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Equivariant Simplicial Reconstruction\ast 

Lisa Carbone\dagger , Vidit Nanda\ddagger , and Yusra Naqvi\S 

Abstract. We introduce and analyze parallelizable algorithms to compress and accurately reconstruct finite
simplicial complexes that have nontrivial automorphisms. The compressed data---called a complex
of groups---amounts to a functor from (the poset of simplices in) the orbit space to the 2-category of
groups, whose higher structure is prescribed by isomorphisms arising from conjugation. Using this
functor, we show how to algorithmically recover the original complex up to equivariant simplicial
isomorphism. Our algorithms are derived from generalizations (by Bridson--Haefliger, Carbone--Rips,
and Corson, among others) of the classical Bass--Serre theory for reconstructing group actions on
trees.
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1. Introduction. The ongoing proliferation of large, complicated, and vital datasets has
sparked considerable activity focused on rendering hitherto-abstract branches of mathematics
applicable to processing complex data. Examples of this phenomenon include, but are by no
means restricted to, the recent employment of Laplacian eigenfunctions for spectral embedding
[3], rough paths in machine learning [9], sheaf theory for linear programming [23], Morse
theory for image processing [13], and (co)homology for data analysis [17]. In each case,
efficient algorithms have catalyzed the percolation of theory to application. And, particularly
in the last two examples, these algorithms accept as input some cell complex structure (often
simplicial or cubical) imposed on the constituent elements of a given dataset.

Our work here continues these efforts: we adapt a framework originally devised for the
study of infinite group actions on nonpositively curved spaces [6, 33] to the concrete task of
efficiently exploiting symmetries to compress and reconstruct finite simplicial complexes. The
central contribution of this paper therefore consists of two parallelizable algorithms. The first,
called Compress, accepts as input a finite simplicial complex \BbbX along with a subgroup G of
its automorphism group, and outputs a compressed structure \bfitA called a complex of groups
[19, 10]. This \bfitA may, for the purposes of these introductory remarks, be regarded as a (typi-
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EQUIVARIANT SIMPLICIAL RECONSTRUCTION 533

cally much smaller) group-weighted simplicial complex. The second algorithm, Reconstruct,
inverts the first by using the overlaid algebraic data to correctly unfold the complex of groups
\bfitA so that \BbbX is recovered up to G-equivariant isomorphism.

Assume, for the purposes of this introduction, that \BbbX is a triangulated bow-tie:

and consider the action of the Klein four-group G =
\bigl\langle 
\sigma , \tau | \sigma 2 = \tau 2 = (\sigma \tau )2 = 1

\bigr\rangle 
, where \sigma 

and \tau act by reflection across the horizontal and vertical axes through the central vertex \Delta ,
respectively (vertices lying in the same orbit have been decorated similarly). One possible
choice of quotient \BbbX /G is the following fundamental domain, i.e., a subcomplex of \BbbX which
intersects each G-orbit exactly once:

It is not too difficult to construct an infinite family of other group actions on different
simplicial complexes which produce the same quotient. Clearly, \BbbX /G does not carry sufficient
information to recover either \BbbX or the G-action. One therefore seeks the minimal amount of
additional data necessary for such a reconstruction. Not surprisingly, the extra machinery
required varies (in complexity, if not nature) depending on whether \BbbX is a tree [33], a graph
[2, 14], a smooth manifold [18], a Coxeter complex [12], or the classifying space of a small
loopfree category [19].

In any event, the complex of groups \bfitA for the action described above assigns to each
simplex y of \BbbX /G a stabilizer subgroup \bfitA y \leq G which fixes some simplex of \BbbX lying in the
corresponding orbit class:

The group assigned to each simplex includes the groups assigned to simplices in its boundary,
so our \bfitA is a group-valued cellular cosheaf [11], i.e., a functor from the poset of simplices
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534 LISA CARBONE, VIDIT NANDA, AND YUSRA NAQVI

in \BbbX /G to the lattice of subgroups of G. It should be noted that---at least in our simple
example---G is the colimit of \bfitA . An appeal to the orbit-stabilizer theorem also guarantees
that the number of simplices in \BbbX whose orbit class is represented by a simplex y in \BbbX /G
equals the usual index [G : \bfitA y], which counts cosets of \bfitA y in G. Our next task, therefore, is
to determine the correct face relations among these simplices.

At this stage, the scope of the difficulty starts to become apparent: How should one glue
the coset-indexed simplices below so that the result is (isomorphic to) \BbbX ?

Knowledge of the subgroup indices [G : \bfitA y] across all simplices y in \BbbX /G does not uniquely
specify the desired face relations between our coset-simplices. Making unfortunate choices of
attachments, even between vertices and edges, could easily backfire:

.

Here is a partial summary of the challenges which must be overcome before one can
reconstruct more general group actions on more general complexes than our G and \BbbX :

(1) The quotient \BbbX /G may not be a simplicial complex.
(2) Even if \BbbX /G is simplicial, it may not be a subcomplex of \BbbX .
(3) If \BbbX is not simply connected, then G may not be the colimit of \bfitA .
(4) The groups \bfitA y are only determined up to conjugation in G.
(5) It is unclear how one should glue coset-simplices to recover \BbbX .
Obstacle (1) above is bypassed by imposing a mild regularity constraint on the G-action,

which is always satisfied after barycentric subdivision. In order to address the remaining
challenges, one must carefully keep track of how the various\bfitA y embed within each other inside
G. Perhaps the most streamlined way to accomplish this is to view \bfitA as a pseudofunctor1

by enhancing its target into a 2-category as follows. Given two homomorphisms \phi and \phi \prime 

between the same pair of groups, the set of 2-morphisms \phi \Rightarrow \phi \prime is given by all elements
g in the codomain (if any) which satisfy \phi (\bullet ) = g \cdot \phi \prime (\bullet ) \cdot g - 1. The remarkable advantage
of this pseudofunctorial perspective, which we exploit in section 4, is that knowledge of the
2-morphisms lying in the image of \bfitA solves all the problems (2)--(5).

The following result motivates and underlies much of our work. In its statement, G\BbbY 

denotes the constant complex of groups over \BbbY , which assigns the group G to all simplices
and identity maps to all face relations in sight.

1Roughly, this means that \bfitA is associative only up to inner automorphisms. See Definition 2.6 for details.
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EQUIVARIANT SIMPLICIAL RECONSTRUCTION 535

Theorem (Thm. 2.18 and Cor. 2.19 of sect. III.C in [6]). For each finite simplicial complex
\BbbY and finite group G, there is an equivalence:\left[  Regular G-actions on finite

simplicial complexes \BbbX with
quotient \BbbX /G = \BbbY 

\right]  \simeq \leftarrow \rightarrow 

\left[  Certain equivalence classes
of complexes of groups over \BbbY 
that map injectively into G\BbbY 

\right]  .
Related work and outline. Much of the theoretical machinery presented here (including

the theorem above) will be quite familiar, or at least unsurprising, to those with expertise
in certain areas of geometric group theory and equivariant algebraic topology. To the best
of our knowledge, however, none of the existing literature on reconstructing group actions
seriously confronts its algorithmic aspects. To accomplish that task here, we have adapted
the treatment in the comprehensive text of Bridson and Haefliger [6, Chap. III.C], a recent
framework developed by the first author with Rips [7], and the pseudofunctorial viewpoint
mentioned above (which was also employed in Fiore--L\"uck--Sauer [15, sect. 8] for a different
purpose). In an effort to avoid impeding the progress of readers unfamiliar with this body of
work, we have also provided a summary of the basic constructions and fundamental results
which are required to verify the correctness of our algorithms.

