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ABSTRACT. We count singular vector tuples of a system of tensors assigned to the edges of a
directed hypergraph. To do so, we study the generalisation of quivers to directed hypergraphs.
Assigning vector spaces to the nodes of a hypergraph and multilinear maps to its hyperedges
gives a hyperquiver representation. Hyperquiver representations generalise quiver represen-
tations (where all hyperedges are edges) and tensors (where there is only one multilinear map).
The singular vectors of a hyperquiver representation are a compatible assignment of vectors
to the nodes. We compute the dimension and degree of the variety of singular vectors of a
sufficiently generic hyperquiver representation. Our formula specialises to known results that
count the singular vectors and eigenvectors of a generic tensor.

1. Introduction

The theory of quiver representations provides a unifying framework for some funda-
mental concepts in linear algebra [7]. In this paper, we introduce and study a natural gener-
alisation of quiver representations, designed to analogously serve the needs of multilinear
algebra.

Quiver Representations and Matrix Spectra. A quiver Q consists of finite sets V and
E, whose elements are called vertices and edges respectively, along with two functions
s, t : E → V sending each edge to its source and target vertex. It is customary to write
e : i → j for the edge e with s(e) = i and t(e) = j. The definition does not prohibit self-
loops s(e) = t(e) nor parallel edges e1, e2 : i → j. A representation (U, α) of Q assigns a
finite-dimensional vector space Ui to each i ∈ V and a linear map αe : Ui → Uj to each
e : i → j in E. Originally introduced by Gabriel to study finite-dimensional algebras [22],
quiver representations have since become ubiquitous in mathematics. They appear promi-
nently in disparate fields ranging from representation theory and algebraic geometry [12] to
topological data analysis [32]. In most of these appearances, the crucial task is to classify the
representations of a given quiver up to isomorphism. This amounts in practice to catalogu-
ing the indecomposable representations; i.e., those that cannot be expressed as direct sums of
smaller nontrivial representations.

For all but a handful of quivers, the set of indecomposables (up to isomorphism) is com-
plicated, and such a classification is hopeless [30, Theorem 7.5]. Nevertheless, one may
follow the spirit of [37] and use quivers to encode compatibility constraints with spectral
interpretations. We work with representations that assign vector spaces Ui = Cdi to each
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vertex and matrices Ae : Cdi → Cdj to each edge. We denote the quiver representation by
(d, A), where d := (d1, . . . , dn) is the dimension vector. Let [x] ∈ P(Cd) denote the pro-
jectivisation of x ∈ Cd. We define the singular vectors of a quiver representation (d, A) to
consist of tuples

(
[xi] ∈ P(Cdi) | i ∈ V

)
for which there exist scalars (λe | e ∈ E) so that the

compatibility constraint Aexi = λexj holds across each edge e : i → j. Standard notions from
linear algebra arise as special cases of such singular vectors, see also Figure 1:

(a) The eigenvectors of a matrix A : Cd → Cd are the singular vectors of the represen-
tation of the Jordan quiver that assigns Cd to the unique node and A to the unique
edge.

(b) The singular vectors of a matrix A : Cd1 → Cd2 arise from the representation of the
directed cycle of length 2, with A assigned to one edge and A⊤ assigned to the other.

(c) The generalised eigenvectors of a pair of matrices A, B : Cd → Cd – i.e., non-zero
solutions x to Ax = λ · Bx for some λ ∈ C – are the singular vectors of the represen-
tation of the Kronecker quiver with A on one edge and B on the other.

A

Cd

(a)

A

A⊤

Cd1 Cd2

(b)

A B

Cd

Cd

(c)

FIGURE 1. Quiver representations corresponding to (a) the eigenvectors of a
matrix, (b) the singular vectors of a matrix, (c) the generalised eigenvectors of
a pair of matrices.

For d = d1 = d2, a generic instance of any of these three quiver representations has d singular
vectors.

Hyperquiver Representations and Tensors. This century has witnessed progress to-
wards extending the spectral theory of matrices to the multilinear setting of tensors [34].
Given a tensor T ∈ Cd1 ⊗ · · · ⊗ Cdn , we write T(x1, . . . , xj−1 , · , xj+1, . . . , xn) ∈ Cdj for the
vector with i-th coordinate

d1

∑
i1=1

. . .
dj−1

∑
ij−1=1

dj+1

∑
ij+1=1

. . .
dn

∑
in=1

Ti1,...,ij−1,i,ij+1,...,in(x1)i1 · · · (xj−1)ij−1
(xj+1)ij+1

· · · (xn)in .

Eigenvectors and singular vectors of tensors were introduced in [31, 33]. The eigenvectors
of T ∈ (Cd)⊗n are all non-zero x ∈ Cd satisfying

T( · , x, . . . , x) = λ · x,

for some scalar λ ∈ C. In the special case of matrices, this reduces to the familiar formula
Ax = λx. Similarly, the singular vectors of a tensor T ∈ Cd1 ⊗ · · · ⊗ Cdn are the tuples of
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non-zero vectors (x1, . . . , xn) ∈ Cd1 × · · · × Cdn satisfying

T(x1, . . . , xj−1, · , xj+1, . . . , xn) = µjxj

for all j. This specialises for matrices to the familiar pair of conditions Ax2 = µ1x1 and
A⊤x1 = µ2x2.

Eigenvectors and singular vectors have been computed for special classes of tensors in
[35, 36]; they have been used to study hypergraphs [5, 34] and to learn parameters in latent
variable models [3, 4]. For a symmetric tensor T ∈ (Cd)⊗n the eigenvectors are, equivalently,
all non-zero x ∈ Cd for which a scalar multiple λ · x⊗n constitutes a critical point to the best
rank-one approximation problem for T. Similarly, the singular vectors of T ∈ Cd1 ⊗ · · ·⊗Cdn

are all tuples of non-zero vectors (x1, . . . , xn) ∈ Cd1 × · · · × Cdn for which λ · x1 ⊗ · · · ⊗ xn is
a critical point to the best rank one approximation for T [31].

In order to create the appropriate generalisation of quiver singular vectors to subsume
these notions from the spectral theory of tensors, we generalise from quivers to hyperquivers.
In general, hyperquivers are obtained from quivers by allowing the source and target maps
s, t : E → V to be multivalued. For our purposes, it suffices to consider hyperquivers
where each edge e ∈ E has a single target vertex. The hyperedge e now has a tuple of
sources (s1(e), s2(e), . . . , sµ(e)) ∈ Vµ for some e-dependent integer µ ≥ 1. A representation
R = (d, T) of such a hyperquiver assigns to each vertex i a vector space Cdi and to each edge
e a tensor

Te ∈ C
dt(e) ⊗ C

ds1(e) ⊗ . . . ⊗ C
dsµ(e) .

We identify a vector space Cd with its dual (Cd)∗, allowing us to view the tensor Te as a
multilinear map

Te :
µ

∏
j=1

C
dsj(e) → C

dt(e)

(xs1(e), . . . , xsµ(e)) 7→ Te( · , xs1(e), . . . , xsµ(e)).

Our hyperquiver representations reduce to usual quiver representations when each edge
has µ = 1.

The set of singular vectors of a hyperquiver representation R, denoted S(R), consists of
all tuples

(
[xi] ∈ P(Cdi) | i ∈ V

)
that satisfy

Te( · , xi1 , . . . , xiµ) = λe · xj, (1.1)

for some scalar λe, across every edge e ∈ E of the form (i1, . . . , iµ) → j. We work with
vectors in a product of projective spaces, since we require the vectors to be non-zero (as for
the singular vectors of a matrix) and moreover because the equation (1.1) still holds after
non-zero rescaling of each xi, albeit for different scalars λe.

Perhaps the simplest nontrivial family of examples is furnished by starting with the
quiver with a single vertex and a single hyperedge with m − 1 source vertices — we call
this the m-Jordan hyperquiver. Consider the representation that assigns, to the vertex, the
vector space Cd for some dimension d ≥ 0, and to the edge, a tensor T ∈ (Cd)⊗m, seen as
a multilinear map T : (Cd)(m−1) → Cd that contracts vectors along the last m − 1 modes
of T; see Figure 2a for the case m = 3. The singular vectors of this representation are all
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[x] ∈ P(Cd) satisfying T( · , x, x, . . . , x) = λ · x for some scalar λ ∈ C. The singular vectors of
the representation are therefore the eigenvectors of the tensor T.

Cd

T

(a)

Cd1 Cd2 Cd3

T

T T

(b)

A B

Cd

Cd

(c)

FIGURE 2. Examples of hyperquiver representations corresponding to (a) the
eigenvectors of a tensor, (b) the singular vectors of a tensor, and (c) the gener-
alised eigenvectors of a pair of tensors.

The compatibility conditions that define singular vectors can be reframed in terms of the
vanishing of minors of suitable di × 2 matrices. Hence S(R) is a multiprojective variety in
∏i∈V P(Cdi). This variety simultaneously forms a multilinear (and projective) generalisation
of the linear space of sections of a quiver representation from [37], and a multi-tensor gener-
alisation of the set of singular vectors of a single tensor from [20]. The property that a point
lies in S(R) is equivariant under an orthogonal change of basis on each vector space, as is
true for the singular vectors of a matrix, as follows. Let ([x1], . . . , [xn]) ∈ ∏i∈V P(Cdi) be a
singular vector tuple of a hyperquiver representation with tensors Te ∈ C

dt(e) ⊗C
ds1(e) ⊗ . . .⊗

C
dsµ(e) and let Q1, . . . , Qn be a tuple of complex orthogonal matrices; i.e., Q⊤

i Qi = Idi . Then
([Q1x1], . . . , [Qnxn]) is a singular vector tuple of the hyperquiver representation where each
Te has its source components multiplied by Q⊤

sj(e)
and target component multiplied by Qt(e).

We expect the topology of this variety, particularly its (co)homology groups, to provide rich
and interesting isomorphism invariants for hyperquiver representations.

Main Result. We derive exact and explicit formulas for the dimension and degree of S(R)
when R is a sufficiently generic representation of a given hyperquiver. Here is a simplified
version, in the special case when all vector spaces are of the same dimension.

THEOREM. Let R = (d, T) be a generic representation of a hyperquiver H = (V, E) with
d = (d, d, . . . , d). Let N = (d − 1)(|V| − |E|) and D be the coefficient of (∏i∈V hi)

d−1 in the
polynomial (

∑
i∈V

hi

)N

· ∏
e∈E

(
d

∑
k=1

hk−1
t(e) · hd−k

s(e)

)
, where hs(e) :=

µ(e)

∑
j=1

hsj(e).

