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Abstract
We outline an algorithm to recover the canonical (or, coarsest) stratification of a given
finite-dimensional regular CW complex into cohomology manifolds, each of which is
a union of cells. The construction proceeds by iteratively localizing the poset of cells
about a family of subposets; these subposets are in turn determined by a collection of
cosheaves which capture variations in cohomology of cellular neighborhoods across
the underlying complex. The result is a nested sequence of categories, each containing
all the cells as its set of objects, with the property that two cells are isomorphic in the
last category if and only if they lie in the same canonical stratum. The entire process
is amenable to efficient distributed computation.
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1 Introduction

Setting aside technicalities for the moment, an n-dimensional stratification of a given
topological space X is a nested sequence of closed subspaces

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn = X

where each successive difference Xd − Xd−1 resembles a (possibly empty) d-
dimensional manifold whose connected components are the d-dimensional strata. The
details which have been suppressed are designed to guarantee the uniformity of small
neighborhoods around points in a given stratum. Stratified spaces are of fundamen-
tal importance in any branch of mathematics which seriously confronts singularities.
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Every topological manifold admits a straightforward stratification into its connected
components; less trivially, the following spaces all admit, and are often analyzed using,
stratifications: finite CW complexes, quotients of properly discontinuous Lie group
actions on smooth manifolds, (semi)algebraic varieties and (sub)analytic sets.

The two-dimensional singular space below—let us call it Y—is built by pinching
a torus along a meridian and attaching a disk across an equator:

Any regular CW structure, such as the illustrated decomposition into little squares,
constitutes a stratification of Y where d-dimensional strata are precisely the d-cells;
passing to a subdivision further refines this stratification in the sense that every new cell
is entirely contained in the interior of an old cell. On the other hand, one can discover a
much coarser stratification by examining the topology of small neighborhoods around
points of Y. Up to homeomorphism, these fall into three different classes depending
on whether the central point is at the pinch, on the singular equator, or on one of the
manifold-like two-dimensional regions:

The neighborhoods above deformation retract onto their central vertices and are
therefore contractible; however, their one-point compactifications (obtained by col-
lapsing their boundaries to points) are new stratified spaces with potentially interesting
topology. The compactified neighborhood around the pinch point is homeomorphic
to two 2-spheres joined at their north and south poles with a spanning disk across the
middle. The compactified neighborhood of any point in the singular equator resem-
bles a 2-sphere whose interior has been partitioned into two by a disk. And finally, the
compactified neighborhood around any point in either of the two-dimensional regions
is homeomorphic to an ordinary 2-sphere:
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Our main result here involves algorithmically recovering the coarsest stratification
of a finite regular CW complex where all strata are unions of cells. This is called the
canonical stratificationof the complex; its existence anduniqueness for a special class
of spaces (called pseudomanifolds) plays a central role in Goresky and MacPherson’s
proof of the topological invariance of intersection homology [14, Sec 4].Our argument,
much like theirs, has an intuitive geometric core but invokes algebraic and categorical
machinery. For the purposes of this introductory section, we focus on geometry and
ask: Given a finite cellulation of Y, how might one identify the canonical strata and
determine which cells lie in each canonical stratum, as shown below?

(Since the pinch point has a different compactified neighborhood than a generic
point on the singular equator, it must constitute a separate stratum.)

In light of the discussion above, one hopes to recover canonical strata by clustering
together cells whenever they exhibit similar compactified neighborhoods. But already
in this example,we encounter two significant difficulties: First, the compactified neigh-
borhoods do not distinguish cells in the two 2-strata from each other. The second
difficulty is somewhat subtler—although the compactified neighborhoods of cells in
the 0-stratum and 1-stratum are not homeomorphic, both are homotopy-equivalent to
a wedge of two 2-spheres. Therefore, they cannot be distinguished by weaker, more
computable topological invariants such as cohomology. We tackle the first problem by
constructing a complex of cosheaves which encodes how local topology varies across
cells, and we bypass the second problem by working exclusively in the category of
cohomologically stratified spaces.

Consider the task of determining the canonical stratification of a finite-dimensional
regular CW complex X into R-cohomology manifolds, where R is a fixed non-trivial
commutative ring with unity. In this case, our complex of cosheaves assumes a par-
ticularly appealing form: It is a functor

L• : Fc(X) → Ch(R)

from the poset of cells in X (where x > y denotes that y is a face of x , or equivalently,
that x is a co-face of y) to the category of lower-bounded R-module cochain complexes.
To each cell x of X, it assigns a cochain complex L•(x):

L0(x)
β0
x L1(x)

β1
x L2(x)

β2
x · · · ,

where Ld(x) is the free R-module generated by all d-dimensional co-faces of x—
in particular, the module Ld(x) is trivial for d < dim x and d > dimX. The co-
differentials β•

x are inherited verbatim from incidence degrees among cells of X taking
values in R. Thus, L•(x) computes the (reduced) cohomology of a compactified small
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open neighborhood around x in X. Given another cell y satisfying x ≥ y, there is an
inclusion map

L•(x ≥ y) : L•(x) ↪→ L•(y)

arising from the fact that co-faces of x are also co-faces of y. Here is a simple version
of our main result. (The full statement has been recorded in Theorem 5.10.)

Theorem 1.1 There is a category S obtained from Fc(X) by formally inverting a par-
ticular subset of those face relations x ≥ y forwhich L•(x ≥ y) induces isomorphisms
on cohomology; two cells lie in the same canonical stratum of X if and only if they
are isomorphic in S.

Before proceeding to the L•-induced definition of S and a proof of this theorem,
we highlight three salient features. First, the construction of S is algorithmic and
isomorphism classes of its objects are explicitly (and efficiently) computable. Second,
the non-isomorphisms in S reveal when a canonical stratum contains another in its
boundary.And third, our construction actually yields a nested sequence of intermediate
categories

S0 ↪→ S1 ↪→ · · · ↪→ SdimX = S,

each of which receives a functor from Fc(X) compatible with the previous ones, and
all the canonical strata of dimension exceeding (dimX − d) may be recovered from
certain isomorphism classes in Sd .

This paper is organized as follows: Sect. 2 tersely collects relevant background
material involving stratifications and cosheaves, while Sect. 3 describes the local coho-
mology complex of cosheaves L• associated with a regular CW complex X. In Sect. 4
we use L• to define an initial functor Fc(X) → S0 via categorical localization and
prove that the top-dimensional canonical strata of X correspond bijectively with iso-
morphism classes of (images of) top-cells in S0. Section 5 contains the heart of our
argument: It concludes the proof of Theorem 1.1 by describing the inductive construc-
tion of Fc(X) → Sd from the previous Fc(X) → Sd−1. The final Sect. 6 may be
read independently of the preceding ones—it is devoted to computational matters and
includes an efficient distributed algorithm for recovering canonical strata in practice.

Context

Our goal is to provide a principled topological pre-processor for various manifold
learning algorithms. The fundamental aim of manifold learning is to automatically
infer the intrinsic dimension of a compact submanifold M (often with boundary) of
Euclidean space from a finite point sample P ⊂ R

n lying on, or at least near, M . An
enormous amount of work has been done in this field, and we will make no attempt to
even summarize it here—the curious reader is referred to [19] and its myriad citations.
In most cases, one constructs a graph around the points in P by inserting all edges
of Euclidean length bounded above by a parameter threshold ε > 0. Shortest paths
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along this graph then serve as proxies for intrinsic geodesics of M and are used to find
distance-preserving projections to lower-dimensional subspaces of R

n via spectral
methods.

