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Abstract This article is a user’s guide to algebraic topological methods for data
analysis with a particular focus on applications to datasets arising in experimental
biology. We begin with the combinatorics and geometry of simplicial complexes
and outline the standard techniques for imposing filtered simplicial structures on a
general class of datasets. From these structures, one computes topological statistics
of the original data via the algebraic theory of (persistent) homology. These statistics
are shown to be computable and robust measures of the shape underlying a dataset.
Finally, we showcase some appealing instances of topology-driven inference in
biological settings, from the detection of a new type of breast cancer to the analysis
of various neural structures.

1 Introduction

Recent advances in genomics [40] have made it possible to sequence the entire DNA
of an individual from a very small amount of that person’s genetic material, say
in the form of a saliva sample or a hair follicle. For each individual, one obtains
as the raw output of this full sequencing process an ordered list of roughly 15

billion letters, representing the base pairs which comprise that person’s DNA. This
technological achievement is absolutely amazing in itself, but in all probability the
bulk of its benefits will materialize over time as scientists analyze the structure of
such sequences in detail. Now consider another marvel of modern engineering: the
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Fig. 1 A dataset consisting
of points sampled from a
circle. Although traditional
line-fitting methods are likely
to be uninsightful for such
datasets, the methods of
persistent homology can
extract knowledge about the
underlying shape from the
point samples alone

Protein Data Bank [39] contains a wealth of structural information about protein
molecules, down to the location of individual atom centers. Again, the fact that such
data can now be effectively measured and collected is fascinating, but ideally one
desires the ability to understand how the physical structure of a protein relates to its
role in the body.

In both cases, one is confronted with enormous quantities of high-dimensional
data prone to the usual amounts of noise or errors. From such data, one would
like to extract robust, qualitative information and gain insight into the processes
which generated the data in the first place. The standard toolkit for such inference
is statistical at its core, and it provides computable, noise-tolerant answers to
questions such as “what does the average data point look like?” or “what is the line
or plane of best fit through the data?” These statistical tools are well understood,
accessible to the experimentalist with a rudimentary mathematical background, and
efficiently implemented in various standard software packages.

However, when the experimental data in question is produced by an essentially
nonlinear process, the utility of our ordinary statistical tools is somewhat diminished
even in the simplest of cases. Consider the dataset of Fig. 1, consisting of points
sampled uniformly from a large circular figure sitting in the plane. With high
probability, the average point lies near the center (but far away from the actual
circle), and there is no reasonable line of best fit. It is not clear how to recover
knowledge about the circle from statistics alone. Perhaps one might get lucky by
noticing that the mean is roughly equidistant from all the data points, but it is
easy to create slightly more complicated examples where recovering the underlying
objects with any reasonable degree of accuracy from the standard statistical tools
becomes hopeless. Thus, one might ask, is there a complementary set of tools which
detects the shape of the object underlying a dataset?

A partial answer to this question comes from a previously esoteric branch
of mathematics called algebraic topology. In particular, the theory of persistent
homology has witnessed some success in the context of analyzing large-scale
nonlinear data [16]. The basic idea behind this theory is to build an increasing
family of simplicial complexes (indexed by a scale parameter) around the data points
while carefully keeping track of the appearance and disappearance of topological
features – connected components, tunnels, cavities, and their higher-dimensional
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cousins – as the scale parameter is increased. Numerous applications of persistent
homology to various problems in the experimental sciences have been thoroughly
documented elsewhere [4, 13, 18].

Although one can easily find efficient software [24, 29] for computing the
persistent homology of filtered simplicial complexes, two key obstacles undermine
the effective use of persistent homology to analyze experimental data. The first
obstacle is an issue of input: how should one build a simplicial complex that
captures the interesting aspects of one’s data? The second issue involves the
output: how does one make inferences about the data from the persistent homology
of the input complex? With these issues in mind, the purpose of our work is
threefold.

1. We provide a gentle and example-filled introduction to the mathematical theory
which underlies (filtered) simplicial complexes. Starting with elementary com-
binatorial properties, we describe the connection between simplicial complexes
and piecewise-linear geometry. We also discuss those algebraic objects which
generate persistent homology, how they relate to simplicial geometry, and how
one computes them in practice.

2. We highlight the standard methods of constructing filtered simplicial complexes
around point cloud data via the Vietoris–Rips and Čech filtrations. We mention
the relative advantages and disadvantages of these filtrations.

3. We showcase some examples of persistent homology in action on biological
data. Recent applications have involved detection of a certain subtype of breast
cancer [31] and yielded insight into the nature of neural activity – of crickets [3],
monkeys, and rats [35]!

The outline of this chapter is as follows. The fundamentals of simplicial
complexes and their filtrations are described in Sect. 2. Section 3 contains the core
ideas needed for establishing connections between experimental data and filtrations.
Section 4 describes the linear algebra of (persistent) homology and formally defines
the topological features which can be detected by the theory. Finally, in Sect. 5, we
survey several biological applications of persistent homology and closely related
topological methods.

2 The Yoga of Simplicial Complexes

Our main goal throughout this Sect. 2 is to understand simplicial complexes and
various related constructions. These combinatorial objects serve as a bridge between
the discrete, computable world of data on one side and the continuous realm of
geometric or topological spaces on the other. Our presentation here is far from
complete, so we invite the interested reader to consult the wonderful texts of
Munkres [28, Chaps. 1 and 2] and Spanier [36, Chap. 3] for the many gory details
which we have omitted.
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2.1 Simplicial Complexes

We start with a finite set V , whose elements we call vertices. A simplicial complex
with vertex set V is a collection K of subsets of V which is closed under inclusion.
More precisely, we require that the following two conditions hold:

• For each vertex v in V , the one-element set fvg lies in K , and
• If 	 is in K and � 	 	 is a subset, then � is also in K .

Each element 	 of K is called a simplex, and its dimension (written dim 	) is defined
to be #.	/� 1, where # denotes the cardinality (i.e., it counts the number of vertices
of 	). Any subset � of 	 is called a face of 	 , and this relationship is denoted
by �  	 . We write Kd to indicate the collection of d -dimensional simplices
in K for each d � 0. It is clear from the first property of simplicial complexes
that the elements of V correspond in a one-to-one manner with those of K0, and
it is therefore customary to speak of the two sets interchangeably. Consequently,
one often encounters phrases resembling “let K be a simplicial complex” with no
explicit mention of the underlying vertex set. Before proceeding any further, we will
examine a small simplicial complex in some detail.