Then S(R) = ∅ if and only if D = 0. Otherwise, S(R) has dimension N and degree D. Moreover,
if dimS(R) = 0, then each singular vector tuple occurs with multiplicity 1.
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EXAMPLE 1.1. Let R be the hyperquiver representation in Figure 3, with T ∈ C3 ⊗ C3 ⊗
C3 a generic tensor. We have N = (3 − 1)(2 − 2) = 0. We seek the coefficient D of the
monomial h2

1h2
2 in the polynomial(

(h1 + h2)
2 + h1(h1 + h2) + h2

1

)2
= 9h4

1 + 18h3
1h2 + 15h2

1h2
2 + 6h1h3

2 + h4
2.

We see that D = 15. Hence the singular vector variety S(R) has dimension N = 0 and
consists of 15 singular vector tuples, each occurring with multiplicity 1.

C3 C3

T

T

FIGURE 3. The light-green hyperedge is the contraction T( · , x, y) and the
dark-green hyperedge is the contraction T(x, · , y), where x, y ∈ C3 are on
the left and right vertices respectively.

Our argument follows the work of Friedland and Ottaviani from [20] — we first construct
a vector bundle whose generic global sections have the singular vectors of R as their zero
set, and then apply a variant of Bertini’s theorem to count singular vectors by computing
the top Chern class of the bundle. The authors of [20] compute the number of singular
vectors of a single generic tensor — this corresponds to counting the singular vectors of
the hyperquiver representation depicted in Figure 2(b). Here we derive general formulas
to describe the algebraic variety of singular vectors for an arbitrary network of (sufficiently
generic) tensors.

Related Work. Special cases of our degree formula, all in the case dimS(R) = 0, recover
existing results from the literature — see [9] and [19, Corollary 3.2] for eigenvector counts,
[20] for singular vector counts, and [13, 20] for generalised eigenvector counts. Other recent
work that builds upon the approach in [20] includes [15, 38] which study the span of the
singular vector tuples, [40] which studies tensors determined by their singular vectors, and
the current work [2] which uses a related setup to count totally mixed Nash equilibria. The
eigenscheme of a matrix [1] and ternary tensor [6] is a scheme-theoretic version of S(R) for
the Jordan quiver in Figure 1a and the hyperquiver in Figure 2a.

Outline. The rest of this paper is organised as follows. In Section 2 we introduce hyper-
quiver representations and their singular vector varieties. We state our main result, Theorem
3.1, in Section 3 and describe a few of its applications. The construction of the vector bundle
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corresponding to a hyperquiver representation is given in Section 4, and our Bertini-type
theorem – which we hope will be of independent interest – is proved in Section 5. We show
that for generic R the hypotheses of the Bertini theorem are satisfied by the associated vector
bundle in Section 6, and compute its top Chern class in Section 7. For completeness, we have
collected relevant results from intersection theory in Appendix A.

2. The singular vector variety

We establish notation for hyperquiver representations, define their singular vector vari-
eties, and highlight the genericity condition which plays a key role in the sequel. Without
loss of generality, we henceforth assume V = [n], where [n] := {1, . . . , n} for n ∈ N.

DEFINITION 2.1. A hyperquiver H = (V, E) consists of a finite set of vertices V of size
|V| = n and a finite set of hyperedges E. For each hyperedge e ∈ E we have

(i) an integer µ(e) ≥ 1 called the index of e
(ii) a tuple of vertices v(e) ∈ Vm called the vertices of e, where m := µ(e) + 1.

For brevity, we may refer to a hyperedge as an edge and write µ as a shorthand for µ(e).
The j-th entry of tuple v(e) is denoted sj(e) ∈ V. The tuple s(e) := (s1(e), . . . , sµ(e)) are the
sources of e, and the vertex t(e) := sm(e) is the target of e.

REMARK 2.2. Usual quivers are the special case with m = 2 for all e ∈ E. Definition 2.1
does not exclude entries of s(e) being equal to t(e), nor does it exclude multiple hyperedges
with the same tuple v(e).

We now define representations of hyperquivers. The definition works for vector spaces
over any field, but we focus on C.

DEFINITION 2.3. Fix a hyperquiver H = (V, E). Let d = (d1, . . . , dn) be a dimension vector.
A representation R = (d, T) of H assigns

(i) A vector space Cdi to each vertex i ∈ V.
(ii) A tensor Te ∈ Ce to each hyperedge e ∈ E, where Ce := C

dt(e) ⊗C
ds1(e) ⊗ · · · ⊗C

dsµ(e) ,

which is viewed as a multilinear map ∏
µ
j=1 C

dsj(e) → C
dt(e) .

We define for brevity

Te(xs(e)) := Te( · , xs1(e), . . . , xsµ(e)). (2.1)

We say that two tensors Te and Te′ agree up to permutation if the tuples v(e) and v(e′) agree
up to a permutation σ and

(Te)im,i1,...,im−1 = (Te′)iσ(m),iσ(1),...,iσ(m−1)
.

DEFINITION 2.4. The singular vector variety S(R) of a representation R consists of tuples
χ = ([x1], . . . , [xn]) ∈ ∏n

i=1 P(Cdi) such that

Te(xs(e)) = λext(e), (2.2)

for some scalar λe ∈ C, for every edge e ∈ E. The points of the variety are called the singular
vector tuples of R.
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REMARK 2.5. The scalars λe in (2.2) can be thought of as the singular values of the sin-
gular vector tuple (x1, . . . , xn). However, the non-homogeneity of (2.2) means that rescaling
vectors in the tuple can change the singular values. We say that a singular vector tuple has
a singular value zero if λe = 0 for some edge e ∈ E.

The singular vector variety is a subvariety of the multiprojective space X = ∏n
i=1 P(Cdi).

Its defining equations are as follows. The singular vector tuples χ = ([x1], . . . , [xn]) are the
tuples whose dt(e) × 2 matrix

Me(x) :=

 | |
Te(xs(e)) xt(e)

| |


has rank ≤ 1 for all e ∈ E. The rank of this matrix depends only on the points [xi] ∈ P(Cdi),
and not on the vectors xi ∈ Cdi . Equations for the multiprojective variety S(R) are the 2 × 2
minors of all matrices Me(x) for e ∈ E. When we speak of the degree of S(R), we refer to
the degree of its image under the Segre embedding s : X ↪−→ PD, for D = ∏n

i=1 di − 1.
Our main result finds the dimension and degree of the singular vector variety for a hy-

perquiver representation with sufficiently general tensors on the hyperedges. We say that
a property P holds for a generic point of an affine variety V if there exists a Zariski-open
set U in V such that P holds for all points in U. We call any point of such a U a generic
point of V. One way that a hyperquiver representation can be sufficiently generic is for the
tuple of tensors (Te | e ∈ E) assigned to its edges to be generic; that is, a generic point of
∏e∈E ⊗m

i=1C
dsi(e) . This holds, for example, in Figure 1a and 1c. But our notion of genericity

allows tensors on different hyperedges to coincide, as in Figure 1b. Our genericity condition
is encoded by a partition of the hyperedges.

DEFINITION 2.6 (Genericity of a hyperquiver representation).
(i) A partition of a hyperquiver H = (V, E) is a partition of its hyperedges E = ⨿M

r=1 Er
such that for any hyperedges e, e′, e′′ ∈ Er,
(a) the indices µ(e) and µ(e′) equal the same number µ

(b) the tuples v(e) and v(e′) coincide up to a permutation σ of [µ + 1]
(c) if σ and σ′ are permutations in (b) for the pairs v(e),v(e′) and v(e′),v(e′′) respec-

tively, where e ̸= e′ and e′ ̸= e′′, then σ(µ + 1) ̸= σ′(µ + 1).
(ii) The partition of a representation R = (d, T) is the unique partition of hyperedges

such that for any e, e′ ∈ Er, the tensors on e and e′ agree up to a permutation σ.
(iii) The representation R = (d, T) is generic if given hyperedges er ∈ Er for r ∈ [M], the

tuple of tensors (Te1 , Te2 , . . . , TeM) is a generic point in ∏M
r=1 Cer

EXAMPLE 2.7. We fix a basis on each vector space Ui
∼= Cdi in Definition 2.3 because being

a singular vector tuple is not invariant under an arbitrary change of basis. For example,
the quiver in Figure 1(b) with a generic square matrix A : Cd → Cd has d singular vector
pairs ([x], [y]). However, there exist change of basis matrices M1, M2 ∈ GL(d, C) such that
M2AM−1

1 = Id, and the identity matrix Id has infinitely many singular vector pairs: all
pairs ([z], [z]). The property of being a singular vector tuple is preserved, however, by an
orthogonal change of basis, cf. the discussion in the introduction and [6, Remark 1.1].
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REMARK 2.8. A (usual) quiver representation may be defined as assigning (abstract)
vector spaces to vertices and linear maps to edges. Similarly, we could define a hyper-
quiver representation as assigning vector spaces Ui to each vertex i and multilinear maps
Te : ∏

µ
i=1 Usj(e) → Ut(e) to each edge e ∈ E. The dimension of the linear space of sections of

a quiver representation [37] and the dimension and degree of the singular vector variety of
a hyperquiver representation are invariant under the action of GL(Ui) on each vertex and
edge. Since there is no given choice of a basis, or more generally no inner product on each
vector space, the notion of a transpose of a linear map or permutation of a multilinear map
does not make sense. Therefore, a generic representation in the sense of Definition 2.6 can
only apply when each Er is a singleton and we assign a distinct generic matrix or tensor to
each edge. With a choice of basis, our genericity conditions allow permutations of tensors
along the edges, via coarser partitions. The space of sections and the singular vector variety
are then O(di)-invariant but not GL(di)-invariant.

3. Main theorem and its consequences

In this section, we present our main result in full generality and study its consequences.