When M is not a single manifold, but rather a union of different manifolds across
several dimensions, our standardmanifold learningmethods necessarily result in over-
fitting along regions where M has low intrinsic dimension. Theorem 1.1 provides a
remedy by conferring the ability to partition the Delaunay triangulation [23, Ch 5]
around P at radius ε into distinct clusters, each of which is guaranteed to lie on a
cohomology manifold of known dimension.1 These clusters may then be indepen-
dently subjected to standard manifold learning techniques. Perhaps more important
from a practical perspective is the fact that the computations involved in partitioning P
are easily distributed across several processors. And as a straightforward by-product,
one also gains the capacity to identify (those points of P which lie in) every anomalous,
singular region of M .

There now exists a substantial body of work where filtered (co)homology groups of
cell complexes built around data points play a central role [3,8,12].With the knowledge
of canonical strata of such cell complexes comes the prospect of efficiently computing
far more refined topological invariants such as intersection cohomology [13] groups.
Also accessible, thanks to suitable flavors of Morse theory [21,22], is the ability to
cluster canonical d-strata by (d + 1)-dimensional cobordisms internal to the ambient
dataset.

2 Preliminaries

Our primary references for stratification theory are [15,18], and [30]; for categori-
cal localization see [7] and [10]; and for cellular (co)sheaves see [4] and [25]. The
interplay between cell structures and general stratifications on the same underlying
space has been explored thoroughly in [26]. Here we will be concerned entirely with
cohomologically stratified spaces, which the reader may have encountered before in
[14, Sec 4.1], [11, Sec 3.3] or [24, Sec 5].

2.1 Cohomological Stratifications

Fix a non-trivial commutative ring R with identity, and recall that an R-cohomology
manifold of dimension d ≥ 0 is a locally compact Hausdorff topological space Z
where each point z has an open neighborhood Uz ⊂ Z whose compactly supported
R-valued cohomology agrees with that of d-dimensional Euclidean space R

d , i.e.,

H•
c (Uz; R) �

{
R if • = d,

0 otherwise.
(1)

It is essential to use compactly supported (rather than ordinary singular) cohomology
to detect d-dimensionality, since the usual cohomology of a d-dimensional open ball

1 The probabilistic version of such a framework is described in [1].
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agrees with that of a point regardless of d. Readers unfamiliar with this notion may
safely replace the compactly supported cohomology of any open set encountered
henceforth by the standard cohomology of its one-point compactification relative to
the additional point:

H•
c (Uz; R) � H• (Uz ∪ {∞}, {∞}; R) .

Definition 2.1 An n-dimensional (cohomological) stratification of a locally compact
Hausdorff topological space X is an ascending sequence of closed subspaces

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X,

where the connected components of eachdifference (Xd−Xd−1), calledd-dimensional
strata, are required to obey the following axioms.

• Frontier if a stratum σ intersects the closure of another stratum τ , then in fact
σ is completely contained in the closure of τ and dim τ ≥ dim σ (with equality
occurring if and only if τ = σ ). This relation, denoted by τ � σ henceforth, forms
a partial order on the set of all strata.

• Link for each d-stratum σ , there exists an (n−d −1)-dimensional stratified space
L = L(σ ), called the link of σ :

∅ = L−1 ⊂ L0 ⊂ · · · ⊂ Ln−d−1 = L,

so that every open neighborhood around a point p in σ admits a basic open sub-
neighborhood Up ⊂ X with the following structure. The intersections Up ∩ Xi

are empty for i < d, while for d ≤ i ≤ n there are stratified quasi-isomorphisms
of compactly supported singular cochain complexes (of R-modules):

C•
c (CLi−d−1 × R

d)
�

C•
c (Up ∩ Xi ), (2)

where CL• denotes the open cone2 on L•.
By quasi-isomorphism here (and elsewhere) wemean a cochainmapwhich induces

isomorphisms on all cohomology groups. The additional requirement that the maps
from (2) be stratifiedmeans precisely that they behave naturally in three separate ways:
They should be filtered, stratum-preserving and refinable as explained below.

(1) They should respect (contravariant maps induced by) the inclusions L• ⊂ L•+1
in their domains and X• ⊂ X•+1 their codomains so that the following squares
commute:

C•
c

(
CLi−d−1 × R

d
) �

C•
c

(
Up ∩ Xi

)

C•
c

(
CLi−d × R

d
)

� C•
c

(
Up ∩ Xi+1

)
2 The open cone on Z is the quotient of Z × [0, 1) by the relation which identifies (z, 0) with (z′, 0) for
any z and z′ in Z; by convention, the open cone on the empty set is the one-point space.

123



Foundations of Computational Mathematics

(2) They should preserve strata in the sense that there exist surjective set-maps

�i : {(i − d − 1) − strata of L} � {i − strata τ � σ of X}

so that for each i-stratum τ � σ , the cochain maps from (2) restrict to quasi-
isomorphisms

C•
c (C�−1

i (τ ) × R
d)

�−→ C•
c (Up ∩ τ).

(3) They should refine to smaller basic neighborhoodsVp so that the following triangle
of cochain maps commutes:

C•
c (CLi−d−1 × R

d)
�

�

C•
c (Up ∩ Xi )

C•
c (Vp ∩ Xi )

Here the vertical map is induced by the inclusion Vp ⊂ Up, and since the triangle
commutes, this map is forced to also be a quasi-isomorphism.

The best way to acquire intuition for these constraints is to examine (pictures of)
links associated with singular strata in low-dimensional spaces.

Example 2.2 The decomposition of the space Y from the Introduction into the pinch
point, the equatorial circle, a disk 2-stratum and a toral 2-stratum is a cohomological
stratification. The pinch point lies at the frontier of the equatorial circle, which in turn
lies at the frontier of both 2-strata. The link L of the singular equator (which we will
call σ here) is a three-point space. An open cone on L is therefore the union of three
half-open intervals along a common boundary point. The product of this cone with
the real line is homeomorphic to small neighborhoods around points in σ :

From such a homeomorphism, one obtains the desired cohomological equivalence (2).
This equivalence is

• filtered, provided we stratify the open cone CL with one 0-stratum and three
1-strata (and the real line by a single 1-stratum),

• stratum-preserving, provided that the map �2 sends two of the points in L to the
toral 2-stratum and the third point to the disk 2-stratum, and

• refinable, because one can shrink the neighborhood around σ by a small amount
while still preserving the homeomorphism.
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Remark 2.3 To see a non-example of a cohomological stratification, try combining the
pinch point p of Y with the singular equator σ into a single 1-stratum. The refinability
constraint will not be satisfied in this case. In particular, given any point q ∈ σ near
p with two basic neighborhoods Vq ⊂ Uq satisfying p ∈ Uq − Vq , the inclusion of
Vq into Uq fails to induce an isomorphism on two-dimensional compactly supported
cohomology. Instead, one obtains a rank one map R2 → R2.

The following observations concern technical aspects of Definition 2.1.

(1) By a theorem of Eilenberg and Zilber [9], links are well defined (only) up to
filtered quasi-isomorphism type:Wemay replace L by a filtered cochain complex
by substituting a tensor product for the left side of (2).

(2) The link axiom (when i = d) guarantees that each d-stratum is indeed a d-
dimensional R-cohomology manifold.

(3) This definition, unlike similar notions which typically appear in the intersection
homology literature, does not require X to be a pseudomanifold (see [14, Sec
1.1] for instance). In other words, Xn−1 need not equal Xn−2.

Every finite-dimensional regular3 CW complex admits a cohomological stratifica-
tion whose strata are the cells.