Our hope is that these algorithms will eventually be used for compressing simplicial com-
plexes built around data points sampled from symmetric manifolds. It is, however, an unfor-
tunate by-product of almost all discretization techniques that symmetries of smooth objects
are not directly inherited by their finite approximations. For instance, a dense point cloud
sampled uniformly at random from the unit sphere (viewed as a submanifold of Euclidean
space) will not be fixed by any nontrivial element of the orthogonal group. Any reasonable
framework for inferring automorphisms of symmetric manifolds from random samples will,
in all probability, require methods to efficiently discover, quantify, and analyze approximate
symmetries of finite data. While that grail-quest lies far beyond the scope of our work here,
we direct interested parties to promising geometric [29] and statistical [16, sect. 3] efforts in
its general direction.

The rest of this paper is organized as follows. Section 2 contains preliminary material
regarding complexes of groups, sections 3 and 4 describe the voyage from a simplicial group
action to the associated complex of groups and back, while section 5 contains the two promised
algorithms Compress and Reconstruct along with their detailed complexity estimates, which
are recorded in Theorems 5.5 and 5.6, respectively.

2. Backgound. For combinatorial and homological perspectives on simplicial group ac-
tions, we invite the reader to consult [1] and [5, Chap. III.1], respectively. General introduc-
tions to simplicial complexes, group actions and 2-categories may be found in [34, Chap. III],
[22, Chap. II.4], and [24], respectively.

2.1. Simplicial group actions and quotients. Fix a finite simplicial complex \BbbX and a finite
group G which acts on \BbbX via simplicial automorphisms. For each simplex x in \BbbX , we have an
orbit Gx = \{ g \cdot x | g \in G\} , which is a subset of \BbbX , and a stabilizer Gx = \{ g \in G | g \cdot x = x\} ,
which is a subgroup of G. The following definition is adapted from [5, Chap. III.1].

Definition 2.1. The action of G on \BbbX is called regular if the following two properties hold
for every simplex x of \BbbX . Letting (v0, . . . , vd) denote the vertices of x:

D
ow

nl
oa

de
d 

12
/2

9/
20

 to
 8

6.
16

2.
21

.1
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

536 LISA CARBONE, VIDIT NANDA, AND YUSRA NAQVI

(1) every g in Gx must satisfy g \cdot vi = vi for all i in \{ 0, . . . , d\} , and
(2) given g0, . . . , gd \in G, if x\prime = (g0 \cdot v0, . . . , gd \cdot vd) \in \BbbX , then x\prime must lie in Gx.

Regular actions are actions without inversion [2, 33] in the special case when \BbbX is a
graph (i.e., dim\BbbX = 1), since the first requirement of the definition above prohibits the G-
action from interchanging the two vertices of a given edge. We will assume henceforth that
G acts regularly2 in order to avail ourselves of three pleasant consequences. First, if y is a
face of x (written x \succ y), then the corresponding stabilizers satisfy the subgroup relation
Gx \leq Gy because any g which fixes x is forced to fix all the vertices of x (and hence, y)
pointwise. Second, the orbits assemble to form a quotient simplicial complex so that the
natural projection from \BbbX is a simplicial map. And third, G acts transitively on the fibers of
this map.

Definition 2.2. The orbit space or quotient \BbbX /G associated to the action of G on \BbbX is the
simplicial complex defined as follows. Its vertices are the G-orbits of vertices in \BbbX , and a
d-simplex in \BbbX /G is spanned by (d+1) distinct orbits (Gv0, . . . ,Gvd) if and only if there exists
some simplex (u0, . . . , ud) in \BbbX with ui \in Gvi for each i.

By construction, there is a canonical surjective simplicial map \bfitp \mathrm{G} : \BbbX \twoheadrightarrow \BbbX /G, called the
orbit map, which sends each simplex of \BbbX to its G-orbit in \BbbX /G. And by the second regularity
requirement, if two simplices x and x\prime of \BbbX satisfy \bfitp G(x) = \bfitp G(x

\prime ), then some g \in G satisfies
g \cdot x = x\prime .

Definition 2.3. A fundamental domain for the action of G on \BbbX is a subcomplex \BbbX \prime \subset \BbbX 
which contains exactly one simplex from each orbit.

Whenever a fundamental domain exists for a given action (as with the bow-tie from the
introduction), the quotient space \BbbX /G may be viewed as a subcomplex of \BbbX . However, not
every action admits a fundamental domain.

Example 2.4. The cyclic group (on three elements) G = C3 acts by rotation on the sub-
divided standard 2-simplex \BbbX shown below:

Since this action is regular, \BbbX /G inherits a natural simplicial complex structure (given by a
coarser subdivision of the 2-simplex):

2Fortunately, regularity is not a severe requirement on group actions---any automorphism can be made
regular via passage to the second barycentric subdivision of \BbbX (see condition (B) in [5, Chap. III.1]).
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One can further illustrate \bfitp G as a simplicial map from \BbbX down to \BbbX /G, so that the fiber \bfitp  - 1
G

over a simplex in \BbbX /G is the collection of all simplices from \BbbX in the associated orbit:

On the other hand, G also acts by rotation on the quotient \BbbY = \BbbX /G, but this action fails to
satisfy the second requirement of regularity. As a consequence, the successive quotient of \BbbY 
by G is no longer a simplicial complex.

2.2. The 2-category of groups. Consider a pair of groups G0,G1 and group homomor-
phisms \phi , \phi \prime : G0 \rightarrow G1. We write g : \phi \Rightarrow \phi \prime if some group element g \in G1 relates \phi and \phi \prime 

by conjugation in the sense that

\phi = Ad(g)\circ \phi \prime , i.e., \phi (h) = g \cdot \phi \prime (h) \cdot g - 1 for all h \in G0.

The homomorphisms G0 \rightarrow G1 thus form the objects of a groupoid,3 which we will denote
by Grp(G0,G1)---its morphisms are given by such g : \phi \Rightarrow \phi \prime and the composition law is
inherited from multiplication in G1 as follows. Given

\phi 
g\Rightarrow \phi \prime 

g\prime \Rightarrow \phi \prime \prime ,

where \phi \prime \prime is yet another homomorphism G0 \rightarrow G1, a straightforward calculation reveals that
the product g \cdot g\prime in G1 satisfies g \cdot g\prime : \phi \Rightarrow \phi \prime \prime , and hence that g - 1 : \phi \prime \Rightarrow \phi serves as the
inverse to g. In order to formally distinguish a product in the groupoid Grp(G0,G1) from the
corresponding (contravariant) product in the group G1, we will denote the former by g\prime \ast g
and call it the vertical composite of g with g\prime .

Given g : \phi \Rightarrow \phi \prime in Grp(G0,G1) and h : \psi \Rightarrow \psi \prime in Grp(G1,G2), define their horizontal
composite h\circ g as the group element \psi (g) \cdot h in G2. Two straightforward calculations reveal
the following:

(1) across any triple of groups G0,G1, and G2, horizontal composition yields a map of
groupoids

\circ : Grp(G1,G2)\times Grp(G0,G1)\rightarrow Grp(G0,G2),

which extends the ordinary composition for group homomorphisms, and

3By groupoid we mean a small category all of whose morphisms are invertible.