Example 1. Given a vertex set V D fa; b; : : : ; f; gg, we may construct a simplicial
complex K in layers, one dimension at a time. We denote subsets of V by their
elements in alphabetical order, so that fa; b; cg is simply written abc. As we have
already seen, K0 is completely determined by V . Next, K1 can contain any pair of
distinct vertices in V and there is some freedom to choose such pairs. For instance,
we can select

K1 D fab; ac; ae; bc; bd; be; bg; cd; cg; dg; ef g :

Fixing K1 immediately constrains which simplices can lie in K2. For instance, abe is
allowed in K2, since all of its one-dimensional faces ab; ae; be are in K1. However,
acd is banned because ad � acd but ad is not present in K1. We add the following
(legal!) two-dimensional simplices to K:

K2 D fabe; bcg; bcd; bdg; cdgg ;

and note that the only three-dimensional simplex whose faces all exist in K2 is bcdg.
Let us include that simplex as well, and we obtain

K3 D fbcdgg :

No four-dimensional simplices are allowed, since the presence of a single such
simplex would require K3 to have at least four elements, so our K is just the union of
Kd for d in f0; 1; 2; 3g. This complex K is reasonably small and low-dimensional;
it is often useful to visualize such simplicial complexes as embedded in Euclidean
space (see Fig. 2).
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Fig. 2 A pictorial representation of the simplicial complex K of Example 1 with points repre-
senting vertices. The lines, triangles, and tetrahedra stand in for one, two, and three-dimensional
simplices, respectively. We note that K consists of a single connected component and that the
1-simplices ab; ac; bc form a loop

2.2 Subcomplexes, Filtrations, and Sublevelsets

Let K be any simplicial complex. A subcollection L of simplices from K which
forms a simplicial complex in its own right is called a subcomplex of L, written
L ,!K . In other words, if a simplex 	 lies in L, then all of its faces in K are also
present in L. In general, the vertex set of L may be strictly smaller than that of K ,
with equality only occurring when L0 D K0. The reader may enjoy proving the
following result, but we have our doubts.

Proposition 1. If simplicial complexes K , L, and M satisfy L ,!K and K ,!M ,
then we also have L ,!M .

Let N � 1 be a natural number and K a simplicial complex. A filtration F of
the simplicial complex K is a nested collection of subcomplexes FnK ,!K for n

in f0; : : : ; N g which ascends from the empty set ; all the way up to K like this:

; D F0K ,!F1K ,!F2K ,! � � � ,!FN �1K ,!FN K D K:

Here, N is called the length of F . The simplicial complex K trivially forms a
length-1 filtration, since we have ; 	 K . A slightly less obvious filtration could be
constructed by dimension: let FnK be the collection of all simplices of dimension
at most n. But we will consider a more interesting example. In particular, we would
like to illustrate the fact that the process of building K from subcomplexes along F
causes various interesting intermediate features to appear and disappear.

Example 2. Let K be the simplicial complex of Example 1. We will define a
filtration F of K which has length 4 by describing each subcomplex FnK
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individually. Since F0K is empty, we ignore it and move on to the first subcomplex,

F1K D fa; b; c; d; f; ac; cd; ebg :

There are three pieces in this subcomplex, as the first quarter of Fig. 3 reveals. Next,
we consider

F2K D F1K [ fg; ab; ae; bc; bd; ef ; bcdg ;

where [ indicates a union of sets. The addition of the vertex g adds yet another
piece to the three already present in F1K , but ab and ef join three of those pieces
into a single large component. The sequences .ab; ae; be/ and .ab; ac; bc/ of one-
dimensional simplices form two loops. A similar loop formed by .bc; bd; cd/ is
immediately filled by the two-dimensional simplex bcd. Moving on, we define

F3K D F2K [ fabe; bcg; bdg; cdgg :

The simplex abe fills up the loop .ab; ae; be/ consisting of its faces. The addi-
tion of the other simplices reveals a new feature: a void, or cavity, formed by
.bcd; bcg; bdg; cdg/. This cavity is very different from the loops that we have
encountered before, in the sense that – at least as pictured in Fig. 3 – it encloses
a three-dimensional region rather than a planar one. Finally, we add

F4K D F3K [ fbcdgg ;

and this last simplex fills the cavity obtained from F3K .

Let K be any simplicial complex, and let N denote the natural numbers. Consider
a function g W K ! N which assigns to each simplex � a natural number
g.�/. Then, the sublevelset of g at the natural number n is defined by Sn.g/ D
f� 2 K j g.�/ � ng. Clearly, we have Sn.g/ 	 SnC1.g/ as sets. Unfortunately,
Sn.g/ is not always a subcomplex of K for arbitrary functions g: if g.�/ > n �
g.	/ with � � 	 , then Sn.g/ contains 	 but not its face � . It turns out that this is the
only obstruction to having a filtration by sublevelsets, so we will restrict our choice
of g to functions which avoid this behavior.

We call g W K ! N monotone if it increases with dimension along faces. Thus,
g is monotone (or order-preserving) if g.�/ � g.	/ whenever �  	 . In this case,
it is easy enough to check that setting

FnK D Sn.g/ D f	 2 K j g.	/ � ng

yields a filtration of K whose length equals the maximum number of distinct values
attained by g on K . One could also consider monotone maps g W K ! R to the real
numbers, but this would be largely for convenience. Since there are only finitely
many simplices in K , the image of g may assume only finitely many distinct real
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Fig. 3 An illustrated view of the filtration F defined in Example 2. Note that the intermediate
stages of the filtration look very different from K! A systematic study of the appearance and
disappearance of features such as connected components, loops, and cavities provides a coarse-
grained view of how K is incrementally built along its subcomplexes in F . See Example 2 for
details

values. Indexing these values fc1; : : : ; cN g in ascending order yields a one-to-one
monotone correspondence with a subset of N: just send cn to n. Thus, an R-valued
g can easily be replaced by an N-valued cousin with no essential change in the
structure of the sublevelset filtration. Sublevelset filtrations are ubiquitous for the
following simple reason.

Proposition 2. For any filtration F of a simplicial complex K , there is a unique
monotone function g W K ! N such that F is the sublevelset filtration of g.

The proof is easy: let g be the function that sends each simplex � in K to
the smallest n such that � is a simplex in FnK . The reader may wish to check,
for example, that setting g.�/ D dim.�/ retrieves the filtration by dimensions
mentioned before Example 2.

2.3 The Geometry of Simplices: Realizations
and Simplicial Maps

As we have remarked before, a primary advantage of simplicial complexes is their
ability to interface between discrete and continuous spaces. When we visualize
simplicial complexes (see Fig. 2, for example), we use nondiscrete geometric objects
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such as lines, triangles, and tetrahedra. The reader may have noticed that much of
the terminology for simplicial complexes (for instance “dimension” and “vertex”)
appears to have been borrowed from corresponding notions for these familiar and
concrete geometric objects. There is a standard protocol underlying this dictionary
between simplices and these objects, which we will now describe. All that is
assumed of the reader is a basic understanding of d -dimensional Euclidean real
space Rd , each point of which consists of an ordered sequence of d real numbers.
For each j between 1 and d , the j -th basis vector ej of Rd is identified with the
point which contains a 1 in the j -th component and 0’s everywhere else.

We fix a dimension d , and let u D fu1; : : : ; uM g be a collection of M � 1

points in Rd . A convex combination of these points is any point in Rd which can be
expressed as an R-linear combination

x D p1u1 C � � � C pM uM ;

where each coefficient pm is nonnegative and the sum p1 C � � � C pM of all these
coefficients equals 1. The convex hull of this collection u is the set of all such
convex combinations,1 and we denote this subset of Rd by Conv.u/. Now let
v D fv1; : : : ; vN g be another collection of points in Rd , and assume that we are
given a map 
 W u ! v. Then, 
 provides a standard and fairly obvious recipe for
concocting a map N
 W Conv.u/! Conv.v/ as follows:

N
.p1u1 C � � � C pM uM / D p1
.u1/C � � � C pM 
.uM /:

If we restrict our attention to the subcollection u0 of u and let 
 be the inclusion
map u0 ! u, we immediately see that Conv.u0/ 	 Conv.u/. The d -dimensional
standard simplex �d 	 RdC1 is defined to be Conv.e1; : : : ; edC1/, the convex hull
of the basis elements of RdC1. Equivalently,

�d D ˚.x1; : : : ; xdC1/ j each xj � 0 and x0 C � � � C xdC1 D 1
�

:

For example, �2 is the two-dimensional triangle determined by the standard basis
vectors e1 D .1; 0; 0/, e2 D .0; 1; 0/ and e3 D .0; 0; 1/ in three-dimensional
Euclidean space.

