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Complex Links and Hilbert--Samuel Multiplicities*

Martin Helmer\dagger and Vidit Nanda\ddagger 

Abstract. We describe a framework for estimating Hilbert--Samuel multiplicities \bfe XY for pairs of projective
varieties X \subset Y from finite point samples rather than defining equations. The first step involves
proving that this multiplicity remains invariant under certain hyperplane sections which reduce X
to a point p and Y to a curve C. Next, we establish that \bfe pC equals the Euler characteristic (and
hence the cardinality) of the complex link of p in C. Finally, we provide explicit bounds on the
number of uniform point samples needed (in an annular neighborhood of p in C) to determine this
Euler characteristic with high confidence.
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1. Introduction. One of the most fundamental quantities of interest in intersection the-
ory is the Hilbert--Samuel multiplicity, which associates an integer eXY \geq 0 to each pair
consisting of an irreducible subvariety X inside a pure-dimensional scheme Y . This integer
serves, among other things, as a coarse measurement of the singularity type of X inside Y .
When Y is reduced, eXY = 1 holds if and only if X is nonempty and smoothly embedded
in Y . The importance of Hilbert--Samuel multiplicities stems from their wide-ranging con-
nections with several other intersection-theoretic invariants. For instance, eXY appears as
the coefficient of [X] in the Segre class s(X,Y ) [7, Chapter 4.3], in Fulton and MacPherson's
intersection product [7, Chapter 12.3], and in Serre's Tor formula [22, Theorem 1, page 112].
Computing eXY , either directly from its definition or as a consequence of these connections,
requires serious algebraic manipulations of the defining equations for X and Y .

Our goal in this paper is to describe a new framework for estimating eXY from finite local
point samples without recourse to any such equations. In this setting, we have no means to
capture the scheme structure of Y and will therefore restrict ourselves to the case where Y
is reduced, i.e., a pure-dimensional variety in some n-dimensional projective space \BbbP n. The
methods developed here could also be applied to any data set which we would expect to have
the structure of a complex variety, even if the variety is not known. Here is an informal version
of our main result for estimating eXY for such pairs X \subset Y .
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30 MARTIN HELMER AND VIDIT NANDA

Theorem. Let X \subset Y be projective varieties in \BbbP n, and let L \subset \BbbP n be a linear space
obtained by intersecting (dimY  - 1) hyperplanes which are general except for the requirement
that they all pass through a generic point p of X. The Hilbert--Samuel multiplicity eXY can
be determined with high confidence from a sufficiently large (but finite) uniform point sample
S lying on the curve Y \cap L in a local annular neighborhood around p.

We provide explicit bounds on how large S must be in terms of the local geometry of Y \cap L
near p and the desired probability of successful estimation. Our proof has three basic steps,
each involving a different key ingredient and producing an intermediate result. These steps
are summarized below.

Step 1: Algebra. We first establish that eXY is invariant under the operation of slicing
both X and Y by certain hyperplanes. The key ingredient here is a new degree formula for
Hilbert--Samuel multiplicities [11, Theorem 5.3]. Using this formula, we prove the following
result.

Theorem (A). Given X \subset Y as above, let L be the intersection of k general hyperplanes
which all pass through some general point p of X; then the following hold:

1. if k < dimX, then eXY = eX\cap L(Y \cap L); moreover,
2. if k=dimX, then eXY = ep(Y \cap L); and finally,
3. if k\leq dimY  - 1, then eXY = ep(Y \cap L).
In fact, the first two assertions follow readily from basic properties of Segre classes, whereas

the last one is new and makes essential use of the aforementioned degree formula from [11].
As a consequence of this third assertion (for k = dimY  - 1), every eXY calculation can be
reduced to the case where X = p is a point and Y = C is a curve in \BbbP n containing p. In this
special case, the degree formula for Hilbert--Samuel multiplicity simplifies to

epC =deg(C) - deg((C \cap H) - p),

where H is a general hyperplane passing through p. While this is a convenient reformulation
for algebraic computation of epC, both degrees appearing on the right-hand side are global
computations in the sense that they require checking for intersections far away from p. The
purpose of the next step is to replace these with a local computation near p.

Step 2: Topology. The starting point for our second step is the observation that deg(C)
equals the cardinality of C \cap H \prime , where H \prime is a general hyperplane in \BbbP n. Crucially, we let H \prime 

be parallel to the plane H when restricted to an affine chart of \BbbP n containing p. The special
ingredient here is Thom's first isotopy lemma [9, Chapter I.1.5], which allows us to relate epC
to the Euler characteristic (and hence cardinality) of the zero-dimensional space

Lp :=C \cap B\epsilon (p)\cap H \prime .

Here B\epsilon (p) denotes a small closed ball around p in a chart of \BbbP n. In particular, we employ a
homological argument to show the following result.

Theorem (B). If p is any (possibly singular) point on a curve C \subset \BbbP n, then its
Hilbert--Samuel multiplicity satisfies epC = \chi (Lp), where \chi denotes Euler characteristic.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COMPLEX LINKS AND HILBERT--SAMUEL MULTIPLICITIES 31

The space Lp plays a fundamental role in (complex) stratified Morse theory---it provides
normal Morse data for p with respect to a stratified Morse function defined on C and is called
the complex link of p in C [9, Chapter II.2]. Variants of Theorem (B) have been assigned as
exercises to the reader on several occasions, including the introduction to [9] and [15, Example
4.6]. However, we were unable to locate a proof in the literature; since it forms an essential
part of our overall argument, we have included a proof here.

Step 3: Geometry. It remains to estimate the cardinality of Lp using a uniform finite
point sample S chosen from B := C \cap B\epsilon (p). The main difficulty here is that generically the
intersection S \cap H \prime will be empty even when the sample size is enormous. As such, we are
compelled to search for points of S which lie within some small distance \alpha 0 > 0 of H \prime and
hope that these points naturally organize into eXY -many clusters. The key ingredient here
is a suite of geometric inference results, which date back to the work of Niyogi, Smale, and
Weinberger from [18]. Given a compact Riemannian submanifold M \subset \BbbR d and a probability
parameter \gamma \in (0,1), these results give explicit bounds on the cardinality of a finite point
sample P \subset M required to estimate the homology of M with probability exceeding (1 - \gamma ).

Recently, Wang and Wang have extended results of [18] to the case where M \subset \BbbR d is a
smooth submanifold with boundary [27]; they provide an explicit lower bound NM (\alpha ,\gamma ) on
the size of a uniform point sample P \subset M required to ensure, again with probability at least
(1  - \gamma ), that P is \alpha /2-dense in M . These results require \alpha to be sufficiently small relative
to the injectivity radii of the embeddings M \lhook \rightarrow \BbbR d and \partial M \lhook \rightarrow \BbbR d of the manifold and its
boundary, respectively. Although the space B of interest to us is not a manifold (thanks to
the singularity at p), it does become a manifold with boundary by removing the interior of
a smaller ball B\epsilon 0(p) with \epsilon 0 < \epsilon . After this excision, we can safely apply the density results
from [27] and obtain the following result.

Theorem (C). Fix sufficiently small radii 0< \epsilon 0 < \epsilon . There exists, for all sufficiently small
radii \alpha > 0 and probabilities \gamma \in (0,1), an explicit bound N(\alpha ,\gamma ) with the following property.
Any uniformly sampled subset

S \subset [C \cap (B\epsilon (p) - B\epsilon 0(p)
\circ )]

of cardinality \#S > N(\alpha ,\gamma ) can be used to correctly compute the Euler characteristic \chi (Lp)
with probability exceeding (1 - \gamma ).