D
ow

nl
oa

de
d 

12
/2

9/
20

 to
 8

6.
16

2.
21

.1
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

538 LISA CARBONE, VIDIT NANDA, AND YUSRA NAQVI

(2) the horizontal and vertical compositions satisfy the interchange law, meaning that
across any diagram of the form

G0

\phi 

\Downarrow g ��

\phi \prime 

\Downarrow g\prime 
//

\phi \prime \prime 

??
G1

\psi 

\Downarrow h ��

\psi \prime 

\Downarrow h\prime 
//

\psi \prime \prime 

??
G2

we have an equality
(h\prime \circ g\prime ) \ast (h\circ g) = (h\prime \ast h)\circ (g\prime \ast g)

in the groupoid Grp(G0,G2).
These two facts allow us to define a higher category of groups [28, Ex. 1.3], [15, Def. 8.1].

Definition 2.5. The 2-category of groups, denoted Grp, is defined as follows:
(1) its objects are all groups,
(2) the 1-morphisms \phi : G\rightarrow G\prime are the usual group homomorphisms, and
(3) the 2-morphisms g : \phi \Rightarrow \phi \prime are given by conjugation, i.e., \phi = Ad(g)\circ \phi \prime .

The 1-morphisms are endowed with the usual composition \circ for group homomorphisms, while
the horizontal and vertical composition of 2-morphisms is given by \circ and \ast , respectively.

In modern parlance, Grp is a strict (2,1)-category, which is to say that all compositions
are associative, all identity elements are unique (rather than being defined only up to coherent
isomorphisms), and all 2-morphisms are invertible. Dispensing with these subtleties in the
interest of brevity, we will simply call Grp a 2-category henceforth.

2.3. Complexes of groups. Variants of the following definition appeared simultaneously
in the work of Haefliger [19] and Corson [10].

Definition 2.6. A complex of groups \bfitA over a simplicial complex \BbbY assigns to each
(1) simplex x a finite group \bfitA x,
(2) pair x \succ y an injective homomorphism \bfitA x\succ y : \bfitA x \lhook \rightarrow \bfitA y, and
(3) triple x \succ y \succ z a 2-morphism \bfitA x\succ y\succ z : \bfitA y\succ z\circ \bfitA x\succ y \Rightarrow \bfitA x\succ z,

subject to the following constraints:
(1) \bfitA x\succ x is the identity \bfitA x \rightarrow \bfitA x,
(2) \bfitA x\succ x\succ y and \bfitA x\succ y\succ y are identities \bfitA x\succ y \Rightarrow \bfitA x\succ y, and
(3) for any simplices w \succ x \succ y \succ z in \BbbY , the following relation holds in the group \bfitA z:

\bfitA y\succ z(\bfitA w\succ x\succ y) \cdot \bfitA w\succ y\succ z = \bfitA x\succ y\succ z \cdot \bfitA w\succ x\succ z.

The last constraint is called the cocycle condition [6, Chap. III.C.2].

In other words, a complex of groups is a pseudofunctor \bfitA : Fac(\BbbY )\rightarrow Grp from the poset
Fac(\BbbY ) of simplices in \BbbY (ordered by the is-a-face-of relation) to the 2-category of groups from
Definition 2.5. This means that the homomorphism \bfitA x\succ z only equals the expected composite
\bfitA y\succ z\circ \bfitA x\succ y up to conjugation as prescribed by the 2-morphism \bfitA x\succ y\succ z (these 2-morphisms
are called twisting elements in [6]). Similarly, \bfitA need not send identity 2-morphisms in its
domain to identities in its codomain. The cocycle condition, however, ensures associativity
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in the assignment of 2-morphisms by insisting that the following diagram commutes in the
groupoid Grp(\bfitA w,\bfitA z):

\bfitA y\succ z\circ \bfitA x\succ y\circ \bfitA w\succ x

\bfitA x\succ y\succ z\circ \mathrm{i}\mathrm{d}

��

\mathrm{i}\mathrm{d}\circ \bfitA w\succ x\succ y +3 \bfitA y\succ z\circ \bfitA w\succ y

\bfitA w\succ y\succ z

��
\bfitA x\succ z\circ \bfitA w\succ x

\bfitA w\succ x\succ z

+3 \bfitA w\succ z

We have restricted our attention here to complexes of finite groups for algorithmic reasons;
the preceding definition and subsequent ones (can be made to) extend almost verbatim to
bifunctors from the poset of open sets in a reasonable topological space to the 2-category
of arbitrary groups. The finite complexes of groups defined above may thus be viewed as
concrete, combinatorial incarnations of orbifolds [30, 31] and topological Deligne--Mumford
stacks [32, sect. 19.5].

Example 2.7. Given a finite group G (with identity element 1\mathrm{G}) and simplicial complex \BbbY ,
the constant G-valued complex of groups over \BbbY is denoted G\BbbY : Fac(\BbbY )\rightarrow Grp, and defined
as follows:

(1) each simplex y is assigned the same group G\BbbY 
y = G,

(2) each pair x \succ y is assigned the identity homomorphism G\BbbY 
x\succ y = id : G\rightarrow G, and

(3) each triple x \succ y \succ z is assigned the identity G\BbbY 
x\succ y\succ z = 1\mathrm{G} : id\Rightarrow id.

In order to compare complexes of groups, we require a convenient notion of morphisms
between them (see [19, Def. 2.5] and [26, Def. 12]).

Definition 2.8. A morphism \Phi : \bfitA \rightarrow \bfitB of complexes of groups over (the same simplicial
complex) \BbbY assigns the following:

(1) to each simplex y a 1-morphism \Phi y : \bfitA y \rightarrow \bfitB y in Grp, and
(2) to each pair x \succ y a 2-morphism \Phi x\succ y : \Phi y\circ \bfitA x\succ y \Rightarrow \bfitB x\succ y\circ \Phi x in Grp:

\bfitA x

\bfitA x\succ y

��

\Phi x // \bfitB x

\bfitB x\succ y

��

\bfitA y
\Phi y

//

\Phi x\succ y

7?

\bfitB y

so that the following two axioms hold:
(1) the identity axiom requires \Phi y\succ y to be the identity \Phi y \Rightarrow \Phi y for each simplex y, whereas
(2) the coherence axiom imposes a relation

\Phi z(\bfitA x\succ y\succ z) \cdot \Phi x\succ z = \Phi y\succ z \cdot \bfitB y\succ z(\Phi x\succ y) \cdot \bfitB x\succ y\succ z

in the group \bfitB z.
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Thus, \Phi is a pseudonatural transformation [25, sect. 1.2] between pseudofunctors \bfitA ,\bfitB :
Fac(\BbbY ) \rightarrow Grp. The coherence axiom requires the commutativity of a certain pentagon in
the groupoid Grp(\bfitA x,\bfitB z) for any three simplices x \succ y \succ z. We indicate its vertices below:

\Phi z\circ \bfitA y\succ z\circ \bfitA x\succ y +3

w�

\bfitB y\succ z\circ \Phi y\circ \bfitA x\succ y

"*
\Phi z\circ \bfitA x\succ z

%-

\bfitB y\succ z\circ \bfitB x\succ y\circ \Phi x

px
\bfitB x\succ z\circ \Phi x

and encourage the reader to accurately decorate its edges. We call \Phi : \bfitA \rightarrow \bfitB injective if
each \Phi y : \bfitA y \rightarrow \bfitB y is an injective group homomorphism. And if each \Phi y is an isomorphism
between \bfitA y and \bfitB y, then one can easily construct an inverse pseudofunctor \bfitB \rightarrow \bfitA , so in
this case \Phi itself is an isomorphism between \bfitA and \bfitB .