THEOREM 3.1. Let R = (d, T) be a generic hyperquiver representation and S(R) be the sin-
gular vector variety of R. Let N = ∑i∈V(di − 1)− ∑e∈E(dt(e) − 1) and D be the coefficient of the

monomial hd1−1
1 · · · hdn−1

n in the polynomial(
∑
i∈V

hi

)N

· ∏
e∈E

dt(e)

∑
k=1

hk−1
t(e) h

dt(e)−k
s(e)

 , where hs(e) :=
µ(e)

∑
j=1

hsj(e). (3.1)

Then S(R) = ∅ if and only if D = 0. Otherwise, S(R) is of pure dimension N and has degree D.
If R has finitely many singular vector tuples, then each singular vector tuple is of multiplicity 1, is
not isotropic, and has no singular value equal to 0.

Note that the partition from Definition 2.6 does not appear in the statement of Theo-
rem 3.1: the partition provides a genericity condition for the result to hold, but the dimen-
sion and degree of the singular vector variety do not depend on the partition. Next we give a
sufficient condition for a hyperquiver representation to consist of finitely many points. This
condition applies to Figure 2a and Figure 2b, but not to Figure 2c.

COROLLARY 3.2. The hyperquivers with finitely many singular vector tuples for any choice of
generic representation are those whose vertices each have exactly one incoming hyperedge.

PROOF. If dimS(R) = N = ∑i∈V(di − 1) − ∑e∈E(dt(e) − 1) = 0 for all dimensions di,
then ∑i∈V(di − 1) = ∑e∈E(dt(e) − 1) as polynomials in the variables di. Each di appears
exactly once on the left hand side of the equation. Hence it must also appear exactly once
on the right hand side. Therefore |V| = |E| and every i ∈ V has exactly one e ∈ E with
i = t(e). □

We show how Theorem 3.1 specialises to count the eigenvectors and singular vectors of
a generic tensor, as well as to count the solutions to the generalised eigenproblem from [13].
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EXAMPLE 3.3 (Eigenvectors of a tensor). We continue our discussion from the introduc-
tion. The representation of the m-Jordan hyperquiver with a generic tensor T ∈ (Cd)⊗m on
its hyperedge is generic in the sense of Definition 2.6, since we have only one hyperedge.
There are finitely many eigenvectors, by Corollary 3.2. The polynomial (3.1) is

d

∑
k=1

hk−1((m − 1)h)d−k =

(
d

∑
k=1

(m − 1)d−k

)
hd−1 =

(m − 1)d − 1
m − 2

hd−1.

The coefficient of hd−1 is (m−1)d−1
m−2 . This agrees with the count for the number of eigenvectors

of a generic tensor from [9, Theorem 1.2] and [19, Corollary 3.2].

We now consider singular vectors. A result of Friedland and Ottaviani [20] is:

THEOREM 3.4 (Friedland and Ottaviani [20, Theorem 1]). The number of singular vectors
of a generic tensor T ∈ Cd1 ⊗ · · · ⊗ Cdn is the coefficient of the monomial hd1−1

1 . . . hdn−1
n in the

polynomial

∏
i∈[n]

ĥi
di − hdi

i

ĥi − hi
, where ĥi := ∑

j∈[n]\{i}
hj, i ∈ [n]. (3.2)

Each singular vector tuple is of multiplicity 1, is not isotropic, and does not have singular value 0.

We explain how the above result follows from Theorem 3.1.

EXAMPLE 3.5 (Singular vectors of a tensor). Consider the hyperquiver with n vertices
V = [n] and n hyperedges. For every vertex i ∈ V, there is a hyperedge ei with s(ei) =
(1, . . . , i − 1, i + 1, . . . , n) and target t(e) = i. Consider the representation that assigns the
vector space Cdi to each vertex and the same generic tensor T ∈ Cd1 ⊗ · · · ⊗ Cdn to each
hyperedge. On each edge ei, the tensor T is seen as a multilinear map

T : Cd1 × . . . × Cdi−1 × Cdi+1 × · · · × Cdn → Cdi

(x1, . . . , xi−1, xi+1, . . . , xn) 7→ T(x1, . . . , xi−1, · , xi+1, . . . , xn).

This representation is generic in the sense of Definition 2.6, where the partition of the edge
set E has size M = 1 and the permutation σ sending v(ei) to v(ej) is the one that swaps i and
j and keeps all other entries fixed. Figure 2b illustrates this representation for n = 3. The
singular vector variety consists of all non-zero vectors xi ∈ Cdi such that T(xs(e)) = λext(e)
for some λe ∈ C and all e ∈ E, where T(xs(e)) is defined in (2.1). That is, the singular vector
variety consists of all singular vector tuples of T. Corollary 3.2 shows that there are finitely
many singular vector tuples. The polynomial (3.1) specialises to

∏
i∈[n]

(
di

∑
k=1

hk−1
i ĥi

di−k
)

, where ĥi := ∑
j∈[n]\{i}

hj, i ∈ [n].

This is equivalent to (3.2) via the identity xn−yn

x−y = ∑n
k=1 xk−1yn−k.

EXAMPLE 3.6 (The generalised tensor eigenvalue problem). Consider a generic represen-
tation of the Kronecker hyperquiver with a generic pair of tensors A, B ∈ Cd2 ⊗ (Cd1)⊗(m−1),
see Figure 2c with m = 3 and d = d1 = d2. The edge set E has a partition with M = 2.
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We remark that Corollary 3.2 implies that there will not be finitely many singular vector
tuples for all representations of this hyperquiver. There will be a non-zero finite number of
singular vectors if and only if d := d1 = d2 since this is when N = 0 in Theorem 3.1. The
singular vector tuples are the non-zero pairs x, y ∈ Cd such that A( · , x, . . . , x) = λ′y and
B( · , x, . . . , x) = λ′′y, for some λ′, λ′′ ∈ C. This reduces to the single equation

A( · , x, . . . , x) = λB( · , x, . . . , x)

for some λ ∈ C. This is a tensor-analogue of the generalised eigenvalue problem for two
matrices. It was shown in [20, Corollary 16] and [13, Theorem 2.1] that there are d(m − 1)d−1

generalised tensor eigenvalue pairs x and y for the tensors A and B. Our general formula in
Theorem 3.1 also recovers this number, as follows. The polynomial (3.1) is(

d

∑
k=1

hk−1
2 ((m − 1)h1)

d−k

)(
d

∑
ℓ=1

hℓ−1
2 ((m − 1)h1)

d−ℓ

)
. (3.3)

A monomial hd−1
1 hd−1

2 is obtained from the product of a k-th summand and an ℓ-th summand
such that k + ℓ = d + 1. There are d such pairs of summands k, ℓ ∈ {1, . . . , d}. Each such
monomial will have a coefficient of (m − 1)d−1. Hence the coefficient of hd−1

1 hd−1
2 in (3.3) is

d(m − 1)d−1.

Now we find the dimension and degree of the singular vector variety S(R) for a generic
representation R of a hyperquiver with a single hyperedge, as shown in Figure 4.

Cd1 Cdn−1

Cdn

Cdi... ...

T

FIGURE 4. A hyperquiver with a single hyperedge and a representation

COROLLARY 3.7. Let H be a hyperquiver with one hyperedge with all entries of its tuple of
vertices distinct. Let R be the representation that assigns the vector space Cdi to each vertex i and a
generic tensor to the hyperedge. Then:

(a) The dimension of S(R) is N = ∑n−1
i=1 di − n + 1

(b) The degree of S(R) is

dn

∑
k=1

∑
k1+···+kn−1

=dn−k

(
dn − k

k1, . . . , kn−1

)(
N

d1 − 1 − k1, . . . , dn−1 − 1 − kn−1, dn − k

)
. (3.4)



MULTILINEAR HYPERQUIVER REPRESENTATIONS 11

PROOF. The dimension of S(R) is N = (∑n
i=1 di − n)− (dn − 1) = ∑n−1

i=1 di − n + 1, by
Theorem 3.1. The degree of S(R) is the coefficient of hd1−1

1 · · · hdn−1
n in the product(

n

∑
i=1

hi

)N

︸ ︷︷ ︸
(1)

 dn

∑
k=1

(
n−1

∑
i=1

hi

)dn−k

hk−1
n


︸ ︷︷ ︸

(2)

.

For each k ∈ {1, . . . , dn}, the monomial hk1
1 · · · hkn−1

n−1 hk−1
n in the expansion of (2) for some

k1, . . . , kn−1 such that ∑n−1
i=1 ki = dn − k has coefficient ( dn−k

k1,...,kn−1
). This is combined with

the monomial hd1−1−k1
1 · · · hdn−1−kn−1

n−1 hdn−k
n from the expansion of (1), which has coefficient

( N
d1−1−k1,...,dn−1−1−kn−1,dn−k). Multiplying these coefficients and summing over those k1, . . . , kn−1

with ∑n−1
i=1 ki = dn − k, we obtain

∑
k1+···+kn−1

=dn−k

(
dn − k

k1, . . . , kn−1

)(
N

d1 − 1 − k1, . . . , dn−1 − 1 − kn−1, dn − k

)
.

Summing over k = 1, . . . , dn gives the result. □

When d := d1 = · · · = dn, we can use Corollary 3.7 to find the degree of S(R), which
is displayed in Table 1 for d = 1, . . . , 6 and n = 2, . . . , 6. Observe that: (i) the degree row of
d = 2 consist of the factorial numbers; and (ii) the degree column of n = 2 consist of powers
of 2. We explain these observations. To see (i), if d = 2, then (3.4) becomes

2

∑
k=1

∑
k1+...+kn−1

=2−k

(
2 − k

k1, . . . , kn−1

)(
n − 1

1 − k1, . . . , 1 − kn−1, 2 − k

)
. (3.5)

When k = 2, the only summands satisfying k1 + · · ·+ kn−1 = 2 − k is k1 = · · · = kn−1 = 0,
which is 1 for the first factor and (n − 1)! for the second factor in (3.5). When k = 1, the
only allowed indices are of the form ki = 1 and k j = 0 for all i ̸= j, from which we get 1 for
the first factor and (n − 1)! for the second factor in (3.5). Since there are n − 1 such allowed
indices, (3.5) evaluates to (n − 1)! + (n − 1)(n − 1)! = n!. For (ii), when n = 2, we have

d

∑
k=1

∑
k1=d−k

(
d − k

k1

)(
d − 1

d − 1 − k1, d − k

)
=

d

∑
k=1

(
d − k
d − k

)(
d − 1

k − 1, d − k

)

=
d−1

∑
k=0

(
d − 1

k, d − 1 − k

)
=

d−1

∑
k=0

(
d − 1

k

)
= 2d−1.