Let K be a simplicial complex with d C 1 vertices, which we order as
fv1; : : : ; vdC1g. We will construct a concrete subset jKj of the standard simplex
�d , which is the canonical geometric space associated to K . For each simplex

1It is easy to work out that the convex hull of two points is the line segment connecting them, and
that the convex hull of three points (which do not all lie on the same line) is the triangle containing
those three points as vertices. In higher dimensions and with many more points, things become less
obvious. Determining convex hulls is a fundamental problem in computational geometry.
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� in K consisting of vertices fvi1 ; : : : ; vimg, we first define j� j 	 �d by j� j D
Conv.ei1 ; : : : ; eim/.

Definition 1. The geometric realization jKj 	 �d of K is the union of all j� j as �

ranges over simplices in K .

Thus, a counterpart to K has been delineated within �d as a concrete geometric
object. Before being completely satisfied with this definition, however, one might
wonder: what happens if we order the vertices fv1; : : : ; vdC1g differently? In order to
arrive at a satisfactory answer, we must understand when two simplicial complexes
are considered equivalent; for this purpose, we turn our attention to simplicial maps.
These maps will require a domain and a range, so let K and L be simplicial
complexes with vertex sets U and V , respectively.

Definition 2. A simplicial map � W K ! L assigns to each vertex u in U a vertex
�.u/ in V so that the image of each simplex � 2 K constitutes a simplex �.�/ 2 L.

Here, by �.�/ we mean the set of vertices in V obtained by mapping each vertex of
� by � into V . We have already seen examples of simplicial maps: if K ,!L, then
the map sending each vertex of K to itself as a vertex of L is simplicial. It turns
out that any simplicial map � W K ! L induces a continuous function of geometric
realizations, which we denote by j�j W jKj ! jLj. This map acts exactly as one
would expect. Namely, we note first that jKj is a union of realizations of simplices
j� j where � 2 K , so it suffices to understand how each individual j� j is mapped by
j�j. Since � maps the vertices of � into the vertices of its image �.�/, the map N�
linearly maps the convex hull j� j into the convex hull j�.�/j. We define the function
j�j to be that transformation from jKj to jLj which acts on each j� j 	 jKj as the
linear map N�. Thus, although j�j W jKj ! jLj itself may not be a linear map, its
action on each convex piece j� j of jKj is linear. For this reason, the continuous maps
between realizations induced by simplicial maps are often called piecewise-linear
maps.

The reader is warned that arbitrary simplicial maps do not preserve dimension:
one might have dim �.�/ < dim � if � is not one-to-one on the vertices of � . On
the other hand, if � is a bijection – a map that associates each vertex of U to a single
vertex of V and vice versa – then not only are dimensions preserved, but also the net
effect of mapping K into L via � is essentially that of relabeling the vertices. In such
a case, K and L are called isomorphic and we write K ' L. Although the geometric
realizations jKj and jLj might disagree in terms of exactly how they sit in Rd , they
are topologically (and indeed, geometrically) equivalent because an invertible linear
transformation of Rd (i.e., an invertible matrix) maps jKj to jLj, with its inverse
taking jLj back into jKj. More precisely, any simplicial map � W K ! L induces a
map from the basis of R#U to that of R#V as follows:

basis element vertex of K vertex of L basis element:�� ��' ��
�

�� ��'
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Following this diagram from left to right produces a matrix which maps �#U �1 to
�#V �1 so that the image of jKj is contained inside jLj. In the special case where �

is a bijection of vertices, this matrix is invertible. It is in this sense that simplicial
complexes (up to equivalence by isomorphism) are uniquely associated with their
geometric realizations (up to equivalence by invertible linear transformations).

3 Constructing Filtrations Around Points

The process of conducting experiments and collecting data is, by its very nature, the
crux of all experimental science. Experimental data can take many forms, including
text, images, and even video. For our purposes, we will restrict our attention to a
very specific form of data: a point cloud. By a point cloud, we simply mean a finite
collection P of points in Rd for some suitable dimension d , and make no further
assumptions regarding the nature of P . We would like to remark here that it is
possible to construct faithful point cloud representations of just about any type of
data, although it may not be advantageous to do so because the dimension d might
become enormous.

A first step towards applying topological machinery to a point cloud is to
construct a filtration of a simplicial complex whose vertex set can in some way be
identified with P . We will discuss two standard filtrations that may be constructed
around point clouds. Along the way, we will try to highlight their relative advantages
and disadvantages.

The largest possible simplicial complex with vertex set P is, of course, the
complete simplicial complex, where every possible subset of P constitutes a
simplex. We will denote this complex by KP throughout this section.2 All the
filtrations that we encounter here will be – either implicitly or explicitly – filtrations
of KP .

There are many notions of distance that one can reasonably impose on Rd . For
any p � 1, we can consider the p-distance

dp.x; y/ D p

vuut dX
mD1

jxm � ymjp;

so that the familiar Euclidean distance is recovered when one sets p D 2. Another
option is the max-distance,

d1.x; y/ D max
1�m�d

fjxm � ymjg :

2In fact, KP consists of a single .#P � 1/-dimensional simplex along with all its faces!
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Fig. 4 An example of a
small point cloud sitting in
two-dimensional Euclidean
space. Note that the points
appear to have the shape of
two circles, one larger than
the other

The filtrations that one constructs around P 	 Rd depend on which notion of
distance is chosen. In order to provide the most flexibility, we will simply denote
the distance we use by d and leave the explicit choice to the reader.

For any positive real number r � 0 and a point x 2 Rd , we define the ball of
radius r around x as

Br.x/ D ˚y 2 Rd j d.x; y/ < r
�

:

The shape of this ball depends on the distance d. The reason for calling this type of
set a “ball” becomes clear when one uses the standard distance d2.

As a running example, we will consider a toy example of a point cloud in R2

as shown in Fig. 4. The exact coordinates of each point are relatively unimportant;
we are only seeking qualitative information. Thus, what we will focus on here is
the fact that the point cloud appears to contain two distinct loops, with the one on
the right-hand side having a larger diameter than the other. In our running example,
we will use the distance d2.

3.1 The Vietoris–Rips Filtration

Let P 	 Rd be our point cloud. One can compute all the pairwise distances
d.p; p0/ between pairs of points p and p0 in P . This data structure – consisting of P

along with the pairwise distances – suffices to construct the Vietoris–Rips filtration
(Fig. 5). At any given scale � � 0, we define the simplicial subcomplex V�KP of the
complete complex KP as follows. The vertex set is P , and each simplex � in V�KP

consists of a subcollection of vertices so that the pairwise distance between any two
is less than �. Let � 	 P be a subcollection of points .p1; : : : ; pm/. Restricting the
indices i and j to f1; : : : ; mg, we have

� is a simplex in V�KP if d.pi ; pj / < � for all i; j;

or equivalently,

� is a simplex in V�KP if B�=2.pi /\ B�=2.pj / ¤ ; for all i; j:
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Fig. 5 Two stages of the Vietoris–Rips filtration around the point cloud from Fig. 4. The scale �

increases from left to right, and the balls of radius � have been shown underlying the simplices.
The smaller loop is captured faithfully at the smaller � value, and the larger loop is captured at the
larger � value. But no single scale captures both!

