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Abstract Sheaves and sheaf cohomology are powerful tools in computational
topology, greatly generalizing persistent homology. We develop an algorithm for sim-
plifying the computation of cellular sheaf cohomology via (discrete) Morse theoretic
techniques. As a consequence, we derive efficient techniques for distributed compu-
tation of (ordinary) cohomology of a cell complex.
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1 Introduction

1.1 Computational Topology and Sheaves

It has recently become clear that computation of homology of spaces is of critical
importance in several applied contexts. These includebut are not limited to config-
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uration spaces in robotics [24,25,27,33], the global qualitative statistics of point
cloud data [13,14,23], coverage problems in sensor networks [18,19], circular coor-
dinates for data sets [20] and Conley-type indices for dynamics [4,34,41]. The Euler
characteristic—a numerical reduction of homology—is even more ubiquitous, with
applications ranging from Gaussian random fields [1,2] to data aggregation problems
over networks [5,6] and signal processing [17]. Not coincidentally, development of
applications of homological tools has proceeded symbiotically with the development
of good algorithms for computational homology [23,34]. Among the best of the lat-
ter are methods based on (co)reduction preprocessing [43] and discrete Morse theory
[32].

With the parallel success of new applications and fast computations for homology,
additional topological structures and techniques are poised to cross the threshold from
theory to computation to application. Among the most promising is the theory of
sheaves. Developed for applications in algebraic topology and matured under a string
of breathtaking advances in algebraic geometry, sheaf theory is perhaps best described
as a formalization of local-to-global transitions in Mathematics. The margins of this
introductory section do not suffice to outline sheaf theory; rather, we present without
detailed explanation three principal interpretations of a sheaf F over a topological
space X taking values in R-modules over some ring R:

1. A sheaf can be thought of as a data structure tethered to a space—an assignment
to open sets V ⊂ U ofX a homomorphismF(U) → F(V) betweenR-modules—
the algebraic “data” over the subsets—in a manner that respects composition and
gluing (see Sect. 2). Unlike in the case of a bundle, the data sitting atop subsets of
X can change dramatically from place to place.

2. A sheaf can be thought of as a topological space in and of itself, togetherwith a pro-
jection map π : F → X to the base spaceX . This étale space topologizes the data
structure and motivates examining its topological features, such as (co)homology.

3. A sheaf can be thought of as a coefficient system, assigning to locations inX the spa-
tially varying R-module coefficients to be used for computing cohomology. This
representation of the space within the algebraic category of R-modules provides
enough structure to compute cohomology with location-dependent coefficients.

It is these multiple interpretations that portend the ubiquity of sheaves within applied
topology. Though sheaves have long been recognized as useful data structures within
certain branches of Computer Science (e.g., [31]), sheaf cohomology has a number of
emergent applications. These include:

1. Signal processing:Sheaf cohomology recovers and extends the classical Nyquist–
Shannon sampling theorem [46]; viz., reconstruction from a sample is possible if
and only if the appropriate cohomology of an associated ambiguity sheaf vanishes.

2. Data aggregation: Data aggregation over a domain can be performed via Euler
integrals, an alternating reduction of the cohomology of an associated constructible
sheaf over the domain [17].

3. Network coding: Various problems in network coding (maximum throughput,
merging of networks, rerouting information flow around a failed subnetwork) have
interpretations as ranks of cohomologies of a sheaf over the network [29].
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4. Optimization:The classical max-flow-min-cut theorem has a sheaf-theoretic ana-
log which phrases flow values and cut values as semimodule images of sheaf
homology and cohomology, respectively [30,36].

5. Complexity:A recent parallel to the Blum–Shub–Smale theory of complexity [9]
has emerged for constructible sheaves [7].

These early examples of applications vary greatly in terms of the types of coefficients
used (ranging from Z to R-vector spaces to general commutative monoids) and the
types of base spaces. In most applications, however, the relevant sheaves are of a
particular discrete form. Topological spaces become computationally tractable sub-
stances through a discretization process: This most often takes the form of a simplicial
or cell (or CW) complex. A similar modulation exists for sheaves—a sheaf is called
constructible with respect to a given stratification of the base space if the data assigned
to each stratum is locally constant. We will work in the category of cellular sheaves,
which are constructible with respect to a fixed regular CW stratification of the base
space [28].

Motivated by these applications, we establish algorithms for the computation of
sheaf cohomology. Our philosophy, inherited from other work on computational
homology [32,34,43] is that of reduction of the input structure to a smaller equivalent
structure. We do so by means of discrete Morse theory, retooling the machinery to
work for sheaves.

1.2 Related and Supporting Work

1.2.1 Sheaves

A fair portion of the existing work on computational topology is naturally cast in the
language of sheaves, providing novel paths for generalization. For example, Euler
integration—integration with respect to Euler characteristic as a valuation—is sheaf-
theoretic in nature and in origin, as per [47,48]. It is in fact the decategorification of the
cohomology of sheaves associated to constructible functions ([17] gives an exposition
of this).More familiar to the readerwill be persistent homology [13,22,56], which also
has a sheaf-theoretic formulation as follows. The formal dual of a sheaf is a cosheaf;
in the cellular category, these are quite useful [21,28] and possess a homology theory
[16]. The persistent homology of a filtration is the homology of a (certain) cosheaf
over a cell complex homeomorphic to an interval [16]. Recent work on well groups
associated to persistent homology has been expounded in terms of sheaves [39].

1.2.2 Discrete Morse Theory

Discrete Morse theory [15,26] usually begins with the structure of a partial matching
on the cells of aCWcomplex. The unmatched cells serve the same role as critical points
do in smooth Morse theory, while the matched cells furnish gradient-like trajectories
between them. A Morse cochain complex may be constructed from this data: its
cochain groups are freely generated by the critical cells and the boundary operators

123



878 Found Comput Math (2016) 16:875–897

may be derived from gradient paths. The fundamental result is that the Morse cochain
complex so obtained is homologically equivalent to the original CW complex.

This basic idea has since been vastly generalized and adapted to purely algebraic
situations [8,35,51] with only the slightest vestige of its topological origins. One can
impose a partial matching directly on the basis elements of a cochain complex and
apply discreteMorse theory as usual. This approach has proved useful in the past when
simplifying computation of homology groups of abstract cell complexes [32] and the
persistent homology groups of their filtrations [42].

