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Higher Interpolation and Extension for Persistence Modules∗
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Abstract. The use of topological persistence in contemporary data analysis has provided considerable impetus
for investigations into the geometric and functional-analytic structure of the space of persistence
modules. In this paper, we isolate a coherence criterion which guarantees the extensibility of non-
expansive maps into this space across embeddings of the domain to larger ambient metric spaces. Our
coherence criterion is category-theoretic, allowing Kan extensions to provide the desired extensions.
Our main construction gives an isometric embedding of a metric space into the metric space of
persistence modules with values in the spacetime of this metric space. As a consequence of such
“higher interpolation,” it becomes possible to compare Vietoris–Rips and Čech complexes built
within the space of persistence modules.
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1. Introduction. The combination of rigorously developed foundations [6, 10], efficient
computability [21, 25], and stability properties [8, 11] has resulted in the widespread adoption
of topological persistence [15, 25] as a technique for the analysis of large and complex datasets
[7, 16, 22]. The output of this process is a collection of persistent homology groups, which are
typically represented via a barcode or a persistence diagram. Recent applications of persistence
often confront dynamically evolving data [2, 17], and in these cases one requires the ability
to make inferences about the dynamics from collections of persistence diagrams. Substantial
efforts have been devoted to this end; among the best-known outcomes are vineyards [12],
Fréchet means [24], and persistence landscapes [4].

In this work, we provide a new geometric lens with which to view the space of persistence
diagrams. Our main result is in fact a statement about the space of (sufficiently tame)
persistence modules—these consist of vector spaces and linear maps indexed by the real line
R, and their representation theory produces persistence diagrams [23]. The class Mod of
persistence modules admits an interleaving metric, and the interpolation lemma from [8]
establishes that Mod is a path metric space—two modules which are e-interleaved for 0 ≤
e <∞ can always be connected by a path in Mod of length e. This lemma plays a key role in
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HIGHER INTERPOLATION FOR PERSISTENCE MODULES 273

the proof of the stability theorem, which confirms that if two point-clouds are within Hausdorff
distance e of each other, then (their persistence modules are e-interleaved, and hence) their
persistence diagrams are also within bottleneck distance e of each other [8, 11].

The interpolation lemma provides an affirmative answer to the Lipschitz extension problem
[3, Chap. 1] encoded in the following commutative diagram of metric spaces (and 1-Lipschitz
maps):

(1.1) {0, e} f //
_�

��

Mod

[0, e]

f ′

;;

Here {0, e} and [0, e] are given the traditional Euclidean metric inherited from R, and the
fact that f is 1-Lipschitz follows immediately from our assumption that f(0) and f(e) are
e-interleaved. The existence of an extension f ′ allows us to assign intermediate persistence
modules f ′(x) to all x in [0, e] so that f ′ agrees with f on the endpoints {0, e} and the
interleaving distance between f ′(x) and f ′(y) does not exceed |x − y|. Similarly, one seeks
1-Lipschitz extensions across more general choices of metric inclusions. Our objective here
is to prescribe sufficient categorical conditions on f which guarantee the existence of such
extensions. Here is a consequence of our main result.

Theorem 1.1 (higher interpolation and extension). Let M be any metric space, and let A
be a subspace. If a map f : A →Mod is coherent (in the sense of Definition 4.1), then it
admits three 1-Lipschitz extensions M →Mod.

In order to precisely describe what it takes for f : A→Mod to be coherent, we examine
a pair of functors relating Cat, the usual category of small categories, and Met, the category
of metric spaces with 1-Lipschitz maps as morphisms. Although our functors fail to form an
adjoint pair in general, there is a distinguished natural transformation η from the identity
functor on Met to their composite. Coherent maps are precisely those f : A →Mod which
factor through this natural transformation. The rest of this paper is organized as follows:
In section 2 we use known facts about the metric space of persistence modules to describe a
functor Cat → Met, and in section 3 we describe a functor Met → Cat. The proof of the
higher interpolation theorem occupies section 4 and some of its consequences are explored in
section 5.

2. The geometry of persistence modules. We assume that the reader has prior famil-
iarity with the basics of category theory [1, 20]. We also adopt the following conventions
throughout: given a category C we write Co for its class of objects and C(x, y) for its set of
morphisms from an object x to an object y. For a small category C, we will denote the cate-
gory of functors from C to D by DC. Although we will survey some relevant definitions and
results here, the reader is invited to consult [5, 6, 8, 10, 23] for detailed background material
on the categorical and metric aspects of persistence modules.