The value of \alpha in the theorem above will change if a new \epsilon and \epsilon 0 are chosen. Moreover,
the process of recovering \chi (Lp) requires us only to cluster together points of S which lie
within a small distance \alpha 0 < \alpha of a random hyperplane passing near (but not through) the
point p. Combining Theorems (A), (B), and (C) gives the promised main result. This result
may also be extended to affine varieties X \subset Y \subset \BbbC n by passing to their projective closures;
see section 3.1.

Towards Implementation and Applications. The methods developed here are meant as
a natural addition to the growing body of work on using sampled data points to understand
the geometry and topology of algebraic varieties [3] and of point cloud data which are well-
modelled by such varieties [1]. Our main result leads to the following probabilistic algorithm
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32 MARTIN HELMER AND VIDIT NANDA

for estimating eXY for pairs of complex varieties X \subset Y in \BbbC n from a sufficiently large uniform
finite point sample S \subset Y in a neighborhood of a randomly chosen point p\in X.

1. Select a random affine subspace Ap \subset \BbbC n of dimension (n - dimY  - 1) which passes
through p (so in particular Y \cap Ap is a curve containing p).

2. Select a random affine hyperplane H \prime \subset Ap which passes within some small distance
\delta > 0 of p.

3. For small radii \epsilon \gg \delta \gg \alpha 0, let S
\prime be the subset of S\cap (Y  - X) containing points which

simultaneously lie within distance \alpha 0 of H \prime and within distance \epsilon of p.
Theorems 3.5, 4.1, and 5.4 of this paper guarantee that the number of clusters in S\prime is an
accurate estimator for eXY for sufficiently large S provided that the parameters \epsilon , \delta , and
\alpha 0 are chosen appropriately. Figure 1 contains three instances of S\prime obtained from the same
point sample S.

Even when one has direct access to the polynomials defining X and Y , it may be advan-
tageous to avail oneself of the probabilistic strategy described above. For instance, computing
Jacobian minors of the appropriate size to find the singular locus of Y , where one expects to
find X, might already be prohibitive. If Y is a 7-dimensional variety defined by 14 polynomi-
als of degree 5 in 13 variables, computing its singular locus requires considering more than 5
million polynomials [13], each of degree 46 = 4096. In such cases, our sample-based method
may provide the only way to compute Hilbert--Samuel multiplicities. To properly implement
the probabilistic algorithm, one would require (localized versions of) techniques for densely
sampling varieties [3] as well as techniques for detecting singular loci from such samples [25]
without knowing the equations. Finally, we would require heuristic estimates for various con-
dition numbers and radii from section 5 of this paper. Describing all of this carefully here
would take us too far afield of our main goals, but we hope to address these topics in future
work.

One natural application domain for Hilbert--Samuel multiplicities can be found in the
discipline of algebraic kinematics. The configuration space of a wide variety of robotic mecha-
nisms can be modelled with polynomial (or trigonometric polynomial) equations; and by using
isotropic coordinates, it becomes reasonable in several cases of interest to assume that such
a configuration space is a complex algebraic variety [26, section 3.2]. A singularity is defined

Figure 1. A visualization of the output of our multiplicity inference procedure applied to the point X = (0,0)
inside the curve Y \subset \BbbC 2 defined by (y - x2)(y+x2)y= 0. For this example, the multiplicity \bfe XY equals 3. The
visualization shows three different random choices of the the offset hyperplane H \prime which defines the complex
link. The resulting point clusters in \BbbC 2 \simeq \BbbR 4 have been projected onto their real coordinates.
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COMPLEX LINKS AND HILBERT--SAMUEL MULTIPLICITIES 33

in this context to be any configuration where the mechanism loses a degree of freedom. In an
algebraic formulation of kinematics, these singularities are related to the singularities of the
model algebraic variety; see [26, section 4.4.1] or [19]. The multiplicity of such singular points
has a bearing on the kinematic properties the mechanism being considered.

The effect of multiplicities of singular points on the behavior of mechanisms was explored
for the case of the 3-RPR manipulator in [17]. For this manipulator, the singular configura-
tions of cuspidal type are of particular interest since these configurations allow for a nonsingu-
lar change of assembly mode. In [17, section 4], these singularities are identified by checking
whether or not the Hilbert--Samuel multiplicity of a singular point on an algebraic variety
exceeds three.

1

It is also interesting to note that the presence of the cuspidal configurations
was first observed by a numeric approach based on sampling and graphing the associated joint
space in [29], indicating to us that a full version of the procedures above would be a natural
tool to apply to larger and more difficult problems of this type.

Organization. In section 2, we briefly review the definition of the complex link. Section 3
focuses on Step 1; here we give a brief overview of the Hilbert--Samuel multiplicity and prove
Theorem (A). In section 4, we implement Step 2 by providing a proof of the folklore Theorem
(B). And, finally, in section 5 we carefully state and establish Theorem (C) by describing not
only the exact form of the bound N(\alpha ,\gamma ) but also the precise constraints on \alpha imposed by
the local geometry of C near p.

2. Complex links. A stratification of a topological space W is a filtration

\emptyset =W - 1 \subset W0 \subset \cdot \cdot \cdot \subset Wk =W

by closed subspaces so that each consecutive difference Wi  - Wi - 1 is a (possibly empty or
disconnected) i-dimensional manifold called the i-stratum. Throughout this section, W will
denote a Whitney-stratified complex analytic subspace of \BbbC n. We assume that each stratum
X \subset W is a connected complex analytic manifold and write Y >X to indicate that the closure
of the stratum Y contains the stratum X. We further require all pairs of strata X < Y to
satisfy Whitney's Condition (B); see [28, section 19], [16, section 2], or [9, Chapter I.1.2]. Let
TpX denote the (dimX)-dimensional linear subspace of \BbbC n which corresponds to the tangent
space of a stratum X at a point p in X.

Fix a (connected) stratum X \subset W, and consider an arbitrary point p in X. Since it
remains difficult to illustrate even 2-dimensional complex varieties, the following real picture
(where n= 3 and dimW= 2 while dimX = 1) will serve as a proxy for the local structure of
W near p.

1The authors of [17] have considered the problem of computing the multiplicity of singular points on a
surface in joint space, which is defined by the polynomials in [17, equation (3)]. They reduce this to the task
of finding the multiplicity of a point in a zero-dimensional scheme (see [17, Definitions 5 and 6] for details).
Their multiplicity is obtained from the rational univariate representation of [20], which agrees with the classical
definition of the multiplicity of a point (see, e.g., [6, section 1] or [2, Definition 2.1]). This classical definition
is in turn equivalent to the Hilbert--Samuel multiplicity of points in the case of local complete intersections [6,
page 12], which subsume all varieties considered in [17].
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34 MARTIN HELMER AND VIDIT NANDA

The stratum X is represented by the horizontal line along which the four sheets intersect, and
the chosen point p is located near the center of X. We say that an affine subspace A \subset \BbbC n

containing p is transverse to X at p if the sum of tangent subspaces given by

TpX + TpA= \{ v+w | v \in TpX and w \in TpA\} 

equals Tp\BbbC n =\BbbC n.

Definition 2.1. A subset N \subset W is called a normal slice to X at p if it equals the inter-
section W \cap A for some (n - dimX)-dimensional affine subspace A\subset \BbbC n which intersects X
transversely at p.