1.3 Problem Statement and Results

Our problem centers on the computation of cellular sheaf cohomology. The initial
inputs are a cellular sheaf F over a CW complex X taking values in free R-modules
for some fixed ringR. This input is reprocessed into a cochain complex F = (C•, d•)
of free R-modules parameterized by a graded poset (X,≤) [see Definition 2.3]. Our
main algorithm, Scythe [see Sect. 4], constructs a F-compatible acyclic matching
� on (X,≤) and suitably modifies the coboundary operators d• in order to cut the
original cochain complex down to its critical core while preserving its cohomology.
The resulting smaller Morse cochain complex F� = (C•

�, d•
�) is parametrized by the

poset of critical elements of �.
Let≺denote the covering relation in our gradedposet (X,≤) anddefine for each x ∈

X the set of immediate successors x+ = {y ∈ X | x ≺ y}. The following parameters
measure different aspects of the complexity of F :

1. let n be the cardinality |X | of the poset X ,
2. let p equal maxx∈X {|x+|},
3. assume that the maximum rank of F(x) as an R-module is d < ∞ for x ∈ X ,
4. assume that the matching � produced by Scythe has mk critical elements of

dimension k and define m̃ = ∑
k m2

k , and
5. define ω to be the matrix multiplication exponent1 over R.

Note that the first three numbers are input parameters, the fourth is an output parameter
and the fifth is purely a property of the underlying coefficient ring R. Our main result
is as follows.

Theorem Let F be a cochain complex of free R-modules over a graded poset (X,≤)

and let n, p, d, m and ω be the associated parameters defined above. Then, the time
complexity of constructing the Morse complex F� via Scythe is O(npm̃dω), and
the space complexity is O(n2 pd2).

Section 2 contains background material on cellular sheaf theory and the fundamen-
tals of discrete Morse theory. In Sect. 3, we provide explicit chain maps that induce
isomorphisms on cohomology between the original and reduced complexes. Section 4
contains a description of the algorithm Scythe, a verification of its correctness and
also a detailed complexity analysis which proves our main theorem above. Finally,

1 That is, the complexity of composing two d × d matrices with R-entries is O(dω).
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in Sect. 5, we develop distributed protocols for calculating traditional cohomology
groups of a given space by recasting the computations in appropriate sheaf-theoretic
frameworks.

2 Background

In this section, we survey preliminary material pertaining to cellular sheaves [16,50,
53] and a purely algebraic version of discrete Morse theory [8,35,51]. Throughout
this paper, R denotes a fixed coefficient ring with identity 1R, while N and Z denote
the natural numbers and integers, respectively.

2.1 Cellular Sheaves and Their Cohomology

Let X be a finite regular CW complex consisting of cells and their attaching maps
[44,52]. For each n ∈ N, the subcollection of n-dimensional cells will be written X n .
Given cells σ and τ of X , we write σ ≤ τ to indicate the face relation in X . Finally,
for each pair of cells σ and τ in X , the quantity [σ : τ ] ∈ Z is defined to equal

• +1 if σ ≤ τ , dim σ = dim τ − 1, and the local orientations of their attaching
maps agree;

• −1 if σ ≤ τ , dim σ = dim τ − 1, and the local orientations disagree; and
• 0 otherwise.

It follows from the usual boundary operator axiom that the following relation must
hold across each pair of cells σ, τ ∈ X :

∑

σ≤λ≤τ

[σ : λ][λ : τ ] = 0. (1)

Definition 2.1 A cellular sheaf F over X assigns to each cell σ of X an R-module
F(σ ) and to each face relationσ ≤ τ anR-linear restriction mapFστ : F(σ ) → F(τ )

subject to the following compatibility condition: whenever σ ≤ λ ≤ τ in X , we have
Fλτ ◦ Fσλ = Fστ .

Simple examples of sheaves include the following:

1. The constant sheaf, RX , assigns the coefficient ring R to each cell of X and the
identity restriction map 1R : R → R to each face relation.

2. The skyscraper sheaf over a single cell σ of X is a sheaf, Rσ , that evaluates to R
on σ and is zero elsewhere, with all restriction maps being zero.

3. An analog of the skyscraper sheaf over a subcomplexA ⊂ X evaluates toR on all
cells ofA and zero elsewhere. The restriction maps are zero except for the identity
map from a cell in A to a face. This sheaf is best described as the pushforward
ι∗RA of the constant sheaf on A induced by the inclusion map ι : A ↪→ X . This
is not the same as the sum of skyscraper sheaves over the cells of A, since the
restriction maps are not all zero.
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Given any cellular sheaf F on X , we define the n-th cochain group over F to be
the direct sum of the R-modules assigned by F to the n-dimensional cells. That is,

Cn(X ;F) =
⊕

σ∈X n

F(σ ).

The n-th coboundary operator δn : Cn(X ;F) → Cn+1(X ;F) is completely deter-
mined by the following block action. Given σ ∈ X n and τ ∈ X n+1, the component
of δn from F(σ ) to F(τ ) precisely equals [σ : τ ]Fστ and so we obtain a sequence of
R-modules

0 → C0(X ;F)
δ0−→ C1(X ;F)

δ1−→ C2(X ;F)
δ2−→ · · ·

It follows from a routine calculation involving (1) and the compatibility condition of
Definition 2.1 that δn ◦ δn−1 = 0 for all n ∈ N and hence that (C•(X ;F), δ•) is a
cochain complex.

Definition 2.2 Let F be a cellular sheaf on X . The cohomology of X with F coeffi-
cients is defined to be the cohomology of the cochain complex (C•(X ;F), δ•). More
precisely,

Hn(X ;F) = ker δn

img δn−1 .

The reader may interpret H•(X ;F) as the cohomology of the data F over X . The
simple examples of sheaves listed above have the following cohomologies:

1. The constant sheaf RX on X has cohomology H•(X ;RX ) ∼= H•(X ;R) equal to
ordinary cohomology in R coefficients.

2. The skyscraper sheafRσ onX has cohomology Hk(X ;Rσ ) ∼= Rwhen k = dim σ

and zero otherwise, illustrating that a sheaf can have trivial cohomology even if
the underlying base space is noncontractible.