Remark 2.9. For our purposes here, the most important morphisms of complexes of groups
over a simplicial complex \BbbY will be the injective ones from an arbitrary domain to a constant
codomain, i.e., \Phi : \bfitA \rightarrow G\BbbY for some fixed group G. In this special case, \Phi assigns to each

(1) simplex y an injective group homomorphism \Phi y : \bfitA y \lhook \rightarrow G, and
(2) pair x \succ y a 2-morphism \Phi x\succ y : \Phi y\circ \bfitA x\succ y \Rightarrow \Phi x in Grp,4

so that every \Phi y\succ y is the identity, and the following relation holds in G across all triples
x \succ y \succ z:

\Phi z(\bfitA x\succ y\succ z) \cdot \Phi x\succ z = \Phi y\succ z \cdot \Phi x\succ y.(1)

The existence of such a \Phi implies that all the \bfitA y are simultaneously and coherently realizable
as subgroups of G. In other words, G forms a cocone [27, Chap. III.4] for the diagram in Grp
parametrized by the functor \bfitA over the poset Fac(\BbbY ).

In what follows, we will compare not only complexes of groups, but also their morphisms.
We achieve the latter by using the 2-categorical structure of Grp locally over each simplex y
in \BbbY as follows.

Definition 2.10. Given two morphisms \Phi ,\Psi : \bfitA \rightarrow \bfitB of complexes of groups over \BbbY , a
homotopy \theta : \Phi \Rightarrow \Psi is a (contravariant) collection of 2-morphisms \{ \theta y : \Psi y \Rightarrow \Phi y\} in
Grp, indexed by simplices y of \BbbY , so that for each face relation x \succ y the following square
commutes:

\Psi y\circ \bfitA x\succ y
\Psi x\succ y +3

\theta y\circ id
��

\bfitB x\succ y\circ \Psi x

id\circ \theta x
��

\Phi y\circ \bfitA x\succ y
\Phi x\succ y

+3 \bfitB x\succ y\circ \Phi x

In other words, we have a relation

\Psi x\succ y \cdot \bfitB x\succ y(\theta x) = \theta y \cdot \Phi x\succ y
4As in Definition 2.5, \Phi x\succ y is an element of G satisfying Ad(\Phi x\succ y)\Phi x = \Phi y\circ \bfitA x\succ y.
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in the group \bfitB y.

Horizontal and vertical compositions for homotopies are defined simplexwise. Since such
homotopies relate pseudonatural transformations between pseudofunctors, they form examples
of modifications [25, sect. 1.3]. Complexes of groups over \BbbY , injective morphisms between
them, and homotopies between those morphisms also form a higher category.

Definition 2.11. The 2-category of complexes of groups over \BbbY , written Com(\BbbY ), is de-
scribed by the following data:

(1) its objects are all complexes of groups \bfitA : Fac(\BbbY )\rightarrow Grp over \BbbY ,
(2) its 1-morphisms are all injective morphisms \Phi : \bfitA \rightarrow \bfitB , and
(3) its 2-morphisms are all homotopies \theta : \Phi \Rightarrow \Psi .

3. Compression. Throughout this section, \BbbX is a finite, connected simplicial complex
while G is a fixed subgroup of its regular automorphisms. Let \BbbY denote the orbit space \BbbX /G
and \bfitp G : \BbbX \rightarrow \BbbY the orbit map. Here we construct a pair (\bfitA ,\Phi ), where

(1) \bfitA : Fac(\BbbY )\rightarrow Grp is a complex of groups over \BbbY , and
(2) \Phi : \bfitA \rightarrow G\BbbY is an injective morphism to the constant complex of groups.

Following [6, sect. III.C.2.9], we explicitly describe \bfitA and \Phi by making certain ad-hoc local
choices. Fortunately, it turns out that different choices lead to isomorphic constructions.

3.1. Lifts and transfers. The surjectivity of \bfitp \mathrm{G} guarantees that each simplex y of \BbbY 
admits a lift in the sense that some simplex x in \BbbX satisfies \bfitp \mathrm{G}(x) = y. We select such lifts
arbitrarily for all such y, emphasizing that face relations of the form y \succ y\prime in \BbbY may not
ascend to relations of the form x \succ x\prime in \BbbX among lifts. As a result, the collection of lifts
(which is sometimes called a G-transversal [14, sect. I.1.3]) might be quite far from forming a
subcomplex of \BbbX . The black simplices below form a complete and valid choice of lifts for the
action from Example 2.4, but they manifestly do not constitute a simplicial subcomplex:

In order to address the defect illustrated above, one seeks to relate the lifts x and x\prime 

associated to pairs of distinct adjacent simplices y \succ y\prime in \BbbY . Let z be the unique face of x
in \BbbX which satisfies \bfitp \mathrm{G}(z) = y\prime , i.e., z is the face whose vertices lie in orbits determined by
y\prime . Since G acts regularly on \BbbX , there exists an element g \in G, not necessarily unique, so
that g \cdot z = x\prime . Thus, the best that one can expect, in general, is x \succ g - 1x\prime in \BbbX for some g
whenever y \succ y\prime holds in \BbbY . We arbitrarily select one such g = gy\succ y\prime , and call it the transfer5

associated to the relation y \succ y\prime . On the other hand, if the lifts did happen to satisfy x \succ x\prime in

5These transfers give rise to the monodromy elements of [7].
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\BbbX , then one could simplify (computational) matters greatly by selecting the identity transfer
gy\succ y\prime = 1\mathrm{G}.

3.2. Constructing \bfitA and \Phi . Given a choice of lifts and transfers corresponding to sim-
plices and face relations in \BbbY , one may construct a complex of groups \bfitA : Fac(\BbbY )\rightarrow Grp as
follows:

(1) for each simplex y, the group \bfitA y is the stabilizer Gx, where x = xy is chosen the lift
of y,

(2) for each pair y \succ y\prime , the map \bfitA y\succ y\prime : \bfitA y \lhook \rightarrow \bfitA y\prime is Ad(g), where g = gy\succ y\prime is the
transfer selected for y \succ y\prime , and

(3) for each triple y \succ y\prime \succ y\prime \prime , the map \bfitA y\succ y\prime \succ y\prime \prime : \bfitA y\prime \succ y\prime \prime \circ \bfitA y\succ y\prime \Rightarrow \bfitA y\succ y\prime \prime is given by
the following product of transfers in G:

gy\prime \succ y\prime \prime \cdot gy\succ y\prime \cdot g - 1
y\succ y\prime \prime .

To confirm that the above data prescribe a bona fide complex of groups, one must check
that conjugation by gy\succ y\prime maps Gx injectively to a subgroup of Gx\prime (it does), and that the
2-morphisms satisfy the cocycle condition from Definition 2.6 (they do).6

Remark 3.1. If G is abelian, then its conjugate subgroups are necessarily equal; in this
case, all the 1-morphisms \bfitA y\succ y\prime are just inclusions.

Turning to the matter of constructing an injective morphism \Phi : \bfitA \rightarrow G\BbbY , we assign
(1) to each simplex y, the inclusion \Phi y : \bfitA y \lhook \rightarrow G (noting that \bfitA y is the stabilizer of y's

lift, and hence naturally a subgroup of G), and
(2) to each face relation y \succ y\prime , the 2-morphism \Phi y\succ y\prime given by the transfer gy\succ y\prime \in G.

We leave it to the reader to confirm that these assignments successfully produce an injective
morphism \Phi : \bfitA \rightarrow G\BbbY as described in Remark 2.9.

3.3. Context. In this section we quantify the impact of lifts and transfers on the con-
struction of (\bfitA ,\Phi ). Let Com(\BbbY ) be the 2-category from Definition 2.11. The following fiber
2-category [8, sect. 3] forms a natural home for pairs like the (\bfitA ,\Phi ) constructed above.