2.1. Persistence modules as functors. Let R denote the category whose objects are the
real numbers R, and which admits a unique morphism a → b whenever a ≤ b. PersistentD
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274 PETER BUBENIK, VIN DE SILVA, AND VIDIT NANDA

homology associates algebraic invariants to filtered topological spaces, which are naturally
regarded as members of TopR—these are functors from R to the category Top of topological
spaces and continuous maps. In practice, one also encounters filtered spaces indexed by proper
subcategories of R (typically finite sets n = {0, 1, . . . , n}, natural numbers N, or integers Z).
In such cases, a standard dictionary may be used to modulate between indexing subcategories:
in the diagram

(2.1) n //

((

N //

%%

Z //

��

R

��
Top

horizontal arrows are inclusions and pull-backs are given by restriction. Conversely, one may
extend the following:

• U : n→ Top to U ′ : N→ Top by assigning U ′(k) = U(n) for k > n;
• U ′ : N→ Top to U ′′ : Z→ Top by assigning U ′′(k) = ∅ for k < 0;
• U ′′ : Z→ Top to U ′′′ : R→ Top by assigning U ′′′(a) = U ′′ (bac) for all a ∈ R

(here b·c indicates the floor function). That such constructions are possible in each case
depicted above is a pleasant consequence of the fact that Top admits left Kan extensions.

Since we may pass from one of these functors to another, we will henceforth treat all
filtered spaces as functors R→ Top. Letting Vect denote the category of vector spaces and
linear maps over a fixed underlying field, we note that any functor H : Top→ Vect (such as
singular homology) induces a push-forward from TopR to VectR via postcomposition. The
resulting structure is a persistence module.

Definition 2.1. The category Mod of persistence modules is VectR—its objects are func-
tors U : R→ Vect and morphisms in Mod(U, V ) are natural transformations U ⇒ V .

The morphisms from U to V in Mod admit a convenient pointwise description as col-
lections of linear maps {Φ(a) : U(a) → V (a) | a ∈ R} which satisfy the following property.
Across all choices of a ≤ b in R, the following diagram commutes:

U(a)
U(a≤b) //

Φ(a)
��

U(b)

Φ(b)
��

V (a)
V (a≤b)

// V (b)

It is often convenient to pass to a more general setting by considering different choices of
target categories. We therefore follow [6] and work with CR for an arbitrary category C,
keeping in mind that this functor category specializes to Mod whenever C = Vect. We call
CR the category of persistence modules with values in C.

2.2. The interpolation lemma. For each e ≥ 0, one has a translation functor Te : R→ R
(sending a to a+ e) as well as a unique natural transformation σe from the identity 1R to this
functor. It is readily confirmed that every such translation induces an endofunctor on CR

whichD
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(1) sends each U ∈ CR
o to UTe satisfying UTe(a) = U(a+ e) for a ∈ R, and

(2) admits a distinguished natural transformation from the identity.

Definition 2.2. Given e ≥ 0, two functors U, V ∈ CR
o are said to be e-interleaved if there

are morphisms Φ : U → V Te and Ψ : V → UTe in CR satisfying (ΨTe)Φ = Uσ2e and
(ΦTe)Ψ = V σ2e, as encoded in commutativity of the following diagrams:

U
Uσ2e //

Φ !!

UT2e UTe
ΦTe

##
V Te

ΨTe

;;

V
V σ2e

//

Ψ
==

V T2e

The interleaving distance [6, 8, 10, 19] on CR
o is defined as follows:

dInt(U, V ) = inf {e ≥ 0 | U, V are e-interleaved} ,

with the understanding that dInt(U, V ) =∞ if no interleaving exists.
We want to say that CR

o together with the interleaving distance is a metric space. To
make this possible, throughout this paper, we relax the usual requirements for a metric space
(M,d) in three ways:

(1) we allow d(x, y) to attain the value +∞,
(2) we allow d(x, y) = 0 for x 6= y in M , and
(3) we allow M to be a class rather than a set.

In other words, we work with symmetric Lawvere metric spaces as defined in [18].
At times, we will not allow the third generalization. That is, we will need the collection

of elements in a metric space to be a set. Let Met be the category whose objects are metric
spaces with a set of elements, and whose morphisms are nonexpansive or 1-Lipschitz maps.1

Similarly, let Cat denote the category of small categories and functors.