Definition 2.4 The skeletal stratification of a finite-dimensional regular CWcomplex
X is defined as follows: Writing the face partial order among cells as ≥, we recall that
each cell y of X has

• an open star st(y) containing all cells x which satisfy x ≥ y, and
• a link lk(y), containing all cells x that share a co-face but no face with y.

The d-dimensional skeletal strata are the d-cells of X, and the frontier partial order
coincides with ≥. Since st(y) of a d-cell y is simultaneously homeomorphic to all
sufficiently small neighborhoods around points in y and toC lk(y)×R

d , the link L(y)
in the sense of Definition 2.1 is precisely lk(y).

We call one stratification a coarsening of another whenever each stratum of the
former is a union of strata of the latter. All stratifications encountered henceforth will
be coarsenings of the skeletal stratification for a fixed finite-dimensional regular CW
complex X.

Definition 2.5 The canonical stratification of a finite-dimensional regular CW com-
plex X is the coarsest stratification of X whose strata are all unions of cells.

It may not be immediately clear why canonical stratifications should exist at all.
We will establish both their existence and uniqueness for regular CW complexes in
the sequel via an explicit construction, which can be made efficiently algorithmic
whenever the number of cells in X is finite. The core of our construction is heavily
inspired by Goresky and MacPherson’s proof that canonical p̄-filtrations of stratified
pseudomanifolds exist and are unique [14, Sec 4.2].

3 Regularity in this context means that the characteristic map of every cell is an embedding.

123



Foundations of Computational Mathematics

Remark 2.6 For readers familiar with the Goresky–MacPherson construction, there
are two differences between their canonical p̄-filtration proof and the argument that
we will present in the sequel here. Namely,

(1) since our starting point is a regular CW complex rather than a stratified pseudo-
manifold, we have direct recourse to the combinatorics of cell incidences which
determine the topology of the underlying space, and

(2) here we use the sheaf of compactly supported cellular cochains on the underlying
space rather than the sheaf of intersection chains with respect to a perversity
function p̄ : Z≥2 → Z.

Aside from these modifications, our arguments below will follow theirs quite closely.

The following result is a direct consequence of the frontier axiom from Definition
2.1 for cells lying in top strata.

Proposition 2.7 Let X be a regular CW complex of dimension n equipped with any
stratification coarser than its skeletal stratification. If a cell y of X lies in an n-
dimensional stratum σ , then so must every cell x which satisfies x ≥ y.

Proof Let τ be the unique coarse stratum containing x . Since y lies in the boundary of
x by assumption, the closure of τ intersects σ non-trivially at y. The desired conclusion
now follows from the axiom of the frontier in Definition 2.1 and the fact that there are
no strata of dimension exceeding n, since dim τ ≥ dim σ = n forces τ = σ . 
�

Thus, membership of cells in top-dimensional canonical strata is upward-closed
with respect to the face partial order.

2.2 Localizations of Posets

The localization of a poset P about a subcollection � of its order relations is the min-
imal category containing P in which the relations of � have been rendered invertible
[10, Ch I.1].

Definition 2.8 Let (P,≥) be a poset and � = {(x• ≥ y•)} a subset of its relations
which is closed4 under composition. The localization of P about � is a category
P[�−1] whose objects are precisely the elements of P , while morphisms from p to
q are given by equivalence classes of finite (but arbitrarily long) �-zigzags of order
relations in P

p ≥ y0 ≤ x0 ≥ · · · ≥ yk ≤ xk ≥ q,

where

(1) only relations in � and equalities can point backward (i.e., ≤),
(2) composition is given by concatenation, and
(3) the trivial zigzag p = p represents the identity of each element p.

4 That is, if (p ≥ q) and (q ≥ r) both lie in �, then so does (p ≥ r).
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The equivalence between �-zigzags is generated by the transitive closure of the fol-
lowing basic relations. Two such zigzags are related

• horizontally if one is obtained from the other by removal of intermediate equalities:

(· · · ≤ x ≥ y = y ≥ x ′ ≤ · · · ) ∼ (· · · ≤ x ≥ x ′ ≤ · · · ) ,(· · · ≥ y ≤ x = x ≤ y′ ≥ · · · ) ∼ (· · · ≥ y ≤ y′ ≥ · · · ) ,

• or vertically, if they form the rows in a grid:

p ≥ y0 ≤ x0 ≥ · · · ≤ xk ≥ q

= ≥ ≥ ≥ =

p ≥ y′
0 ≤ x ′

0 ≥ · · · ≤ x ′
k ≥ q

where all vertical face relations (also) lie in �.

The category P[�−1] enjoys the following universal property [10, Lem I.1.3]—
there is a canonical localization functor P → P[�−1] which acts by inclusion. In
particular, it sends each element of P to itself and each relation x ≥ y to its own
equivalence class of �-zigzags. Moreover, any functor P → C which maps order
relations in � to isomorphisms in the target category C factorizes uniquely across the
localization functor.

2.3 Cellular Cosheaves

Sheaves (and their dual cosheaves) assign algebraic objects to open sets of topological
spaces [2]. Our interest here is in a particularly tame and computable subclass of
cosheaves, where the base space is always a finite-dimensional regular CW complex
X and the assigned algebraic objects are cell-wise constant.WewriteFc(X) to indicate
the poset of cells with order relation x > y denoting that y is a face of x .

Definition 2.9 A cellular cosheaf over X taking values in an Abelian category A is a
functor F : Fc(X) → A. Thus, it assigns to each cell x an A-object F(x) and to each
face relation x ≥ y an A-morphism F(x ≥ y) : F(x) → F(y) so that

• F(x = x) is the identity on F(x) for each cell x , and
• F(y ≥ z) ◦ F(x ≥ y) equals F(x ≥ z) across any triple of cells x ≥ y ≥ z.

We call F(x) the stalk of F at x , and call F(x ≥ y) the extensionmap of F at x ≥ y.

Amorphism of cellular cosheaves η : F → G over X is a natural transformation;
it assigns to each cell x an A-morphism ηx : F(x) → G(x) so that for each x ≥ y
the relevant square in A commutes:

F(x)
F(x≥y)

ηx

F(y)

ηy

G(x)
G(x≥y)

G(y)
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Cosheaf morphisms may be composed stalkwise, and there is always a zero morphism
0 : F → G which (as one might expect) assigns the zero map 0x : F(x) → G(x) in
A to each cell x of X.

Definition 2.10 A (lower-bounded) complex of cellular cosheaves F• (over X, taking
values in A) is a sequence of A-valued cellular cosheaves over X connected by cosheaf
morphisms:

F0 η0

F1 η1

F2 η2 · · ·

so that every successive composition η•+1 ◦ η• yields the zero morphism.

Every complex of cosheaves F• on X may be reinterpreted as a single cosheaf
which takes values in the categoryCh(A) of lower-bounded cochain complexes in A—
consider the collection of commuting squares in A that are assigned to face relations
x ≥ y ≥ z ≥ · · · of X:

F0(x) F1(x) F2(x) · · ·

F0(y) F1(y) F2(y) · · ·

F0(z) F1(z) F2(z) · · ·

...
...

...
. . .

The horizontal slices of this diagram confirm that a cochain complex in A is allocated
to each cell, while vertical arrows between these slices prescribe the desired extension
maps. Taking cohomology horizontally, one therefore obtains an ordinary cellular
cosheaf of (graded) A-objects over X. We call this the cohomology of F• and denote
it by H•F.