Definition 3.2. By Com(\BbbY )//G\BbbY we denote the fiber 2-category whose
(1) objects are all pairs (\bfitB ,\Psi ), where \bfitB is an object of Com(\BbbY ) while \Psi : \bfitB \rightarrow G\BbbY is a

morphism,
(2) 1-morphisms (\bfitB ,\Psi ) \rightarrow (\bfitB \prime ,\Psi \prime ) are all pairs (\Delta , \eta ) where \Delta : \bfitB \rightarrow \bfitB \prime is a 1-

morphism in Com(\BbbY ) while \eta : \Psi \prime \circ \Delta \Rightarrow \Psi is a homotopy:

\bfitB 
\Delta 

\eta \Leftarrow =
//

\Psi ��

\bfitB \prime 

\Psi \prime 
~~

G\BbbY 

6After performing straightforward manipulations, both sides of the cocycle equation evaluate to the pleasant
expression gy\prime \prime \succ y\prime \prime \prime \cdot gy\prime \succ y\prime \prime \cdot gy\succ y\prime \cdot g - 1

y\succ y\prime \prime \prime .
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(3) 2-morphisms (\Delta , \eta ) \Rightarrow (\Delta \prime , \eta \prime ) are given by all those homotopies \theta : \Delta \prime \Rightarrow \Delta in
Com(\BbbY ) which make the following diagram commute:

\Psi \prime \circ \Delta 

\eta 
�&

\Psi \prime \circ \Delta \prime 

\eta \prime x�

id\circ \theta ks

\Psi 

Proposition 3.3. Let (\bfitA ,\Phi ) and (\bfitA \prime ,\Phi \prime ) be produced by different choices of lifts and trans-
fers. Then, the following hold in Com(\BbbY )//G\BbbY :

(1) there exists an isomorphism (\Delta , \eta ) : (\bfitA ,\Phi ) \rightarrow (\bfitA \prime ,\Phi \prime ) so that each \Delta y : \bfitA y \rightarrow \bfitA \prime 
y is

given by conjugation by some element of G, and
(2) given any two such isomorphisms, there exists a unique homotopy \theta : (\Delta , \eta )\Rightarrow (\Delta \prime , \eta \prime ).

Proof. Let \{ xy, gy\succ y\prime \} and \{ zy, hy\succ y\prime \} be two choices of lifts and transfers used to construct
\bfitA and\bfitA \prime , respectively. For each simplex y of \BbbY , the regularity of the G-action on \BbbX guarantees
the presence of some ky \in G so that ky \cdot xy = zy. Given such ky, define an isomorphism
\Delta : \bfitA \rightarrow \bfitA \prime in Com(\BbbY ) as follows: the group isomorphism \Delta y : \bfitA y \rightarrow \bfitA \prime 

y is Ad(ky), while
the 2-morphism \Delta y\succ y\prime is prescribed by the element

ky\prime \cdot gy\succ y\prime \cdot k - 1
y \cdot h - 1

y\succ y\prime 

in the group \bfitA \prime 
y\prime . A homotopy \eta : \Phi \prime \circ \Delta \Rightarrow \Phi is now obtained by setting \eta y = k - 1

y for each
simplex y. Given another isomorphism (\Delta \prime , \eta \prime ) : (\bfitA ,\Phi ) \rightarrow (\bfitA \prime ,\Phi \prime ) generated by different
choices \{ \ell y\} instead of \{ ky\} , the desired unique homotopy \theta : (\Delta , \eta )\Rightarrow (\Delta \prime , \eta \prime ) is determined
completely by setting \theta y = ky \cdot \ell  - 1

y .

4. Reconstruction. We assume throughout this section that \BbbY is a fixed finite simplicial
complex and that (\bfitA ,\Phi ) is a distinguished object in the fiber 2-category Com(\BbbY )//G\BbbY from
Definition 3.2. Our goal here is to construct a simplicial complex \BbbX and a regular action of G
on \BbbX that satisfies three natural criteria:

(1) the quotient \BbbX /G is isomorphic to \BbbY ,
(2) compressing this G-action produces (\bfitA ,\Phi ), and
(3) \BbbX is unique up to G-equivariant simplicial isomorphism.

The last criterion above is a universal property: it asserts that any other \BbbX \prime satisfying the
first two properties admits an invertible simplicial map \bfits : \BbbX \rightarrow \BbbX \prime so that

\bfits (g \cdot x) = g \cdot \bfits (x)

for each simplex x in \BbbX and group element g in G.
The process of unfolding (\bfitA ,\Phi ) in order to extract both \BbbX and the concomitant G-action

is of central importance in the theory of complexes of groups, to the extent that it has been
called the Basic Construction in [6, Thm. III.C.2.13] and also in [12, Chap. 5].

4.1. The basic construction. For each simplex y of \BbbY , let \bfitc y : G \rightarrow G/\Phi y(\bfitA y) be the
canonical surjective map (of sets) that sends each group element g to the corresponding left
coset g \cdot \Phi y(\bfitA y). Consider the set P of pairs

P = \{ (y, \bfitc y(g)) | y is a simplex of \BbbY and g \in G\} ,D
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equipped with a binary relation \blacktriangleright , defined as follows:

(y, \bfitc y(g)) \blacktriangleright (y\prime , \bfitc y\prime (g
\prime )) if y \succ y\prime and \bfitc y\prime (g

\prime ) = \bfitc y\prime (g \cdot \Phi  - 1
y\succ y\prime ).

Proposition 4.1. The relation \blacktriangleright forms a well-defined partial order on P .

Proof. To see that \blacktriangleright is well-defined on P , note by Remark 2.9 that for any k in \bfitA y, we
have an equality between Ad(\Phi y\succ y\prime )\circ \Phi y(k) and \Phi y\prime \circ \bfitA y\succ y\prime (k). Recalling that \bfitA y\succ y\prime takes
values in the group \bfitA y\prime , it follows that

\bfitc y\prime (\Phi 
 - 1
y\succ y\prime ) = \bfitc y\prime (\Phi y(k) \cdot \Phi  - 1

y\succ y\prime ).

Therefore, for any g in G, we have an equality of cosets

\bfitc y\prime (g \cdot \Phi  - 1
y\succ y\prime ) = \bfitc y\prime (g \cdot \Phi y(k) \cdot \Phi  - 1

y\succ y\prime ),

and so \blacktriangleright does not depend on our choice of k. Since both the reflexivity and antisymmetry of
\blacktriangleright are straightforward, it remains to establish its transitivity. To this end, assume we have a
string of two \blacktriangleright -relations:

(y0, \bfitc y0(g0)) \blacktriangleright (y1, \bfitc y1(g1)) \blacktriangleright (y2, \bfitc y2(g2)).

By definition of \blacktriangleright , we obtain y0 \succ y1 and y1 \succ y2 in \BbbY , whence y0 \succ y2. Moreover, using the
second and first \blacktriangleright -relations above (in that order), we have

\bfitc y2(g2) = \bfitc y2(g1 \cdot \Phi  - 1
y1\succ y2),

= \bfitc y2(g0 \cdot \Phi  - 1
y0\succ y1 \cdot \Phi y1(h) \cdot \Phi 

 - 1
y1\succ y2)

for some h \in \bfitA y1 . By the well-definedness of \blacktriangleright , the coset above does not depend on h and
we can simplify it to

\bfitc y2(g2) = \bfitc y2(g0 \cdot \Phi  - 1
y0\succ y1 \cdot \Phi 

 - 1
y1\succ y2).

By (1) we have

\Phi  - 1
y0\succ y1 \cdot \Phi 

 - 1
y1\succ y2 = \Phi  - 1

y0\succ y2 mod \Phi y2(\bfitA y2),

so we obtain the desired relation (y0, \bfitc y0(g0)) \blacktriangleright (y2, \bfitc y2(g2)).