Theorem 2.3 (see [6]). For each category C and functor H : C→ D,
(1) The pair

(
CR
o ,dInt

)
is a metric space.

(2) The map HR : CR
o → DR

o sending U to HU is 1-Lipschitz with respect to dInt.
Specializing to small categories, these assignments define a functor •R : Cat→Met.

We call
(
CR
o ,dInt

)
the metric space of persistence modules with values in C and call the

functor •R the persistence module functor.
Recall that a metric space (M,d) is a path metric space if for each x, y in M the infimum

of the lengths of all paths between them equals d(x, y). The following interpolation lemma
establishes that Modo is a path metric space when endowed with the interleaving distance as
a metric.

Lemma 2.4 (see [8]). Given e ≥ 0 and two e-interleaved persistence modules U0 and Ue
in Modo, there exists a one-parameter family {Ua | a ∈ (0, e)} in Modo so that Ua and Ub
are |a− b|-interleaved for all a, b ∈ [0, e].

1That is, a map f : (M,dM )→ (N, dN ) satisfying dN (f(x), f(y)) ≤ dM (x, y) for all x, y ∈M .D
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276 PETER BUBENIK, VIN DE SILVA, AND VIDIT NANDA

Note in general that the interpolating family Ut is not unique, and that this lemma need
not hold for general categories CR. (We will describe additional hypotheses on C under which
the interpolation lemma holds for CR in Proposition 4.2.)

As mentioned in the introduction, our main result is a higher interpolation lemma. A
simple example illustrating that higher interpolations are not always possible may be found
in [14], and we will reproduce it here in section 2.3. On the other hand, a pathway towards
the desired generalization is provided by the following sharp interpolation lemma: not only
can one find an interpolating family of modules, but one can also find a compatible family of
interleaving maps between them.

Lemma 2.5 (see [10]). Given persistence modules U0 and Ue along with morphisms Φ :
U0 → UeTe and Ψ : Ue → U0Te which realize an e-interleaving, there exist

(1) persistence modules {Ua | a ∈ (0, e)}, and
(2) module morphisms Φb

a : Ua → UbTb−a and Ψa
b : Ub → UaTb−a for all a ≤ b in [0, e],

so that
(3) Φe

0 = Φ and Ψ0
e = Ψ,

(4) Φb
a and Ψa

b realize a (b− a)-interleaving between Ua and Ub, and
(5) (Φc

bTb−a)Φ
b
a = Φc

a and (Ψb
cTb−a)Ψ

a
b = Ψa

c hold for all a ≤ b ≤ c in [0, e].

In general, the intermediate modules Ua and maps Φb
a and Ψa

b are not uniquely defined.

2.3. Failure of higher interpolation. The main result of [13] asserts that (isomorphism
classes of) tame2 persistence modules are faithfully represented by their persistence diagrams
[8, 11, 25], which are multisets of points in the upper half-plane.3 Moreover, these diagrams
admit a bottleneck distance dBot and the following isometry theorem establishes that the as-
signment dgm which sends a (tame) persistence module to its corresponding diagram preserves
distances.

Theorem 2.6 (see [6, 10, 19]). The equality

dInt(U, V ) = dBot(dgm U,dgm V )

holds across all pairs U, V of tame persistence modules.4

It was shown in [14] that higher interpolations may fail to exist even for simple choices of
A ↪→M .

Example 2.7. Let (A, d) be the three-point metric space {x1, x2, x3} with d(xi, xj) = 1 for
i 6= j, and let M be A together with x0 where d(x0, xi) = 1

2 for i ≥ 1. Let f : A→Modo be
the function whose images f(xj) prescribe the three persistence diagrams shown in Figure 1.
Growing a ball of radius one (in the L∞ norm) around points in any one diagram subsumes
points in the other two diagrams, whence the pairwise bottleneck distances satisfy

dBot(dgm f(xi),dgm f(xj)) = 1 for i 6= j.

2These are modules U : R→ Vect for which U(t) is finite-dimensional for each t.
3To be precise, one needs to take decorated persistence diagrams [10]. This result extends to the q-tame

modules described in [9, 10].
4This result also holds for q-tame persistence modules [10].D
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Figure 1. Three overlaid persistence diagrams ∆,×, and •. The corresponding persistence modules have
pairwise interleaving distance 1, but there is no persistence module within distance e of all three for any e < 1.