One possible choice of N for our example is shown below:

Here A is the plane which crosses X at p, while N is the union of four half-open arcs, all of
which intersect at p. Evidently, N will not be a manifold in general; on the other hand, it
follows from the definition of a Whitney stratification that A will remain transverse, at least
in a small neighborhood around p, to all higher strata Y > X. Thus, N inherits a Whitney
stratification from W near p as follows. Each (dimY )-dimensional stratum Y >X carves out
a (possibly disconnected, (dimY  - dimX)-dimensional) stratum Y \cap A of N.

Fix a radius \epsilon > 0 so that the intersection of N with the closed ball B\epsilon (p) of radius \epsilon 
around p inherits a Whitney stratification from W in the manner described above.

2

We write
N\epsilon (p) =N\cap B\epsilon (p) to indicate this restricted normal slice. The next definition will make use
of our chosen N and \epsilon , and also of the usual inner product \langle \bullet ,\bullet \rangle defined on the ambient space
\BbbC n.

2More precisely, two natural transversality constraints must hold for every radius e \leq \epsilon and for every
stratum Y of \bfW . First, the boundary of \bfB e(p) must be transverse to Y in \BbbC n, and, second, the boundary of
\bfB e(p)\cap A must be transverse to Y \cap A in A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COMPLEX LINKS AND HILBERT--SAMUEL MULTIPLICITIES 35

Definition 2.2. A vector \xi in the affine space A is called nondegenerate for the pair
(N, \epsilon ) if the following property holds for all strata Y > X. Given any sequence \{ (qi, vi)\} in
the tangent bundle of Y \prime = Y \cap N\epsilon (p), where qi limits to p, if the vi limits to some nonzero
vector v, then \langle \xi , v\rangle \not = 0.

If we restrict our pictorial example to the affine plane A, then the set of degenerate vectors
will span the vertical line through p because the orthogonal complement of this vertical line
(in A through p, as drawn below) shares a limiting tangent with all four arcs of N. For any
vertically aligned \xi , one can find a sequence (qi, vi) in the tangent bundle of each arc with
qi\rightarrow p and vi\rightarrow v \not = 0 lying along the horizontal line, which in turn forces \langle \xi , v\rangle = 0. Any \xi 
off the vertical line will be nondegenerate.

Fix a nondegenerate vector \xi for (N, \epsilon ), and consider the affine-linear map

\pi \xi :A\rightarrow \BbbC 

given by z \mapsto \rightarrow \langle z  - p, \xi \rangle . By nondegeneracy, there exists a \delta > 0 so that if the differential

(d\pi \xi )q : TqY
\prime \rightarrow \BbbC 

at some point q \not = p lying in a stratum Y \prime \subset N\epsilon (p) annihilates a limiting tangent plane at q,
then | \pi \xi (q)| > \delta . Here is a summary of all the choices that have been made for the stratum
X \subset W of dimension dimX:

1. a point p\in X,
2. an (n - dimX)-dimensional affine subspace A\subset \BbbC n transverse to X at p,
3. a radius \epsilon > 0 so that N\epsilon (p) =W \cap A\cap B\epsilon (p) inherits a stratification from W,
4. a nondegenerate vector \xi \in A, and, finally,
5. another radius \delta \in (0, \epsilon ) so that the restriction of \pi \xi to N\epsilon (p) has no critical points

other than p valued in the closed ball of radius \delta around 0\in \BbbC .
The following definition makes provisional use of this tuple (p,A, \epsilon , \xi , \delta ).

Definition 2.3. The complex link of the stratum X \subset W with respect to the choices
(p,A, \epsilon , \xi , \delta ) is the intersection

LX =N\epsilon (p)\cap \pi  - 1
\xi (\delta ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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36 MARTIN HELMER AND VIDIT NANDA

Returning to our example one final time, the hyperplane \pi  - 1
\xi (\delta ) is a nonhorizontal line in

the plane A which passes near, but not through, the central point p. In a small \epsilon -ball around
p, this line generically intersects the arcs which form N\epsilon (p) in two points, so the complex link
LX in this case is just the two-point space:

The (stratified homeomorphism type of the) complex link LX depends only on the stratum
X, and not on the auxiliary choices (p,A, \epsilon , \xi , \delta ) described above [9, Chapter II.2]. It is also
interesting to note that the invariance of LX to the chosen direction \xi is entirely a feature of
complex analytic geometry---for real analytic Whitney stratified spaces, the stratified homeo-
morphism type of the intersection N\epsilon (p)\cap \pi  - 1

\xi (\delta ) is liable to change as \xi is varied.

Remark 2.4. In this paper, we will be exclusively interested in the complex link of a point
(i.e., a zero-dimensional stratum) within a complex projective variety. In this special case,
one is not required to construct a normal slice, so the formula from Definition 2.3 reduces to
LX =W \cap B\epsilon (p)\cap \pi  - 1

\xi (\delta ).

3. The Hilbert--Samuel multiplicity. Let R=\BbbC [x0, . . . , xn] denote the coordinate ring of
affine space \BbbC n+1. Let X be an irreducible complex algebraic variety given by a prime ideal
I � R, and let Y be a scheme corresponding to a primary ideal J \subset I. The local ring of Y
along X, usually written as OX,Y , is the localization of (R/J) at I. Following [23, Chapter 2,
section 1.1], if X and Y are projective or quasi-projective, we define OX,Y via a dense affine
patch; i.e., we define OX,Y as the local ring of U \cap Y along U \cap X for U \subset Y any open affine
variety where U \cap X is nonempty. The following notion is due to Samuel [21].

Definition 3.1. Let M be the maximal ideal of OX,Y , and let c be the codimension dimY  - 
dimX. The Hilbert--Samuel function of Y along X is

HS(t) = length
\bigl( 
OX,Y /M

t
\bigr) 
.

For all t \gg 0, this function is a polynomial in t of degree c whose leading coefficient is a
strictly positive integer divisible by c!---and the Hilbert--Samuel multiplicity of Y along
X, written as eXY , is the leading coefficient of the normalized polynomial (1/c!) \cdot HS(t).

It is shown in [7, section 4.3] that eXY is also equal to the coefficient of [X] in the
Segre class s(X,Y ), which naturally lives in the Chow group of X (or in the Chow ring of an
ambient smooth variety M via push-forward, X \subset Y \subset M ; we will often work in the M = \BbbP n

setting).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COMPLEX LINKS AND HILBERT--SAMUEL MULTIPLICITIES 37

3.1. Multiplicities from degrees. When X \subset Y \subset \BbbP n are projective varieties, it is often
algorithmically convenient to extract eXY from a choice BX = \{ f0, . . . , fr\} of homogeneous
polynomials that generate the defining ideal I � R of X. We will assume here that all the
fi have the same degree d, which is always possible to arrange without loss of generality [11,
section 2.1.4]. Let Li be a generic (n - i)-dimensional linear subspace of \BbbP n, and let Vi \subset \BbbP n

be the varieties given by

Vi = \{ x\in \BbbP n | F1(x) = F2(x) = \cdot \cdot \cdot = F\mathrm{d}\mathrm{i}\mathrm{m}Y - i(x) = 0\} ,(1)

where the Fj are homogeneous polynomials of degree d that have the form

Fj =

r\sum 
k=0

\lambda j
kfk

for general choices of \lambda j
k \in \BbbC . (Note that Vi contains X for all i by design.)