Here \ stands for the intersection of sets.
It is easy to see that for any value of �, our definition of V� yields a genuine

simplicial complex. After all, if � is a simplex and 	 is a face of � , then the set of all
pairwise distances between vertices of 	 is contained in the set of the corresponding
pairwise distances of �’s vertices. On the other hand, we can also immediately check
that for ı > �, we have V�KP ,! VıKP because if all pairwise distances are less
than �, they are also less than ı.

We define the function gV W KP ! R as follows. For any simplex � in KP ,

gV .�/ D max
p;q in �

fd.p; q/g :

Whenever � � 	 , we obtain gV .�/ � gV .	/ because we are taking the maximum
over a larger set. Thus, g is monotone, and the following definition makes sense by
Proposition 2.

Definition 3. The Vietoris–Rips filtration around P 	 Rd is the sublevelset
filtration of gV .

We place the pairwise distances between points in P in ascending order, 0 �
�1 � � � � � �N , and note that we have

V�1KP ,! V�2 KP ,! � � � ,! V�N KP D KP :

In practice, one stops well short of constructing the Vietoris–Rips filtration all the
way up to �N , unless the number of points in P is very small. The reason for this is
simple: the complete complex KP contains as many simplices as there are nonempty
subsets of P , so its cardinality is 2#P � 1. Even for a tiny cloud containing only 40

points, building the full Vietoris–Rips filtration requires storing well over a trillion
simplices in system memory!
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Fig. 6 A collection of balls
in the plane with nonempty
pairwise intersection but no
triple intersection. The union
of these balls clearly encloses
a hole, which the overlaid
Vietoris–Rips filtration fails
to capture at the current
radius

Advantages. Pairwise distances are easily computable in most settings, so, at least
in principle, it is very easy to determine the scale at which a given simplex joins the
Vietoris–Rips filtration. Since one only requires knowledge of pairwise distances,
this filtration is extremely flexible in the sense that one can construct it around
extremely general data types. For instance, consider a situation where the data
arises from measuring correlations between various states of a complex system. In
this case, it may not be natural to try to embed these states as points in some Rd .
However, a knowledge of the pairwise correlations alone is enough to construct the
Vietoris–Rips complex!

Disadvantages. As we have already discussed, the Vietoris–Rips filtration is liable
to become gigantic in terms of the number of simplices because its size scales
exponentially with the number of points. Moreover, there is no control over the
dimensions of simplices that are built, even for small values of the scale �: if there
are 20 points with pairwise distances all less than �, then the 19-dimensional simplex
containing those points will belong to V�KP even if those points are sitting in two-
dimensional space! A subtler issue with these filtrations is that they are merely
approximations to the structure of the underlying space which do not recover its
structure accurately at each scale �. It is easy to construct – at least with the distance
d2 – three balls so that any pair intersects, but there is no common point in the
intersection of all three, thus forming a hole (see Fig. 6). However, the geometric
realization of the resulting Vietoris–Rips filtration at the given scale fails to capture
that hole, because it contains the two-dimensional simplex spanning the ball centers.

A description of efficient algorithms for constructing Vietoris–Rips filtrations
may be found in [41]. Most persistent-homology software packages (e.g., [29])
contain implementations of these algorithms.
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3.2 The Čech Filtration

Letting P 	 Rd be our point cloud and KP the complete simplicial complex with
vertex set P , we define a simplicial subcomplex C�KP of KP at each scale � > 0

in the following way. A subcollection � 	 P of points forms a simplex of C�KP if
there exists some point x in Rd whose distance3 from each vertex of � is at most �.
More precisely, let � D .p1; : : : ; pm/. Then,

� is a simplex in C�KP if d.x; pi / < � for all i and some fixed x;

or, equivalently,

� is a simplex in C�KP if the intersection
m\

j D1

B�.pi/ ¤ ;:

It is apparent that the construction of Čech filtrations depends crucially on the
following computation: given a collection � of points in Rd , what is the smallest
radius r so that there exists some point x in Rd whose distance from each point
in � is less than r? Discrete and computational geometers often refer to this
as the smallest enclosing ball problem: after all, the ball of radius r around x

encloses all the points in � and, by definition, it must be the smallest ball to do
so. Although there are various algorithms available to compute this minimal ball
(some sacrifice exactness for speed), in general (for large point sets sitting in high
dimensions) this is a complicated, nontrivial problem. Certainly, one requires a lot
more computational muscle than the simple pairwise distance calculations that must
be performed for constructing a Vietoris–Rips filtration.

Consider the function gC W KP ! R defined on the simplex � D
.p1; : : : ; pm/ by

gC .�/ D min
˚
r � 0 j there is an x in Rd with d.x; pj / < r for 1 � j � m

�
:

It is clear that gC is monotone; if 	 � � and some ball Br.x/ contains all the vertices
of � , then it also contains the subset of vertices which belong to 	 , and hence the
smallest enclosing ball for 	 can have radius no larger than r .

Definition 4. The Čech filtration around P 	 Rd is the sublevelset filtration of gC .

Since there are only finitely many simplices in KP , this function gC assumes
only finitely many values. Listing them in increasing order as 0 D �0 � �1 � � � � �
�N , one obtains

3This x is not necessarily a point in the cloud P , so typically the Čech filtration cannot be built
from knowledge of pairwise distances alone!
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Fig. 7 Two stages of the Čech filtration of the point cloud of Fig. 4. Note that there are fewer
simplices of dimension 2 and above when compared with Fig. 5 at the larger scale. For instance,
the two differently colored simplices are not present in the Čech filtration, although they are present
in the Vietoris–Rips filtration at the same scale

C�1 KP ,! C�2KP ,! � � � ,!C�N KP D KP :

The fact that higher-order intersections are taken into account when one is
building the Čech filtration incurs a computational burden, but there is a substantial
payoff. In particular, it follows from a result known as the nerve theorem that the
geometric realization jC�KP j is topologically equivalent4 to the union of all balls
B�.p/, where p ranges over the points in P .

Advantages. At each scale �, the Čech filtration is faithful to the topology of the
union of balls. In particular, keeping track of higher-order intersections allows one
to bypass the issue highlighted in Fig. 6: the two-dimensional simplex concerned
will not enter the Čech filtration until the scale where all three balls intersect, at
which point there is no loop. For the same reason, the Čech filtration at a given
scale is typically much smaller, in the sense that it contains fewer simplices than the
Vietoris–Rips filtration at the same scale: see Fig. 7.

Disadvantages. As we have already noted, the complexity of the enclosing
ball problem makes it difficult to construct Čech filtrations around point clouds
in dimensions exceeding 3. As with the Vietoris–Rips filtration, a cluster of
nearby points produces a simplex of high dimension regardless of the ambient
dimension d .

Algorithms to construct the Čech filtration are described in [11], and an
implementation is available as part of [24].