3 Local Cohomology of CW Complexes

Let X be a finite-dimensional regular CW complex with face poset Fc(X) and R a
fixed non-trivial commutative ring with identity 1R . We write Mod(R) to denote the
category of R-modules, and Ch(R)—rather than the cumbersome Ch(Mod(R))—to
indicate the category of cochain complexes of R-modules indexed by the nonnegative
natural numbers.

Definition 3.1 [5, Def 7.1] The local cohomology L• of X is a complex of cosheaves

L0 β0

L1 β1

L2 β2

· · ·
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over X taking values in Mod(R), prescribed by the following data.

(1) For each dimension d ≥ 0 and cell x of X, the cosheaf Ld has as its stalk Ld(x)
the free R-module with basis

{z ∈ Fc(X) | z ≥ x and dim z = d} .

When x ≥ y, the extension Ld(x ≥ y) : Ld(x) ↪→ Ld(y) is determined by the
obvious inclusion of basis cells.

(2) The cosheaf morphism βd assigns to each cell x the map βd
x : Ld(x) → Ld+1(x)

defined by (linearly extending) the following action on basis cells. For each d-cell
z ≥ x , we have

βd
x (z) =

∑
w

〈w, z〉R · w,

where the sum is taken over all (d + 1)-cells w ≥ x , and 〈w, z〉R is the R-valued
degree of the attaching map in X from the boundary of w onto z. (Since we have
assumed that X is regular, this number 〈w, z〉R takes values in {0,±1R} for all
cells w and z.)

Routine calculations confirm thatβd+1◦βd is always zero and that theβ•
x ’s commute

with all relevant extension maps. In light of the discussion following Definition 2.10,
we will shift perspective and regard L• as a single cosheaf valued in Ch(R). In this
setting, the stalk L•(x) lying over each cell x is the entire cochain complex

L0(x)
β0
x L1(x)

β1
x L2(x)

β2
x · · · ,

and H•L(x) is the compactly supported cohomology of x’s open star in X. By exci-
sion, one may describe H•L(x) as the ordinary relative cohomology of the pair(
st(x), ∂st(x)

)
where st(x) is the closure of x’s open star in X and ∂ denotes the

topological boundary:

∂st(x) = st(x) − st(x).

When y is a zero-dimensional cell, we have ∂st(y) = lk(y).

Definition 3.2 For each d ≥ 0, wewrite R[d]• to indicate the special cochain complex
in Ch(R) which is trivial except for a single copy of R in the dth position:

0 → · · · → 0 → R → 0 → · · ·

Thus, H•R[d] is the cohomology of small neighborhoods in d-dimensional R-
cohomology manifolds, as in (1).

By Definition 2.1, if a cell x lies in some top-dimensional stratum of X, then we
must have an isomorphism H•L(x) � H•R[dimX]. For cells of high dimension, this
requirement has strong consequences.
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Proposition 3.3 If n = dimX, then every n-cell x has L•(x) = R[n]•. And moreover,
every (n − 1)-cell y with H•L(y) � H•R[n] lies in the boundary of exactly two
n-cells.

Proof The first assertion follows fromDefinition 3.1 and the fact that there are no cells
of dimension ≥ (n + 1) in X. Turning to the second assumption, note that the local
cohomology of an (n − 1)-cell y is only supported in dimensions (n − 1) and n:

L•(y) = 0 → · · · → 0 → R
βn−1
y−→ Rk → 0 → · · ·

where k counts the number of n-cells x satisfying x > y. If L•(y) is quasi-isomorphic
to R[n]•, then βn−1

y must be injective (since Hn−1L(y) is trivial), so k > 0. By
definition, βn−1

y acts by sending a basis element of R to a linear combination of basis
elements in Rk , and by the regularity of X, all coefficients in this linear combination
lie in {±1R}. The nth cohomology of L•(y) is the quotient

HnL(y) = Rk

im(βn−1
y )

,

and it must be isomorphic to R = HnR[n] by assumption. Since R is a commutative
ring, it satisfies the invariant basis property—that is to say, Rk and R� are isomorphic
as R-modules if and only if k = � [29, Def 1.1]. Thus, we have k = 2 as desired. 
�

In light of the preceding result and (1), one might hope to identify top-dimensional
canonical strata by simply clustering together adjacent cells x ≥ y in X whenever
there exists a top-dimensional cell w satisfying w ≥ x so that all extension maps
below are quasi-isomorphisms:

R[dimX]• = L•(w)
�
↪→ L•(x) �

↪→ L•(y).

Our next example shows that this (necessary) condition for x and y to belong to the
same top stratum is not sufficient when dimw − dim y > 1.

Example 3.4 Consider the two-dimensional simplicial complex depicted below: It is
obtained by subdividing a parallelogram into four 2-simplices along diagonals and
attaching an extra 2-simplex along one of the four resulting half-diagonals.

Let w, x and y, respectively, denote the extra 2-simplex, the shared half-diagonal
and the central vertex. It is easy to confirm that L•(y) is quasi-isomorphic to R[2]•
since its link has the cohomology of a circle. And moreover, given any sequence
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w′ > x ′ > y of cells where w′ and x ′ differ from w and x , respectively, the inclusion
maps

R[2]• = L•(w′) ↪→ L•(x ′) ↪→ L•(y)

are all quasi-isomorphisms. Note, however, that L•(x) is not quasi-isomorphic to
R[2]• by Proposition 3.3 since there are three 2-simplices containing x as a face.
Thus, x does not belong to any canonical 2-stratum, and hence (by Proposition 2.7),
neither does y.

4 Extracting Top Strata

Throughout this section, X denotes an n-dimensional regular CW complex, R is a
fixed non-trivial commutative ring with identity, and L• : Fc(X) → Ch(R) is the
local cohomology complex of X from Definition 3.1. Consider the collection of face
relations (x ≥ y) in Fc(X) sent by L• to quasi-isomorphisms, i.e.,

E0 = {
(x ≥ y) in Fc(X) | H•L(x ≥ y) is an isomorphism,

}
(3)

and define the subcollection

W0 = {
(x ≥ y) in E0 | H•L(y) � H•R[n], and

(x ′ ≥ y) ∈ E0 for all x
′ ≥ y in Fc(X)

}
. (4)

In other words, W0 is what remains of E0 when we impose

• dimensionality retain only those face relations in which both cells have the local
cohomology (isomorphic to that) of a top-dimensional cell, and

• upward-closure remove (x ≥ y) if there exists some x ′ ≥ y for which L•(x ′ ≥ y)
is not a quasi-isomorphism. (Recall that cells lying in top strata are upward-closed
by Proposition 2.7.)

It is clear that if W0 contains both (x ≥ y) and (y ≥ z), then it also contains
(x ≥ z).

Definition 4.1 The category S0 is the localization of the face poset Fc(X) about W0.

Recall that S0 has the cells of X as objects, while its morphisms are equivalence
classes ofW0-zigzags (as described inDefinition 2.8). And, there is a canonical functor
Fc(X) → S0 which is universal with respect to rendering all the face relations from
W0 invertible.

Proposition 4.2 Two cells w �= z are isomorphic in S0 if and only if there is a W0-
zigzag

w ≥ y0 ≤ x0 ≥ · · · ≥ yk ≤ xk ≥ z

whose last relation (xk ≥ z) lies in W0.
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Proof Given any W0-zigzag from w to z such as the one depicted above, recall that
every (x• ≥ y•) is in W0. And by the upward-closure requirement, each preceding
(x•−1 ≥ y•) is automatically in W0 (with the understanding that x−1 = w). Since the
last relation (xk ≥ z) is assumed to lie in W0 as well, one can directly construct an
inverse zigzag in S0:

z = z ≤ xk ≥ yk ≤ · · · ≤ x0 ≥ y0 ≤ w = w.