In [11], it is shown that the Segre class s(X,Y ), and hence the multiplicity eXY , is
determined by the numbers

\Lambda i
XY =deg(Y ) \cdot d\mathrm{d}\mathrm{i}\mathrm{m}Y - i  - deg((Y \cap Vi \cap Li) - X)(2)

for each i between 0 and dimX. In particular, [11, Theorem 5.3] establishes that

eXY =
\Lambda \mathrm{d}\mathrm{i}\mathrm{m}X

X Y

degX
(3)

or, more explicitly,

eXY =
deg(Y ) \cdot d\mathrm{d}\mathrm{i}\mathrm{m}Y - \mathrm{d}\mathrm{i}\mathrm{m}X  - deg((Y \cap V\mathrm{d}\mathrm{i}\mathrm{m}X \cap L\mathrm{d}\mathrm{i}\mathrm{m}X) - X)

degX
.(4)

The construction (3) requires that the varieties under consideration be projective. In order
to apply the formula (3) to affine varieties X \subset Y in \BbbC n, we must replace X and Y by their
projective closures PX \subset PY in \BbbP n; see [12, Exercise I.2.9] for a definition of the projec-
tive closure. Note that using the projective closures leaves the Hilbert--Samuel multiplicity
unchanged, as, by definition, the local ring OPX,PY is given by OX,Y .

Remark 3.2. We note that in [11] a different convention is used for the definition of
the local ring OX,Y for projective varieties X \subset Y \subset \BbbP n; in particular it is taken to be
(R/IY )IX for IX and IY the homogeneous ideals of X and Y , respectively, in the coordinate
ring R = \BbbC [x0, . . . , xn] of \BbbP n. This corresponds to the local ring O \^X, \^Y in the convention

used here, where \^X and \^Y are the respective affine cones in \BbbC n+1. However, from the point
of view of Hilbert--Samuel multiplicity the two conventions yield the same result; i.e., the
Hilbert--Samuel multiplicity of Y along X is equal to the Hilbert--Samuel multiplicity of \^Y
along \^X, since OX,Y is the degree zero part of the graded ring O \^X, \^Y .

3.2. Multiplicities of linear sections. Here we describe the behavior of the
Hilbert--Samuel multiplicity eXY for complex projective varieties X \subset Y when both X and
Y are replaced by their intersections with (sufficiently generic) linear spaces. The proposition
below can be seen as a direct consequence of standard properties of Segre classes (along with
the relation between Segre classes and multiplicities).
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38 MARTIN HELMER AND VIDIT NANDA

Proposition 3.3. Let Y be a pure-dimensional subscheme of the complex projective space
\BbbP n, let X be an irreducible subvariety of Y , and let L\subset \BbbP n be given by an intersection

L=H1 \cap H2 \cap \cdot \cdot \cdot \cap H\ell ,

where each Hi \subset \BbbP n is a generic hyperplane. If the codimension \ell = n - dimL is strictly less
than dimX, then the multiplicities eXY and eX\cap L(Y \cap L) are equal. Further, if \ell =dim(X),
then eXY = ep(Y \cap L), where p is any of the deg(X) points in X \cap L.

Proof. In this proof, we will work with the push-forward to the Chow ring of \BbbP n of the
Segre class s(X,Y ); in a slight abuse of notation, this will also be denoted as s(X,Y ). We
recall that the Chow ring is A\ast (\BbbP n)\sim =\BbbZ [h]/\langle hn+1\rangle , where h is the rational equivalence class of
a general hyperplane. Since each Hi is a general divisor on \BbbP n, the coefficient of h\mathrm{d}\mathrm{i}\mathrm{m}X - \ell in
the Segre class s(X \cap L,Y \cap L) equals the coefficient of h\mathrm{d}\mathrm{i}\mathrm{m}X in the Segre class s(X,Y ), i.e.,

\{ s(X \cap L,Y \cap L)\} \mathrm{d}\mathrm{i}\mathrm{m}X - \ell = \{ s(X,Y )\} \mathrm{d}\mathrm{i}\mathrm{m}X \cdot h\ell .

A proof of the above property of Segre classes can be found, for example, in [10, Corollary
3.2]. First suppose that \ell < dim(X). Using the fact that eX\cap L(Y \cap L) is the coefficient of
[X \cap L] in s(X \cap L,Y \cap L), one obtains

\{ s(X \cap L,Y \cap L)\} \mathrm{d}\mathrm{i}\mathrm{m}X - \ell = eX\cap L(Y \cap L) \cdot [X \cap L]
= eX\cap L(Y \cap L) \cdot degX \cdot hn - \mathrm{d}\mathrm{i}\mathrm{m}X+\ell ,

where the second equality follows from the fact that each Hi is a general divisor, so in par-
ticular, degX = deg(X \cap L). Now take \ell = dim(X). Then X \cap L consists of deg(X) reduced
points p1, . . . , p\mathrm{d}\mathrm{e}\mathrm{g}(X); by [7, Example 4.3.4], we have that

\{ s(X \cap L,Y \cap L)\} \mathrm{d}\mathrm{i}\mathrm{m}X - \ell = ep1
(Y \cap L)[p1] + \cdot \cdot \cdot + ep\mathrm{d}\mathrm{e}\mathrm{g}(X)

(Y \cap L)[p\mathrm{d}\mathrm{e}\mathrm{g}(X)]

= ep(Y \cap L)deg(X)[p]

= ep(Y \cap L) \cdot degX \cdot hn - \mathrm{d}\mathrm{i}\mathrm{m}X+\ell ,

where p is any point in X \cap L (all of which are rationally equivalent since we work in the
Chow ring of the ambient space \BbbP n). On the other hand, we also have

\{ s(X,Y )\} \mathrm{d}\mathrm{i}\mathrm{m}X \cdot h\ell = eXY \cdot [X] \cdot h\ell 

= eXY \cdot degX \cdot hn - \mathrm{d}\mathrm{i}\mathrm{m}X+\ell ,

which forces eX\cap L(Y \cap L) = eXY for \ell < dim(X) and ep(Y \cap L) = eXY when \ell = dim(X) as
desired.

Take L to be a general linear space of codimension equal to dim(X). The result of
Proposition 3.3 tells us that if p is a point in X \cap L, we have that eXY = ep(Y \cap L). This
leads us to consider ep(Y \cap L) more closely. Hence in the next proposition we consider a
distinguished p in Y and we will show, using (3), that intersecting with fewer than dim(Y )
hyperplanes containing p will leave the multiplicity unchanged. This will mean, in particular,
that ep(Y \cap L) from the last proposition is equal to epY (for this distinguished p which is
some general point in X).
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COMPLEX LINKS AND HILBERT--SAMUEL MULTIPLICITIES 39

Proposition 3.4. Let Y be a pure-dimensional subscheme of the complex projective space \BbbP n,
let p be any reduced point in Y , and consider a linear space L\subset \BbbP n given by the intersection
of m\geq 0 general hyperplanes containing p. If m\leq dimY  - 1, then ep(Y \cap L) is independent
of the choice of L (provided it is general) and equals epY .

Proof. The generating ideal of p in the polynomial ring \BbbC [x0, . . . , xn] can be chosen to
consist of n linear forms \{ \ell 1, . . . , \ell n\} . It follows that d = 1 and degX = 1 in (4). Since
dimp= 0, we have

epY =deg(Y ) - deg((Y \cap V\mathrm{d}\mathrm{i}\mathrm{m}Y ) - p),

where V\mathrm{d}\mathrm{i}\mathrm{m}Y is the variety defined by the polynomials \{ P1, . . . , P\mathrm{d}\mathrm{i}\mathrm{m}Y \} , with each Pj being a
linear combination of the form

Pj =

n\sum 
i=1

\lambda j
i \ell i for general \lambda j

i \in \BbbC .

