniquely determined di j ∈ N.

Definition 6.1 An m × n matrix A of rank r is in reversed barcode form if there
exists a strictly increasing function c : {m − r + 1, . . . ,m} → {1, . . . n} so that

Ai j =
{
1 if j = c(i),

0 otherwise.

Thus, a matrix is in reversed barcode form whenever its entries lie in {0, 1}, with at
most one non-zero term in each row and column, and satisfies the following additional
requirement: the r non-zero terms appear in the last r columns, with increasing row
order. (We warn the reader that if a matrix A is in barcode form, then its transpose will
not in general be in reversed barcode form; however, the off-diagonal transpose of A
will be in reversed barcode form).
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Definition 6.2 A basis family B for a zizag module is called an barcode basis for

(V•, p•, τ ) if all of the Ai for which Vi−1
fi−−→ Vi are in barcode form, and all the Ai

for which Vi−1
qi←−− Vi are in reversed barcode form. The corresponding matrices A•

are then said to be in zizag barcode form.

We note that this notion coincides with Definition 2.2 whenever all maps in sight are
forward. Barcode bases for zizag modules are the natural bases arising from their
decomposition into interval modules.

6.1 Algorithm for zizagmodules

We wish to generalise our algorithm from Sect. 3 to treat the case of zizag modules.
Instead of presenting concrete algorithms, we will adapt our proof of Proposition 3.4
in Sect. 3 to the more general setting. Implementing the algorithm is then achieved in
similar fashion to what was done in Sect. 3 for classical persistence modules. To this
end, we fix a zizag module (V•, p•, τ ) expressed as a sequence of matrices A• with
respect to an arbitrary (i.e., not necessarily barcode) basis family B:

F
n0

A1
F
n1

A2 · · · A�−1
F
n�−1

A�
F
n� (11)

The matrices Ai are of dimension either ni × ni−1 or ni−1 × ni , depending on the
type τ of V•. Analogously to Sect. 2, we may define Xτ to be the set of all the possible
matrix-sequences A• which can arise in (11). It is a (strict) subset

Xτ ⊂
�∏

i=1

Yi , where Yi =
{
Mat (ni × ni−1; F) if i − 1 −→ i

Mat (ni−1 × ni ; F) if i − 1 ←− i

Changes of bases for zigzag modules are obtained by a new action of the group G
from (5) on the set Xτ ; the major difference between this action and the one treated in
Sect. 3 is that the (direction of) conjugation now depends on the type τ . Explicitly, if

Vi−1
fi−−→ Vi points forward, then it gets sent to gi ◦ fi ◦g−1

i−1 as before; and conversely,

if Vi−1
qi←−− Vi points backwards, then it is sent to gi−1 ◦ qi ◦ g−1

i . For this action, we
obtain the following analogue of Lemma 3.3.

Lemma 6.3 Assume that the first � − 1 matrices of {Ai | 1 ≤ i < �} from (11) are in
zizag barcode form.

• If f� : V�−1 → V�, and the last matrix A� has a pivot in the (r , q) position3,
together with a nonzero entry α := A�(r , p) in the same row r but some other
column p > q, then there exists g ∈ G with g� = Id so that (gA)• equals A•
except A� where the α entry is replaced by zero.

3 i.e., we have A�(r , q) = 1 while all other entries in the q-th column of A� are zero.
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• If q� : V�−1 ← V�, and the last matrix A� has a pivot in the (r , q) position,
together with a nonzero entry α := A�(s, q) in the same column q but some other
row s < r , then there exists g ∈ G with g� = Id so that (gA)• equals A• except
A� where the α entry is replaced by zero.

Proof The proof is done by induction, in similar fashion to that of Lemma 3.3. The
case � = 1 remains trivial. To prove the induction, 4 cases should now be considered.

Case 1 :V�−2 → V�−1 → V�

This case is precisely that of Lemma 3.3, and the proof remains, the same.
Case 2: V�−2 ← V�−1 → V�

Performing Cp←q(−α) on A� induces the same operation on A�−1. If the q-th
column of A�−1 is identically zero, this operation leaves A�−1 unchanged. Otherwise,
since p > q and A�−1 is in reversed barcode form, if the q-th column isn’t zero then
the p-th column is also non-zero. Then the resulting matrix A′

�−1 has the form

A′
�−1 =

q p
⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

0 1 0 · · · 0 −α 0 c
0 0
...

...

0 0
0 0 0 · · · 1 0 d

where we may again use induction.
Case 3: V�−2 → V�−1 ← V�

We must perform the row operation Rs←r (−α) on A�, inducing the same row
operation on A�−1. Again, if the r -th row of A�−1 is identically zero, we are done.
Otherwise, since A� is in barcode form and s < r , if the r -th row isn’t zero then the
s-th row isn’t zero, and so the resulting matrix A′

�−1 has the form A′
�−1 has the form

A′
�−1 =

c d
⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

0 1 0 · · · 0 −α 0 s
0 0
...