Conversely, if w and z are isomorphic in S0, then there exist W0-zigzags from w to
z and vice versa whose composites are (equivalent to) identity morphisms. We label
some relevant cells in these zigzags:

w ≥ · · · ≤ x ≥ z and z ≥ y ≤ · · · ≥ w.

A brief examination of the horizontal and vertical relations from Definition 2.8
confirms that any zigzag in the equivalence class of the identity must have all its
forward-pointing ≥’s lying in W0. As a consequence, when we compose the zigzags
labeled above, we obtain (x ≥ y) ∈ W0. An appeal to the upward-closure requirement
now forces (x ≥ z) ∈ W0, as desired. 
�

Here is the main result of this section.

Proposition 4.3 Two n-dimensional cells lie in the same canonical n-stratum of X if
and only if they are isomorphic in S0.

Proof To show that the first assertion implies the second, let σ be the n-stratum con-
taining two distinct cells w and z. Since σ is connected by Definition 2.1, there exists
a zigzag of cells lying entirely in σ from w to z, say

w ≥ v0 ≤ v1 ≥ · · · ≥ vk ≤ z.

By the same definition and Proposition 2.7, it follows that every face relation appearing
above lies in W0. By adding an identity to the end of this zigzag, we may therefore
construct a morphism in S0 from w to z,

w ≥ v0 ≤ v1 ≥ · · · ≥ vk ≤ z = z.

It is now evident from Proposition 4.2 that w and z are isomorphic in S0. In order to
show the reverse implication, assume the existence of an isomorphism from w to z in
S0, say

w ≥ y0 ≤ x0 ≥ · · · ≥ yk ≤ xk = z,

where the last equality follows from the fact that X contains no cells of dimension
> n. Define the union

Z =
k⋃

i=0

st(yi )
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of open stars, and note that Z is connected—every constituent st(yi ) is connected and
intersects the subsequent st(yi+1) non-trivially (since both stars must contain xi ). By
the dimensionality requirement on W0, every point in Z has an open neighborhood
with compactly supported cohomology isomorphic to H•R[n] = H•

c (Rn), and by the
upward-closure requirement no cell lying in Z may lie in the boundary of a cell lying
outside Z. Thus, the frontier and link requirements on strata imposed by Definition
2.1 are satisfied by the connected set Z ⊂ X, whence all cells lying in Z must belong
to the same canonical n-stratum σ of X. Thus, σ contains both w and z as desired. 
�

Finally, note that if an arbitrary cell y lies in a (not necessarily canonical) n-stratum
σ of X, then there must exist an n-cell w ≥ y also lying in σ by Proposition 2.7;
otherwise, we arrive at the contradiction HnL(y) = 0. Thus, we have the following
consequence of Proposition 4.3.

Corollary 4.4 The canonical n-strata of X correspond bijectively with isomorphism
classes of its n-cells in S0.

5 Uncovering Lower Strata

As before, let X be the n-dimensional regular CW complex whose canonical strata we
wish to discover. In this section, we will inductively construct the desired stratification

X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn ⊃ Yn+1 = ∅, (5)

where each Y• ⊂ X is a regular CW subcomplex, so that the connected components
of each difference Yd −Yd+1 are precisely the canonical (n−d)-strata of X. We have
numbered the Y• in reverse (compare Definition 2.1) merely to indicate the order in
which they are constructed. In addition to the initial complex Y0 = X, the first step
of our construction also requires using the sets E0 and W0 which were defined in (3)
and (4), respectively.

Definition 5.1 Given the triple (Yd−1, Ed−1,Wd−1), the (n− d)-dimensional regular
CW subcomplex Yd consists of all cells y in Yd−1 for which there exists some cell
x ≥ y in Yd−1 so that (x ≥ y) is not in the set Wd−1. (By upward-closure, we may as
well choose x to be y.) Letting L•

d : Fc(Yd) → Ch(R) be the local cohomology of
Yd , define the set of face relations

Ed = Ed−1 ∩ {
(x ≥ y) in Fc(Yd) | H•Ld(x ≥ y) is an isomorphism

}
, (6)

and also

Wd = Wd−1 ∪ {
(x ≥ y) in Ed | H•Ld(y) � H•R[n − d], and

(x ′ ≥ y) ∈ Ed for all x ′ ≥ y in Fc(Yd)
}
. (7)

This produces the subsequent triple (Yd , Ed ,Wd).

123



Foundations of Computational Mathematics

Note thatW• is an increasing sequence of sets while both Y• and E• are decreasing.

Example 5.2 To motivate the sets which appear in Definition 5.1, consider the two-
dimensional space Y0 pictured below: It is the closed cone over a wedge of two circles.

We have equipped Y0 with a regular CW decomposition consisting of four vertices
(p, q, z∗), seven edges (w∗, y∗, e) and four 2-cells (all x∗). For convenience, let us
assume that the coefficient ring R is a field, so that cohomology computations reduce
to knowledge of ranks of coboundary matrices. The stalk of the local cohomology
cosheaf L•

0 over each of the four 2-cells is just L•
0(x∗) = R[2]•, and since each y∗

has two 2-cells in its open star, we obtain the following stalks:

L•
0(y∗) = (0 → R → R2 → 0 → · · · ),

where the only non-trivial map has rank one. It is straightforward to confirm that the
based inclusions L•

0(x∗ ≥ y∗) are all quasi-isomorphisms. Thus, the four face relations
in Y0 of the form x∗ ≥ y∗ will be elements of W0. All the other cells have the wrong
local cohomology and will therefore not participate in W0-relations: For instance,

L•
0(w∗) = (0 → R → R → 0 → · · · ),

where again the nonzero map has rank 1, so the local cohomology is trivial and does
not coincide with that of R[2]•. By upward-closure, this also shows that neither the
z∗ nor p can participate in face relations of W0. Similarly, the local cohomology of e
does not agree with that of R[2]•; the stalk is

L•
0(e) =

(
0 → R → R4 → 0 → · · ·

)
,

again with a rank one map. This disqualifies q from participating in a face relation that
lies inW0. On the other hand, all four (w∗ ≥ p) lie in E0, so the cosheaf L•

0 is unable
to distinguish generic cells lying on the two circles to the left from the singular point
p. But once we remove all those x∗ and y∗ cells which are involved in face relations of
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W0, we obtain a one-dimensional CW subcomplex Y1 ⊂ Y0 whose local cohomology
correctly distinguishes p from the w∗ and z∗:

In particular, the local cohomology cosheaf L•
1 of Y1 has the following stalk over p:

L•
1(p) =

(
0 → R → R5 → 0 → · · ·

)
,

with the non-trivial map having rank 1; thus, L•
1(p)manifestly has different cohomol-

ogy than R[1]• = L•
1(w∗) � L•

1(z∗). Similar top-down constructions (whichmeasure
the failure of d-dimensionality for decreasing d) have been employed since the very
inception of stratification theory, dating back to the original work of Whitney [31].

Remark 5.3 Two properties of the sequence Y• mentioned in Definition 5.1 may be
inductively justified as follows, using the fact that Y0 is an n-dimensional regular CW
complex as a base case.