3. The pushforward sheaf ι∗RA has cohomology H•(X ; ι∗RA) ∼= H•(A;R), illus-
trating that a sheaf can have complicated cohomology even if the underlying base
space is contractible.

Of course, more intricate examples abound and are the impetus for an effective
algorithm for computation.

2.2 Morse Theory for Parametrized Cochain Complexes

Forman’s [26] work on Morse theory for CW complexes has been extended to a
purely algebraic framework by Batzies and Welker [8], Kozlov [35], and (in greatest
generality) by Sköldberg [51]. The central idea is to exploit invertible restriction maps
in order to produce a smaller cochain complex with isomorphic cohomology. In order
to establish notation compatible with an algorithmic treatment, we provide a brief
overview of the main results here.
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Recall that given two elements x, y in a poset (X,≤), we say that y covers x
whenever x < y and {z ∈ X | x < z < y} = ∅. We denote this covering relation by
x ≺ y and call a poset (X,≤) graded if it admits a partition X = ⋃

n∈N Xn into
subsets indexed by a dimension so that if x ≺ y then dim y = dim x + 1. All graded
posets in sight are assumed to be finite.2

Definition 2.3 A parametrization F of a cochain complex (C•, d•) of R-modules
over a graded poset (X,≤) assigns to each x ∈ X an R-module F(x) and to each
covering relation x ≺ y a linear map Fxy : F(x) → F(y) so that for all dimensions
n ∈ N,

1. Cn = ⊕
x∈Xn

F(x), and
2. the block of dn : Cn → Cn+1 from F(x) to F(y) is precisely Fxy .

By convention, we require Fxy = 0 whenever x ⊀ y.

Cochain complexes parametrized over posets are the basic objects onwhich discrete
Morse theory operates. Before introducing the details, we remark that the cells of a
finite regular CWcomplexX comprise a graded poset over which the cochain complex
(C•(X ;F), δ•) associated to any sheaf F is naturally parametrized. Throughout the
remainder of this section, we fix a parametrization F of a cochain complex (C•, d•)
over a graded poset (X,≤).

The following definition goes back to the work of Chari [15]

Definition 2.4 A partial matching on (X,≤) is a subset � ⊂ X × X of pairs subject
to the following axioms:

1. dimension: if (x, y) ∈ � then x ≺ y, and
2. partition: if (x, y) ∈ � then neither x nor y belong to any other pair in �.

Moreover, � is called acyclic if the transitive closure of the relation � defined on
pairs in � by

(x, y) � (x ′, y′) if and only if x ≺ y′,

generates a partial order.

We call an acyclic matching � on (X,≤) compatible with the parametrization F
if for each pair (x, y) ∈ � the associated linear map Fxy : F(x) → F(y) is invertible.
Let � be such a compatible acyclic matching on (X,≤) and denote by M the critical
unpaired elements:

M = {m ∈ X | (m, z) and (z, m) are not in � for any z ∈ X} .

A gradient path γ of � is a strictly �-increasing sequence (x j , y j )
J
1 ⊂ � arranged

as follows:

γ = y1 � x1 ≺ y2 � x2 ≺ · · · ≺ yJ � xJ ,

2 When striving for greater generality, one replaces this requirement by the following local finiteness
hypothesis on the covering relation: each x ∈ X can have only finitely many y so that y ≺ x or x ≺ y.
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and its coindex Fγ : F(y1) → F(xJ ) is the linear map given by

Fγ =
(
−F−1

xJ yJ

)
◦ FxJ−1yJ ◦ · · · ◦ Fx1y2 ◦

(
−F−1

x1y1

)
. (2)

For each gradient path γ = (x j , y j )
J
1 , we write sγ = y1 and tγ = xJ to indicate the

source (first) and target (last) elements. Given critical elements m, m′ ∈ M , the path γ

is said to flow from m to m′ whenever the covering relations m ≺ s(γ ) and t(γ ) ≺ m′
both hold, and a new linear map F�

mm′ : F(m) → F(m′) may be defined by:

F�
mm′ = Fmm′ +

∑

γ

Ftγ m′ ◦ Fγ ◦ Fmsγ , (3)

where the sum is taken over all gradient paths γ of � flowing from m to m′. If we
write m <� m′ whenever at least one such path exists, then it follows easily from the
acyclicity of � that the transitive closure of <� furnishes a partial order on M which
is graded by dimension.

Definition 2.5 The Morse data associated to � consists of the poset (M,≤�) of
critical elements along with a sequence of R-modules

0 → C0
�

d0
�−→ C1

�

d1
�−→ C2

�

d2
�−→ · · ·

where Cn
� = ⊕

m∈Mn
F(m) and the block of dn

� : Cn
� → Cn+1

� from F(m) to F(m′)
is F�

mm′ .

The following theorem is (dual to) the main result of algebraic Morse theory.

Theorem 2.6 (Sköldberg, [51]) Let F parametrize a cochain complex (C•, d•) of
R-modules over a graded poset (X,≤) and let � be a compatible acyclic matching.
Then, the Morse data (C•

�, d•
�) is a cochain complex parametrized over (M,≤�) by

F� . Moreover, there are R-module isomorphisms

Hn(C, d) ∼= Hn(C�, d�),

on cohomology for each dimension n ∈ N.

In the next section, we provide a new proof of Theorem 2.6 by constructing explicit
cochain equivalences. This proof leads to a recipe for simplifying cohomology com-
putation for an arbitrary cellular sheaf F given the existence of efficient techniques
for constructing compatible matchings and the Morse data. One imposes an acyclic
matching � on the graded poset of cells in the underlying regular CW complex X so
that for each (σ, τ ) ∈ � the restriction map Fστ is invertible. If the set M of critical
cells is much smaller than X , then one simply computes the cohomology of the smaller
cochain complex (C•

�, d•
�).
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3 The Cohomological Morse Equivalence

Let F be a parametrization for a cochain complex (C•, d•) over a graded poset (X,≤)

and assume that � is a compatible acyclic matching on X . We prove Theorem 2.6 via
an inductive argument by removing one�-pair at a time from X . By suitably updating
the parametrization near the removed pair at each step, it is possible to preserve the
cohomology until one converges to the Morse parametrization F� over the poset
(M,≤�) of critical elements.