Without loss of generality, we may take L to be the variety defined by the first m of these,
say \{ P1, . . . , Pm\} . Thus, L is a linear system with base locus p. It follows from Bertini's
theorem (see, for example, [4, Theorem 0.5] or [24, Theorem A.9.2]) that the linear system L
forms a smooth complete intersection outside of p so that the intersection Y \cap L is transverse
in the expected dimension, i.e., in dimension dim(Y \cap L) = dimY  - m > 0 and, moreover,
deg(Y \cap L) = deg(Y ). Letting V>m be the variety defined by \{ Pm+1, . . . P\mathrm{d}\mathrm{i}\mathrm{m}Y \} , we have

epY =deg(Y ) - deg((Y \cap V\mathrm{d}\mathrm{i}\mathrm{m}Y ) - p)

= deg(Y \cap L) - deg((Y \cap L\cap V>m) - p)

= ep(Y \cap L).

This argument fails when m = dimY , since the intersection Y \cap L may not be transverse in
this case.

Consider a pair of complex projective varieties X \subset Y in \BbbP n, and pick a general point
p in X. Let L be a general linear space defined by the intersection of some number of
general hyperplanes containing p; Proposition 3.3 tells us that eXY = ep(Y \cap L) when L has
codimension dim(X), while Proposition 3.4 gives epY = ep(Y \cap L) when L has codimension
between 0 and dim(Y ) - 1 \geq dim(X). Thus, we have eXY = ep(Y \cap L) for any choice of L
generated by intersections of general hyperplanes through p (note that this includes the case
L= \BbbP n of zero hyperplanes). We collect these observations in Theorem 3.5 below.

Theorem 3.5. Let X \subset Y be a pair of complex projective subvarieties of \BbbP n, and let L\subset \BbbP n

be a linear space given by the intersection of k\geq 0 general hyperplanes H1, . . . ,Hk containing
a point p of X:

1. If k < dimX, then eXY = eX\cap L(Y \cap L).
2. If k\leq dimY  - 1, then eXY = ep(Y \cap L).
This is Theorem (A) from the introduction. We note that we may allow Y in the statement

above to be any pure-dimensional subscheme of \BbbP n, but we have restricted ourselves to the
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40 MARTIN HELMER AND VIDIT NANDA

case where Y is a variety, as this will be the only case we employ in later sections. Assertion
2 of this result (for k=dimY  - 1) implies that the evaluation of eXY for arbitrary projective
varieties X \subset Y in \BbbP n can be reduced to the computation of epC, where p is a point lying on
the curve C = Y \cap L; this scenario will be the central focus of the next section.

4. Point-curve multiplicities via complex links. Our goal here is to provide a stratified
Morse-theoretic proof of Theorem (B) from the introduction.

Theorem 4.1. If p is any (possibly singular) point on a curve C \subset \BbbP n, then we have

epC = \chi (Lp),

where epC is the Hilbert--Samuel multiplicity (from Definition 3.1) and \chi (Lp) is the Euler
characteristic of p's complex link in C (from Definition 2.3).

Since p can be defined as the zero set of n linear polynomials, by (4) we have

epC =deg(C) - deg((C \cap Hp) - p),

where Hp is a generic hyperplane in \BbbP n passing through p. We will work throughout in a
generic chart \BbbC n \subset \BbbP n containing p.

Let \xi be the unit normal to Hp, and let \pi \xi : C \rightarrow \BbbC be the inner product map given by
z \mapsto \rightarrow \langle z  - p, \xi \rangle . Since the hyperplane Hp is generic, we may safely assume that the vector \xi 
is nondegenerate for C at p in the sense of Definition 2.2. Consequently, there exists a small
\delta > 0 which satisfies the following requirements:

1. There are no singular points of C other than p valued in the closed half-disk

D+
\delta :=

\bigl\{ 
x+ iy \in \BbbC | x\geq 0 and x2 + y2 \leq \delta 

\bigr\} 
.

2. The restriction of \pi \xi to the subset \pi  - 1
\xi (D+

\delta )\subset C is a surjection onto D+
\delta .

3. The derivative of \pi \xi does not vanish at any point of C  - \{ p\} valued in D+
\delta .

Identifying \delta with the point \delta +0i in \BbbC , we note that the level set \pi  - 1
\xi (\delta ) intersects C in a

set of cardinality degC since \pi  - 1
\xi (\delta ) is a sufficiently generic hyperplane in \BbbC n. On the other

hand, the level set \pi  - 1
\xi (0) is precisely C \cap Hp, which may contain fewer than degC points

because it is forced to pass through p. Thus, the quantity of interest to us here is

epC =\#\pi  - 1
\xi (\delta ) - \#\pi  - 1

\xi (0) + 1,(5)

where the last +1 term comes from the fact that we are required to discard p from C \cap Hp

in the epC formula. The main tool in our argument here is one of Thom's celebrated isotopy
lemmas; see [16, Proposition 11.1] or [9, Chapter I.1.5].

Lemma 4.2 (Thom's first isotopy lemma). Let M and N be smooth manifolds and Z \subset M
a Whitney stratified subset. If f : M \rightarrow N is a smooth proper map whose restriction f | X to
each stratum X \subset Z is a submersion (i.e., the derivative dfp : TpX\rightarrow Tf(p)N is surjective for
all p in X), then f | X :X\rightarrow f(X) is a (locally trivial) fiber bundle.
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COMPLEX LINKS AND HILBERT--SAMUEL MULTIPLICITIES 41

By our choice of \delta , the function \pi \xi has a nonzero derivative when restricted to any subset
of the form \pi  - 1

\xi (S), where S is contained in B+
\delta  - \{ 0\} . Reducing \delta further if necessary,

Lemma 4.2 therefore guarantees the existence of a local trivialization

\pi  - 1
\xi (S)\simeq S \times \pi  - 1

\xi (\delta ),

whenever S \subset D+
\delta is a Whitney stratum not containing 0. Now consider the Whitney stratifi-

cation ofD+
\delta into four 0-strata, five 1-strata, and two 2-strata depicted below; we are interested

in the closure I of the 1-stratum labelled I.

Since \xi is nondegenerate by assumption, we know that p is the only singular point of \pi \xi 
valued in D+

\delta . Therefore, \pi  - 1
\xi (I) is a one-dimensional curve over \BbbR , for which the decompo-

sition

\pi  - 1
\xi (I) = \pi  - 1

\xi (0)\cup \pi  - 1
\xi (I)\cup \pi  - 1

\xi (\delta )

constitutes a valid Whitney stratification. Our strategy is to examine the following zigzag
diagram of inclusion maps:

\pi  - 1
\xi (0) \lhook \rightarrow \pi  - 1

\xi (I)\leftarrow \rhook \pi  - 1
\xi (\delta ).(6)

The three spaces involved are illustrated below. Here \pi  - 1
\xi (I) is the region of the curve lying

within the shaded gray rectangle, while \pi  - 1
\xi (0) and \pi  - 1

\xi (\delta ) consist of points lying in the
intersection of this curve with the bottom and top edges of the rectangle.

Our next result is concerned with the first inclusion from (6).

Proposition 4.3. The inclusion \pi  - 1
\xi (0) \lhook \rightarrow \pi  - 1

\xi (I) is a homotopy equivalence, and in partic-

ular it admits a homotopy-inverse \phi : \pi  - 1
\xi (I)\rightarrow \pi  - 1

\xi (0).
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42 MARTIN HELMER AND VIDIT NANDA

Proof. By Lemma 4.2, the unit vector field U(x) = - 1 on I  - \{ 0\} lifts to a vector field V
on \pi  - 1

\xi (I) - \pi  - 1
\xi (0) so that at each point x the differential (d\pi \xi )x sends the vector V (q) to

 - 1, as depicted below:

The desired map \phi is obtained by flowing along the integral curves of V .