(1) To see that Yd ⊂ Yd−1 is a regular CW subcomplex, note that if a cell y lies in the
difference Yd−1 −Yd , then we have (y = y) ∈ Wd−1. And given any cell x ≥ y
in Yd−1, we have (x ≥ y) ∈ Wd−1 by upward-closure, whence (x = x) ∈ Wd−1.
Thus, x also lies in the differenceYd−1−Yd . Since the collection of cells removed
from Yd−1 to obtain Yd is upward-closed with respect to the face partial order,
Yd is a regular CW subcomplex of Yd−1.

(2) To see that dim Yd ≤ (n − d), assume dimYd−1 ≤ (n − d + 1). But now, for
each cell w in Yd−1 of dimension (n − d + 1), we have (w = w) ∈ Wd−1
by Proposition 3.3, so w is not in Yd . Since Yd contains no cells of dimension
(n − d + 1), its dimension cannot exceed (n − d).

Definition 5.4 For each d > 0 in [n], the category Sd is the localization of Fc(X)

about the set Wd from (7).

Recall from Sect. 2.2 that there is a universal functor Fc(X) → Sd for each d, and
since Wd−1 ⊂ Wd holds by (7), the universal property of localization guarantees a
unique functor Sd−1 → Sd which makes the following diagram commute:
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Fc(X)

Sd−1 Sd

In fact, Sd−1 → Sd admits a convenient explicit description: Note that every Wd−1-
zigzag is automatically aWd -zigzag, so Sd−1 is a subcategory of Sd and the inclusion
Sd−1 ↪→ Sd satisfies this universal property. Our next result establishes a certain
W•-induced monotonicity for morphisms across the entire nested sequence S•; in its
statement and beyond, [p] denotes the set {0, . . . , p} for each integer p ≥ 0.

Lemma 5.5 Fix d in [n] along with cells w and z in X. For each Wd-zigzag ζ from w

to z, say

ζ = (w ≥ y0 ≤ x0 ≥ · · · ≥ yk ≤ xk ≥ z),

define the function ϕζ : [k] → [d] by setting

ϕζ (p) = min
{
q ≥ 0 | (xp ≥ yp) ∈ Wq

}
. (8)

Then, ϕζ is monotone increasing in the sense that ϕζ (p − 1) ≤ ϕζ (p) for all p ≥ 1
in [k].
Proof Set ϕζ (p) = q for a fixed p, so that (xp ≥ yp) ∈ Wq −Wq−1, whence both xp
and yp are cells in Yq −Yq+1. Since xp−1 ≥ yp holds in X, the cell xp−1 must lie in
Yr −Yr+1 for some r ≤ q because Y• is a decreasing sequence of CW subcomplexes
of X. Thus, (xp−1 ≥ yp−1) ∈ Wr , so we have

ϕζ (p − 1) ≤ r ≤ q = ϕζ (p),

as desired. 
�
The cells of X are ordered by dimension in the sense that the poset Fc(X) is only

allowed to havemorphisms fromhigher-dimensional to lower-dimensional cells. Since
morphisms in S• are zigzags, one cannot expect such a dimensional monotonicity to
hold verbatim. But the W•-induced monotonicity from the previous lemma precludes
the existence of certain morphisms in S•.

Corollary 5.6 Given i ≤ j in [n] along with cells w in Y j and z in Yi −Y j , there are
no morphisms in Sd from w to z for any d in [n].
Proof Note that a direct face relation w ≥ z cannot hold in X since Y j is a CW
subcomplex of Yi . Thus, any morphism in Sd from w to z admits a genuine zigzag
representative. Proceeding by contradiction, assume the existence of such a zigzag ζ :

w ≥ y0 ≤ x0 ≥ · · · ≥ yk ≤ xk ≥ z.
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The face relationsw ≥ y0 and xk ≥ z in X guarantee j ≤ ϕζ (0) and ϕζ (k) ≤ i , where
ϕζ is the function from (8). Themonotonicity of ϕζ fromLemma 5.5 now forces j ≤ i ,
and hence, i = j . The cell z is thus constrained to lie in Yi − Y j = ∅, which yields
the desired contradiction. 
�

Asadirect consequence of the preceding result, isomorphismclasses in Si of (n−i)-
dimensional cells from Yi remain unchanged across all the inclusions Si ↪→ S j for
i ≤ j . The next result gives convenient alternate descriptions of such isomorphism
classes across the entire sequence S•.

Proposition 5.7 For each d ∈ [n], the following are equivalent. Two cells w and z in
X

(1) lie in the same connected component of Yd − Yd+1,
(2) are connected by a Wd-zigzag, whose relations (≤ and ≥) all lie in Wd − Wd−1,
(3) are isomorphic in Sd to a common (n − d)-dimensional cell from Yd .

Proof We will show (1) ⇒ (2) ⇒ (3) ⇒ (1). If w and z lie in the same connected
component of Yd − Yd+1, then there is a zigzag of cells

w ≥ v0 ≤ v1 ≥ · · · ≥ vk ≤ z,

lying entirely in Yd −Yd+1. By Definition 5.1, each face relation (≥ or ≤) appearing
in this zigzag lies in Wd , and by Lemma 5.5, no such relation can lie in Wd−1. So by
(7), the cellw (and indeed, each cell in this zigzag) has its local cohomology H•Ld(v)

isomorphic to H•R[n − d]. By the argument used while proving Corollary 4.4, and
recalling that dimYd ≤ (n − d), there exists an (n − d)-cell v ≥ w in Yd which
is isomorphic in Sd to w, and hence to every other cell in our zigzag (including z).
Finally, if there is an (n − d)-cell v from Yd isomorphic to both w and z in Sd , then
there is a Wd -zigzag from w to z obtained by composing zigzags w → v → z. By
Lemma 5.5, all cells in this composite lie in Wd − Wd−1, so w and z lie in the same
connected component of Yd − Yd+1. 
�

Our next result describes the canonical strata of X as isomorphism classes in S•.

Proposition 5.8 For each d ∈ [n] and canonical (n − d)-stratum σ of X, every cell
lying in σ is isomorphic in Sd to some (n − d)-cell from Yd .

Proof Let ∅ = L−1 ⊂ · · · ⊂ Ld−1 = L be the link of σ in the sense of Definition 2.1.
Assume, proceeding via induction, that for each j < d the canonical (n− j)-strata of
X correspond to isomorphism classes in S j of (n − j)-cells from Y j . By Proposition
5.7, these strata are precisely the connected components of Y j −Y j+1. Thus, for each
cell x lying in σ and j < d, we have quasi-isomorphisms

C•
c (CLd− j−1 × R

n−d)
�−→ C•

c (st(x) ∩ Y j ),

where st(x) is the open star of x inX = Y0.Assuming that x ≥ y holds inX for another
cell y lying in σ , we would like to prove that L•

j (x ≥ y) is a quasi-isomorphism. To
this end, consider the following diagram in Ch(R):
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C•
c (CLd− j−1 × R

n−d)
�

�

C•
c (st(y) ∩ Y j )

� L•
j (y)

C•
c (st(x) ∩ Y j ) � L•

j (x)

L•(x≥y)

The triangle to the left commutes by the refinability constraint of Definition 2.1 (note
that here the downward pointing arrow is the map induced by inclusion), whereas
square to the right commutes by the natural contravariant equivalence between singular
and cellular compactly supported cohomology. Being sandwiched in this commuting
diagram forces L•

j (x ≥ y) to also be a quasi-isomorphism for all j < d, so we have
(x ≥ y) ∈ Ed−1. Being an (n−d)-stratum, σ is an R-cohomology manifold, so there
are quasi-isomorphisms

R[n − d]• �
↪→ L•

d(x)
�
↪→ L•

d(y).