4This equivalence is up to a fundamental topological invariant known as homotopy.
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3.3 Other Filtrations

While the two filtrations mentioned above are the most common ones encountered
in practice, there are several other approaches to imposing simplicial structures on
point clouds. In particular, the witness complex filtration [12] attempts to reduce the
number of simplices by preprocessing the point cloud P itself as follows. We fix an
acceptable “fuzz” parameter ı > 0, and restrict our attention to a subset P 0 	 P

of landmark points so that no two are within ı of each other. This preprocessing
allows us to reduce the dimension (and hence the number) of simplices which
appear at each scale � > ı in either the Vietoris–Rips or the Čech filtration.
This computational advantage is not without a price, however: to the best of our
knowledge, there are no explicit results about how faithfully a witness complex
represents the topology of the underlying union of balls.

A drastically different approach, which is especially useful in low dimensions,
involves the use of filtered alpha complexes [15]. Although these complexes require
even more computational-geometry muscle to construct than the Čech filtration, the
benefits are immense. The nerve theorem applies in the context of alpha complexes,
so they are also topologically faithful to the underlying union of balls, like Čech
filtrations. At the same time, the dimension of the simplices encountered in an alpha
complex never exceeds d , the ambient Euclidean dimension!

4 Homology and Its Computation

Throughout the preceding sections, we have discussed various topological features –
such as loops and cavities – which appear in geometric realizations of simplicial
complexes or in the context of point clouds thickened into balls by some scale �. In
order to precisely understand the objects which encode and catalog such features, we
must turn to algebra. Any reader who experiences moral qualms about our descent
from the Olympus of geometric shapes to the Hades of algebraic formalism stands
in distinguished company:

Algebra is the offer made by the devil to the mathematician. The devil says: “I will give you
this powerful machine, it will answer any question you like. All you need to do is give me
your soul: give up geometry and you will have this marvellous machine.”

Sir Michael Atiyah

4.1 The Linear Algebra of Holes

The “marvellous machine” called homology detects “holes” of all dimensions
by using linear algebra. It associates to each simplicial complex K a collection
of algebraic objects Hd .K/ called homology groups, where d ranges over the
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dimensions of the simplices encountered in K . Given a simplicial map � W K ! L,
homology produces group homomorphisms ��

d W Hd .K/ ! Hd .L/. The type
of groups and homomorphisms that one obtains depends on the choice of some
underlying coefficient system. Here, we will use the real numbers R. In this setting,
each homology group is just some Euclidean space and each homomorphism a
matrix with entries in R.

Let K be a simplicial complex with ordered vertices. What this means for our
purposes is that the vertices of any simplex � can be uniquely written in some
ascending order .v0; : : : ; vd /. The d -dimensional chain group Cd .K/ of K consists
of R-linear combinations of d -dimensional simplices. Thus, a typical element of
Cd .K/ – called a d -dimensional chain – is a1�1 C � � � C am�m, where the a’s are
real numbers and the �’s are d -dimensional simplices. Clearly, this chain group
is equivalent to #Kd -dimensional Euclidean space: just use the d -dimensional
simplices as a basis. Let � D .v0; : : : ; vd / be such a basis element, and for each
j in f0; : : : ; d g let �j be that .d � 1/-dimensional proper face of � which contains
all the vertices except vj . Now, the boundary of � is a .d � 1/-dimensional chain
given by the alternating sum of these faces:

@d .�/ D �0 � �1 C � � � C .�1/d �d :

Thus, @d defines a linear transformation Cd .K/ ! Cd�1.K/, and hence may be
thought of as a matrix once we order the simplices into a basis. We define the d -
dimensional cycle group Zd .K/ to be the subspace corresponding to the kernel of
this matrix in Cd .K/, and the .d � 1/-dimensional boundary group Bd�1.K/ is
the image of this matrix as a subspace of Cd�1.K/. The elements of Zd .K/ and
Bd .K/ are called the d -dimensional cycles and boundaries, respectively. It can be
checked that each d -dimensional boundary is also a cycle.5 Now, the d -dimensional
homology group is defined as the quotient

Hd .K/ D Zd .K/

Bd .K/
:

Thus, we are interested in cycles, but do not distinguish between two cycles if
they are related by a boundary. That is, we partition the cycles x from Zd .K/ into
homology classes Œx�, with Œx� D Œy� whenever x � y lies in Bd .K/.

To see why we care about this quotient, let us go back to the complex of
Example 1. Observe that the loop formed by ab; ac; bc corresponds to the algebraic
cycle x D abC bc � ac, whose boundary is 0. So far, so good. But, algebraically,
even ab; ae; be forms a “loop”: let y D abCbe�ae, and check that @1.y/ D 0. The
difference between these cycles – transparent to the eye but opaque to the algebra
at this point – is the presence of abe which fills up the latter cycle. In order to make

5To see why this is the case, note that the composition @d ı @dC1 is the zero map from CdC1.K/

to Cd�1.K/ for each dimension d .
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the chain algebra recognize this fill-up, we note that @2.abc/ D abC bc� ac. In the
quotient space, this cycle y therefore ends up in the trivial homology class Œ0�. This
is why algebraic cycles alone are not enough; we need to quotient by the boundaries
of higher simplices.

4.2 Smith Normal Form and Betti Numbers

Staying with the simplicial complex K of Example 1, let us see what it takes to
compute H0.K/. First, we order the zero- and one-dimensional simplices of K in
some consistent way. For convenience, we may choose the alphabetical order, and
hence obtain the following sequences of cells:

K0 D .a; b; c; d; e; f / and K1 D .ab; ac; ae; bc; bd; be; bg; cd; cg; dg; ef /:

Next, we express the boundary operator @1 W C1.K/ ! C0.K/ as a matrix M1 in
our chosen basis. For instance, in the column for ac and the row for a, one finds
the dot product h@1.ac/; ai D �1, which simply extracts the coefficient of a in the
boundary of ac. Proceeding in this fashion yields the following matrix:

M1 D

2
666666664

ab ac ae bc bd be bg cd cg dg ef

a �1 �1 �1 0 0 0 0 0 0 0 0

b 1 0 0 �1 �1 �1 �1 0 0 0 0

c 0 1 0 1 0 0 0 �1 �1 0 0

d 0 0 0 0 1 0 0 1 0 �1 0

e 0 0 1 0 0 1 0 0 0 0 �1

f 0 0 0 0 0 0 0 0 0 0 1

g 0 0 0 0 0 0 1 0 1 1 0

3
777777775

:

Using standard row and column operations (with coefficients in R), we can put M1

in Smith normal form, so that the off-diagonal entries are all zero, and the diagonal
contains only zeros and ones. The number of zero entries in the diagonal of the
Smith normal form is then equal to the rank of H0.K/ as a vector space over the
real numbers. One can repeat this process for all dimensions d � 1: order the cells,
generate a matrix representation Md of @d in the chosen basis, and compute its
Smith normal form. The number of zero entries in the diagonal of Md ’s Smith
normal form is called the .d � 1/-th Betti number of K , and it equals the rank
of Hd�1.K/ as a Euclidean space. Keeping track of the change-of-basis matrices of
the row and column operations also produces an explicit basis for Hd�1.K/ in terms
of the chains in Cd�1.K/.