EXAMPLE 3.8 (Periodic orbits of order n). Consider the hyperquiver representation in
Figure 5 with a generic tensor T ∈ (Cd)⊗m. The singular vector tuples are the non-zero
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d
n

2 3 4 5 6

1 1 1 1 1 1
2 2 6 24 120 720
3 4 66 1980 93240 6350400
4 8 840 218400 110510000 96864800000
5 16 11410 27512100 1.5873 × 1011 1.89313 × 1015

6 32 160776 3741400000 2.54601 × 1014 4.26416 × 1019

TABLE 1. The degree of the singular vector variety S(R) of the hyperquiver in
Figure 4 with d1 = ... = dn = d and generic tensor T. The dimension of S(R)
is N = (d − 1)(n − 1). In particular, S(R) is positive-dimensional except in
the first row.

vectors x1, . . . , xn ∈ Cd such that

T( · , x1, . . . , x1) = λ1x2

T( · , x2, . . . , x2) = λ2x3

...

T( · , xn, . . . , xn) = λnx1

for some λi ∈ C. In other words, each xi is a periodic point of order n.
The hyperquiver representation is not generic in the sense of Definition 2.6 as edges with

different tuples v(e) up to permutation are assigned the same tensor T. Hence Theorem 3.1
does not apply. Nonetheless, we predict the dimension and degree, using Theroem 3.1. The
result predicts finitely many n-periodic points, by Corollary 3.2. Their count is predicted to
be the coefficient of the monomial hd−1

1 . . . hd−1
n in the polynomial(

d

∑
k=1

hk−1
2 (µh1)

d−k

)(
d

∑
k=1

hk−1
3 (µh2)

d−k

)
. . .

(
d

∑
k=1

hk−1
1 (µhn)

d−k

)
, (3.6)

by Theorem 3.1. This monomial is obtained from the product of terms

(hk−1
2 (µh1)

d−k)(hk−1
3 (µh2)

d−k) . . . (hk−1
1 (µhn)

d−k)

coming from each of the respective factors in (3.6), for each k ∈ [d]. The coefficient of this
product is µn(d−k). Thus, the coefficient of hd−1

1 . . . hd−1
n in (3.6) is

d

∑
k=1

µn(d−k) =
µnd − 1
µn − 1

=
(m − 1)nd − 1
(m − 1)n − 1

.

This turns out to be the correct number of period-n fixed points, as proved in [18, Corollary
3.2]. The number of eigenvectors of a generic tensor is the special case n = 1 (Example 3.3).

EXAMPLE 3.9 (Empty singular vector variety). Consider the quiver in Figure 6, where
the vertices are assigned vector spaces of dimension d > 1, and the two edges are assigned
generic matrices A, B ∈ Cd×d. Any singular vector would need to be an eigenvector of both
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...
...

...

... T

T

T

Cd

Cd

FIGURE 5. A hyperquiver representing a period-n orbit

matrices A and B, but a pair of generic matrices A and B do not share an eigenvector. We see
how the emptiness of the singular vector variety is captured by Theorem 1: The polynomial
is (dhd−1

1 )2, which has coefficient of (h1h2)
d−1 equal to zero.

A BCd

FIGURE 6. A quiver representation with empty singular vector variety

EXAMPLE 3.10 (Insufficiently generic representations). The quiver representations in Fig-
ure 7 with d > 1 and generic matrix A ∈ Cd×d do not satisfy the genericity conditions in
Definition 2.6. In Figure 7(a), the only permutations σ, σ′ on {1, 2} sending the matrix A on
one edge to the matrix A on the other edge and vice versa are the identity permutations,
which fail to satisfy the condition σ(2) ̸= σ′(2), causing one of the edges to be redundant.
The resulting singular vector variety has dimension d − 1 and degree 2d−1 by Corollary 3.7,
rather than the expected dimension 0 and degree d in Example 3.6. In Figure 7(b), the sin-
gular vectors are the non-zero points x ∈ Cd such that A2x = λAx for some λ ∈ C, of which
there are d solutions, rather than the expected 0 solutions in Theorem 3.1.

A A

Cd

Cd

(a)

Cd

Cd

A A

Cd
A
(b)

FIGURE 7. Insufficiently generic quiver representations

In the remainder of this section, we explore connections to dynamical systems and mes-
sage passing.

EXAMPLE 3.11 (Fixed Homology Classes). A parameterised dynamical system is a contin-
uous map f : X × P → X, where X and P are compact triangulable topological spaces,
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respectively called the state and parameter space of f . Taking homology with complex coeffi-
cients, we obtain a C-linear map

Hk f : Hk(X × P) → Hk(X)

in each dimension k ≥ 0. We know from the Künneth formula [39, Section 5.3] that the
domain of Hk f is naturally isomorphic to the direct sum

⊕
i+j=k Hi(X)⊗ Hj(P). Therefore,

each Hk f admits a component of the form

Tk : Hk(X)⊗ H0(P) → Hk(X),

We say that a non-zero homology class ξ ∈ Hk(X) is fixed by f at a non-zero homology class
η ∈ H0(P) whenever there exists a scalar λ ∈ C satisfying Tk(ξ ⊗ η) = λ · ξ. The set of all
such fixed homology classes (up to scaling) is the singular vector variety of the hyperquiver
representation in Figure 8.

Let k := dim Hk(X) and suppose P has d connected components; i.e., dim H0(P) = d.
Then the singular vector variety has dimension d − 1 and degree equal to the coefficient of
hk−1

1 hd−1
2 in the polynomial (h1 + h2)

d−1 ∑k
j=1(h1 + h2)

k−jhj−1
2 , by Theorem 3.1. The mono-

mial hk−1
1 hd−1

2 arises by pairing a term (k−j
i )hi

1hk−j−i
2 hj−1

2 = (k−j
i )hi

1hk−i−1
2 in the expanded

sum with the term ( d−1
k−i−1)h

k−i−1
1 h(d−1)−(k−i−1)

2 in the expanded parentheses, for all 0 ≤ i ≤
k − j and 1 ≤ j ≤ k. Thus, its coefficient is

k

∑
j=1

k−j

∑
i=0

(
k − j

i

)(
d − 1

k − i − 1

)
In particular, if P is connected (i.e., d = 1), then there is exactly one non-zero homology class
in Hk(X) fixed by f .

Hk(X) TkH0(P)

FIGURE 8. Fixed points in homology

EXAMPLE 3.12 (Message Passing). Our framework counts the fixed points of certain mul-
tilinear message passing operations, as we now describe. Assign vectors x(0)i := xi ∈ Cdi to

each i ∈ V. Apply the multilinear map Te to the vectors (x(k)s1(e)
, . . . , x(k)sµ(e)

) at nodes in s(e).
Then, update the vector at the target vertex t(e) to

x(k+1)
t(e) := Te(x(k)s(e)) ∈ C

dt(e) . (3.7)
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In the limit, one converges to a fixed point of the update steps. The singular vector variety
consists of tuples of directions in Cdi that are fixed under these operations, for any order of
update steps.

We compare the update (3.7) to message passing graph neural networks, see e.g. [23, 25].
The vector at each vertex is the features of the vertex. The vectors typically lie in a vector
space of the same dimension, as in Theorem 1. Message passing operations take the form

x(k+1)
i = f ({x(k)i } ∪ {x(k)j : j ∈ N (i)}), (3.8)

where N (i) is the neighbourhood of vertex i. That is, the vector of features at node i in the
(k + 1)-th step depends on the features of node i and its neighbours at the k-th step. Our
update step in (3.7) is a special case of (3.8). We relate (3.7) to operations in the literature.

The function f in (3.8) often involves a non-linearity, applied pointwise. In comparison,
we focus on the (multi)linear setting, as discussed for example in [11]. There, the authors
study the optimisation landscapes of linear update steps, relating them to power iteration
algorithms. Our approach to count the locus of fixed points sheds insight into the global
structure of this optimisation landscape, in the spirit of [10, 14]. Studying such fixed point
conditions directly is the starting point of implicit deep learning [17, 24].

The neighbourhood N (i), for us, consists of nodes j that appear in a tuple s(e) for some
edge e with t(e) = i. Update steps are usually over a graph rather than a hypergraph.
The tensor multiplications from (3.7) incorporate higher-order interactions. Such higher-
order structure also appears in tensorised graph neural networks [27] and message passing
simplicial networks [8].

4. The singular vector bundle

In this section, we define the singular vector bundle. It is a vector bundle on X =

∏n
i=1 P(Cdi) whose global sections are associated to hyperquiver representations. The ze-

ros of a section are the singular vectors of the corresponding representation.
Following [20, Section 2], for each integer d > 0 we consider four vector bundles over

P(Cd): the free bundle F (d), the tautological bundle T (d), the quotient bundle Q(d), and the
hyperplane bundle H (d). Their fibres at each [x] ∈ P(Cd) are

F (d)[x] = Cd

T (d)[x] = span(x)

Q(d)[x] = Cd/ span(x)

H (d)[x] = span(x)∨.

Here if V is a vector space or vector bundle, then V∨ denotes its dual. We have a short exact
sequence of vector bundles

0 → T (di) → F (di) → Q(di) → 0. (4.1)

There are projection maps πi : X → P(Cdi) with πi(χ) = [xi], where χ = ([x1], . . . , [xn]).
We pull back a vector bundle B over P(Cdi) to a bundle π∗

i B over X, whose fiber at χ ∈ X
equals B[xi]

. There is an exact sequence 0 → T (di)[xi]
→ F (di)[xi]

→ Q(di)[xi]
→ 0 of vector

spaces at every [xi] ∈ P(Cdi). Hence there is an exact sequence of vector bundles

0 → π∗
i T (di) → π∗

i F (di) → π∗
i Q(di) → 0. (4.2)
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DEFINITION 4.1. Let R = (d, T) be a hyperquiver representation and let X = ∏n
i=1 P(Cdi).

For each hyperedge e ∈ E, we consider the following vector bundles over X.

T (e) :=
µ(e)⊗
j=1

π∗
sj(e)

T (dsj(e)), B(e) := Hom
(
T (e), π∗

t(e)Q(dt(e))
)

.

We define the singular vector bundle of R over X to be B(R) :=
⊕

e∈E B(e).

The vector bundle B(R) depends on the hypergraph H and the assigned vector spaces U,
but not on the multilinear maps T. It can be written in terms of a partition of edges as
B(R) =

⊕M
r=1

⊕
e∈Er B(e). We will see that when R is a generic hyperquiver representation,

the zero locus of a generic section of B(R) is the singular vector variety S(R). We make the
following observations about its summands B(e).