...

0 0
0 0 0 · · · 1 0 r

where we may again use induction.
Case 4: V�−2 ← V�−1 ← V�

We perform the row operation Rs←r (−α) on A�, inducing the column operation
Cr←s(α) on A�−1. Again, if the s-th column of A�−1 is zero, we are done. Otherwise,
since A�−1 is in barcode form and s < r , the r -th column is also non-zero so that the
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resulting matrix A′
�−1 has the form

A′
�−1 =

s r
⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

0 1 0 · · · 0 α 0 c
0 0
...

...

0 0
0 0 0 · · · 1 0 d

where we may again use induction. �
The zigzag-compatible avatar of Proposition 3.4 is given as follows. As before,

we regard this result as the ’matrix version’ of the decomposition theorem for zizag
persistence modules.

Proposition 6.4 Given the sequence of matrices A• as in (11), there is a g ∈ G such
that (gA)• has all its matrices in zizag barcode form.

Proof We proceed by induction. The case � = 1 is trivial. We can reduce ourselves
by induction hypothesis to the case where the first � − 1 matrices are in zizag barcode
form. If V�−1 → V� we perform row operations on A� to put it in reduced row echelon
form. Otherwise, if V�−1 ← V�, we perform column operations to put A� in reversed
reduced column echelon form. That is, we put A� in the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

� � . . . . . . �

0 1 0 . . . . . . 0
. . .

� � �

0 1 0 0
� �

0 1 0
�

0 1
0

This is achieved through a slight tweak to the standard Gaussian algorithm for placing
matrices in columnechelon form,where one startswith the last rowandworks upwards.
Finally,wemay applyLemma6.3 to the non-zero � termof A� obtain the desired result.

�

6.2 Barcode bases of zizagmodules

In order to characterise the set of barcode bases of a zizag module, we must again
attempt to characterise the set Stab(A•) corresponding to linearmaps of a zizagmodule
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in a barcode basis. In Sect. 4, we defined an order� on the set of intervals that allowed
us to classify the stabiliser as

Stab(A•) ∼=
∏

[i, j]
GL(di j ; F) ×

∏

[i1, j1] [i2, j2]
Mat(di1 j1 × di2 j2; F).

TheMat(di1 j1×di2 j2; F) came from the fact that in standard persistence, the interval
module I[i1, j1] can be mapped non-trivially to the interval I[i2, j2] if and only if
[i1, j1] � [i2, j2]. In zizag persistence, this is no longer true.

Example 6.5 One checks that in the following scenario
1 4

2 3

the interval [1, 4] may be non-trivially mapped to the interval [2, 3].
To then obtain a similar classification result for zizag modules, we see we must

adapt our partial order � to the type τ of our zizag module.

Definition 6.6 Let τ be a type of zizag module, defining an orientation on the standard
length � quiver. Let �τ be the binary relation on

{[i, j] ∈ Z
2 | 0 ≤ i ≤ j ≤ �

}
given

by

[i1, j1] �τ [i2, j2] ⇔

⎧
⎪⎨

⎪⎩

[i1, j1] ∩ [i2, j2] = [i, j] �= ∅ and

i1 ≤ i2 if i − 1 → i, i2 ≤ i1 if i − 1 ← i and

j1 ≤ j2 if j → j + 1, j2 ≤ j1 if j ← j + 1

We observe that when all maps point forward, i.e., when τ = f f . . . f , we have
�τ=�. And if all maps point backwards, ie τ = qq . . . q, then �τ is the reverse of �
in the sense that

[i1, j1] �τ [i2, j2] ⇔ [i2, j2] � [i1, j1].

Our description of the stabiliser from Theorem 4.4 relied on the compatibility of �
with the lexicographical total order � on the bars. Having produced a τ -analogue of
�, we must now construct the zigzag version of �. To this end, we define two new
auxiliary total orders on the set of all possible endpoints {0, . . . , �}. Note that any such
order < amounts to a choice of element σ� lying in the permutation group S�+1 via
the identification

σ(0) < σ(1) < · · · < σ(�).
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Definition 6.7 Let ≤τ be the total order on {0, 1 . . . �} given by the permutation σ�

defined inductively as follows. Assumingwe have ordered {0, . . . , i}with correspond-
ing permutation σi , we order {0, . . . , i + 1} with permutation σi+1, setting

σi+1(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σi (k) if i −→ i + 1 for k ∈ {0, . . . i}
i + 1 if i −→ i + 1 for k = i + 1

σi (k) + 1 if i ←− i + 1 for k ∈ {0. . . . i}
0 if i ←− i + 1 for k = i + 1

Definition 6.8 Let ≤∗
τ be the total order on {0, 1 . . . , �} given by the permutation