In fact, (P,\blacktriangleright ) is the poset of simplices Fac(\BbbX ) associated to our desired simplicial complex
\BbbX . Each pair x = (y, \bfitc y(g)) of P constitutes a simplex of dimension dim(y) in \BbbX , and its faces
are given by all pairs of the form x\prime = (y\prime , \bfitc y\prime (g\cdot \Phi  - 1

y\succ y\prime )), where y
\prime is a face of y in \BbbY . We leave

it to the reader to verify that the assignments (y, \bfitc y(g)) \mapsto \rightarrow (y, \bfitc y(h\cdot g)) parametrized by group
elements h \in G yield a regular group action of G on \BbbX with quotient \BbbY . The associated orbit
map \bfitp \mathrm{G} : \BbbX \rightarrow \BbbY is simply given by projecting onto the first factor, i.e., \bfitp \mathrm{G}(y, \bfitc y(g)) = y.

4.2. Context. To establish that the G-action on \BbbX described above will produce (\bfitA ,\Phi )
when compressed along the lines of section 3, one chooses

(1) the lift (y, \bfitc y(1\mathrm{G})) for each simplex y (where 1\mathrm{G} is the identity element of G), and
(2) the transfer \Phi y\succ y\prime for each face relation y \succ y\prime .D
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It remains to show that this G-action on \BbbX satisfies the universal property (involving unique-
ness up to equivariant isomorphism) mentioned at the beginning of this section. For our
purpose, it is convenient to not work directly with the action, but rather with equivalent
information contained in the orbit map \bfitp \mathrm{G} : \BbbX \rightarrow \BbbY . By the regularity assumption from Def-
inition 2.1, \bfitp \mathrm{G} forms a stratified cover7 of \BbbY so that G acts transitively on each fiber \bfitp  - 1

\mathrm{G} (y).
We will call such maps the stratified G-covers of \BbbY , and note that they correspond bijectively
with regular simplicial group actions whose orbit space is \BbbY .

Definition 4.2. The category of stratified G-covers of \BbbY , denoted Str\mathrm{G}(\BbbY ), is defined by the
following data:

(1) its objects are all pairs (\BbbZ , \bfitq ) consisting of finite simplicial complexes \BbbZ and stratified
G-covers \bfitq : \BbbZ \rightarrow \BbbY ,

(2) the morphisms (\BbbZ , \bfitq ) \rightarrow (\BbbZ \prime , \bfitq \prime ) are all simplicial maps \bfits : \BbbZ \rightarrow \BbbZ \prime which make the
evident triangle8 commute:

\BbbZ 

\bfitq 
��

\bfits // \BbbZ \prime 

\bfitq \prime 
��

\BbbY 
Morphisms are composed in the usual manner for simplicial maps.

The following result establishes the desired universal property of the basic construction.

Proposition 4.3. Any stratified G-cover \bfitq : \BbbZ \rightarrow \BbbY , for which the associated G-action on \BbbZ 
produces the compressed data (\bfitA ,\Phi ), is isomorphic to \bfitp \mathrm{G} : \BbbX \rightarrow \BbbY in Str\mathrm{G}(\BbbY ).

Proof. Given a simplex (y, \bfitc y(g)) of \BbbX , let z = zy be the lift of y used to generate (\bfitA ,\Phi )
as described in section 3, so, in particular, \bfitq (z) = y and the group \bfitA y equals the stabilizer Gz.
Let \bfits : \BbbX \rightarrow \BbbZ be the assignment (y, \bfitc y(g)) \mapsto \rightarrow g\cdot z, which we claim is the desired isomorphism.
There are several properties to check, but all follow from routine calculations.

(1) To see that \bfits is well-defined, note that if \bfitc y(g) = \bfitc y(g
\prime ), then g = g\prime \cdot k for some k in

the stabilizer Gz (recall that \Phi y is the inclusion Gz \lhook \rightarrow G). Now, g \cdot z = g\prime \cdot k \cdot z = g\prime \cdot z,
so the image of (y, \bfitc y(g)) depends only on the coset and not on g.

(2) Similarly, if two simplices (y, \bfitc y(g)) and (y\prime , \bfitc y\prime (h)) of \BbbX are sent by \bfits to the same
simplex z\prime of \BbbZ , then we must have y = y\prime = \bfitq (z\prime ) and z\prime = g \cdot z = h \cdot z, which implies
\bfitc y(g) = \bfitc y(h) and hence that \bfits is injective.

(3) Given an arbitrary simplex z\prime in \BbbZ , let y = \bfitq (z) have lift z. Since \bfitq is a stratified
G-cover, G acts transitively on \bfitq  - 1(y) and so there is some h in G for which h\cdot z = z\prime .
By definition, we have \bfits (y, \bfitc y(h)) = h \cdot z = z\prime , so \bfits is surjective.

(4) To see that \bfits is G-equivariant, pick h in G and note that

h \cdot (y, \bfitc y(g)) = (y, \bfitc y(h \cdot g)),

whose image under \bfits is the desired h \cdot g \cdot z = h \cdot \bfits (y, \bfitc y(g)).

7By this we mean that the fiber of \bfitp \mathrm{G} over any simplex y of \BbbY forms a nonempty finite-sheeted covering
space in the sense of [20, Chap. 1.1].

8If we regard G as acting trivially on \BbbY , then this triangle commutes G-equivariantly in the category of
simplicial complexes.
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(5) To see that \bfits is a simplicial map, consider a relation (y, \bfitc y(g)) \blacktriangleright (y\prime , \bfitc y\prime (g
\prime )) in \BbbX , so

we have y \succ y\prime in \BbbY and g \cdot \Phi  - 1
y\succ y\prime = g\prime \cdot \Phi y\prime (k) for some k in \bfitA y\prime . But since \Phi y\prime is just

the inclusion \bfitA y\prime \lhook \rightarrow G, we have \Phi y\prime (k) = k. Let z and z\prime denote the lifts of y and
y\prime , so \bfitA y\prime is the stabilizer Gz\prime (whence k fixes z\prime ). By definition, the transfer \Phi y\succ y\prime 

satisfies z \succ \Phi  - 1
y\succ y\prime \cdot z

\prime . Now,

z \succ \Phi  - 1
y\succ y\prime \cdot z

\prime = g - 1 \cdot g\prime \cdot k \cdot z\prime = g - 1 \cdot g\prime \cdot z\prime ,

so, in fact, \bfits (y, \bfitc y(g)) = g \cdot z admits \bfits (y\prime , \bfitc y\prime (g
\prime )) = g\prime \cdot z\prime as a face.

And finally, since \bfits : \BbbX \rightarrow \BbbZ preserves fibers (i.e., maps \bfitp  - 1
\mathrm{G} (y) to \bfitq  - 1(y) for each simplex y

of \BbbY ), we also have \bfitq \circ \bfits = \bfitp \mathrm{G} as simplicial maps. Thus, \bfits is the desired isomorphism from
\bfitp \mathrm{G} to \bfitq in Str\mathrm{G}(\BbbY ).

5. Algorithms. The efficiency (and, often, even the feasibility) of group-theoretic algo-
rithms varies enormously with the data structures used to store groups on a computer.9

Given this dependence, we will describe the requisite group-theoretic subroutines at a high
level, and hope that their prospective implementer will be able to tailor data structures to
specific choices of the acting group. Naive implementations which work for all finite groups
are straightforward to specify, but they may be quite far from optimal in practice.

For similar reasons, we do not fix a particular data structure for representing the G-action.
There are several reasonable options, each with its own relative (dis)advantages. For instance,
one could employ a hash table with key/value assignments (g, v) \mapsto \rightarrow g \cdot v ranging over group
elements g in G and vertices v of \BbbX .