PROPOSITION 4.2. Let B(e) = Hom
(
T (e), π∗

t(e)Q(dt(e))
)

. Then the following hold.

(a) The fibre of B(e) at χ is Hom
(

span
(
⊗µ(e)

j=1 xsj(e)

)
, C

dt(e)/ span(xt(e))
)

.
(b) The bundle B(e) has rank dt(e) − 1.

(c) We have the isomorphism B(e) =
(⊗µ(e)

j=1 π∗
sj(e)

H (dsj(e))
)
⊗ π∗

t(e)Q(dt(e)).

PROOF. The bundle T (e) has fibres

T (e)χ =
µ(e)⊗
j=1

π∗
sj(e)

T (dsj(e))χ =
µ(e)⊗
j=1

T (dsj(e))[xsj(e)
]

=
µ(e)⊗
j=1

span(xsj(e)) = span
(
⊗µ(e)

j=1 xsj(e)

)
.

The bundle π∗
t(e)Q(dt(e)) has fibre π∗

t(e)Q(dt(e))χ = C
dt(e)/ span(xt(e)). This proves (a). Then

(b) follows, since the dimension of the fibre is dt(e) − 1. To prove (c), observe that B(e) ≃
T (e)∨ ⊗ π∗

t(e)Q(dt(e)) and that

T (e)∨ =

µ(e)⊗
j=1

π∗
sj(e)

T (dsj(e))

∨

≃
µ(e)⊗
j=1

(
π∗

sj(e)
T (dsj(e))

)∨

≃
µ(e)⊗
j=1

π∗
sj(e)

T (dsj(e))
∨ =

µ(e)⊗
j=1

π∗
sj(e)

H (dsj(e)). □

We relate the singular vector variety to the singular vector bundle. The global sections
of a vector bundle B are denoted by Γ(B). They are the holomorphic maps σ : X → B that
send each χ ∈ X to a point in Bχ. A global section of B(e) is a map sending each χ ∈ X to
an element in

Hom
(

span
(
⊗µ(e)

j=1 xsj(e)

)
, C

dt(e)/ span(xt(e))
)

,

by Proposition 4.2(a). Definition 2.6(ii) of a partition gives an equivalence relation between
tensors assigned to Er via permutation of the modes. Following the notation of Definition
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2.6(iii), we denote by Tr ∈ Cer a representative for the class corresponding to Er, for some
er ∈ Er, and we define Tr(xs(e)) := Te(xs(e)) for all e ∈ Er, where Te(xs(e)) is defined in (2.1).
A tensor T ∈ Cer determines a global section of B(e) for every e ∈ Er, which we denote by
Le(T). The map Le(T) sends χ to the map

⊗µ(e)
j=1 xsj(e) 7→ T(xs(e)) ∈ C

dt(e)/ span(xt(e)).

where T(xs(e)) is the image of T(xs(e)) in the quotient vector space C
dt(e)/ span(xt(e)). In

other words, following [20, Lemma 9], we define the map

Le : Cer −→ Γ(B(e))

T 7−→ Le(T).

We form the composite map

L :
M⊕

r=1

Cer −→ Γ(B(R))

(T1, . . . , TM) 7−→
M⊕

r=1

⊕
e∈Er

Le(Tr).

(4.3)

We connect the global sections in the image of L to the singular vector tuples of a hyper-
quiver representation, generalizing [20, Lemma 11].

PROPOSITION 4.3. Let R = (d, T) be a hyperquiver representation. Let X = ∏n
i=1 P(Cdi) and

let B(R) be the singular vector bundle, with L :
⊕M

r=1 Cer → Γ(B(R)) the map in (4.3). Then a
point χ ∈ X lies in the zero locus of the section σ = L((Tr)M

r=1) if and only if χ is a singular vector
tuple of R.

PROOF. L((Tr)M
r=1)(χ) is the |E|-tuple of zero maps each in B(e)χ if and only if for all

e ∈ Er and r ∈ [M], Le(Tr)(χ)(⊗µ(e)
j=1 xsj(e)) = 0, if and only if Tr(xs(e)) = λext(e) for some

λe ∈ C, if and only if χ is a singular vector tuple of the hyperquiver representation R. □

In light of the preceding result, it becomes necessary to determine the image of L within
Γ(B(R)). For this purpose, we make use of the following Künneth formula for vector bun-
dles. Note that H0(X, B) := Γ(B).

PROPOSITION 4.4 (Künneth Formula, [29, Proposition 9.2.4]). Let X and Y be complex va-
rieties and πX : X × Y → X and πY : X × Y → Y be the projection maps. If F and G are vector
bundles on X and Y respectively, then

Hn(X × Y, π∗
XF ⊗ π∗

YG ) ∼=
⊕

p+q=n
Hp(X, F )⊗ Hq(Y, G ).

The following result, which generalises [20, Lemma 9 parts (1) and (2)], characterises the
image of L.

PROPOSITION 4.5. The linear map L :
⊕M

r=1 Cer → Γ(B(R)) in (4.3) is bijective.
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PROOF. By the definition of L, it suffices to show for each e ∈ E that Le is an injective
linear map between vector spaces of the same dimension. First we show that Le is injective.

Consider e ∈ Er and let T ∈ Cer . If T ̸= 0, then there exist xsj(e) ∈ C
dsj(e) for j ∈ [µ(e)] with

v := T(xs(e)) ̸= 0. Let xt(e) ∈ C
dt(e) \ span(v). Then Le(T)(χ)(⊗µ(e)

j=1 xsj(e)) ̸= 0. Hence, the
global section Le(T) is not the zero section.

We recursively apply the Künneth formula in the case n = 0 to obtain

H0(X, B(e)) =
µ(e)⊗
j=1

H0(X, π∗
sj(e)

H (dsj(e)))⊗ H0(X, π∗
t(e)Q(dt(e))).

It remains to compute the dimensions of the factors. We have dim H0(X, π∗
i H (di)) = di by

results on the cohomology of line bundles over projective space [26, Theorem 5.1]. Finally,
the short exact sequence (4.2) gives a long exact sequence in cohomology

0 → H0(X, π∗
i T (di)︸ ︷︷ ︸

=0

) → H0(X, π∗
i F (di)) → H0(X, π∗

i Q(di)) → H1(X, π∗
i T (di))︸ ︷︷ ︸

=0

→ . . . .

The underlined terms are 0, again by [26, Theorem 5.1]. Thus dim H0(X, π∗
i Q(di)) = di,

since dim H0(X, π∗
i F (di)) = di. Hence dim H0(X, B(e)) = ∏m

j=1 dsj(e). This is the dimen-
sion of Cer , so Le is a bijection. □

5. Bertini-type theorem

In this section, we relate the zeros of a generic section of a vector bundle to its top Chern
class, cf. [20, Section 2.5]. This relation holds when the vector bundle is “almost generated”,
see Definition 5.2. We refer the reader to Appendix A for relevant background on Chern
classes and Chow rings. In this section, X is any smooth complex projective variety. Recall
that the global sections of B, denoted Γ(B), are the holomorphic maps σ : X → B that send
each χ ∈ X to a point in the fibre Bχ.

DEFINITION 5.1. Let X be a smooth projective variety and B a vector bundle over X. The
vector bundle B is globally generated if there exists a vector subspace Λ ⊆ Γ(B) such that for
all χ ∈ X, we have Λ(χ) = Bχ, where Λ(χ) := {σ(χ) | σ ∈ Λ}.

DEFINITION 5.2. Let X be a smooth projective variety and B a vector bundle over X.
The vector bundle B is almost generated if there exists a vector subspace Λ ⊆ Γ(B) such that
either B is globally generated, or there are k ≥ 1 smooth irreducible proper subvarieties
Y1, . . . , Yk of X, with Y0 = X, such that:

(i) For all i ≥ 0, there is a vector bundle Bi over Yi, and for any j ≥ 0, if Yi is a subvariety
of Yj, then Bi is a subbundle of Bj

∣∣
Yi

(ii) Λ(χ) ⊆ (Bi)χ for all χ ∈ Yi and i ≥ 0
(iii) If αi ⊆ [k] is the set of all j ∈ [k] such that Yj is a proper subvariety of Yi, then

Λ(χ) = (Bi)χ for all χ ∈ Yi \
(
∪j∈αiYj

)
.

Now we state our Bertini-type theorem; cf. [20, Theorem 6]. The zero locus of a section
σ ∈ Γ(B) is Z(σ) := {χ ∈ X | σ(χ) = 0}. The top Chern class and top Chern number of
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B, see Definition A.5, are denoted cr(B) ∈ A∗(X) and ν(B) ∈ Z, respectively. We assume
X ⊆ PD via some closed immersion s : X ↪−→ PD and regard cr(B) = s∗(cr(B)) ∈ A∗(PD),
see Remark A.3.

THEOREM 5.3 (Bertini-Type Theorem). Let X ⊆ PD be a smooth irreducible complex projec-
tive variety of dimension d, and B a vector bundle of rank r over X, almost generated by a vector
subspace Λ ⊆ Γ(B). Let σ ∈ Λ be a generic section with Z(σ) ⊆ X its zero locus.

(a) If r > d, then Z(σ) is empty
(b) If r = d, then Z(σ) consists of ν(B) points. Furthermore, if rank Bi > dim Yi for all

i ≥ 1, then each point has multiplicity 1 and does not lie on ∪k
i=1Yi.

(c) If r < d, then Z(σ) is empty or smooth of pure dimension d− r. In the latter case, the degree
of Z(σ) is ν

(
B
∣∣

L

)
, where L ⊆ PD is the intersection of d − r generic hyperplanes in PD.

If ν
(
B
∣∣

L

)
̸= 0, then Z(σ) is non-empty.

REMARK 5.4. The above theorem generalises [20, Theorem 6], where parts (a) and (b)
appear. We add part (c). Compared to [20, Theorem 6], our extra assumption dim(Bi) >
dim(Yi) for i > 0 in (b) appears because it is absent from Definition 5.2, whereas it appears
in [20, Definition 5].

To prove Theorem 5.3, we use the following results.

THEOREM 5.5 (Fiber Dimension Theorem [28, Theorem 1.25]). Let f : X → Y be a dominant
morphism of irreducible varieties. Then there exists an open set U ⊆ Y such that for all y ∈ U,
dim X = dim Y + dim( f−1(y)).