One may ask: what does it all mean? The answer is easy in low dimensions: the
zero-, one-, and two-dimensional Betti numbers count the connected components,
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tunnels, and cavities, respectively, of the underlying simplicial complex.6 In higher
dimensions, the answer is subtler because we lose the ability to visualize geometry.
But in any case, the Betti numbers of a simplicial complex provide computable
topological statistics of that complex. The structure encoded by the actual groups
(not just the Betti numbers) is much more intricate, but it should be clear (at least
in principle) that knowledge of those groups as quotients of chains enables one to
actually find components, tunnels, cavities, and their higher-dimensional analogs as
linear combinations of simplices.

The situation is very similar for simplicial maps � W K ! L. Since � sends
simplices of K to simplices of L, for each dimension d it induces a chain map
�#

d W Cd .K/ ! Cd .L/ determined by the following action on the basis elements.
Given � 2 Kd , we define

�#
d .�/ D

(
�.�/ if dim �.�/ D d;

0 otherwise:

One can check that �#
d sends Zd .K/ to Zd .L/, and likewise for boundaries.

Thus, �#
d descends to a map Hd .K/ ! Hd .L/ of quotient spaces, which is our

homomorphism ��
d . More precisely, the following assignment of homology classes

is well defined in the sense that it never sends two members of the same homology
class in K to different homology classes in L:

��
d .Œx�/ D Œ�#

d .x/�:

From a computational perspective, one constructs a matrix representation of �#
d and

computes its Smith normal form in order to explicitly construct ��
d .

For a classical and theoretical account of simplicial homology, one can turn to
the canonical algebraic-topology texts [28,36]. But for a much more computational
approach to homology (with cubical rather than simplicial complexes!), the reader
is invited to consult [22]. There are highly optimized software libraries [29, 37, 38]
for computing homology groups of various types of complexes.

4.3 Persistent Homology, Diagrams, and Stability

Suppose we start with a simplicial complex, and add a single extra vertex to
it, disconnected from everything else. This change effectively increments the
dimension of the zero-dimensional homology group by 1. One can easily construct
examples where removing a single simplex also changes the dimensions drastically.

6So, there is precisely one zero in the diagonal of the Smith normal form of M1, since K has only
one connected component.
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In this sense, the homology of a complex is not very stable to small changes in that
complex. The antidote to this lack of stability is provided by persistent homology.

Persistent homology is to filtrations what homology is to simplicial complexes.
Consider a filtration F of a simplicial complex K as shown,

; D F0K ,!F1K ,! � � � ,!FM K;

and note that each inclusion corresponds to a simplicial map of simplicial com-
plexes, so one may apply the homology machine to get a sequence of Euclidean
spaces connected by matrices for each dimension d :

Hd .F1K/ Hd .F2K/ � � � Hd .FM K/:��
�1!2

d ��
�2!3

d ��
�

.M�1/!M
d

This structure is called a persistence module. The horizontal maps of homol-
ogy groups are induced by chain maps arising from simplicial inclusions
FmKd ,!FmC1Kd . Let us write �1!3 to denote the obvious matrix product
�2!3 � .�1!2/, which gets us from the first to the third Euclidean space in our
persistence module and so forth. These horizontal matrices allow one to track
homological features (components, tunnels, cavities, etc.) across the entire filtration.
The p-persistent d -dimensional homology group of the subcomplex FmK is
defined as the following subspace of Hd .FmCp/:

Hp

d .FmK/ D �
m!mCp

d .Hd .FmK//:

The basic idea behind this formulation is simple. Each homology class Œx� living in
the d -dimensional homology group of FmK is included into the d -dimensional
homology group of FmCpK by a string of maps on homology groups induced
by simplicial inclusions. However, FmCp contains more simplices than FmK in
general, so there might be a collection of .d C 1/-dimensional simplices which fill
out this cycle by making it a boundary. If this is not the case, then x has survived
the journey from FmK to FmCpK safely. Otherwise, x must have met its demise
at some stage q occurring before p. In the latter case, it corresponds to the trivial
element Œ0� in the homology group of FmCpK .

In order to compute homology, we had to put matrix representations of boundary
operators into Smith normal form using row and column operations with coefficients
in R. Computing persistent homology groups requires a similar calculation, except
that we now perform these operations over polynomials in one variable with
coefficients in R. Using these techniques (see the canonical reference [42, Sect. 4.2]
for an explicit algorithm), one can compute for each nontrivial homology class Œx�

in Hd .FmK/ an unambiguous interval Œbx; dx/, where the birth bx � m and the
death dx > m are defined as follows:

• bx is the smallest ` such that there is some homology class Œy� in Hd .F`K/ with
Œ�`!m

d .y/� D Œx�, and
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Fig. 8 A sample persistence diagram generated by the Perseus software package [29]. Births are
plotted along the horizontal axis and deaths along the vertical axis. The points near the diagonal
correspond to homology generators which do not persist across a large section of the filtration, and
hence correspond to unstable or noisy features. On the other hand, the dots far from the diagonal
correspond to robust features with long lifespans

• dx is the smallest n such that Œ�m!n
d .x/� is the trivial homology class Œ0� in

Hd .FnK/.

This collection of persistence intervals Œbx; dx/ over all such x is called the d -
dimensional persistence diagram of the filtration F , and it can be easily visualized
as a two-dimensional cluster of points (see Fig. 8). For each x, the length .dx � bx/

measures the lifespan of the homology class Œx� across the filtration. The persistence
diagram is the filtered analog of the Betti numbers in the following sense: the
d -dimensional Betti number of FmK is simply the number of d -dimensional
persistence intervals which contain m.

Stability. There is a well-defined notion of distance between persistence diagrams,
called the bottleneck distance. It is known [8] that the persistence diagram is stable
to fluctuations in the filtration. In particular, consider a point cloud P in Euclidean
space and a “noisy” version P 0, which is another point cloud obtained by perturbing
each point of P by some distance less than a fixed  > 0. Then, one can prove that
the bottleneck distance between the dimension-d persistence diagrams of the Čech
or Vietoris–Rips filtrations of P and P 0 is smaller than  for every d . In this sense,
the output persistence diagram is no more noisy than the input point cloud.

It is crucial to note that this stability result is a one-way street. That is, if P

and P 0 are near each other, then their persistence diagrams will also be close. But it
would be wrong to conclude that P and P 0 are close if their persistence diagrams are
similar. Thus, having similar persistent homology only allows one to conjecture the
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similarity of the underlying datasets; however, having different persistent homology
actually furnishes a solid proof that the two datasets are topologically distinct.
Thus, persistent homology is better at telling things apart than at confirming their
similarity.

There are various excellent resources for the persistent-homology neophyte; see
[5, 6, 13, 16–18] and the references therein for many more details. The reader may
also be relieved to know that using persistent homology does not require a personal
desire to compute Smith normal forms of huge matrices by hand: efficient software
is available for this purpose [24, 29].

5 Applications to Biological Datasets

Having established the basics of simplicial complexes and their homology, we
would like to highlight some particularly appealing instances of topological infer-
ence – that is, inference based on topological techniques – from biological datasets.
Selecting the right filtration to impose on a point cloud is a bit of an art form:
even choosing an expedient distance function between data points requires highly
specialized knowledge about the data itself, as well as a genuine understanding of
the desired features which one wishes to investigate. In the absence of a general
recipe that fits all possible data, the next best thing is a host of successful and
interesting examples which the reader can use as signposts in his or her personal
quest to build a convenient filtration.

5.1 Identification of Breast Cancer Subtypes

Breast cancer is one of the most widespread and most frequently occurring types of
cancer. Since there are several variants of this cancer, considerable efforts have been
made to distinguish these from each other in the search for specialized and effective
treatments.