Note that any one of these diagrams lies at distance exactly 1 from the other two. However,
no persistence diagram is within distance < 1 of each of the three persistence diagrams in
Figure 1. Thus, it follows from the isometry theorem that there is no tame persistence module
which may be assigned to x0 in any extension of f without strictly increasing the Lipschitz
constant.

This sharp interpolation lemma suggests the reason for the failure of the higher-order
interpolation in Example 2.7: the 1-interleavings do not satisfy the compatibility condition (5).

3. Categories from metric spaces. In Theorem 2.3 we defined the persistence module
functor •R : Cat→Met. The central goal of this section is to describe the construction of a
functor Met→ Cat, whose interaction with •R will be of crucial importance in the proof of
our main result. To this end, consider (M,d) ∈Meto, and let MR denote the product M ×R
equipped with the binary relation

(x, s) ≤M (y, t) if and only if d(x, y) ≤ t− s.

Henceforth, we will often drop the subscript and simply write (x, s) ≤ (y, t), relying on context
for clarity. We call MR the spacetime of M , and illustrate an instance of it in Figure 2. The
following result is straightforward.

Proposition 3.1. The relation ≤ induces a preorder on MR. Moreover, if d is a genuine
metric in the sense that d(x, y) = 0 holds only for x = y, then ≤ induces a partial order on
MR.

Proof. Since d(x, x) = 0, we have reflexivity: (x, s) ≤ (x, s). Turning to transitivity,
assume (x, s) ≤ (y, t) and (y, t) ≤ (z, u). By the triangle inequality, we have

d(x, z) ≤ d(x, y) + d(y, z) ≤ (t− s) + (u− t) = u− s.D
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Figure 2. An illustration of the order ≤ on MR in the special case where M = R with the usual metric.
Given (x, s) ∈ MR, the lighter region consists of the up-set (y, t) ≥ (x, s) while the darker region consists of
the down-set. The up-set is inside the future light cone and the down-set is inside the past light cone.

Hence, (x, s) ≤ (z, u) and thus ≤ is transitive. Finally, if (x, s) ≤ (y, t) ≤ (x, s), then
0 ≤ d(x, y) ≤ min(s − t, t − s). Thus, s = t. and we have antisymmetry only if d(x, y) = 0
forces x = y in M .

Since MR is a preordered set, it may be treated as a thin category.5 Given a 1-Lipschitz
map f ∈Met(M,N), define fR : MR→ NR via the mapping (x, s) 7→ (f(x), s).

Theorem 3.2. The assignment •R prescribes a functor Met → Cat, which we call the
spacetime functor.

Proof. We first confirm that fR : MR → NR is a morphism in Cat whenever f :
(M,dM ) → (N, dN ) is 1-Lipschitz. If (x, s) ≤ (y, t), we have dM (x, y) ≤ t − s. Since f
is 1-Lipschitz, we obtain dN (f(x), f(y)) ≤ dM (x, y) ≤ t− s. Thus, by definition,

fR(x, s) = (f(x), s) ≤N (f(y), t) = fR(y, t).

Thus, fR is order-preserving. It is easy to confirm that 1MR = 1MR, so we turn to the task

of establishing functoriality. Consider M
f−→ N

g−→ P in Met, and note that

gR ◦ fR(x, s) = gR(f(x), s) = (gf(x), s) = [(gf)R](x, s),

which concludes the proof.

With the existence of the spacetime functor •R : Met→ Cat established, one might hope
for an adjunction with the persistence module functor •R : Cat → Met from Theorem 2.3.
If such an adjunction existed, then for each metric space M ∈Meto and category C ∈ Cato,
we would expect a natural bijection of sets between

Cat(MR,C) and Met(M,CR),

i.e., the set of functors from MR to C would correspond with 1-Lipschitz maps from M to
CR. Example 2.7 confirms that there is no such bijection in general, whence our functors •R

5A category is thin if it admits at most one morphism between any pair of objects.D
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and •R do not constitute an adjoint pair. Instead, we seek solace in the existence of a unit,
as described below.

Let F denote the endofunctor on Met arising from the following composition:

(3.1) F : Met
•R−→ Cat

•R−−→Met.

Chasing definitions, one can explicitly describe the effect of F on the objects and morphisms
of Met: each metric space M is mapped to MRR (with the interleaving distance), and every
1-Lipschitz f : M → N is sent to the map MRR → NRR which takes U : R → MR to
fR ◦ U : R → NR. Note that the objects of F (M) consist of world lines in the spacetime
of M .