σ ∗
� defined inductively as follows. Assuming we have ordered { j + 1, . . . , �} with

corresponding permutation σ ∗
j+1, we order { j, . . . , �} with permutation σ ∗

j , setting

σ ∗
j (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ ∗
j+1(k) if j −→ j + 1 for k ∈ { j + 1. . . . �}
j if j −→ j + 1 for k = j

σ ∗
j+1(k) − 1 if j ←− j + 1 for k ∈ { j + 1. . . . �}

� if j ←− j + 1 for k = j

If τ = f f . . . f , both of the above total orders coincide with the standard ordering ≤
on {0, 1 . . . �}.
Example 6.9 Consider zigzag modules of length 4 with type 0 ←− 1 −→ 2 ←− 3.
For such modules, the two total orders defined above are

3 ≤τ 1 ≤τ 0 ≤τ 2, and

1 ≤∗
τ 3 ≤∗

τ 2 ≤∗
τ 0.

Definition 6.10 Let τ be a type of length-� zigzag module. The corresponding total
order �τ on

{[i, j] ∈ Z
2 | 0 ≤ i ≤ j ≤ �

}
is given by

[a, b] �τ [c, d] ⇔ a <τ c or a = c and b ≤∗
τ d.

By construction, if τ = f f . . . f , this coincides with the lexicographic order �
from Sect. 4, and [i1, j1] �τ [i2, j2] ⇒ [i1, j1] �τ [i2, j2]. Using this total order on
the bars, we may generalise our notion of ordered barcode bases to zizag modules,
by ordering the bars with the order �τ . We now have all the necessary tools to adapt
our results from Sect. 4 to the case of zizag modules.

Theorem 6.11 For each pair [i, j] in {0, 1, . . . , �}with i ≤ j , let di j be themultiplicity
in the barcode of (V•, p•, τ ), with the understanding that di j = 0 whenever [i, j] is
not in Bar(V•, p•, τ ). Then there is a bijection of sets:

Stab(A•) ∼=
∏

[i, j]
GL(di j ; F) ×

∏

[i1, j1] τ [i2, j2]
Mat(di1 j1 × di2 j2; F).

123



The space of barcode bases for persistence modules

Proposition 6.12 Given a zizag module (V•, p•, τ ) together with an ordered barcode
basis B with matrix representation A•, the set of all ordered barcode bases is given
by the orbit Stab(A•)B.

6.3 Maps of zizagmodules

We now turn our attention to morphisms (V•, p•, τ ) → (W•, p̃•, τ ) between zigzag
persistence modules of the same type τ . Each such morphism is determined by linear
maps φi : Vi �→ Wi along with the requirement that the evident squares commute.
That is, if pi = fi (and so p̃i = f̃i ), we have φi ◦ fi = f̃i ◦ φi−1, and if pi = qi
(and so p̃i = q̃i ), we have φi−1 ◦ qi = q̃i ◦ φi . This is best represented through the
following diagram

V0
p1

φ0

V1
p2

φ1

· · · p�−1
V�−1

p�

φ�−1

V�

φ�

W0
p̃1

W1
p̃2

· · ·
p̃�−1

W�−1
p̃�

W�

where each natural square commutes.
As in Sect. 5, such maps may be identified as ladder persistence module on the

rectangle quiver with orientation τ . We denote such modules (V•,W•, φ•, τ ). We
may analogously define a special class of of modules, namely R[i2, j2]

τ[i1, j1]• , I
+
τ [i, j]• and

I−τ [i, j]•. Here is the zigzag analogue of Definition 5.1

Definition 6.13 Given a type τ of zizagmodule,we say a bar [i2, j2] is strictly nested in
a bar [i1, j1]with regards to τ , denoted [i2, j2] ⊂τ [i1, j1], if they are non-intersecting
with [i1, j1] �τ [i2, j2] but [i1, j1] �τ [i2, j2].

As in Sect. 5, maps of zizag module may be compactly represented as block upper
triangular matrices using ordered barcode basis for the source and target and zizag
modules. Having excluded strictly nested bars, we are free to perform operations of
type (1), (2) and (3) à la Theorem 5.3 and obtain the following result.

Theorem 6.14 Let (V•,W•, φ•, τ ) be a ladder persistence module of length �+1 and
type τ , where neither V• nor W• admit a pair of strictly nested bars with regards to τ .
Then there are integers r [i2, j2]

[i1, j1] , d
±
i j > 0 for which :

(V•,W•, φ•, τ ) 

⊕

[i1, j1]�τ [i2, j2]
(R[i2, j2]

τ[i1, j1]• )
r
[i2, j2]
[i1, j1] ⊕

⊕

i≤ j

(I+τ [i, j]•)d
+
i j ⊕

⊕

i≤ j

(I−τ [i, j]•)d
−
i j
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