3.1 The Reduction Step

The central idea of reducing a cell pair from a CW complex while preserving its
homotopy type (and hence, its cohomology) goes back to the work of Whitehead on
combinatorial homotopy [55]. Here, we present a suitable version of this reduction
step adapted for cellular sheaves and efficient algorithms.

Fix (x�, y�) ∈ � and define X� = X\ {x�, y�}. A graded partial order ≤� may
be defined on X� via the following covering relation: given any cells w and z in X�,
we have w ≺� z if either w ≺ z in X or if w ≺ y� � x� ≺ z in X . One obtains a
new parametrization F� over the reduced poset (X�,≤�) as follows: F�(w) = F(w)

for all w ∈ X�, and for each covering relation w ≺� z, we have the linear map
F�

wz : F(w) → F(z) given by

F�
wz = Fwz − Fx�z ◦ F−1

x� y� ◦ Fwy� . (4)

A routine calculation shows that F� parametrizes a cochain complex which we denote
by (C•

� , d•
� ); moreover, � restricts to an acyclic matching �� on (X�,≤�).

Proposition 3.1 Given the restricted acyclic matching �� defined above,

1. �� is compatible with the reduced parametrization F�, and
2. the Morse data associated to �� is identical to that of �.

Proof In fact, for any (x, y) ∈ �� there is an equality Fxy = F�
xy by (4)—otherwise,

we violate the acyclicity of� as follows. By (4), the nonzeroness of F�
xy − Fxy implies

that Fxy� and Fx� y do not vanish, which leads to the contradiction (x, y) � (x�, y�) �
(x, y). To prove the second assertion, first note that the critical elements of � and ��

are identical; and since F(m) = F�(m) for each critical m, one obtains an equality of
cochain groups Cn

� = Cn
�� for each dimension n ∈ N . Thus, we turn our attention to

the linear maps d� and d�� . Given any gradient path γ � of ��, say

γ � = y1 �� x1 ≺� · · · ≺� yJ �� xJ ,

it follows by acyclicity of � that there is at most one index j ∈ {1, . . . , J − 1} for
which we may have (x j , y j ) � (x�, y�) � (x j+1, y j+1). Returning to our path γ �, we
therefore conclude that there are only two possibilities. Either there is no index j at
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which the removed pair (x, y) might fit, in which case γ � is also a path of � with
Fγ � = F�

γ � from (2). Alternately, there is a single such index j , in which case � may
have as its paths both γ � and the unique augmented path γ given by introducing the
removed pair (x�, y�) in the appropriate spot:

γ = y1 � x1 ≺ · · · ≺ y j � x j ≺ y� � x� ≺ y j+1 � · · · ≺ yJ � xJ .

It follows from a quick calculation that F�
γ � = Fγ � + Fγ . In both cases, the sum

of coindices over all paths (and hence each block of d•
�) is preserved. Using this

information in (3) and Definition 2.5 concludes the argument. 
�

As a consequence of this proposition, the Morse complex (C•
�, d•

�) remains invari-
ant under the reduction step. It remains to show that cohomology is preserved when
passing from F to the reduced parametrization F�.

3.2 Cochain Equivalences

For each n ∈ N , define the linear map ψn : Cn → Cn
� by the following block action.

For w ∈ Xn and z ∈ X�
n , the block ψwz : F(w) → F(z) is given by:

ψwz =

⎧
⎪⎨

⎪⎩

−Fx�z ◦ F−1
x� y� w = y�,

idF(w) w = z,

0 otherwise.

(5)

Lemma 3.2 ψ• : C• → C•
� is a cochain map. That is, ψn+1 ◦ dn = dn

� ◦ψn for each
n ∈ N.

Proof Givenw ∈ Xn and z ∈ X�
n+1, we show that the blocks ofψn+1◦dn and dn

� ◦ψn

from F(w) to F�(z) = F(z) are identical. More precisely, we wish to establish the
following:

∑

w′∈Xn+1

ψw′z ◦ Fww′ =
∑

z′∈X�
n

F�
z′z ◦ ψwz′ .

By (5), we note that the left side is nonzero only forw′ = z or forw′ = y�. Combining
these contributions, the left side evaluates to Fwz + ψy�z ◦ Fwy� which equals F�

wz .
Similarly, the right side of the identity above also reduces to F�

wz immediately at least
when w �= y�, so it now suffices to show that this right side equals F�

y�z whenever
w = y�. In this case, we calculate

∑

z′∈X�
n

F�
z′z ◦ ψy�z′ = −

∑

z′∈X�
n

F�
z′z ◦ Fx�z′ ◦ F−1

x� y�
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Expanding F�
z′z via (4) and distributing terms gives

−
∑

z′∈X�
n

Fz′z ◦ Fx�z′ ◦ F−1
x� y� +

∑

z′∈X�
n

Fx�z ◦ F−1
x� y� ◦ Fz′ y� ◦ Fx�z′ ◦ F−1

x� y� .

The second sum is zero: since x� ≺ y� by Definition 2.4, there is no z′ ∈ X� satisfying
x� ≺ z′ ≺ y� and so the summand is always trivial. Finally, one can use the fact that
d• is a coboundary operator—in particular, that

∑
z′∈Xn

Fz′′z ◦ Fx�z′ = 0—to show
that the first sum equals F�

y�z as desired. 
�
We now require a cochain map in the other direction. To this end, define φn : Cn

� →
Cn by the following block action φzw : F(z) → F(w) for each z ∈ X�

n and w ∈ Xn :

φzw =

⎧
⎪⎨

⎪⎩

−F−1
x� y� ◦ Fzy� w = x�,

idF(w) w = z,

0 otherwise.

(6)

Lemma 3.3 φ• : C•
� → C• is a cochain map. That is, φn+1 ◦ dn

� = dn ◦ φn for each
n ∈ N.