Remark 5.1. Even with extremely naive implementations, both algorithms described below
can be made to run in quadratic time in terms of the order of G and the dimension of \BbbX . The
bounds are recorded in Corollary 5.7 below.

5.1. Subroutines. We will assume the ability to evaluate results of the two standard group
operations in G:

(1) the function prod accepts (g, h) \in G\times G and returns their product g \cdot h, and
(2) the function inv accepts g \in G and returns its inverse g - 1.

Even for these simple operations, the data structure which holds G plays an essential role in
determining the computational complexity. For instance, if G has been stored via its multi-
plication table, then prod incurs a constant cost; but if G is stored as a list of permutations,
then this cost may be as large as \bfitO (| G| ). We will denote the complexity of a single product
computation in G by r and a single inversion by i.

We also require a less standard function minrep. Fix, once and for all, an enumeration of
the elements of G

\iota : G\rightarrow \{ 1, 2, . . . , | G| \} ,

where | G| is the cardinality of G. It will be convenient to assume that the identity has
minimal index (i.e., \iota (1\mathrm{G}) = 1). With this preamble in place, minrep accepts as input a

9Finite groups may be stored on computers as multiplication tables, lists of permutations, lists of invertible
matrices coming from a representation, or sets of generators and relations. The standard reference [21] devotes
its entire third chapter to such considerations.
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EQUIVARIANT SIMPLICIAL RECONSTRUCTION 547

subgroup H \leq G along with an element g \in G, and returns the \iota -minimal element contained
in the corresponding left-coset g \cdot H. In particular, if g \in H, then minrep(H, g) returns the
identity 1\mathrm{G}. A naive implementation of minrep would involve checking the index of each group
element obtained by multiplying g with each element of H---this incurs a cost of \bfitO (| H| p). We
will denote by m the worst-case complexity of executing minrep (across all choices of input
H and g). Calling minrep on a fixed H with all choices of g \in G and removing duplicates
from the resulting outputs produces a coset transversal for G/H in the language of [21, Chap.
4.6.7].

The three subroutines above involved only the group G; these next three also require
knowledge of how G acts on \BbbX :

(1) orb takes as input a simplex x of \BbbX and returns the list of all simplices in the orbit
Gx, which is always a subset of \BbbX ;

(2) stab takes as input a simplex x of \BbbX and returns its stabilizer Gx, which is always a
subgroup of G; and

(3) trans takes as input two simplices x and x\prime of \BbbX , and returns a group element g, if
one exists, satisfying g \cdot x = x\prime .

We denote the worst-case complexity of these three algorithms by o, s, and t, respectively.
Again, these complexities will vary with how G and its action on \BbbX are stored on the computer.

5.2. The compression algorithm. Our first main algorithm, Compress, takes as input the
regular action of a finite group G on a finite simplicial complex \BbbX . We will write Sub(G) to
denote the set of all the subgroups of G.

Remark 5.2. The output of Compress(\BbbX ,G) is a triple (\BbbY , S, T ), where
(1) \BbbY is the quotient simplicial complex \BbbX /G; for each k \geq 1, define

\BbbY [k] = \{ y1 \succ y2 \succ \cdot \cdot \cdot \succ yk | yi \in Fac(\BbbY ) and dim yi  - dim yj = j  - i\} ,

(2) S : \BbbY [1]\rightarrow Sub(G) is a map that sends each simplex y of \BbbY to a subgroup S(y) \leq G,
which is the stabilizer of a chosen lift of y, and

(3) T : \BbbY [2]\rightarrow G is a map that sends each codimension one face relation y1 \succ y2 in \BbbY to
a transfer element T (y1 \succ y2) in G.

As the algorithm executes, it visits all the simplices of \BbbX in ascending order with respect to
dimension. In order to guarantee its termination, we initially mark all simplices as unvisited
(via boolean variables, for instance) and allow the algorithm to mark simplices as visited once
it has processed them. Compress also constructs two natural functions relating the input
simplicial complex \BbbX and the output simplicial complex \BbbY :

(1) p : \BbbX [1]\rightarrow \BbbY [1] is the (simplicial) orbit map from section 2.1, while
(2) \ell : \BbbY [1]\rightarrow \BbbX [1] is the (not necessarily simplicial) assignment of lifts as in section 3.1.

Thus, the composite p \circ \ell is always the identity map on \BbbY , while \ell \circ p sends each simplex of
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\BbbX to the lift chosen for its orbit class in \BbbY .

Algorithm: Compress

Input: Regular G-action on \BbbX 
Output: Triple (\BbbY , S, T )

01 for each d in (0, 1, . . . ,dim\BbbX )
02 for each unvisited d-simplex x in \BbbX 
03 add a new d-simplex y to \BbbY 
04 set \ell (y) = x and S(y) = stab(x)
05 for each x\prime in orb(x)
06 mark x\prime as visited
07 set p(x\prime ) = y
08 for each face z \prec x in \BbbX of dim d - 1
09 set p(z) as a face of y in \BbbY 
10 set T (y \succ p(z)) = trans(z, \ell (p(z)))
11 if \BbbX has no more unvisited simplices
12 return (\BbbY , S, T )

To confirm that the algorithm terminates, we note that line 06 marks every simplex in the
orbit of a hitherto-unvisited simplex x as visited, and this x must lie in its own orbit. Thus,
every simplex in \BbbX is eventually visited, at which point the if conditional in line 11 evaluates
to true.

Remark 5.3. Before moving on to the reconstruction algorithm, we highlight two features
of compress which significantly impact its computational complexity on distributed systems.

(1) Line 09 requires knowledge of p-images of lower-dimensional faces of x, which means
that the outer for loop in line 01 cannot be parallelized---simplices of \BbbX must be
processed in an order monotone with respect to their dimension.

(2) On the other hand, all simplices of a fixed dimension d can be processed in parallel
provided that the (d - 1)-simplices have already been processed. In other words, lines
02--10 may be distributed across several processors without loss of correctness.

(3) Although we will not use the following fact, we note that the inner for loops of lines
05--07 and 08--10 may also be parallelized---for a given simplex x, we are not required
to process its orbit Gx or its faces z \prec x in some prescribed serial order.

5.3. The reconstruction algorithm. Our second algorithm, Reconstruct, implements the
basic construction of section 4.1. It accepts as input a triple (\BbbY , S, T ) produced by Compress

(see Remark 5.2) along with the group G where S and T take their values. It returns a
simplicial complex \BbbZ along with the desired regular G-action. In light of section 4, the d-
simplices of \BbbZ will be stored as pairs of the form (y, g), where y is a d-simplex of \BbbY and g is
the \iota -minimal representative of some left coset of S(y) in G.

In addition to the subroutines already described, Reconstruct requires a purely combi-
natorial procedure, uniqsort. This takes in an unordered list of G-elements and returns a
list sorted along the enumeration \iota , with all duplicates removed. Line 03 uses this subroutine
to find the \iota -minimal representative of each left coset of the subgroup S(y) \leq G (thus the size
of M is exactly | G| /| S(y)| ). Line 07 checks whether the group elements g\prime and g \cdot T (y \succ y\prime )
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lie in the same left coset of S(y\prime ) in G---since y \succ y\prime is enforced by the previous line, we have
(y, \bfitc y(g)) \blacktriangleright (y\prime , \bfitc y\prime (g

\prime )) in the language of section 4, so we add the corresponding face relation
to \BbbZ in line 08.