The second map from our zigzag (6) will be described via the corresponding relative
homology group, namely

H\bullet 

\Bigl( 
\pi  - 1
\xi (I), \pi  - 1

\xi (\delta )
\Bigr) 
,

where we have implicitly assumed rational coefficients throughout. The following result shows
that this group only depends on local data pertaining to the fibers of \phi over p.

Lemma 4.4. Let \phi : \pi  - 1
\xi (I) \rightarrow \pi  - 1

\xi (0) be a homotopy inverse to the inclusion (as in the
proof of Proposition 4.3). There is an isomorphism of relative homology groups:

H\bullet 

\Bigl( 
\pi  - 1
\xi (I), \pi  - 1

\xi (\delta )
\Bigr) 
\simeq H\bullet 

\Bigl( 
\phi  - 1(p), \phi  - 1(p)\cap \pi  - 1

\xi (\delta )
\Bigr) 
.

Consequently, the associated Euler characteristics satisfy

\chi 
\Bigl( 
\pi  - 1
\xi (I)

\Bigr) 
 - \chi 

\Bigl( 
\pi  - 1
\xi (\delta )

\Bigr) 
= 1 - \chi 

\Bigl( 
\phi  - 1(p)\cap \pi  - 1

\xi (\delta )
\Bigr) 
.

Proof. The set \pi  - 1
\xi (I) decomposes as a disjoint union

\pi  - 1
\xi (I) =

\coprod 
q

\phi  - 1(q),

where q ranges over the points in \pi  - 1
\xi (0). By the additivity of homology, we have a direct

sum decomposition

H\bullet 

\Bigl( 
\pi  - 1
\xi (I), \pi  - 1

\xi (\delta )
\Bigr) 
=
\bigoplus 
q

H\bullet 

\Bigl( 
\phi  - 1(q), \phi  - 1(q)\cap \pi  - 1

\xi (\delta )
\Bigr) 
.

It therefore suffices to show that the summands corresponding to q \not = p are all trivial. Since
no such q is a critical point of \pi \xi by nondegeneracy of \xi , the vector field V on \pi  - 1

\xi (I) - \pi  - 1
\xi (0)
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COMPLEX LINKS AND HILBERT--SAMUEL MULTIPLICITIES 43

which was used to construct \phi in the proof of Proposition 4.3 extends nontrivially through q.
Now, by Thom's isotopy lemma (Lemma 4.2) above, the stratified homeomorphism type of
\phi  - 1(q)\cap \pi  - 1

\xi (t) remains unchanged across all t\in I, so in particular there is a homeomorphism
of pairs \Bigl( 

\phi  - 1(q), \phi  - 1(q)\cap \pi  - 1
\xi (\delta )

\Bigr) 
\simeq 
\Bigl( 
[0, \delta ], \delta 

\Bigr) 
,

and hence the relative homology is trivial as desired. To extract the statement about the Euler
characteristics from the statement about relative homology groups, one uses the observation
that \phi  - 1(p) is homeomorphic to the cone at p over \phi  - 1(p) \cap \pi  - 1

\xi (\delta ). Since all cones are

contractible, we obtain \chi (\phi  - 1(p)) = 1.

To conclude our proof of Theorem 4.1, we observe that

epC =\#
\Bigl\{ 
\pi  - 1
\xi (\delta )

\Bigr\} 
 - \#

\Bigl\{ 
\pi  - 1
\xi (0)

\Bigr\} 
+ 1 by (5)

= \chi 
\Bigl( 
\pi  - 1
\xi (\delta )

\Bigr) 
 - \chi 

\Bigl( 
\pi  - 1
\xi (0)

\Bigr) 
+ 1 since dim\BbbR \pi 

 - 1
\xi (t) = 0 for t\in [0, \delta ]

= \chi 
\Bigl( 
\pi  - 1
\xi (\delta )

\Bigr) 
 - \chi 

\Bigl( 
\pi  - 1
\xi (I)

\Bigr) 
+ 1 by Proposition 4.3

= \chi 
\Bigl( 
\phi  - 1(p)\cap \pi  - 1

\xi (\delta )
\Bigr) 

by Lemma 4.4

= \chi (LpC) by Definition 2.3

as desired.

Remark 4.5. Here are two observations pertaining to our proof of Theorem 4.1.

1. The argument could have been considerably shortened by employing the sheaf-theoretic
language of nearby and vanishing cycles [8, 14]. We have presented a longer and more
elementary argument here in order to avoid stranding readers who are unfamiliar with
this machinery.

2. Neither Proposition 4.3 nor Lemma 4.4 requires any constraint on the complex dimen-
sion of C, and both would work just as well when dim\BbbC C > 1. On the other hand,
it is only when dim\BbbC C = 1 that one obtains dim\BbbR (\pi 

 - 1
\xi (t)) = 0 for t in [0, \delta ], and it is

a miracle of zero-dimensionality that degree and Euler characteristic coincide. This
accident is exploited only once in our argument, namely when transitioning from the
first line to the second one in the string of equalities above.

Unfortunately, we do not anticipate any direct relationship between degrees and Euler
characteristics of higher-dimensional projective varieties. Thus, this argument does not extend
directly to the scenario where our curve C is replaced by a variety Y of dimension > 1. In any
event, Theorems 3.5 and 4.1 guarantee that all Hilbert--Samuel multiplicity computations can
be reduced to Euler characteristic estimation for a finite collection of points. We now turn
our attention to inferring such multiplicities from point samples.

5. Estimating multiplicities from finite samples. The reach \tau M > 0 of a smooth compact
submanifold M \subset \BbbR n is the smallest radius r > 0 for which the radius-r normal bundle around
M self-intersects. This notion was first introduced by Federer in [5], and it serves as an
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44 MARTIN HELMER AND VIDIT NANDA

important measure of the regularity of the embedding M \lhook \rightarrow \BbbR n. The reciprocal 1/\tau M , called
the condition number ofM , features prominently in the homological inference results of Niyogi,
Smale, and Weinberger from [18]. These results have been extended to the case where M has
a smooth boundary \partial M by Wang and Wang [27]. In this setting, the role of the reach is
played by a new parameter

\Delta M :=min\{ \tau M , \tau \partial M , \rho M\} ,(7)

where \rho M is the largest radius r > 0 so that at each point x in (M - \partial M) the exponential map
M \rightarrow TxM is a diffeomorphism onto its image when restricted to the open ball Br(x)

\circ \cap M .
The following result is [27, Theorem 3.3].

Theorem 5.1. Let M be a smooth, nonempty k-dimensional submanifold with boundary of
\BbbR n. For any radius r \in (0,\Delta M/2) and probability \gamma \in (0,1), there exists an explicit bound
NM (r, \gamma ) satisfying the following property. Any uniformly sampled

3

finite set S \subset M of cardi-
nality larger than NM (r, \gamma ) is (r/2)-dense in M with probability exceeding (1 - \gamma ).

In other words, we can guarantee with high confidence that every point of M is no more
than r/2 away from some point of S whenever \#S >NM (r, \gamma ).