Proof The argument proceeds very similarly to the one in the proof of Lemma 3.2.
Given z ∈ X�

n and w ∈ Xn+1, we establish a block equivalence by showing that the
following identity holds:

∑

z′∈X�
n+1

φz′w ◦ F�
zz′ =

∑

w′∈Xn

Fw′w ◦ φzw′ .

By (6), we note that the right side is nontrivial only whenw′ = x� or whenw′ = z, and
hence, it reduces to Fzw + Fx�z ◦ φzx� , which equals F�

zw. The left side also evaluates
to the same quantity whenever it is nontrivial provided that w �= x�. On the other
hand, if w = x�, then the left side becomes

∑

z′∈X�
n+1

φz′x� ◦ F�
zz′ = −

∑

z′∈X�
n+1

F−1
x� y� ◦ Fz′ y� ◦ F�

zz′ .

Expanding F�
zz′ via (4) and distributing terms yields

−
∑

z′∈X�
n+1

F−1
x� y� ◦ Fz′ y� ◦ Fzz′ +

∑

z′∈X�
n+1

F−1
x� y� ◦ Fz′ y� ◦ Fx�z′ ◦ F−1

x� y� ◦ Fzy� .

The second sum above is always zero, since (x�, y�) ∈ � implies x� ≺ y�, and hence,
there is no z′ ∈ X� with x� ≺ z′ ≺ y�. Finally, the first sum reduces to F�

x�z since d•
is a coboundary operator, and hence,

∑
z′∈Xn+1

Fz′ y� ◦ Fzz′ = 0.
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It is easy to verify that ψn ◦ φn is the identity map on Cn
� for each n ∈ N, so in

order to conclude that ψ• and φ• are cochain equivalences it suffices to construct a
cochain homotopy �n : Cn → Cn−1

� between φn ◦ ψn and the identity on Cn . The
following result completes our proof of Theorem 2.6.

Lemma 3.4 The linear maps �n : Cn → Cn−1 defined by the block action

�ww′ =
{

F−1
x� y� w′ = x� and w = y�,

0 otherwise,

constitute a cochain homotopy between φn ◦ ψn and the identity on Cn for each
dimension n ∈ N.

Proof By definition, it suffices to show �n+1 ◦ dn + dn−1 ◦ �n = idCn − φn ◦ ψn .
By (5) and (6), we note that φ ◦ ψ has the following block action F(w) → F(w) for
w,w ∈ Xn :

(φ ◦ ψ)ww =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−F−1
x� y� ◦ Fwy� w = x�,

−Fx�w ◦ F−1
x� y� w = y�,

idF(w) w = w ∈ X�,

0 otherwise.

A simple calculation confirms that idCn − �n+1 ◦ dn − dn−1 ◦ �n has precisely the
same block action and concludes the proof. 
�

4 Algorithms

In this section, we describe our algorithmScythewhich constructs an acyclic match-
ing � on (X,≤) and iteratively implements the reduction step of Sect. 3 in order to
reduce a poset-parametrized cochain complex down to the Morse parametrization.
Before turning to the details, we recall our main result. Let F be a parametrization of a
cochain complex (C•, d•) of freeR-modules over a graded poset (X,≤)whose cover-
ing relation is denoted by≺ as usual. For each x ∈ X , we define x+ = {y ∈ X | x ≺ y}
and similarly x− = {y ∈ X | x � y}. Assume that the acyclic matching imposed by
Scythe is called�. Recall from Sect. 1 the parameters n = |X |, p = maxx∈X {|x+|},
d = maxx rank (F(x)), m̃ = ∑

k m2
k , and ω.

Note that n, p and d are input parameters. The net critical elements cardinality m̃
is an output parameter, and the multiplication exponent ω is purely a property of the
underlying coefficient ring R. The remainder of this section is dedicated to proving
our main theorem.

Theorem 4.1 Let F parametrize a cochain complex of R-modules over a graded
poset (X,≤) and let n, p, d, m̃ and ω be the parameters defined above. Then, the time
complexity of constructing the Morse parametrization F� via Scythe is O(npm̃dω),
and the space complexity is O(n2 pd2).
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Algorithm: Scythe
In: A parametrization F of a cochain complex over a graded poset (X, ≤)

Out: Transforms F to the Morse parametrization F� ,
where � is an F-compatible acyclic matching on (X,≤).

01 define a queue Que of X -elements
02 while X has noncritical elements
03 select a minimal noncritical element c of X
04 mark c as critical
05 set Que = ∅

06 enqueue c into Que
07 while Que is nonempty
08 dequeue y from Que
09 if y− has exactly one noncritical x with Fxy invertible
10 enqueue x+\ {y} into Que
11 ReducePair(x, y)

12 end if
13 enqueue y+ into Que
14 end while
15 end while

4.1 Description and Verification

The central idea behind our algorithm is derived from iterated breadth-first search3

and has been exploited on several occasions in similar but less general computational
contexts [42,43]. A minimal element c ∈ X is chosen arbitrarily and declared critical,
and elements y ∈ c+ are scoured for possible pairings. Such a y comprises a viable
candidate for pairing if there is a unique uncritical element x ∈ y− so that Fxy is
invertible. As each such pair is found, the reduction step of Sect. 3.1 is applied and
both the poset X as well as the parametrization F are locally modified near the reduced
pair (x, y) by the subroutine ReducePair. The removal of these pairs creates the
possibility of new viable candidates for pairings, and we keep track of them using a
queue data structure.

Given a pair x� ≺ y� of elements in X with Fx� y� invertible, ReducePair per-
forms the reduction step from Sect. 3.1. The key step of this subroutine is Line 04
which corresponds to updating F-values as described in (4). Minor modifications to
ReducePair along with a few additional data structures would also allow us to
catalog and store the cochain equivalences ψ and φ as described in Sect. 3.2.

Proposition 4.2 The collection of those (x, y)∈ X×X for whichReducePair(x, y)

is invoked in Line 12 of Scythe constitutes an F-compatible acyclic matching � on
(X,≤).