THEOREM 5.6 (Generic Smoothness Theorem [26, Corollary III.10.7]). Let f : X → Y be a
morphism of irreducible complex varieties. If X is smooth, then there exists an open subset U ⊆ Y
such that f | f−1(U) is smooth. Furthermore, if f is not dominant, then f−1(U) = ∅.

PROOF OF THEOREM 5.3. Consider I = {(χ, σ) ∈ X × Λ | σ(χ) = 0} with projection
maps

I

X Λ

p q

Then I is a vector bundle over X. Since the base space X is irreducible, so is the total space I.
We show that dim I = dim Λ+ d− r. The map p is surjective, and hence dominant, since the
zero section lies in Λ. There exists an open set U ⊆ X such that dim I = d + dim(p−1(χ))
for all χ ∈ U, by Theorem 5.5. The fibre p−1(χ) ≃ {σ ∈ Λ : σ(χ) = 0} consists of sections in
Λ that vanish at χ. Consider the evaluation map {χ} × Λ → Bχ that sends (χ, σ) to σ(χ).
This is a linear map of vector spaces and its kernel is isomorphic to p−1(χ). Let Y := ∪k

i=1Yi,
where the Yi are from Definition 5.2. The variety Y is a proper subvariety of X. For each
χ ∈ X \ Y, the evaluation map is surjective, by Definition 5.2(iii). Thus, the evaluation map
has rank r and nullity dim Λ − r. Hence dim(p−1(χ)) = dim Λ − r for all χ ∈ U ∩ (X \ Y).
Therefore dim I = dim Λ + d − r.
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The fiber q−1(σ) ≃ {χ ∈ X : σ(χ) = 0} is the zero locus Z(σ). We show that the map q
is dominant if and only if q−1(σ) ̸= ∅ for generic σ ∈ Λ. If q is dominant, then there exists
an open set W ⊆ Λ such that q−1(σ) is smooth of codimension dim I − dim Λ = d − r for all
σ ∈ W, by Theorems 5.5 and 5.6. In particular, q−1(σ) is non-empty. Conversely if q is not
dominant, then there is an open set W ⊆ Λ such that q−1(σ) = ∅ for all σ ∈ W, by Theorem
5.6.

Now we show that Z(σ) ̸= ∅ for generic σ ∈ Λ if and only if cr(B) ̸= 0. If Z(σ) = ∅,
then the existence of a nowhere vanishing section of B implies that cr(B) = 0 [21, Lemma
3.2]. Conversely, if Z(σ) ̸= ∅, then the map q is dominant, so Z(σ) is smooth of codimension
d − r. If cr(B) = 0, then 0 = cr(B) = [Z(σ)] by Definition A.5(ii), which is a contradic-
tion since the degree of a non-empty projective variety is a positive integer [26, Proposition
I.7.6.a]. In particular, if r = d and ν(B) = 0, then Z(σ) = ∅.

The map q is not dominant if dim I < dim Λ; i.e., if r > d. This proves (a) and the
emptiness possibility in (c). It remains to consider the case r ≤ d with the map q dominant
and generic σ ∈ Λ.

Z(σ) ⊆ PD is smooth of dimension d − r. It is pure dimensional by [21, Example 3.2.16].
When r = d, we have [Z(σ)] = cr(B) = ν(B)[p] for some p ∈ X, by Definition A.5(ii),
so the zero locus consists of ν(B) points. It remains to relate the degree to the top Chern
class for r < d. The degree of Z(σ) is the number of points in the intersection of Z(σ) with
d − r generic hyperplanes PD. Denote the intersection of d − r such hyperplanes by L. Let

L
j

↪−→ PD be its inclusion. We have [Z(σ)] = cr(B) by Definition A.5(ii) and seek [L]cr(B).
We compute in A∗(PD):

[L]cr(B) = j∗([L])cr(B) (definition of pushforward)

= j∗(j∗(cr(B))[L]) (projection formula)

= j∗(cr(j∗B)[L]) = j∗(cr

(
B
∣∣

L

)
[L]) (Definition A.5(iv))

= j∗(ν
(
B
∣∣

L

)
[p][L]) (definition of top Chern number)

= ν
(
B
∣∣

L

)
j∗([p][L]) (pushforward is a morphism)

= ν
(
B
∣∣

L

)
j∗([p]) = ν

(
B
∣∣

L

)
[p] (intersection with a point) (5.1)

for some point p ∈ L. Thus, the degree of Z(σ) is ν
(
B
∣∣

L

)
. As a corollary, we obtain that if

ν(B) ̸= 0 or ν
(
B
∣∣

L

)
̸= 0, then Z(σ) ̸= ∅. This proves the dimension and degree statements

in (b) and (c).
Lastly, we show that when r = d and the additional assumptions of (b) hold, the points in

Z(σ) are generically of multiplicity 1 and do not lie on Y. Smoothness in Theorem 5.6 shows
that each of the finitely many points in q−1(σ) are of multiplicity 1. We have rank Bi >
dim Yi for all i ≥ 1. Hence dim(p−1(Yi)) = dim Yi + dim Λ − rank Bi < dim Λ. Thus,
dim(p−1(Y)) < dim Λ, and using the fact that the projection Pn × Am → Am is a closed
map, we deduce that q is a closed map. Hence q(p−1(Y)) is a proper subvariety of Λ. For all
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points in the open set σ ∈ W ∩ W ′, where W ′ = Λ \ q(p−1(Y)), the fibre q−1(σ) contains no
points in Y. □

REMARK 5.7. Our proof of Theorem 5.3, is analogous to the proofs in [20] of their The-
orems 4 and 6. Their proof uses [21, Example 3.2.16], which is equivalent to axiom (ii) in
Definition A.5. Our proof adds the Chern number computation for case (c).

6. Generating the singular vector bundle

In this section we show that B(R) is almost generated, so that Theorem 5.3 may be
applied to it. We generalise the singular vector bundle to a bundle B(R, F), for a subset
of hyperedges F ⊆ E. The zeros of a global section of B(R, F) are singular vectors with
singular value zero along the edges in F. We show that B(R, F) is almost generated. This
will later yield not only the dimension and degree of the singular vector variety S(R) in
Theorem 3.1, but also the final statement about the non-existence of a zero singular value.

DEFINITION 6.1. Let R = (d, T) be a hyperquiver representation and let X = ∏n
i=1 P(Cdi).

Given F ⊆ E, we define

B(e, F) =

Hom
(
T (e), π∗

t(e)Q(dt(e))
)

if e /∈ F

Hom
(
T (e), π∗

t(e)F (dt(e))
)

if e ∈ F.

It has fibres

B(e, F)χ =

Hom
(

span
(
⊗µ(e)

j=1 xsj(e)

)
, C

dt(e)/ span(xt(e))
)

if e /∈ F

Hom
(

span
(
⊗µ(e)

j=1 xsj(e)

)
, C

dt(e)
)

if e ∈ F,

where χ = ([x1], . . . , [xn]). The singular vector bundle of R over X with respect to F is
B(R, F) =

⊕
e∈E B(e, F).

The singular vector bundle B(R) from Definition 4.1 is B(R,∅).

PROPOSITION 6.2. The bundle B(R, F) has rank ∑e∈E(dt(e) − 1) + |F|.

PROOF. The rank of B(R, F) is ∑e∈E rank B(e, F). For e /∈ F, rank B(e, F) = dt(e) − 1, as
in Proposition 4.2(b). For e ∈ F, rank B(e, F) = rank Hom(T (e), π∗

t(e)F (dt(e))) = dt(e). □

We construct global sections for B(R, F) whose zero loci correspond to singular vectors
with zero singular value along the edges in F. Define the map

Le,F : Cer −→ Γ(B(e, F))

Le,F(T)(χ)(⊗
µ(e)
j=1 xsj(e)) =

{
T(xs(e)) ∈ C

dt(e)/ span(xt(e)) e /∈ F
T(xs(e)) ∈ C

dt(e) e ∈ F.
(6.1)



22 TOMMI MULLER, VIDIT NANDA, AND ANNA SEIGAL

We define the composite map

LF :
M⊕

r=1

Cer → Γ(B(R, F)) (6.2)

LF =
M⊕

r=1

⊕
e∈Er

Le,F.

We connect the global sections in the image of LF to the singular vector tuples of R,
generalizing Proposition 4.3 and [20, Lemma 11].

PROPOSITION 6.3. Let B(R, F) be the singular vector bundle with respect to F and LF :⊕M
r=1 Cer → Γ(B(R, F)) the linear map in (6.2). A point χ = ([x1], . . . , [xn]) ∈ X lies in the

zero locus of the section σ = LF((Tr)M
r=1) if and only if χ is a singular vector tuple of R with zero

singular value along all edges in F.

PROOF. The image LF((Tr)M
r=1)(χ) is the tuple of zero maps each in B(e, F)χ if and only

if for all e ∈ Er and r ∈ [M], Le,F(Tr)(χ)(⊗µ(e)
j=1 xsj(e)) is the zero vector in the appropriate case

of (6.1), if and only if Tr(xs(e)) = λext(e) for some λe ∈ C with λe = 0 if e ∈ F, if and only if
χ is a singular vector tuple of the hyperquiver representation R, with zero singular values
along the edges of F. □

DEFINITION 6.4. The isotropic quadric Qn = {v ∈ Cn : v⊤v = 0} is the quadric hypersur-
face in Cn of isotropic vectors. The variety Qn is defined by a homogeneous equation. We
consider it as a subvariety P(Qn) of Pn.

DEFINITION 6.5. If T ∈ Ce is a tensor and xsj(e) ∈ C
dsj(e) are vectors for j ∈ [m], then we

denote by T(xe) := Te(xt(e), xs1(e), . . . , xsµ(e)) = x⊤t(e)T(xs(e)) ∈ C the contraction of the tensor
T by the vectors xsj(e), where T(xs(e)) is the vector defined in (2.1).

We give a necessary and sufficient condition for when the maps in (6.1) generate the
vector space B(e)χ. This generalises [20, Lemma 8] from a single tensor to a hyperquiver
representation. Later, in our proof that B(R, F) is almost generated, we apply this condition
to the vector subbundles Bi in Definition 5.2. This will allow us to associate a single tensor
to each piece of the partition.