Remark 5.2. This bound NM (r, \gamma ) has the form

NM (r, \gamma ) = \beta M (r) \cdot 
\biggl[ 
\beta M

\Bigl( r
2

\Bigr) 
+ ln

\biggl( 
1

\gamma 

\biggr) \biggr] 
,(8)

where \beta M :\BbbR \rightarrow \BbbR >0 is the function

\beta M (x) :=
V ol(M)

\mathrm{c}\mathrm{o}\mathrm{s}k(\theta )
2(k+1) \cdot Iy

\bigl( 
k+1
2 , 12

\bigr) 
\cdot V ol(Bk

x)
.

Here V ol(\bullet ) is standard k-dimensional Lebesgue volume and the auxiliary variables are

\theta := arcsin

\biggl( 
x

4\Delta M

\biggr) 
and y := 1 - x2 \cdot cos2(\theta )

16\Delta 2
M

;

moreover, Iy(a, b) denotes the regularized incomplete beta function

Iy(a, b) :=
By(a, b)

B1(a, b)
, with By(a, b) :=

\int y

0
ta - 1(1 - t)b - 1dt.

And, finally, Bk
x is the ball of radius x in k-dimensional Euclidean space.

5.1. Setup and parameter choices. Let p be any (not necessarily singular) point on a
curve C \subset \BbbP n. Passing to an affine chart of \BbbP n containing p, we may as well work within
\BbbC n+1 \simeq \BbbR 2n+2. In light of this identification, all dimensions of spaces mentioned henceforth
are to be understood as dimensions over \BbbR rather than \BbbC . Consider any choice of positive

3i.e., independent and identically distributed with respect to the uniform measure on M .
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radii \epsilon \gg \delta and (unit length) direction \xi so that the complex link of p in C is given by the
intersection

Lp =C \cap B\epsilon (p)\cap \pi  - 1
\xi (\delta ).(9)

By Theorem 4.1, this is a set of (finite) cardinality \ell := epC, so we may enumerate its points
as \{ x1, x2, . . . , x\ell \} . Let \mu > 0 be the smallest pairwise Euclidean distance between these points

\mu :=min\{ \| xi  - xj\| , where 1\leq i \not = j \leq \ell \} ,(10)

and let \kappa > 0 be the distance between Lp and the boundary of the closed ball B\epsilon (p):

\kappa :=min\{ \epsilon  - \| p - xi\| , where 1\leq i\leq \ell \} .(11)

These new distances \kappa and \mu are determined by the initial choices of \epsilon , \delta , and \xi . We also select
a new parameter \epsilon 0 \in (0, \delta ), called the inner radius. Since \epsilon 0 is smaller than \delta , the open ball
B\epsilon 0(p)

\circ does not intersect the offset hyperplane \pi  - 1
\xi (\delta ), and hence does not contain any of

the points \{ x1, . . . , x\ell \} .
Proposition 5.3. The intersection C \prime := C \cap [B\epsilon (p)  - B\epsilon 0(p)

\circ ] forms a two-dimensional
manifold with boundary embedded within C\mathrm{r}\mathrm{e}\mathrm{g} \subset \BbbR 2n+2.

Proof. We recall that the radius \epsilon from (9) satisfies the property that the boundary sphere
\partial Be(p) is transverse to C\mathrm{r}\mathrm{e}\mathrm{g} for all e\in (0, \epsilon ]. Thus, the smooth map dp :\BbbR 2n+2\rightarrow \BbbR given by

x \mapsto \rightarrow \| x - p\| 2

has no critical points on C\mathrm{r}\mathrm{e}\mathrm{g} valued in (0, \epsilon ]. We know by Lemma 4.2 that the restric-
tion dp : C \prime \rightarrow [\epsilon 0, \epsilon ] forms a trivial fiber bundle. Since all such e are regular values of d,
the implicit function theorem guarantees that each fiber Fe := C\mathrm{r}\mathrm{e}\mathrm{g} \cap d - 1

p (e) is a smooth
one-dimensional submanifold of C \prime . Therefore, the desired result now follows from the fact
that C \prime is diffeomorphic to the product F \times [\epsilon 0, \epsilon ] where F is a smooth one-dimensional
manifold.

Recalling the fact that \{ x1, . . . , x\ell \} \cap B\epsilon 0(p) is empty since \epsilon 0 < \delta , we have

C \prime \cap \pi  - 1
\xi (\delta ) = \{ x1, . . . , x\ell \} .

An immediate side effect of replacing C \prime by a finite point sample is that none of the sample
points will lie exactly on \pi  - 1

\xi (\delta ). Therefore, we require a final pair of thickness parameters
\alpha > \alpha 0 > 0. These are sufficiently small positive radii for which the following property holds:
the set of all points in C that lie within distance \alpha 0 of the offset hyperplane \pi  - 1

\xi (\delta ) is entirely
contained within the union of closed radius-\alpha balls around points of the complex link:

\Bigl\{ 
y \in C | dist[y,\pi  - 1

\xi (\delta )]<\alpha 0

\Bigr\} 
\subset 

\ell \bigcup 
i=1

B\alpha (xi).(12)
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46 MARTIN HELMER AND VIDIT NANDA

The optimal radius \alpha for a given thickness \alpha 0 depends on the curvature of C at each xi as
well as the angles \theta i between the tangent spaces Txi

C and the offset hyperplane \pi  - 1
\xi (\delta ). By

sufficiently small here we mean

\alpha 0 <\alpha <min
\Bigl\{ 
(\epsilon  - \delta ), (\delta  - \epsilon 0), \mu /4, \kappa ,\Delta C\prime /2

\Bigr\} 
.(13)

This inequality encodes all of the geometric constraints required for our inference result. As
atonement for introducing this deluge of parameters, we remind the reader that \epsilon and \delta were
fixed in (9), while \epsilon 0 is the inner radius used in Proposition 5.3; the quantities \mu and \kappa are
described in (10) and (11), respectively, and \Delta 

C\prime is from (7). In Figure 2, we have illustrated
the typical local picture of C near p in the case where epC = 3.
The first four terms within the minimum on the right-hand side of (13) are designed simply
to ensure that balls of radius \alpha around each of the xi are well-separated from each other and
fully contained within the annulus [B\epsilon (p) - B\epsilon 0(p)

\circ ]; the final term is required for applying
Theorem 5.1.

5.2. Inferring multiplicities with high confidence. Here we prove Theorem (C) from the
introduction. The parameters encountered in its statement below were chosen in the previous
subsection.

Theorem 5.4. Let S \subset \BbbR 2n+2 be a finite set of points sampled uniformly from the intersec-
tion C \prime = C \cap [B\epsilon (p) - B\epsilon 0(p)

\circ ]. For any \gamma \in (0,1), if the cardinality \#S exceeds the bound
N

C\prime (\alpha ,\gamma ) from (8), then the following holds with probability exceeding (1 - \gamma ): the set

Figure 2. The typical local picture near p when \bfe pC = 3. The parameters \epsilon 0 < \epsilon define the annulus of
interest around p. The parameter \alpha 0 serves to thicken the offset hyperplane \pi  - 1

\xi (\delta ) while the radius \alpha thickens
the three points xi of the complex link. The inequalities constraining \alpha ensure, among other things, that the
three \alpha -balls around the xi lie within the annulus.
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S\prime :=
\Bigl\{ 
y \in S | dist[y,\pi  - 1

\xi (\delta )]<\alpha 0

\Bigr\} 
consists of exactly \ell = epC nonempty point clusters, each of diameter at most 2\alpha , with the
distance between distinct clusters exceeding \mu  - 2\alpha .