Proof The compatibility of the pairing with the parametrization F is enforced in Line
10 of Scythe where we check for the invertibility of Fxy . The partial matching
axioms of Definition 2.4 are easily seen to be satisfied, so we focus here on proving
that � is acyclic. Returning again to Line 10, note that we only make a pairing (x, y)

when x is the last remaining uncritical element in y−. Now, any pair (x ′, y′) for which

3 In principle, anymethod for constructing acyclic partial matchings on graded posets will suffice, provided
that it ensures sheaf compatibility by only matching cell pairs whose restriction maps are invertible.
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Algorithm: ReducePair
In: A pair (x�, y�) ∈ X × X with x� ≺ y� and Fx� y� invertible

Out: Modifies F according to the reduction step
01 for each z ∈ x�+\ {

y�
}

02 for each w ∈ y�−\ {
x�

}

03 set w ≺ z
04 replace Fwz by Fwz − Fx�z ◦ F−1

x� y� ◦ Fwy�

05 end for
06 end for
07 remove x� and y� from X

(x ′, y′) � (x, y) must by definition satisfy x ′ ≺ y, or equivalently, x ′ ∈ y−. Since any
such x ′ is manifestly uncritical, it must already have been removed from X along with
its paired element y′ before the current pair (x, y) was removed. Thus, the order of
pair removal is monotonic with respect to �, and so, the collection of removed pairs
generates an acyclic matching on X . 
�

It follows immediately from the preceding proposition and the machinery devel-
oped in Sect. 3 that the input parametrization F is modified in-place to the Morse
parametrization F� : the input poset (X,≤) is reduced to the critical poset (M,≤�)

and the coboundary operator is suitably updated one pair at a time.

4.2 Complexity Analysis

Before performing a thorough analysis of Scythe in terms of the complexity para-
meters introduced in the previous section, we briefly describe some simplifying
assumptions. First, the Queue data structure must be managed so that the inner while
loop spanning Lines 02 through 14 actually terminates. Whenever an element of X is
added to the Queue, it is flagged so that it may not be enqueued again in that iteration
of the inner while loop. But each time the Queue is reinitialized in Line 05, all these
flags are cleared. Moreover, we ensure that aside from the critical cell c chosen in
Line 03 of Scythe, no other critical cells are enqueued. Finally, for the purposes
of analyzing complexity, we make the simplifying assumption that we only enqueue
those elements of X whose dimension exceeds dim c by 1. Although this restriction is
unnecessary (and indeed, detrimental to performance) in practice, it greatly simplifies
the complexity analysis.

Note that the time complexity of calling ReducePair with input (x, y) where
dim x = k is O(pmkdω) as follows. The cardinality of x+\ {y} is at most p by
assumption, and since the set y−\ {x} only has critical elements byLine 09 ofScythe,
its cardinality does not exceed mk . For each pair w and z of elements from these
sets, the matrix algebra of Line 04 incurs a further cost of O(dω): the cost of matrix
addition is dominated by the costs of inversion andmultiplication, which are O(dω) by
assumption. Since the inner while loop runs at most n times, its total time complexity
is O(npmkdω) where k = dim c by virtue of our restricted queuing strategy. Finally,
since the outer while loop executes precisely once per k-dimensional critical element,
the total complexity of Scythe evaluates to O(npm̃dω) as claimed in Theorem 4.1.
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Remark 4.3 The following observations have practical significance when simplifying
computation of cellular sheaf cohomology via discrete Morse theory.

1. Since the output Morse parametrization F� generated by Scythe is again a
cochain complex of R-modules parametrized by a poset, it is possible to iter-
ate the simplification scheme. In particular, one may impose an F�-compatible
acyclic matching on the critical poset (M,≤�) and so forth, until the Morse para-
metrization stabilizes. This stabilization is caused by the eventual depletion of cell
pairs which may be compatibly matched. In particular, if there are no invertible
subblocks in the matrix representation of the Morse coboundary operator, then no
further cell pairs may be matched.

2. There is an obvious dual algorithm, CoScythe, which processes (X,≤) from
the top-down. In particular, a maximal element c ∈ X may be initially cho-
sen as critical and one may then search for pairings in the set c− of elements
covered by c.

Turning to issues of memory, we recall that F is transformed in-place to F� .
Therefore, the only additional overhead is the Que structure. The cost of storing F
itself is O(npd2): there are n elements in the underlying poset X ; for each x ∈ X ,
there are at most p elements y ∈ X satisfying x ≺ y, and for each of these, we must
store at most a d × d matrix Fxy . Moreover, sinceQue itself may get as large as n for
each element of X , our worst-case space complexity evaluates to O(n2 pd2).

5 Applications to Distributed Cohomology Computation

The ability to efficiently compute cellular sheaf cohomology will have implications in
those emerging applications [signal processing, sampling, tracking, network coding,
optimization, etc.] described in Sect. 1. Given the focus of this paper (on computational
cohomology), we do not detail such applications. Instead, we demonstrate an appli-
cation of sheaf cohomology to the more ubiquitous problem of computing ordinary
cohomology over a field. Passing from this to a richer coefficient system can and does
facilitate a tremendous simplification of the underlying topological space without loss
of cohomology.

There are at least two classical examples of this principle in action: the Čech
approach and the Leray approach. We describe these classical computational methods
below and then present a sheaf-theoretic unification. This has the effect of giving a
unified interpretation of persistent [13,56], zig-zag cohomology [14] and the Mayer–
Vietoris blowup [49]—all important recent tools in computational topology.

Remark 5.1 Throughout the remainder of this section, we assume:

1. all topological spaces are compact, Hausdorff and locally contractible;
2. all covers consist of finitely many open subsets; and
3. the coefficient ring R is a field.
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5.1 The Čech Approach

The following classical approach [3] provides a convenient and ubiquitous combina-
torial model for representing unwieldy topological spaces.

Definition 5.2 Let U be a cover of a topological space X . Its nerve NU is the abstract
simplicial complex whose n-dimensional simplices are collections σ = (U0, . . . , Un)

of cover elements with nonempty support
⋂n

0 U j .

Following the usual conflation of an abstract simplicial complex with its cell
complex (“geometric”) realization, one has the following (simplified version) of the
classical theorem of Leray:

Theorem 5.3 (Nerve Theorem [10,37]) Given a topological space X and a cover
U , if the support Uσ ⊂ X of each σ ∈ NU is acyclic (i.e., the reduced cohomology
H̃•(Uσ ;R) = 0 vanishes), then H•(NU ;R) ∼= H•(X;R).