Theorem 3.3. The functor F admits a natural transformation η : IMet ⇒ F from the
identity endofunctor on Met. Furthermore, for each metric space M , ηM is the isometric
embedding of M into the metric space of persistence modules valued in MR given by the
constant world lines in the spacetime MR.

Proof. For each (M,dM ) ∈Meto, we require a 1-Lipschitz map ηM in Met(M,FM) which
sends points of M to functors R→MR. We provisionally define this map as follows: for each
x ∈ M , let ηM (x) be the functor which sends s ∈ R to (x, s) and s ≤ t to (x, s) ≤ (x, t). To
check that the latter inequality holds in MR, we verify that dM (x, x) ≤ t− s. This definition
sends identities to identities and respects composition since MR is a thin category. Thus,
ηM (x) is indeed a functor.

Next, we confirm that ηM is 1-Lipschitz. Letting x and y be points in M with e =
dM (x, y), it suffices to construct an e-interleaving between ηM (x) and ηM (y). By definition,
(x, s) ≤ (y, t) if and only if dM (x, y) ≤ t− s. Thus, we have the inequalities

(3.2) (x, s) ≤ (y, s+ e) for all s ∈ R,

whose images under •R yield a morphism Φ : ηM (x) → ηM (y)Te in FM = MRR. And
similarly, we have the inequalities

(3.3) (y, t) ≤ (x, t+ e) for all t ∈ R,

whose images under •R assemble into a morphism Ψ : ηM (y) → ηM (x)Te in FM . One can
readily check that Φ and Ψ furnish the desired e-interleaving of ηM (x) and ηM (y): since MR
is a thin category, the diagrams from Definition 2.2 must commute. Thus, ηM : M → FM is
1-Lipschitz as desired.

Note that because (x, s) ≤ (y, t) if and only if dM (x, y) ≤ t− s, there is no smaller value
than e for which the inequalities (3.2) and (3.3) hold. Thus ηM (x) and ηM (y) are not e′-
interleaved for any e′ < e. Therefore, the interleaving distance between ηM (x) and ηM (y) is
e, and ηM is in fact an isometric embedding.

Finally, we check that the assignment x 7→ ηM (x) prescribes a natural transformation.D
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Given f : (M,dM )→ (N, dN ) in Met, we must verify that the following diagram commutes:

M
ηM //

f

��

FM

Ff

��
N ηN

// FN

Pick any x ∈M . For all s ∈ R, we have(
[Ff ◦ ηM ](x)

)
(s) = Ff(x, s)

= (f(x), s) =
(
[ηN ◦ f ](x)

)
(s);

thus, our diagram commutes and η is a natural transformation.

4. Coherence and higher interpolation. Throughout this section, we fix a choice of cat-
egory C and metric space A ∈Met. We also let η : IMet ⇒ F be the natural transformation
from the proof of Theorem 3.3. For a functor G : AR→ C, define θ(G) = GR ◦ ηA:

(4.1) A
ηA−→ FA = ARR GR

−−→ CR.

Definition 4.1. The 1-Lipschitz functions g : A→ CR
o which lie in the image of θ are called

coherent. In the special case where C = Vect, such functions are called coherent persistence
modules.

By definition, for every coherent 1-Lipschitz map g : A → CR there is some functor
G : AR → C satisfying g = θ(G). The map GR now serves as an extension of g across
ηA : A→ ARR because the following diagram commutes by the definition of θ:

(4.2) A
g //

ηA
��

CR

ARR
GR

<<

If A isometrically embeds into a larger metric space M ∈ Met, then it is easy to check
that AR is a full subcategory of MR. Given any functor G : AR→ C, one has the following
functor extension problem:

(4.3) AR G //
_�

��

C

MR
Ĝ

==

Recall that the category C is (co)complete if it has all (co)limits. The solution to prob-
lems such as (4.3) for functors taking values in (co)complete categories is furnished by Kan
extensions [20, Chap. X].

Proposition 4.2. An extension Ĝ of G exists under any of the following circumstances:D
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• If C is cocomplete, we can take Ĝ to be the left Kan extension LanG of G.
• If C is complete, we can take Ĝ to be the right Kan extension RanG of G.
• If C is bicomplete and abelian, we can take Ĝ to be the image of the universal natural

transformation LanG⇒ RanG.