Remark 5.4. Since line 06 requires knowledge of all (d  - 1)-simplices present in \BbbZ before
the d-simplex y can be processed, the outer for loop in line 01 cannot be parallelized. However,
all simplices of a fixed dimension d may be processed at once, so the for loop of line 02 is
easily parallelized.

Algorithm: Reconstruct

In: (\BbbY , S, T ) and G
Out: Simplicial complex \BbbZ 

01 for each d in (0, 1, . . . ,dim\BbbY )
02 for each d-simplex y in \BbbY 
03 M = uniqsort

\bigl( 
\{ minrep(S(y), g) | g \in G\} 

\bigr) 
04 for each g in M
05 add a d-simplex (y, g) to \BbbZ 
06 for each simplex (y\prime , g\prime ) in \BbbZ with (y \succ y\prime ) in \BbbY [1]
07 if prod(g\prime , prod(inv(g), T (y \succ y\prime ))) is in S(y\prime )
08 set (y\prime , c\prime ) as a face of (y, c) in \BbbZ 
09 return \BbbZ 

Recovering the G-action on \BbbZ is straightforward---since its simplices are stored as pairs of
the form (y, g), for each h \in G we have

h \cdot (y, g) =
\bigl( 
y, minrep(S(y), prod(h, g))

\bigr) 
.

Thus, we recover not only \BbbZ but also a G-action on it. Proposition 4.3 guarantees that if the
input (\BbbY , S, T ) to Reconstruct was produced by running Compress on a simplicial complex
\BbbX with a regular G-action, then \BbbX and \BbbZ are G-equivariantly isomorphic.

5.4. Complexity analysis. We analyze both Compress and Reconstruct in terms of the
complexity parameters p, i,m, o, s, and t associated with the six subroutines of section 5.1.

Theorem 5.5. The computational complexity of running Compress for the regular action of
a group G on a finite n-dimensional simplicial complex \BbbX is

\bfitO 
\Bigl( 
(n+ 1) \cdot (s+ o+ f + t \cdot (n+ 1))

\Bigr) 
, where

(1) s, o, and t are the complexity parameters for stab, orb, and trans, while
(2) f is the maximal orbit-length10 encountered among the simplices of \BbbX ,

f = max
x\in \BbbX 
\{ | Gx| \} ,

provided that the number of available processors exceeds the number of d-simplices in \BbbX for
each dimension d \in \{ 0, 1, . . . , n - 1, n\} .

10Note that this f is also the maximal stabilizer index maxx\in \BbbX \{ [G : Gx]\} and the maximal fiber cardinality
maxy\in \BbbX /G\{ | \bfitp  - 1

G (y)| \} of the orbit map.
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Proof. The outer for loop in line 01 of Compress runs exactly (n+1) times corresponding
to d-values \{ 0, 1, . . . , n\} . As noted in Remark 5.3, the d-simplices x of \BbbX can be processed in-
dependently of each other for each fixed d. So by our assumption on the number of processors,
it suffices to only measure the complexity of executing lines 03--10 once. Now line 04 incurs
the cost of running stab once, while the for loop in lines 05--07 runs orb once and iterates at
most f times. Finally, the for loop in lines 08--09 runs once for each codimension one face of
x and calls trans each time; there are at most (n + 1) such faces since dimx \leq dim\BbbX = n.
Combining these contributions, the cost of processing a single d-simplex x is

\bfitO (s+ o+ f + t \cdot (n+ 1)).

The desired complexity estimate now follows from the fact that the outermost loop executes
(n+ 1) times.

Based on the preceding estimate, we expect that the cost of running Compress will be
dominated by the calls to trans in line 10. It is therefore of compelling interest to optimize
the implementation of trans to the largest extent possible. We recommend trying to find a
large subset \BbbT \subset \BbbX to populate many lifts \ell (y) via a G-equivariant version of breadth-first
search on \BbbX (when a simplex is visited, mark every simplex in its orbit as visited). The larger
this \BbbT , the more frequently we will have equalities z = \ell (p(z)) in line 10 of Compress. When
its two inputs are equal, trans is allowed to simply return the identity 1G and hence incur a
constant cost.

Finally, we turn to Reconstruct.

Theorem 5.6. The computational complexity of running Reconstruct on the input (\BbbY , S, T ;
G) when \BbbY is a finite n-dimensional simplicial complex is

\bfitO 
\Bigl( 
(n+ 1) \cdot 

\bigl[ 
k \cdot (m+ log2 k) + f \cdot (n+ 1) \cdot (2r + i+ h)

\bigr] \Bigr) 
where

(1) k = | G| is the order of G,
(2) m, r, and i are the complexity parameters for minrep, prod, and inv, while
(3) f = maxy\in \BbbY \{ k/| S(y)| \} and h = maxy\in \BbbY \{ | S(y)| \} (both are \leq k),

provided that the number of available processors exceeds the number of d-dimensional simplices
in \BbbY for each d in \{ 0, 1, . . . , n - 1, n\} .

Proof. We examine the nested for loops from the inside out, starting with the innermost
loop of lines 06--08. This loop runs once for each (d  - 1)-dimensional face y\prime of y, and since
dim\BbbY = n there are at most (n+ 1) such faces. For each such face, prod is invoked at most
twice and inv at most once in line 07. We then check whether an element of G lies in S(y\prime ),
a list of size bounded by h. Thus, our innermost for loop incurs an \bfitO ((n + 1) \cdot (2r + i + h))
cost per iteration. The intermediate for loop spanning lines 04--08 runs at most f times since
f bounds from above the index [G : S(y)] and hence the size of M . Thus, the cost of running
this intermediate loop is \bfitO (f \cdot (n + 1) \cdot (2r + i + h)). By our assumption on the number of
processors, it suffices to run the for loop of lines 02--08 only once per dimension d, and it
remains to account for line 03. Here we first call minrep exactly k times (cost \bfitO (k \cdot m)), and
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then sort the resulting list of k outputs and remove duplicates (cost \bfitO (k log2 k)). Thus, when
processing simplices of a fixed dimension d, Reconstruct incurs a computational cost of

\bfitO (k \cdot (m+ log2 k) + f \cdot (n+ 1) \cdot (2r + i+ h)).

Since the outermost for loop of lines 01--08 runs exactly (n+ 1) times, we obtain the desired
estimate.

By overestimating most of the auxiliary complexity parameters described above in terms
of the order of G, it becomes evident that both compress and reconstruct will run in
polynomial time. As before, let k be the order of the acting group G. We can estimate the
complexity parameters used in Theorems 5.5 and 5.6 as follows.

(1) Both r and i are bounded by k, since in the worst case we have to search every element
of G to find a product or an inverse. Similarly, m is bounded above by k since in the
worst case one may search all of G to find the minimal representative of a given coset.

(2) The parameter o is bounded by k since one only has to compute the action of every
group element on a given simplex. For the same reason, the orbit-length parameters
f (from both theorems) and h (from Theorem 5.6) are bounded by k.

(3) Meanwhile, both s and t are bounded by k since in the worst case one has to test every
element of G to check whether it stabilizes a simplex or sends one simplex to another.

The following result follows directly from using these overestimates in the complexities from
Theorems 5.5 and 5.6 along with the elementary properties of \bfitO (\cdot ).

Corollary 5.7. Let G be a group of order k that acts regularly on a finite simplicial complex
\BbbX of dimension n. Assume that the number of available processors exceeds the number of
simplices in \BbbX . Then the computational complexity of running compress for this action is no
worse than

\bfitO 
\Bigl( 
k \cdot (n+ 1)2

\Bigr) 
.

And the complexity of running reconstruct on the output of compress is no worse than

\bfitO 
\Bigl( 
k2 \cdot (n+ 1)2

\Bigr) 
.
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