Typically, the cost of guaranteeing acyclicity of supports is that one has to refine
substantially the cover U and hence greatly increase the number of simplices in NU .
The following notion is naturally motivated by the desire to compute cohomology
with coarser covers and hence fewer simplices.

Definition 5.4 The Čech cellular sheaves Cn associated to the cover U of a space X
are defined on the nerve NU by the following data. Each σ ∈ NU is assigned the R-
module Cn(σ ) = Hn(Uσ ;R), and each face relation σ ⊂ τ is assigned the linear map
Cn

στ : Hn(Uσ ;R) → Hn(Uτ ;R) arising from the inclusion of supports Uτ ↪→ Uσ .

If all simplex supports are acyclic, then C0 reduces to the constant sheaf on NU and
all other Cns are trivial; in the absence of acyclicity assumptions, the following result
yields a simple correction.

Proposition 5.5 Let X be a topological space and U a cover whose nerve NU is at
most one-dimensional. Then, for each n ∈ N,

Hn(X;R) ∼= H0(NU ; Cn) ⊕ H1(NU ; Cn−1). (7)

We defer the proof to the next section where a more general result is established,
but remark here that similar results have been obtained before [12,14] in the context of
zig-zag persistent homology. The central difference between these results and ours is
that the existing results depend on the direct sum decomposition of zig-zag persistence
modules into indecomposable modules (or barcodes). On the other hand, our result
makes the recognition that these modules are conceived as sheaves over a linear nerve
and moreover that the cohomology of these sheaves can be quickly computed using
discrete Morse theory.

5.2 The Leray Approach

One can try to compute the cohomology of X with R coefficients from a sufficiently
nice map f : X → Y into some simpler space Y . If the image of f comes equipped
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with a cover V having nerve NV , one can try to pull back the associated Čech sheaf
on NV along f to yield local information about X .

Definition 5.6 The Leray cellular sheaves Ln associated with a map f : X → Y
and a cover V of f (X) ⊂ Y are defined over the nerve NV as follows. Each simplex
σ ∈ NV is assigned the cohomology of the preimage of its support, i.e., Ln(σ )

= Hn( f −1(Vσ );R); furthermore, each face relation σ ⊂ τ is assigned the map
induced on cohomology by the inclusion f −1(Vτ ) ↪→ f −1(Vσ ).

In the special casewhere X = Y and f is the identitymap, the Leray sheaves clearly
coincide with the Čech sheaves associated to the cover V of X . Thus, the following
result generalizes Proposition 5.5.

Theorem 5.7 Let f : X → Y be continuous. Assume a cover V of the image f (X) ⊂
Y whose nerve NV is at most one-dimensional. Then, for each n ∈ N,

Hn(X;R) ∼= H0(NV ;Ln) ⊕ H1(NV ;Ln−1). (8)

Proof The theorem is a simple consequence of the Leray spectral sequence which
packages the cohomology of X into a coefficient system over the space Y from a
map f : X → Y [40]. The restriction to a one-dimensional nerve forces the spectral
sequence to collapse on the second page and hence yield the desired isomorphisms.
More precisely, for each open V ⊂ f (X), let Cn(V ;R) denote the R-module freely
generated by the set of all cochains defined on V . Clearly, if V ⊂ U , then there is
a surjection Cn(U ;R) → Cn(V ;R) defined by restriction of cochains. The sheaf
F associated with this presheaf of singular cochains is consequently flabby (see [45,
p. 97]).

Consider the following double complex of R-modules:

...
...

...
...

C2(X) ��

��

⊕
dim σ=0 F2( f −1(Vσ )) ��

��

⊕
dim τ=1 F2( f −1(Vτ )) ��

��

0

C1(X) ��

��

⊕
dim σ=0 F1( f −1(Vσ )) ��

��

⊕
dim τ=1 F1( f −1(Vτ )) ��

��

0

C0(X) ��

��

⊕
dim σ=0 F0( f −1(Vσ )) ��

��

⊕
dim τ=1 F0( f −1(Vτ )) ��

��

0

It follows from standard results [11, Thm II.5.5, Thm III.4.13] that the rows are exact.
By the acyclic assembly lemma [54], the spectral sequence converges to the cohomol-
ogy of the leftmost column, i.e., H•(X;R). If one takes cohomology in the vertical
direction, one obtains the defined cochain groups associated to the Leray cellular
sheaves Ln :
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...
...

...

⊕
dim σ=0 H2( f −1(Vσ )) ��

⊕
dim τ=1 H2( f −1(Vτ )) �� 0

⊕
dim σ=0 H1( f −1(Vσ )) ��

⊕
dim τ=1 H1( f −1(Vτ )) �� 0

⊕
dim σ=0 H0( f −1(Vσ )) ��

⊕
dim τ=1 H0( f −1(Vτ )) �� 0

Taking cohomology horizontally corresponds precisely to computing separately (in
parallel, if one wishes) the cohomology of the Leray sheaves Ln over NV , thus pro-
ducing the final stable page of the spectral sequence.

...
...

...

H0(NV ;L2) H1(NV ;L2) 0

H0(NV ;L1)

������������������������
H1(NV ;L1) 0

H0(NV ;L0)

������������������������
H1(NV ;L0) 0

Over a general ringR, these terms prescribe a filtration of the cohomology, giving rise
to extension problems; however, over a field one can read off the cohomology directly.


�
Note that the proof indicates precisely where we require the one-dimensional nerve

restriction. Without this assumption in place, the second page of the spectral sequence
may not be stable and the conclusion of the theorem need not hold.

5.3 An Example

A fairly natural situation where computing cohomology via Theorem 5.7 is advanta-
geous over the obvious alternatives arises when dealing with Reeb graphs. Consider
a topological space X equipped with a function f : X → R and recall that the Reeb
graph of the pair (X, f ) is a quotient of X by the equivalence relation which identifies
two points whenever they lie in the same connected component of f −1(c) for some
c ∈ R.