If C = Vect (as in the case of persistence modules), then we have all three extensions,
but if C = Top (as in the case of filtered topological spaces), then we only have the left and
right extensions. The following theorem is the main result of this paper.

Theorem 4.3. Let A be the subspace of a metric space M ∈ Met, and assume that the
1-Lipschitz map g : A → CR

o is coherent. If C is (co)complete, then g admits a coherent
1-Lipschitz extension ĝ : M → CR

o .

Proof. Since g is coherent, it equals θ(G) for some functor G : AR → C. By Proposition
4.2 and the (co)completeness hypothesis on C, there is an extension Ĝ : MR→ C of G as in
(4.3). Note that the following diagram of metric spaces and 1-Lipschitz maps commutes:

A_�

��

ηA // ARR
_�

��

GR
// CR

M ηM
//MRR

ĜR

;;

The square on the left commutes because η is a natural transformation. The triangle on the
right commutes since GR(F ) = G ◦ F = Ĝ ◦ i ◦ F = ĜR(i(F )), where i : AR ↪→MR and the
middle equality is by (4.3). Since the composite in the top row of our diagram equals g, it is
immediately seen that the desired extension ĝ : M → CR is given by θ(Ĝ) = ĜR ◦ ηM .

The C = Vect specialization of Theorem 4.3 yields the higher interpolation lemma
promised in the introduction. In this case, for a given G satisfying θ(G) = g we have at
least three possible choices6 of Ĝ arising from Proposition 4.2. Regardless of which Ĝ is cho-
sen, the map θ(Ĝ) is itself coherent by construction, and hence admits further extensions to
larger metric spaces.

5. Consequences. In this section we describe some applications of Theorem 4.3.

5.1. Discrete and continuous interpolation. Let U1, . . . , Un be a collection of n ≥ 1
persistence modules, and let e ≥ 0 be a fixed constant. Assume further that Ui and Uj are
2e-interleaved for all i 6= j. Let A = {a1, . . . , an} be the metric space where all nontrivial
distances d(ai, aj) equal 2e, and note that we may describe each Ui as the image g(ai) of a 1-
Lipschitz map g : A→Modo. Recall the translation functor T and the natural transformation
σ as defined in section 2.2. The following result provides an easily computable criterion for
coherence (compare with Lemma 2.5 as well as [14, Thm. 4.2]).

Proposition 5.1. The map g : A → Modo is coherent if and only if for all distinct i, j in
{1, . . . , n} there exist morphisms Φij : Ui → UjT2e in Mod satisfying:

6For explicit calculations and a comparison of all three extensions in the context of the sharp interpolation
lemma, consult [10, sect. 3.5] (and particularly Proposition 3.6 therein). The image extension is optimal among
the three in the sense that it satisfies two universal properties instead of one.D
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(1) (ΦjiT2e) ◦ Φij = Uiσ4e for all distinct i, j, and
(2) (ΦjkT2e) ◦ Φij = ΦikT2e for all distinct i, j, k.

Proof. Assume first that g is coherent, so there exists a functor G : AR→ Vect satisfying
g = GR◦ηA. To define the desired morphisms Φij : Ui → UjT2e in Mod, it suffices to construct
linear maps Φij(s) : Ui(s)→ Uj(s+2e) indexed by s ∈ R and i, j ≤ n (subject to the constraint
that diagrams from Definition 2.2 commute). To this end, note that (ai, s) ≤ (aj , s + 2e) in
AR because d(ai, aj) ≤ 2e in A by assumption. Define Φij(s) to be the image under G of
(ai, s) ≤ (aj , s+2e). Since AR is a thin category and G is a functor, all the required diagrams
commute and the two desired properties follow.

On the other hand, assume the existence of maps Φij satisfying the two properties from
the statement of this proposition. We will use them to define a functor G : AR→ Vect which
renders g coherent by satisfying θ(G) = g. Set G(ai, t) = Ui(t) for all i ≤ n and t ∈ R. Given
(ai, s) ≤ (aj , t) in AR, we either have t − s ≥ 2e = d(ai, aj) if i 6= j or simply t − s ≥ 0 if
i = j; thus, define

G ((ai, s) ≤ (aj , t)) =

{
Φij(s) ◦ T(t−s)−2e, i 6= j,

Uiσt−s, i = j.

Straightforward calculations confirm that G is a functor, and that θ(G) = g.