LEMMA 6.6. Let H = (V, E) be a hyperquiver, E = ⨿M
r=1 Er be a partition, and assign vector

spaces Cdi to each vertex i ∈ V. Fix a collection of vectors xi ∈ Cdi \ {0} for i ∈ [n] and ye ∈ C
dt(e)

for e ∈ E. Fix F ⊆ E a subset of hyperedges. Let Gr be the hyperedges e ∈ Er \ F such that xt(e) is
isotropic. Then for all r ∈ [M], the following are equivalent:

(a) There exist tensors Tr ∈ Cer for some er ∈ Er satisfying the equations

Tr(xs(e)) = ye ∈ C
dt(e)/ span(xt(e)) e ∈ Er \ F (6.3)

Tr(xs(e)) = ye ∈ C
dt(e) e ∈ Er ∩ F. (6.4)

(b) Given any pair of edges e, e′ ∈ (F ∩ Er) ∪ Gr, we have

x⊤t(e)ye = x⊤t(e′)ye′ . (6.5)
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PROOF. (a ⇒ b) : There is a tensor Tr satisfying (6.3) if and only if there are scalars
λe ∈ C such that Tr(xs(e)) = ye + λext(e) for all e ∈ Er \ F. Multiplying both sides by
xt(e) gives Tr(xe) = x⊤t(e)ye + λex⊤t(e)xt(e). Similarly, from (6.4) we obtain, for e ∈ F ∩ Er, the

condition Tr(xe) = x⊤t(e)ye. The scalar Tr(xe) only depends on r via the set Er. Thus for any
pair of edges e, e′ ∈ Er, we have

x⊤t(e)ye + λex⊤t(e)xt(e) = x⊤t(e′)ye′ + λe′x
⊤
t(e′)xt(e′)

where λe = 0 for e ∈ F ∩ Er. For the hyperedges in Gr, the terms x⊤t(e)xt(e) vanish. Hence
(6.5) holds for all e, e′ ∈ (F ∩ Er) ∪ Gr.

(b ⇒ a) : Let µr ∈ C be the value of (6.5) if (F ∩ Er)∪ Gr ̸= ∅ and zero otherwise. Define

λe =

{
0 e ∈ (F ∩ Er) ∪ Gr

(x⊤t(e)xt(e))
−1(µr − x⊤t(e)ye) otherwise.

Choose some er ∈ Er. We show that, for such a choice of λe, there exists a tensor Tr ∈ Cer

that satisfies
Tr(xs(e)) = ye + λext(e) (6.6)

for all e ∈ Er, and hence there exists a tensor Tr that satisfies (6.3) and (6.4). A change of basis
in each Cdi does not affect the existence or non-existence of solutions to (6.6). Consider the
change of basis that sends each xi to the first standard basis vector in Cdi , which we denote
by ei,1 = (1, 0, . . . , 0)⊤. For each e ∈ Er, there is a permutation σ of [m] sending v(e) to v(er)
by Definition 2.6(i.b). Then (6.6) becomes the condition

(Tr)1,...,1,ℓ,1,...,1 = (ye)ℓ + λeδ1,ℓ for all ℓ ∈ [dt(e)],

where δi,j is the Kronecker delta and the ℓ on the left hand side appears in position σ(m). We
define Tr to be the tensor whose non-zero entries are given by the above equation. This is
well-defined, since σ(m) ̸= σ′(m) for σ ̸= σ′, by Definition 2.6(i.c). It remains to show that
we do not attempt to assign different values to the same entry of Tr. When ℓ = 1, we assign
the value (ye)1 + λe. For all edges this quantity equals (ye)1 = µr. □

To conclude this section, we show that B := B(R, F) satisfies the conditions of Defini-
tion 5.2. This shows that B is almost generated. First we define the subvarieties Yi and the
vector bundles Bi over Yi that appear in Definition 5.2.

We use the following notation. A linear functional φ : C
dt(e)/ span(xt(e)) → C can be

uniquely represented by a vector u ∈ C
dt(e) such that u⊤xt(e) = 0 and φ([y]) = u⊤y, [20,

Lemma 7]. In particular when xt(e) ∈ Qt(e), we abbreviate x⊤t(e)[y] to x⊤t(e)y.
For a subset α ⊆ [n], define the smooth proper irreducible subvariety

Yα = X1 × · · · × Xn, where Xi =

{
P(Qi) i ∈ α

P(Cdi) i /∈ α.

In particular, Y∅ = X. Fix F ⊆ E and define F′ = {t(e)}e∈F. Fix α ⊆ [n] \ F′. Let Gr ⊆ Er \ F
denote the edges whose target vertex lies in α. Define Bα to be the vector bundle over Yα
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whose fiber at χ = ([x1], . . . , [xn]) ∈ Yα is the subspace U(α, χ) of linear maps τ = (τe)e∈E ∈
(B)χ satisfying

x⊤t(e)τe(⊗µ(e)
j=1 xsj(e)) = x⊤t(e′)τe′(⊗

µ(e′)
j=1 xsj(e′)), (6.7)

for any edges e, e′ ∈ (F ∩ Er) ∪ Gr, for every r ∈ [M].

PROPOSITION 6.7. Let the map LF be as in (6.2). For any subset of hyperedges F ⊆ E, the vector
subspace LF

(⊕M
r=1 Cer

)
almost generates B(R, F).

PROOF. We first show that the vector bundles Bα satisfy Definition 5.2(i). If α, β ⊆ [n] \
F′, then α ⊊ β if and only if Yβ is a proper subvariety of Yα. Furthermore, Bβ is a subbundle
of Bα

∣∣
Yα

, since U(β, χ) is a vector subspace of U(α, χ).
Next we prove that Definition 5.2(ii) holds. Recall that Λ(χ) := {σ(χ) | σ ∈ Λ}. We

show that Λ(χ) ⊆ (Bα)χ. If χ ∈ Yα, then an element of Λ(χ) is an |E|-tuple of linear maps
Le,F(Tr)(χ) for some tensors Tr ∈ Cer , r ∈ [M]. By the proof of (a ⇒ b) in Lemma 6.6,
τe := Le,F(Tr)(χ) satisfy (6.7), so Λ(χ) ⊆ (Bα)χ.

Finally we show that Definition 5.2(iii) holds. If χ lies on Yα but not on any proper
subvariety Yβ, then every (τe)e∈E ∈ (Bα)χ satisfies (6.7) and no additional equations. Thus
there exist tensors Tr with Le,F(Tr) = τe for e ∈ Er and τ ∈ Λ(χ), by Lemma 6.6. Hence,
Λ(χ) = (Bα)χ. □

7. The top Chern class of the singular vector bundle

In this section we compute the top Chern class of the singular vector bundle B(R), gen-
eralizing [20, Lemma 3]. Combining this computation with Theorem 5.3 and Proposition 6.7
finds the degree of the singular vector variety, completing the proof of Theorem 3.1.

PROPOSITION 7.1. Let R = (d, T) be a hyperquiver representation and B(R) be the singular
vector bundle over X = ∏n

i=1 P(Cdi). Then the top Chern class of B(R) is

∏
e∈E

dt(e)

∑
k=1

hk−1
t(e) h

dt(e)−k
s(e) , where hs(e) =

µ(e)

∑
j=1

hsj(e),

in the Chow ring A∗(X) ∼= Z[h1, . . . , hn]/(h
d1
1 , . . . , hdn

n ).

PROOF. We seek the Chern polynomial C(t, B(R)). The coefficient of its highest power
of t is the top Chern class. The Chern polynomial is multiplicative over short exact se-
quences, see Definition A.5(iii). Hence

C(t, F (d)) = C(t, T (d))C(t, Q(d)), (7.1)

by (4.1). We compute C(t, T (d)). Let h ∈ A∗(P(Cd)) ∼= Z[h]/(hd) be the class of a hyper-
plane in P(Cd). By Definition A.5(i)-(ii), h is the first Chern class c1(H (d)) and the Chern
polynomial of H (d) is C(t, H (d)) = 1 + ht. Thus C(t, T (d)) = C(−t, H (d)∨) = 1 − ht, by
Proposition A.8(b).

Next we compute C(t, Q(d)). We have C(t, F (d)) = 1, by Proposition A.8(a). The Chern
polynomial of Q(d) is the inverse of (1 − ht), by (7.1). Using the formal factorization 1 −
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xn = ∏n
k=0(1 − ζk

nx) over A∗(X)⊗ C, we therefore have

C(t, Q(d)) =
d−1

∑
j=0

(ht)j =
1 − (ht)d−1

1 − ht
=

∏d−1
k=0(1 − ζk

dht)
1 − ht

=
d−1

∏
k=1

(1 − ζk
dht)

where ζd ∈ C is a d-th root of unity.
We have c1(π

∗
i H (di)) = π∗

i c1(H (di)) = π∗
i hi = hi ∈ A∗(X), by Definition A.5(iv) and

Definition A.2(ii). Thus the Chern polynomials of π∗
i H (di), π∗

i T (di), and π∗
i Q(di) equal

those of H (d), T (d), and Q(d) respectively but with h replaced by hi ∈ A∗(X), by (4.2).
We have found the Chern roots of π∗

i H (di) and π∗
i Q(di), so we obtain Chern characters

ch(π∗
i H (di)) = exp(hi) and ch(π∗

i Q(di)) = ∑di−1
k=1 exp(−ζk

di
hi). By Propositions 4.2(c) and

A.8(c), the Chern character ch(B(e)) equals

ch

µ(e)⊗
j=1

π∗
sj(e)

H (dsj(e))⊗ π∗
t(e)Q(dt(e))

 = ch

µ(e)⊗
j=1

π∗
sj(e)

H (dsj(e))

 ch(π∗
t(e)Q(dt(e)))

=

(
µ(e)

∏
j=1

exp(hsj(e))

)dt(e)−1

∑
k=1

exp(−ζdt(e)
ht(e))


=

dt(e)−1

∑
k=1

exp

(
µ(e)

∑
j=1

hsj(e) − ζk
dt(e)

ht(e)

)
.

Switching to Chern polynomial form, we obtain

C(t, B(e)) =
dt(e)−1

∏
k=1

(
1 +

(
µ(e)

∑
j=1

hsj(e) − ζk
dt(e)

ht(e)

)
t

)
.

This product has degree (dt(e) − 1) in t, with top coefficient

dt(e)−1

∏
k=1

(
µ(e)

∑
j=1

hsj(e) − ζk
t(e)ht(e)

)
.