123



Found Comput Math (2016) 16:875–897 893

Fig. 1 A genus-2 surface X hovers over (a subdivision of) its Reeb graph � associated with downward
projection to the real line R. The fibers (lying in X ) over nodes u and v of � are highlighted, and their
intersection comprises the fiber over the edge uv

Let X be a finite CW complex, and consider a continuous function f : X → R.
Given the Reeb graph � of (X, f )—for instance, the one illustrated in Fig. 1—one
can immediately transform the problem of computing H•(X;R) to that of computing
H•(�;L), whereL is the Leray cellular sheaf on a suitable subdivision of� associated
with the canonical projection P : X → �. In particular, Theorem 5.7 asserts an
isomorphism

Hn(X;R) ∼= H0(�;Ln) ⊕ H1(�;Ln−1),

and in cases where P distributes the cells of X almost evenly over those of �, it is
computationally prudent to evaluate the right side in order to determine the left. In
order to estimate the advantage, we employ the following complexity parameters:

1. N is the number of cells in X ,
2. d is the dimension of (the maximal cells in) X ,
3. g is the number of cells (vertices and edges) in �, and
4. K ≤ N bounds the number of cells in P−1(v) ⊂ X across vertices v ∈ �.

In addition to the usual cost of computing H•(�;L), onemust also take into account
the burden incurred when extracting the data which determines L, i.e., the stalks
and restriction maps. To this end, note that the cost of computing a stalk L•(v) =
H•(P−1(v);R) over a vertex v of � is O(K 3) via Smith diagonalization of a matrix
no larger than K × K in size. Similarly, each stalk L(e) over an edge e and each
restriction map L(v) → L(e) may be evaluated in O(K 3) time since all matrices
involved have their sizes bounded above by K × K . More importantly, these local
stalk and restriction map computations may be performed in parallel (there are twice
as many restriction maps to compute as there are edges in �), and hence, the total cost
of computing all the L sheaf data is no more than O(K 3).

Turning now to the computation of sheaf cohomology H•(�;L), we note that the
relevant cochain complex

0 →
⊕

dim v=0

L(v)
δ→

⊕

dim e=1

L(e) → 0 → 0 → · · ·
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contains only two interesting cochain groups (parametrized by the vertices and edges
of � respectively) and a single (potentially) nontrivial coboundary map δ between
them. Here, the matrix representation of δ consists of at most g × g blocks arising
from restriction maps over incidence relations of cells in �. But each such restriction
map furnishes a block no larger than d ×d in size—after all, the domain and codomain
of the restrictions are cohomologies of subcomplexes of X , and X itself has dimension
d. Thus, the matrix representation of δ has size bounded above by gd × gd. Even in
the complete absence of Morse theoretic simplification, one may therefore evaluate
H•(�;L) in O(g3d3) time. Adding the O(K 3) cost of computingL data, we confront
a combined complexity of O(K 3 + g3d3) for building the Leray sheaf of P : X → �

in parallel and evaluating its cohomology.
Thus, the sheaf-cohomological method of computing H•(X,R) is much faster

than the traditional methods whenever one has K 3 + g3d3 � N 3. In particular, this
inequality holds when two mild conditions are satisfied by P:

1. P distributes the cells of X evenly across those of �, so N ≈ K g, and
2. the fibers of P have small cohomology relative to their size, i.e., d � K .

With these assumptions in place, it is straightforward to estimate the ratio r of worst-
case complexity when using the Leray sheaf of P to that of directly computing
H•(X;R). Clearly, we have

r = K 3 + g3d3

N 3 = K 3

N 3 + g3d3

N 3 .

Using N ≈ K g twice, we have

r ≈ 1

g3 + d3

K 3 .

Since g may be increased by subdivision and since d � K by assumption on the
fibers, r � 1 and the sheaf-theoretic approach enjoys a significant speedup.

5.4 A Unifying Perspective

There is a more sophisticated version of the nerve described originally by Segal [49]
which is homotopically faithful to the underlying space independent of the particulars
of the cover. This notion has been used in recent applications [57] and parallelizations
for homology computation [38].

Definition 5.8 Let X be a topological space equipped with a cover U with nerve NU .
The Mayer Vietoris blowup MU associated to U is a subset of the product X × NU
defined as follows. The pair (x, s) lies in MU if and only if there is some simplex
σ ∈ NU for which x ∈ Uσ and s ∈ σ .
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Being a subset of the product, MU is equipped with natural surjective projection
maps

MU
ρ1

����
��

��
�� ρ2

����
��

��
��

X NU

The map ρ1 has contractible fibers: for any x ∈ X , we have ρ−1
1 (x) = {x}×σx where

σx is the unique simplex of maximal dimension whose support contains x . Thus, the
Mayer–Vietoris blowup is homotopy equivalent to X via ρ1 in full generality. On the
other hand, it is easy to see that the map ρ2 fails to have contractible fibers precisely
when the simplex supports are not contractible. In fact, given s ∈ NU , the fiber ρ−1

2 (s)
has the homotopy type of the support of σs , which is the unique simplex of maximal
dimension whose realization contains s. Since cohomology is a homotopy invariant,
this leads to the following observation which unifies the Čech and Leray approaches.

Proposition 5.9 The Leray cellular sheaves Ln associated to the map ρ2 : MU →
NU , where NU is covered by (small neighborhoods of the topological) simplices
{σ }σ∈NU , are isomorphic to the Čech cellular sheaves Cn associated to the cover
U .

Remark 5.10 We conclude with the following remarks.

1. The commonality between the Čech and Leray approaches comes as no surprise
to anyone sufficiently familiar with spectral sequences (and would have surprised
neither Čech nor Leray).

2. Both strategies are examples of distributed cohomology computation because in
order to determine the sheaf Cn or Ln , one only needs to compute cohomology
locally: of a nontrivial intersection of covering sets in the former case or of a
small neighborhood of the fiber f −1(y) in the latter case. In principle, one can
assign each local computation to a different processor, compute the appropriate
sheaf cohomology over a decidedly nicer space (either NU or Y depending on the
circumstances) and aggregate this information to compute the desired cohomology
of X .

3. By taking the appropriate linear duals and working with cosheaves [16], all of our
results transform to computations of homology rather than cohomology.

Acknowledgments This work was supported in part by federal contracts FA9550-12-1-0416, FA9550-09-
1-0643, and HQ0034-12-C-0027.
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