5.1.1 The Discovery of c-MYBC

A new subtype of breast cancer was detected in [31] by clustering methods acting
on a filtered simplicial complex built using microarray data.

The data. A microarray [2] is a thin glass slide with distinguished regions –
called features – onto which DNA molecules can attach in an orderly fashion.
Using these slides, it is possible to measure efficiently as patterns the differences in
expression between two sets of genes (from a common cell) which have been kept
under different conditions. In [30], a framework called Disease-Specific Genomic
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Fig. 9 Progression Analysis of Disease (PAD) results from [31] produced by Mapper [34]: the
data points correspond to tumors, and their colors represent the order of magnitude of deviation
from normal as measured by DSGA: red tumors have the largest deviation

Analysis (DSGA) was introduced, which highlights differences in expression
patterns of microarrays of diseased tissue relative to a continuous range of normal
phenotypes. The input data was precisely the result of DSGA performed over a
sufficiently large class of normal and diseased tissues.

The complex. Nicolau et al. [30] constructed the complete simplicial complex K

whose vertices T correspond to a set of tumors, and defined a function g W T ! R
derived from the distance of each tumor from some large collection of normal
phenotype tissue as yielded by regular DSGA analysis. The precise details of this
distance function may be found in [31, Sect. 1.3]. Associating each simplex to
the highest g-value encountered among its vertices extended g to all of K . The
sublevelset filtration of g was then fed into the clustering tool Mapper [34].

The results. As shown in Fig. 9, Mapper revealed an intrinsic structure of the space
of breast cancer transcriptional data that remained undetected by common clustering
methods. Without any clinical or biological input except for DSGA, the construction
of a suitable filtered simplicial complex followed by clustering enabled the detection
of a new, unique subgroup of breast cancers called c-MYBC. These cancers are
estrogen receptor-positive (ERC), and have high levels of x-MYB and low levels of
innate inflammatory genes. Perhaps most importantly, there is a 100 % survival rate
and no metastasis. This type of cancer does not fit into the standard classification of
Luminal A/B and Normal-like subtypes of ERC breast cancers obtained by ordinary
clustering analysis.
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Fig. 10 Chromosome 8 plots of average Betti numbers ˇ0 in dimension 4 calculated for recurrent
and nonrecurrent data, for radii between 0:01 and 0:25. (a) Patients treated with chemotherapy
(AC group). (b) Patients not treated with chemotherapy (non-AC group). Non-AC patients have
significantly higher ˇ0 values in the recurrent population

5.1.2 Distinguishing Between Recurrent and Nonrecurrent Subtypes

Dewoskin et al. [14] established that topological methods can partially differentiate
those breast cancer subtypes which have a high recurrence rate from those which
do not.

The data. Comparative genomic hybridization (CGH) is a method which detects
chromosomal aberrations [33]. DNA from a tumor sample and from a normal
reference sample are given different fluorescent labels and cohybridized onto a
thin glass surface in a regular pattern. The fluorescent intensity of each region
measures the differences (either amplifications or deletions) between the two
samples as the logarithm of a ratio. The starting point of this analysis, therefore, is an
ordered list

` D .`1; `2; : : : ; `N /

of these logarithms of ratios of intensities.

The complex. One chooses an embedding dimension d , and creates points in Rd by
sliding a window of width d along the list ` as follows. The first point is .`1; : : : ; `d /,
the second one is .`2; : : : ; `dC1/ and so forth. This creates a point cloud Pd .`/ 	
Rd . Although this point cloud does not retain precise knowledge of where the tumor
DNA differs from the normal DNA, the pairwise distances are preserved and similar
regions are mapped near the origin in Rd . If the intensities are similar, then their
ratio is close to 1, and hence the logarithm of the ratio is near 0. The Vietoris–
Rips filtration was constructed around the point cloud Pd .`/ for various choices of
dimension d .

The results. For d D 4, the average zero-dimensional Betti numbers (Fig. 10)
over all of the Vietoris–Rips subcomplexes for chromosomes 8 and 11 clearly
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Fig. 11 Outline of the method used in [1]. (a) Gene expression for chromosome 17q for patients
with two different types of breast cancer. (b) Point clouds and plots of ˇ0. (c) Plots associated with
different sets of patients for a window size equal to 3. The final steps include statistical analysis
for combining and correcting values

distinguished between recurrent and nonrecurrent patients who did not receive
anthracycline-based chemotherapy after surgery. This method reproduced results
presented in [7]. See Fig. 11 for a pictorial summary.
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5.1.3 Drawing Finer Distinctions with Persistent Homology

Arsuaga et al. [1] used persistent homology instead of Betti number averages,
and, starting with the same data and complex, extended the results of [14].
For an embedding dimension d D 3, analyzing zero-dimensional persistence
diagrams had partial success in differentiating various subtypes of breast cancer.
In particular, it was possible to differentiate between cancers with varying disease
progression: the less aggressive types included Normal-like and Luminal A, whereas
the more aggressive types were Luminal B, Basal, and Her2. The zero-dimensional
persistence diagrams could differentiate intrinsic subtypes such as Basal-like and
Her2 further within the class of aggressive cancers. The persistence intervals suggest
that Luminal B has features in common with both the Her2 and the Basal-like
subtypes.

In the future work, Arsuaga et al. hope to relate these results to cancer recurrence
predictions and use the full strength of persistent homology. The fundamental
question is that of which properties of breast cancers – if any – are captured by
higher-dimensional homology groups. The ultimate goal is to gain insight into the
periodicity of disease progression and hence select the most effective treatments.

5.2 Analysis of Neural Structures

A fundamental question arising from investigations of the brain’s perception
mechanisms is how a physical environment is mapped into the visual cortex, and
how the resulting mental maps are used by the hippocampus for spatial navigation.

5.2.1 Activity Patterns in the Visual Cortex

The central thesis of [23] is that spontaneous cortical states resemble the patterns in
oriented stimuli, i.e., that they have the same topology. The work of Singh et al. [35],
described below, provides supporting evidence for this claim.

The data. The basic data consisted of multielectrode recordings from the primary
visual cortex of a macaque7 in two different settings: spontaneous activity when
both eyes were closed, and natural image stimulation when one eye was open and
exposed to a video sequence.

The complex. The recorded data was split into 10-s segments, and the five neurons
with the highest firing rates were selected. The spike trains were binned into 50-ms
intervals, so that each segment corresponded to 200 points. Finally, a witness

7Simia inuus, an Old World monkey.
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Fig. 12 Different topological signatures obtained in the experiment [35]. The top row contains
examples of complexes, with the prescribed Betti number sequence signature .ˇ0; ˇ1; ˇ2/ shown
below the corresponding complex

complex approximation to the Vietoris–Rips filtration was built around 35 landmark
points.

The results. Singh et al. [35] computed the persistence intervals in dimensions
0, 1, and 2, at various scales in the Vietoris–Rips filtration and referred to such
strings of Betti numbers as signatures. Several different Betti number sequences
observed during the experiment are shown in Fig. 12, along with a sample complex
whose homology exhibits those Betti numbers. Figure 13 shows histograms of Betti
number distributions obtained for spontaneous and natural image stimulation, where
the Betti numbers follow the same order as in Fig. 12. The features present for higher
threshold scales correspond to more persistent features of the Vietoris–Rips filtration
built around the data.