It follows from Definition A.5(iii) that C(t, B(R)) = ∏e∈E C(t, B(e)). The product has de-
gree (∑e∈E dt(e) − |E|) in t, with top coefficient (i.e., top Chern class of B(R)) equal to

∏
e∈E

dt(e)−1

∏
k=1

(
µ(e)

∑
j=1

hsj(e) − ζk
t(e)ht(e)

)
.

Finally, the formal identity xn − yn = ∏n
k=0(x − ζk

ny) gives

∏
e∈E

dt(e)−1

∏
k=1

(
µ(e)

∑
j=1

hsj(e) − ζk
t(e)ht(e)

)
= ∏

e∈E

(
∑

µ(e)
j=1 hsj(e)

)dt(e)−1
− h

dt(e)−1
t(e)

∑
µ(e)
j=1 hsj(e) − ht(e)

= ∏
e∈E

dt(e)−1

∑
k=0

(
µ(e)

∑
j=1

hsj(e)

)dt(e)−1−k

hk
t(e) ∈ A∗(M). □
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To conclude the paper, we now prove our main theorem.

PROOF OF THEOREM 3.1. The zero locus of a generic global section of B := B(R, F) is
the singular vector variety S(R), with zero singular values along the edges in F, by Propo-
sitions 4.3 and 6.3. The singular vector bundle B from Definition 6.1 is almost generated,
by Proposition 6.7. Hence our Bertini-type theorem Theorem 5.3 applies to it, to characterise
the zeros of a generic section. It remains to derive the polynomial (3.1), prove the emptiness
statement for S(R) as well as its dimension and degree, and prove the statement regarding
finitely many singular vector tuples.

We first consider the case F = ∅. The top Chern class cr(B) is given by Proposition 7.1.
If N = d − r = 0, then S(R) has the claimed number of points by Theorem 5.3(b). Suppose
r < d. Let s : X ↪−→ PD be the Segre embedding and let [l] ∈ A∗(PD) be the class of a
hyperplane. Continuing (5.1), we have

ν
(
B
∣∣

L

)
[p] = [L]cr(B) = [L]s∗(cr(B)) = [l]Ns∗(cr(B)) (definition of pushforward)

= s∗(s∗([l]N)cr(B)) = s∗([l]N)cr(B) (projection formula)

= s∗([l])Ncr(B) = (∑n
i=1 hi)

Ncr(B) ([21, Example 8.4.3]) (7.2)

where A∗(X) ∼= Z[h1, . . . , hn]/(h
d1
1 , . . . , hdn

n ), giving us the polynomial (3.1).

We prove the emptiness statement by showing that ν
(
B
∣∣

L

)
= 0 if and only if cr(B) = 0.

By the proof of Theorem 5.3, cr(B) = 0 if and only if S(R) = ∅. If cr(B) = 0, then
ν
(
B
∣∣

L

)
= 0 by (7.2). Conversely, if cr(B) ̸= 0, then there exists a monomial ha1

1 . . . han
n

in cr(B) such that ai < di and ∑n
i=1 ai = r. There exists a monomial hd1−1−a′1

1 . . . hdn−1−a′n
n

in (∑n
i=1 hi)

d−r such that ∑n
i=1 a′i = r. Thus, these monomials pair in the product [L]cr(B)

to form the monomial [p] = hd1−1
1 . . . hdn−1

n . The coefficient of this monomial is ν
(
B
∣∣

L

)
,

which is non-zero. Therefore if ν
(
B
∣∣

L

)
̸= 0, S(R) has the claimed dimension and degree

by Theorem 5.3.
It remains to prove the last sentence of the theorem, which pertains to the case N = 0.

Fix ∅ ̸= α ⊆ [n] and define Bα as in the proof of Proposition 6.7. Then rank Bα = rank B −
(|α| − 1) > rank B − |α| = dim(X)− |α| = dim(Yα) as the fibers of Bα are vector subspaces
of the fibers of B cut down by |α| − 1 linearly independent equations (6.7). Thus, every
singular vector has multiplicity 1 and is non-isotropic by Theorem 5.3(b). Finally, if F ̸= ∅
then rank B > dim(X) by (6.2), so R has no singular values equal to 0, by Theorem 5.3(a).
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Appendix A. The Chow ring and Chern classes

We recall the definitions of the Chow groups and Chow ring of a projective variety, fol-
lowing [16, 21].

DEFINITION A.1. Let X be a smooth projective variety of dimension n.

(i) [16, Section 1.2.1] The group of i-cycles of X is the free abelian group Zi(X) generated
by the irreducible i-dimensional subvarieties of X. An element of Zi(X), called an
i-cycle, is a finite, formal sum ∑i niVi of i-dimensional subvarieties Vi of X, where
ni ∈ Z.

(ii) [21, Proposition 1.6] An i-cycle Z ∈ Zi(X) is rationally equivalent to zero if there exist
irreducible subvarieties Vi ⊆ P1 × X of dimension i + 1 with dominant projection
maps Vi → P1 such that Z = ∑i Vi(0)− Vi(∞), where Vi(t) = Vi ∩ ({t} × X). The
i-cycles rationally equivalent to zero form a subgroup Rati(X) of Zi(X).

(iii) [21, Section 1.2.2-1.2.3] The i-th Chow group of X is the quotient group Ai(X) =
Zi(X)/Rati(X). The class of an i-cycle C ∈ Zi(X) in Ai(X) is denoted by [C]. The
Chow group of X is the direct sum A∗(X) = ⊕n

i=0Ai(X). The Chow ring of X is the
direct sum A∗(X) = ⊕n

i=0Ai(X), where Ai(X) = An−i(X).
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The Chow ring A∗(X) has the structure of a commutative ring, with a product Ai(X)×
Aj(X) → Ai+j(X) called the intersection product. We say that C and D intersect transversely
if on each component of C ∩ D at a generic point p, the sum of the tangent spaces of C
and D is the tangent space of X: TpC + TpD = TpX. The intersection product takes any
codimension-i and codimension-j irreducible subvarieties C, D ⊆ X, replaces C and D by
rationally equivalent subvarieties C′, D′ ⊆ X (if necessary) in order for C′ and D′ to intersect
transversely, and defines [C][D] = [C′ ∩ D′] ∈ Ai+j(X). The existence of a well-defined
intersection product is due to Fulton [21]; see [16, Appendix A].

DEFINITION A.2 ([16, Section 1.3.6]). Let X and Y be smooth projective varieties of di-
mensions m and n, and f : X → Y a morphism.

(i) Let V ⊆ X be an irreducible subvariety of dimension i. Define a group homomor-
phism f∗ : Ai(X) → Ai(Y) by

[V] 7→
{

d · [ f (V)] dim f (V) = i
0 dim f (V) < i,

where d := [R(V) : R( f (V))] is the degree of the field extension between the func-
tion fields R(V) of V and R( f (V)) of f (V). The map f∗ extends to a group homo-
morphism f∗ : A∗(X) → A∗(Y), called the pushforward of f .

(ii) There is a unique group homomorphism f ∗ : Ai(Y) → Ai(X) such that for all W ⊆
Y a smooth subvariety with i = codimY W = codimX( f−1(W)), we have f ∗([W]) =
[ f−1(W)]. This extends to a ring homomorphism f ∗ : A∗(Y) → A∗(X) called the
pullback of f .

REMARK A.3. The degree of the field extension in the definition of f∗ is the degree of the
covering of f (V) by V. In particular, if i : X → Y is a closed immersion, then i∗([X]) = [X].

PROPOSITION A.4 (Projection Formula, [16, Theorem 1.23(b)]). If X and Y are smooth pro-
jective varieties, f : X → Y is a morphism, and [C] ∈ Ai(X) and [D] ∈ Aj(Y) are cycle classes,
then

[D] f∗([C]) = f∗( f ∗([D])[C]) ∈ Ai−j(Y).

DEFINITION A.5 ([16, Theorem 5.3]). Let X be a smooth projective variety of dimension
n and let B be an almost generated vector bundle over X, see Definiton 5.2. There exist
unique classes ci(B) ∈ Ai(X) for i ∈ [n] called the Chern classes of B, depending only on
the isomorphism class of B, satisfying the following axioms:

(i) If r is the rank of B, then ci(B) = 0 for all i > r.
(ii) If σ0, ..., σr−i ∈ Γ(B) are global sections and their degeneracy locus Z(σ0, ..., σr−i) ⊆

X has codimension i in X, then ci(B) = [Z(σ0, ..., σr−i)].
(iii) The Chern polynomial of B is C(t, B) = 1+∑r

i=1 ci(B)ti. If 0 → B → B′ → B′′ → 0
is an exact sequence of vector bundles over X, then

C(t, B′) = C(t, B)C(t, B′′).

(iv) If Y is a smooth projective variety and f : Y → X a morphism, ci( f ∗B) = f ∗(ci(B)).
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If r = n, then cn(B) ∈ An(X) so cn(B) = ν(B)[p] for some integer ν(B) called the top
Chern number of B, where [p] ∈ An(X) is the class of a point p ∈ X.

REMARK A.6. [16, Theorem 5.3] gives a definition of Chern classes for any vector bundle
B over X, not just those that are almost generated. However, when B is almost generated,
then part (a) of that result is redundant since in this case it is already covered by part (b),
due to [16, Lemma 5.2(b)]. We replace [16, Theorem 5.3(a)] with our Definition A.5(a), which
is also a redundant axiom but helps clarify the properties of Chern classes.

DEFINITION A.7 ([21, Remark 3.2.3, Example 3.2.3]). The Chern roots of B are the formal
variables ξi(B) in the formal factorization of the Chern polynomial:

C(t, B) =
r

∏
i=1

(1 + ξi(B)t).

The Chern character of B is ch(B) = ∑r
i=1 exp(ξ j(B)), where exp(α) = ∑∞

k=0
1
k! α

k is a formal
sum in the formal variable α.

From Definitions A.5 and A.7, one can obtain the following properties.

PROPOSITION A.8 ([21, Remark 3.2.3, Example 3.2.3]). Let X be a smooth projective variety
and B and B′ be vector bundles over X.

(a) If B is the trivial bundle, then C(t, B) = 1.
(b) The Chern polynomial of B and its dual are related by C(t, B∨) = C(−t, B).
(c) The Chern character satisfies ch(B ⊗B′) = ch(B) ch(B′).
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