Let M be the metric space which consists of A above, along with an additional point
a so that d(a, ai) = e. The discrete interpolation problem for persistence modules seeks to
extend our 1-Lipschitz map g : A → Modo to a 1-Lipschitz map ĝ : M → Modo across
the obvious inclusion A ↪→ M . On the other hand, the continuous interpolation problem
for persistence modules seeks an extension of g across the inclusion of A as vertices of the
standard (n− 1)-simplex Σ ⊂ Rn, given by

Σ =
{

(x1, . . . , xn) ∈ Rn | x1 + · · ·+ xn =
√

2e and xj ≥ 0
}
.

It follows immediately from Theorem 4.3 that the discrete and continuous interpolation
problems both admit solutions (in triplicate) whenever the modules U1, . . . , Un are connected
by morphisms Φij which satisfy the two properties from Proposition 5.1. Note that in the
latter case, g extends not only to Σ but to Rn.

5.2. Čech and Rips complexes of persistence modules. Let (M,dM ) be an ambient
metric space with a distinguished subspace A ⊂ M . We recall the Vietoris–Rips complex V
and the Čech complex C on A. Both are abstract simplicial complexes filtered by a single
nonnegative real parameter; their vertices are the points of A, but the construction of higher-
dimensional simplices sets them apart. In particular, a collection [a0, . . . , an] of points in A
forms an n-simplex

(1) in V(A, e) if and only if dM (ai, aj) ≤ e for 0 ≤ i < j ≤ n, and
(2) in C(A, e) if and only if some b in M satisfies dM (ai, b) ≤ e for 0 ≤ i ≤ n.

Any b which is within distance e of all the points [a0, . . . , an] is called an e-witness for those
points. It is well-known and immediate from the definitions that for each e ≥ 0 one always
has the following simplicial sandwich:

C(A, e) ↪→ V(A, 2e) ↪→ C(A, 2e),D
ow

nl
oa

de
d 

09
/2

5/
17

 to
 1

73
.4

4.
34

.1
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGHER INTERPOLATION FOR PERSISTENCE MODULES 283

where the first inclusion follows directly from the triangle inequality, and the second follows
from the fact that any ai serves as a 2e-witness for a simplex [a0, . . . , an] in V(A, 2e).

We may ask if these inclusions are tight. For the first inclusion, assume that M is a path
metric space (e.g., Modo), and that there exist a0, a1 ∈ A with dM (a0, a1) = 2e+ δ for some
δ > 0. Then [a0, a1] is not a 1-simplex in V(A, 2e) and there exists a path from a0 to a1 with
length at most 2e + 2δ. The midpoint of this path is a (e + δ)-witness for [a0, a1], which is
therefore a 1-simplex in C(A, e + δ). Thus C(A, e + δ) 6↪→ V(A, 2e) for δ > 0. The second
inclusion V(A, 2e) ↪→ C(A, 2e) might be improved, depending on M . For example, V(A, 2e)
always includes into C(A, 2e/

√
3) whenever A is a subset of R2 with the standard Euclidean

metric.
When working within Modo, one typically strengthens the requirements in the definitions

of Rips and Čech complexes slightly since the infimum over interleavings may not actually be
attained. In particular, a collection [U0, . . . , Un] of persistence modules forms an n-simplex

(1) in V(Modo, e) if and only if Ui and Uj are e-interleaved for all 0 ≤ i < j ≤ n, and
(2) in C(Modo, e) if and only if some V is e-interleaved with Ui for all 0 ≤ i ≤ n.
It is straightforward to check that V(Modo, 2e) does not include into C(Modo, d) for

any d < 2e by appealing to Figure 1 and the isometry theorem. On the other hand, the
following result from [14] characterizes those simplices of V(Modo, 2e) which do include into
C(Modo, e).

Theorem 5.2. Let U0, . . . , Un be a collection of persistence modules, and let e ≥ 0. Then,
[U0, . . . , Un] is an n-simplex in C(Modo, e) if and only if there exist morphisms Φij for i 6= j
which satisfy the conditions of Proposition 5.1.

Thus, a simplex in V(Modo, 2e) forms a simplex in C(Modo, e) if and only if the module
morphisms which realize the pairwise 2e-interleavings can be chosen to commute (up to factors
of the natural transformation σ). From our perspective here, the preceding result is a direct
consequence of the discrete interpolation discussed in section 5.1.

Acknowledgment. The authors are indebted to the anonymous referees for their thought-
ful comments and suggestions.
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