Since σ is a top-dimensional stratum of the subcomplex Yd , we have (x ′ ≥ y) ∈ Ed

whenever x ′ ≥ y in Yd by Proposition 2.7. Thus, (x ≥ y) ∈ Wd −Wd−1 by (7). Since
σ is connected, any two cells of X that it contains may be connected by a zigzag of
cells lying in σ , and by the preceding argument, each face relation appearing in such
a zigzag lies in Wd − Wd−1. The desired conclusion now follows from Proposition
5.7. 
�

The following result establishes the converse of Proposition 5.8.

Proposition 5.9 For each d in [n], the isomorphism class in Sd of any (n − d)-
dimensional cell from Yd is a canonical (n − d)-stratum of X.

Proof Proceeding once again by induction, we assume that the statement holds for all
j in [d − 1]. Fix an (n− d)-dimensional cell w in Yd ⊂ X, and let σ be the collection
of all cells which are isomorphic to w in Sd . We first show that σ satisfies the link
axiom from Definition 2.1. Writing st(w) and lk(w) for w’s star and link in X, for
each i ≤ d we have the intersections

sti (w) = st(w) ∩ Yi and lki (w) ∩ Yi ,

which form the star and link of w in Yi ⊂ X. Since st•(w) admits a stratified homeo-
morphism to the correspondingC lk•(w)×R

n−d , we get stratified quasi-isomorphisms
of singular cochain complexes

C•
c (C lki (w) × R

n−d)
�−→ C•

c (sti (w)),

whose codomains are, in turn, quasi-isomorphic to the local cohomology stalks L•
i (w).

If z is any other cell which becomes isomorphic to w in Sd , then by Proposition 5.7
there is a zigzag from w to z whose face relations all lie in Wd − Wd−1:

w ≥ v0 ≤ v1 ≥ · · · ≥ vk−1 ≤ vk ≥ z,
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and hence zigzags of quasi-isomorphisms in Ch(R) for all i ∈ [d]

L•
i (w)→L•

i (v0)←· · · ← L•
i (vk)→L•

i (z).

Each complex in sight is bounded and free (hence projective), so the backward-pointing
maps admit quasi-inverses (see [28, Cor 10.4.7]). Thus, one may turn them around to
obtain maps L•

i (w) → L•
i (z) which fit into a string of quasi-isomorphisms

C•
c (C lki (w) × R

n−d) → C•
c (sti (w)) → L•

i (w) → L•
i (z) → C•

c (sti (z)).

Setting L j = lkd− j−1(w) for all j ∈ [d − 1], one obtains a candidate (d − 1)-
dimensional stratified space L to serve as the link of σ .

Turning now to the frontier axiom, for each i < d let K •
i be the quotient complex

L•
i /L

•
i+1, suitably restricted so that it assigns zero stalks to all cells lying outside σ .

Over each cell z in σ , the cohomology H•K i (z) coincides with the compactly sup-
ported cohomology of the difference sti (z) − sti+1(z). By construction, the closure
of a canonical (n − i)-stratum τ in X intersects σ at the cell z if and only if the coho-
mology Hn−i K i (z) is non-trivial. By definition, K •

i fits into a short exact sequence
(of complexes of cosheaves over σ ):

0 → L•
i+1 ↪→ L•

i � K •
i → 0.

Applying the five lemma [28, Ex 1.3.3] to the resulting long exact sequence, we note
that all the extension maps of K •

i induce isomorphisms on cohomology. Thus, if
Hn−i K i is nonzero at z, then it is also nonzero at every other cell in σ , whence every
cell in σ admits a co-face from τ . Thus, σ ⊂ τ , as desired.

Finally, to see that σ is canonical, we use Proposition 5.8 to pick an (n − d)-cell w
fromYd so that all cells in σ are isomorphic in Sd tow. Proposition 5.7 nowguarantees
that no additional cells may be added to σ while preserving its connectedness. 
�

The three preceding propositions establish that the sequence Y• ⊂ X from Def-
inition 5.1 constitutes the canonical stratification of X. The localization functors
Fc(X) → S• and the universal functors S• → S•+1 arising from the inclusions
W• ⊂ W•+1 fit into a commutative diagram

Fc(X)

S0 S1 · · · Sn = S,

which onemay view as analogous to an injective resolution of the functorFc(X) → S0
from Sect. 4. Proceeding from left to right in the sequence above, we obtain canonical
strata of decreasing dimension by examining isomorphism classes in S•. We collect
these results into the following expanded version of Theorem 1.1.

Theorem 5.10 Given a finite regular n-dimensional CW complexX, letY• and W• be
as in Definition 5.1, and let S• denote the localization of the face poset Fc(X) about
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W•. For each d ∈ [n], the canonical (n − d)-strata of X correspond bijectively with
isomorphism classes of (n − d)-dimensional cells from Yd in Sk for any k ≥ d.

The morphisms in the last category S = Sn also recover the frontier partial order
among canonical strata.

Proposition 5.11 The frontier relation τ � σ holds among two canonical strata of X
if and only if there is a morphism in S from a cell lying in τ to a cell lying in σ .

Proof If τ � σ holds, then there are cells w and z in τ and σ , respectively, so that
w ≥ z in Fc(X). This face relation includes into S as a morphism from w to z.
Conversely, given cells w and z in τ and σ , respectively, assume the existence of a
W -zigzag

ζ = (w ≥ y0 ≤ x0 ≥ · · · ≥ yk ≤ xk ≥ z),

and let ϕζ : [k] → [n] be the associated monotone function from Lemma 5.5. By
construction, this zigzag contains cells in canonical strata τi of dimension n − ϕζ (i)
for all i in [k]. If ϕζ (i) = ϕζ (i + 1) then τi = τi+1; otherwise, τi � τi+1 (because xi
is a co-face of yi+1). Thus, there is a descending sequence of canonical strata

τ � τ0 � τ1 � · · · � τk � σ,

so we obtain τ � σ as desired. 
�
The argument above shows that the zigzag paths which form morphisms in S may

remain indefinitely in a single stratum or descend to lower-dimensional adjacent strata,
but they can never ascend to higher strata. In otherwords, S is a (cellular, 1-categorical)
version of the entrance path category associated with the canonical stratification of
X—see [21, Def 3.1], [27, Sec 7] or [32, Sec 2].

6 Algorithms

From a computational perspective, the local cohomology L• of a finite regular CW
complex enjoys the obvious, but enormous, advantage of being local. One only ever
needs to construct cochain complexes corresponding to open stars of cells (rather than
holding the entire complex in system memory). Since each such star-complex may be
processed independently of the others, the construction of L• and the computation of
H•L are inherently distributable operations.

6.1 Subroutines

There are several avenues for efficiently storing a CWcomplex for the purpose of com-
puting its cohomology: One may employ a Hasse graph, whose vertices are cells and
whose edges, usually adorned with an orientation, connect neighboring cells across
codimension one. Alternately, one may directly store (sparse avatars of) coboundary
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matrices over R, whose nonzero entries encode adjacencies between cells of codi-
mension one. In the presence of extra structure—for instance, if the complex involved
is simplicial or cubical—the additional rigidity affords access to highly optimized
data structures such as simplex trees or bitmaps. Rather than tethering the prospective
implementer to a fixed and possibly inconvenient representation, we will present all
our algorithms at a high level and work directly with the poset of cells.