Proof. The intersection C \prime is an embedded two-dimensional submanifold with boundary
of \BbbR 2n+2 by Proposition 5.3, and \alpha < \Delta 

C\prime /2 holds by (13). Thus, we may safely apply
Theorem 5.1 to conclude that the set S is \alpha -dense in C \prime with probability exceeding (1 - \gamma ).
We will assume throughout the remainder of the argument that this density holds.

Since the inner radius \epsilon 0 is smaller than \delta , all points of the complex link \{ x1, . . . , x\ell \} 
lie in C \prime . Let Bi denote the closed ball of radius \alpha around each xi. The inequalities which
involve \epsilon , \epsilon 0, \delta , and \kappa in (13) guarantee that each Bi is entirely contained within the annulus
[B\epsilon (p) - B\epsilon 0(p)]. It follows from the \alpha -density of S in C \prime that the intersections Si := Bi \cap S
are all nonempty; and, moreover, the diameter of each Si is no larger than the diameter 2\alpha 
of Bi. We claim that these Si form the \ell desired point clusters of S\prime .

To establish the claim, note from (12) that every point of S\prime must lie in one of the Bi,
whence S\prime =

\bigcup \ell 
i=1 Si. Thus, it remains to show that the Si are separated from each other

by a distance larger than \mu  - 2\alpha . To this end, note from (10) that the points xi and xj are
separated by distance at least \mu whenever i \not = j. Thus, points in distinct Bi and Bj are at
least \mu  - 2\alpha apart from each other, as desired.

We know from (13) that 2\alpha is smaller than \mu  - 2\alpha , so the desired number \ell = epC can
be determined with high confidence by clustering together points of S\prime which lie within 2\alpha of
each other and then counting the clusters.

Acknowledgments. Mark Goresky kindly shared an advance copy of his survey Morse
theory, stratifications and sheaves [8] with us; that paper served as our Polaris while we navi-
gated the formidable waters surrounding these topics. We are grateful to Heather Harrington,
Kate Turner, and Yossi Bokor for facilitating this work in its early stages. We also thank the
Sydney Mathematics Research Institute (SMRI) at the University of Sydney for their generous
hospitality. This paper benefited enormously from the suggestions and corrections provided
by the two anonymous referees.

REFERENCES

[1] P. Breiding, S. Kali\v snik, B. Sturmfels, and M. Weinstein, Learning algebraic varieties from sam-
ples, Rev. Mat. Complut., 31 (2018), pp. 545--593.

[2] D. A. Cox, J. Little, and D. O'Shea, Using Algebraic Geometry , Grad. Texts Math. 185, Springer,
New York, 2005.

[3] E. Dufresne, P. Edwards, H. Harrington, and J. Hauenstein, Sampling real algebraic varieties
for topological data analysis, in Proceedings of the 18th IEEE International Conference on Machine
Learning and Applications (ICMLA), 2019, pp. 1531--1536.

[4] D. Eisenbud and J. Harris, 3264 and All That: A Second Course in Algebraic Geometry , Cambridge
University Press, Cambridge, UK, 2016.

[5] H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), pp. 418--491.
[6] W. Fulton, Introduction to Intersection Theory in Algebraic Geometry , CBMS Regional Conf. Ser. in

Math. 54, American Mathematical Society, Providence, RI, 1984.
[7] W. Fulton, Intersection Theory , 2nd ed., Springer-Verlag, Berlin, 1998.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

1/
23

 to
 1

09
.1

49
.1

5.
11

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



48 MARTIN HELMER AND VIDIT NANDA

[8] M. Goresky, Morse theory, stratifications and sheaves, in Handbook of Geometry and Topology of
Singularities, J. L. Cisneros-Molina, L. D. Tr\'ang, and J. Seade, eds., Springer, Cham, 2020,
pp. 275--319.

[9] M. Goresky and R. MacPherson, Stratified Morse Theory , Springer-Verlag, Berlin, 1988.
[10] C. Harris, Computing Segre classes in arbitrary projective varieties, J. Symbolic Comput., 82 (2017),

pp. 26--37.
[11] C. Harris and M. Helmer, Segre class computation and practical applications, Math. Comp., 89 (2020),

pp. 465--491.
[12] R. Hartshorne, Algebraic Geometry , Grad. Texts. Math. 52, Springer, New York, 2013.
[13] M. Helmer and V. Nanda, Conormal spaces and Whitney stratifications, Found. Comput. Math.,

(2022), https://doi.org/10.1007/s10208-022-09574-8.
[14] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer-Verlag,

Berlin, 1990.
[15] D. Massey, Characteristic cycles and the relative local Euler obstruction, in A Panorama of Singularities:

Conference in Celebration of L\^e D\~ung Tr\'ang's 70th Birthday, Universidad de Sevilla, Sevilla, Spain,
2020, pp. 137--156.

[16] J. Mather, Notes on topological stability , Bull. Amer. Math. Soc., 49 (2012), pp. 475--506.
[17] G. Moroz, F. Rouiller, D. Chablat, and P. Wenger, On the determination of cusp points of 3-RPR

parallel manipulators, Mech. Mach. Theory, 45 (2010), pp. 1555--1567.
[18] P. Niyogi, S. Smale, and S. Weinberger, Finding the homology of submanifolds with high confidence

from random samples, Discrete Comput. Geom., 39 (2008), pp. 419--441.
[19] S. Piipponen, T. Arponen, and J. Tuomela, Classification of singularities in kinematics of mecha-

nisms, in Computational Kinematics, Springer, Dordrecht, 2014, pp. 41--48.
[20] F. Rouillier, Solving zero-dimensional systems through the rational univariate representation, Appl.

Algebra Eng. Commun. Comput., 9 (1999), pp. 433--461.
[21] P. Samuel, M\'ethodes d'alg\`ebre abstraite en g\'eom\'etrie alg\'ebrique, Ergebnisse der Mathematik , Springer-

Verlag, Berlin, Heidelberg, 1955.
[22] J.-P. Serre, Local Algebra, Springer-Verlag, Berlin, 2012.
[23] I. R. Shafarevich, Basic Algebraic Geometry , Vol. 2, Springer-Verlag, Berlin, 1994.
[24] A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials Arising in

Engineering and Science, World Scientific, Hackensack, NJ, 2005.
[25] B. J. Stolz, J. Tanner, H. A. Harrington, and V. Nanda, Geometric anomaly detection in data,

Proc. Natl. Acad. Sci. USA, 117 (2020), pp. 19664--19669.
[26] C. W. Wampler and A. J. Sommese, Numerical algebraic geometry and algebraic kinematics, Acta

Numer., 20 (2011), pp. 469--567.
[27] Y. Wang and B. Wang, Topological inference of manifolds with boundary , Comput. Geom., 88 (2020),

101606.
[28] H. Whitney, Tangents to an analytic variety , Ann. of Math. (2), 81 (1965), pp. 496--549.
[29] M. Zein, P. Wenger, and D. Chablat, Singular curves in the joint space and cusp points of 3-RPR

parallel manipulators, Robotica, 25 (2007), pp. 717--724.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

1/
23

 to
 1

09
.1

49
.1

5.
11

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/s10208-022-09574-8

	Introduction
	Step 1: Algebra
	Step 2: Topology
	Step 3: Geometry
	Towards Implementation and Applications
	Organization

	Complex links
	The Hilbert&#x2013;Samuel multiplicity
	Multiplicities from degrees
	Multiplicities of linear sections

	Point-curve multiplicities via complex links
	Estimating multiplicities from finite samples
	Setup and parameter choices
	Inferring multiplicities with high confidence

	Acknowledgments
	References