The experiment showed that the homology of a circle and sphere dominated the
data, although the circle was much more prevalent during natural image stimulation
than during spontaneous activity. The main difference between the two experimental
settings appeared at lower thresholds, where the spontaneous activity exhibited
much more diverse topological structures.

5.2.2 Activity Patterns in the Hippocampus

The hippocampus is a part of the brain which contains place cells – neurons that
can detect location – clustered into regions called place fields. The hippocampus
plays a central role in an animal’s ability to navigate in its environment. However,
the process by which visual data is converted into a spatial map in the brain remains
mysterious. Dabaghian et al. [10] worked under the hypothesis that the topology of
the map obtained from the place cells in the brain matches the topological features
of the environment. That is, they conjectured that the brain does not have access
to the geometric information and that it converts neural signals into a spatial map
(similar to a subway map) of the surroundings based only on the spiking activity of
the place cells [9,19] and on the connectivity and adjacency information. They also
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Fig. 13 Histograms of Betti number distributions obtained in the spontaneous and natural image
stimulation phases of neural activity. The thresholds correspond to different Vietoris-Rips scale
values. Higher thresholds correspond to more persistent features of the data. For lower threshold
values, the spontaneous activity exhibits diverse topological structures, while natural image
stimulation is still dominated by the homology of a circle and a sphere

assumed that the hippocampus constructs the connectivity map based on the place
cell cofiring patterns.

For example, consider a rat running through a maze. As it begins to explore the
environment, place fields in its hippocampus become active: in the beginning, they
are be disconnected, but over time, as various navigation routes are explored, the
connectivity of the active regions increases and eventually holes begin to appear.

The data. To model the activity of the place cells in a computer simulation, the
authors of [10] considered the firing rate f ; the size of the place field s (the part of
the hippocampus that is activated when a place cell fires), of ellipsoidal shape; and
the number of cells N .
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The complex. A simplicial complex K was constructed as follows. Each place
field was a vertex, and a d -dimensional simplex � of K consisted of .d � 1/ place
fields which fired simultaneously during the experiment. Let k�k denote the total
number of place cells involved in the simultaneous firing. The monotone function
g W K ! R defined by

g.�/ D 1 � c

rk�k
N

for any c > 0 provides a measure of the dissimilarity between the place fields which
form the vertices of � . A positive c was chosen, and sublevelsets of g were used to
generate a filtration of K . This is precisely the simplicial model presented in [9].

The results. The most amazing result obtained by computing persistent homology
was that, if one ignored features with very small lifespans, then the homology of
K was the same as the homology of the environment. The results for different
experimental conditions are summarized and explained in Fig. 14, from [10]. The
top row (i) shows three different experimental configurations of the environment, but
we note that (B) and (C) are topologically the same. The second row (ii) contains the
mean map formation times; each dot represents a place cell with a certain .f; s; N /,
and the size of the dot represents the percentage of trials in which this state produced
the correct outcome. The color range denotes the time needed to form the map,
blue denoting a short time and red almost the whole time period. Note how the
third scenario (C) contains a preponderance of blue dots, which means that it was
much easier for a rat to map this configuration rather than (B), even though they are
topologically indistinguishable.

5.2.3 Terminal Ganglia of Crickets

The cricket Acheta domesticus uses hairs on its rear appendage (called a cercus)
to detect changes in its environment. The hairs are connected via nerve endings
called afferent terminals to the terminal ganglion, one of the three dense neural
centers present in the cricket’s body. These hairs are broadly classified as proximal
and distal, depending on their distance from the ganglion. The proximal hairs are
further divided into long, medium, and short categories, whereas the distal hairs are
always long. Each hair has an orientation, a preferred direction to which it is most
sensitive.

The afferent terminals of hairs with different orientations are in different places in
the terminal ganglion. Hence, the cricket’s response to an external stimulus depends
on the region in the terminal ganglion which is excited by the stimulus, and this
region depends on the direction of the stimulus. A natural question is to determine
whether there is a similar dependence for spatial stimuli: i.e., whether different
spatial stimuli correspond to a spatial segregation of the terminal ganglion. This
would imply that the projections of the long, medium, and short hairs in the terminal
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Fig. 14 (i) Three different experimental configurations of the environment: (B) and (C) are
topologically identical. (ii) Point cloud approximations that reveal mean map formation times
for each space configuration. Each dot represents a hippocampal state as defined by the three
parameters .f; s; N /; the size of the dot reflects the proportion of trials in which a given set of
parameters produced the correct outcome. The color of the dot reflects the mean time taken over
ten simulations: blue denotes a short time, whereas red stands for almost the entire period. The
maximum observed time was 4:3 min for configuration (A), 11:7 min for (B), and 9:3 min for C

ganglion are concentrated in different regions of the terminal ganglion. Since the
structure of afferent terminals and their attachment to the terminal ganglion is rather
complicated, this question remained open until 2012. Recently, however, a positive
answer was provided by Brown and Gedeon [3] using topological tools.

The data. The data came from experiments on afferent terminals [20, 21, 32], with
the data points representing the three-dimensional locations of terminal endings
in ganglia across a large number of crickets. This data was preprocessed via
various standard methods, including Gaussian mixture models and nearest-neighbor
techniques. The data for the afferent terminals of long, short, and medium hairs was
isolated into three separate point clouds.

The complex. The authors of [3] constructed a Vietoris–Rips filtration around each
point cloud, but used the distance d1. The scale-thickened version of such a complex
consists of cubes rather than balls. The reason for doing this involved the large size
of the dataset: cubes require less memory to store on a computer than do simplices,
and there is a parallel theory of cubical homology.

The results. The authors of [3] compared the persistent homology of the initial
point clouds for the long, medium, and short hairs separately, then for all pairwise
unions, and finally for the complete dataset. The results are shown in Fig. 15 as
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Fig. 15 Experimental data for (a) the short hairs, (b) the medium hairs, and (c) the medium
and short hairs combined, together with the generators of the first homology. (a) and (b) have
three persistent generators (orange, purple, and gray), but the last generator is filled up in the
combined set

0 5 25201510 0 5 25201510 0 5 25201510

a b c

Fig. 16 Barcodes of dimension 1: ˇ1 persistence intervals of length more than two for the reduced
datasets for the proximal hairs. (a) Long hairs; (b) medium hairs; (c) short hairs. Persistent
generators are shown in red

barcodes, where each bar is drawn from the birth scale to the death scale and
its length represents the lifespan of the corresponding homological feature. The
persistence of the cubical filtration complex was computed using the software pack-
age cubPersistenceMD [25–27]. The persistent homologies of the individual point
clouds and their unions were found to be significantly different.

As an example of the methodology, we compare the union of the short and
medium proximal hairs. There are three persistent generators in each point cloud
when the clouds are viewed individually. However, when one considers the com-
bined point cloud consisting of data from both short and medium hairs, then only
two of these three persistent generators remain (see Fig. 15). Computations reveal
that one of the persistent generators for the medium set is filled by the terminals
from the short hairs (Fig. 16).

In light of these observations, one can conclude that the nerve endings connected
to the hairs are actually concentrated at different places in the terminal ganglion.
Thus, there is the potential for downstream neurons to use information from the
hairs. The precise nature of how these neurons synapse with the nerve endings in
the terminal ganglion is unknown, and is currently under investigation.
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