Algorithm: UpSet(P, u, v)

In: A finite poset P and elements u, v ∈ P
Out: The subposet Pu

v of elements ≥ v but not ≥ u
01 initialize an empty queue Q of elements
02 add v to Q
03 while Q is nonempty
04 remove w from Q
05 if w is not in Pu

v
06 add w to Pu

v
07 for each element x > w in P with x � u
08 add x to Q (uniquely)
09 return Pu

v

Our first subroutine UpSet employs a minor modification of breadth-first search
on a finite poset P to extract the subposet of all elements which lie above a fixed
element v but not above a fixed element u. In all instances of interest here, our input
P will be the face poset Fc(X) of a finite regular CW complex X, while u and v will
be adjacent cells across codimension one:

u >1 v if u > v and dim u − dim v = 1.

Bydefinition, the output Pu
v in such cases is precisely the subposet ofFc(X) containing

cells which lie in the difference of open stars st(v) − st(u). We also reserve the right
to set u = ∅, so that line 07 does not check x against u and the output is just the poset
of cells in st(v).

The next required subroutine is Cohom, which accepts a poset of cells as input and
returns the sequence of R-modules corresponding to the cohomology of the associated
cochain complex.When R is a field, the cohomologymodules are all vector spaces and
in this case the output can just be a sequence of integers storing their dimensions. If R
is the ring of integers, then one has to encode the torsion subgroups (if any) in addition
to the ranks of the free parts in every dimension. In either case, since the efficient
computation of (co)homology has been extensively discussed elsewhere [6,16,17,20],
we will treat this subroutine as a black box and not explicitly write it down here.

6.2 Description

Our main algorithm StratCast accepts as input the poset of cells in a finite n-
dimensional regular CW complex X and uses the constructions of Definition 5.1 to
assign each cell x a number codim(x) in [n] = {0, 1, · · · , n} so that x lies in a canonical
stratum of dimension n − codim(x). Once codimensions have been determined for
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all cells, finding the actual canonical strata reduces to the simple task of locating
connected components of a fixed codimension.

Algorithm: StratCast(Fc(X))

In: The face poset of a finite n-dim regular CW complex
Out: Assigns canonical codimensions to cells

01 for each d in (0, 1, . . . , n − 1, n)

02 for each cell w in Fc(X) //dist
03 assign h•(w) = Cohom(UpSet(Fc(X), ∅, w))
04 for each (x >1 y) in Fc(X) with �(x >1 y) = d − 1 //dist
05 assign c•(x, y) = Cohom(UpSet(Fc(X), y, x))
06 if c•(x, y) is trivial
07 assign �(x >1 y) = d
08 assign codim(z) = d to each (n − d)-cell z in Fc(X)

09 for each i-cell u in Fc(X) with i in (n − d − 1, . . . , 1, 0) //dist
10 if hn−d (u) � R and all other h•(u) = 0
11 if codim(v) = d and �(v >1 u) = d for all v >1 u in Fc(X)

12 assign codim(u) = d
13 remove all cells from Fc(X) with codim = d

The main loop (in line 01) increments the current codimension d from 0 up to n; as
it executes each iteration, the cells lying on (n − d)-dimensional canonical strata are
identified and removed from X, so that in the dth iteration we pass from Yd to Yd+1
in the language of Definition 5.1. There are three secondary loops (at lines 02, 04 and
09); all three are trivially distributable across several processors, as indicated by the
dist comments in those lines. The first loop in line 04 is easiest to explain: It uses our
subroutines UpSet and Cohom to compute the compactly supported cohomology of
each open star st(w) ∩ Yd where w is a cell in Yd ⊂ X.

The second loop from line 04 computes whether or not inclusions of open stars
st(x) ⊂ st(y) for x >1 y induce isomorphisms on compactly supported cohomology
by examining their cokernels. In other words, we use the fact that the map induced by
L•
d(x >1 y) (namely, the inclusion st(x)∩Yd ↪→ st(y)∩Yd ) on compactly supported

cohomology is an isomorphism if and only if the difference (st(y) − st(x)) ∩Yd has
trivial compactly supported cohomology. We begin by assigning to each face relation
(x >1 y) the number �(x >1 y) = −1. As the algorithm executes, �(x >1 y) gets
incremented to the largest integer k so that (x >1 y) lies in Ek , where E• denotes the
sets from (6). Since this loop is completely independent of the loop in line 02, it may
be executed simultaneously with that loop.

The third loop, which spans lines 09 through 12, must be executed after the first
two intermediate loops have terminated. It uses the cohomology groups h• computed
by the loop in line 02 and the �-values computed by the loop in line 04 to select cells
lying on canonical strata of dimension (n − d) via (7). Note that line 10 ensures the
correct dimensionality and line 11 enforces upward-closure. Line 13 removes all cells
lying on canonical (n−d)-strata from Yd , so we are left with Yd+1 and the outer loop
of line 01 enters its next iteration.
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6.3 Complexity

The intermediate loops in line 02 and line 04 of StratCast require breadth-first
search (for constructing open stars via UpSet) and matrix diagonalization through
row and column operations (for computing cohomology with Cohom). Let m be the
number of cells in X, and define the additional star size complexity parameter

p = max {number of cells in st(x) | x is a cell in X} . (9)

(It suffices to take the maximum over zero-dimensional cells, since those have the
largest stars.) The worst-case complexity of computing cohomology of any open star,
or a difference of open stars, via row and column operations is thus O(p3) provided
we incur a constant cost performing ring operations in R. The cost of running Cohom
clearly dominates the O(p2) cost of executing breadth-first search in UpSet. Since
the loops of line 02 and 04 may be executed in a completely distributed fashion, their
combined cost within a single iteration of the outer loop of line 01 is O(p3).

The third intermediate loop (on line 09) may be reinterpreted as two nested loops:
an outer i-loop which decrements dimension from (n−d−1) to 0, and an inner u-loop
which examines all remaining cells of dimension i . Since we require knowledge of
codim values of all cells v >1 u while processing each u, only the u-loop is actually
distributable. During each iteration of the u-loop, one incurs an O(p) cost while
checking all remaining cells v >1 u in line 11, and an R-dependent cost of testing
R-module isomorphisms in line 10. At least when R is a finite field, the rationals
or the integers, checking whether a given module has rank one or zero incurs O(1)
cost. Thus, in typical cases we expect line 11 to dominate the burden of executing the
u-loop. Noting that the i-loop runs at most n times regardless of d, each iteration of
the loop on line 09 incurs a computational cost of O(np).

Since all cells with codim = d are identified on lines 08 and 12 in a given iter-
ation of the outer d-loop of StratCast, we assume that removing them from X
incurs no additional cost. Putting all our estimates together, each iteration of the d-
loop incurs a worst-case cost of O(p3 + np). Noting that this loop executes exactly
(n+1) times, the total complexity of running StratCast—assuming that the num-
ber of available processors exceeds the number of cells m plus the maximum number
mp of codimension-one face relations in X—is O

(
(n + 1)(p3 + np)

)
. And once

StratCast has terminated, one may find all desired canonical strata of X by com-
puting connected components of cells with the same codim value. This is linear in the
number of cells in X, so we obtain the following result.

Proposition 6.1 LetX be an n-dimensional regular CW complex with m cells and star
size p as in (9). The time complexity of computing its canonical stratification with
coefficients in a (commutative, unital) ring R via StratCast is

O
(
(n + 1)(p3 + np) + m

)
,
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provided that

(1) ring operations in R incur O(1) cost,
(2) isomorphism-testing against 0 and R inMod(R) is O(1), and
(3) the number of available processors exceeds m(p + 1).

The first two conditions above are satisfied by typical choices of R (such as the
integers or finite fields). In practice, one expects to have m � (n + 1)(p3 + np), so
the observed cost of computing canonical strata is essentially linear in the size of X.
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