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The aim of this paper is to develop a refinement of Forman’s 
discrete Morse theory. To an acyclic partial matching μ on a 
finite regular CW complex X, Forman introduced a discrete 
analogue of gradient flows. Although Forman’s gradient flow 
has been proved to be useful in practical computations of 
homology groups, it is not sufficient to recover the homotopy 
type of X. Forman also proved the existence of a CW 
complex which is homotopy equivalent to X and whose 
cells are in one-to-one correspondence with the critical cells 
of μ, but the construction is ad hoc and does not have 
a combinatorial description. By relaxing the definition of 
Forman’s gradient flows, we introduce the notion of flow 
paths, which contains enough information to reconstruct 
the homotopy type of X, while retaining a combinatorial 
description. The critical difference from Forman’s gradient 
flows is the existence of a partial order on the set of flow paths, 
from which a 2-category C(μ) is constructed. It is shown that 
the classifying space of C(μ) is homotopy equivalent to X
by using homotopy theory of 2-categories. This result can be 
also regarded as a discrete analogue of the unpublished work 
of Cohen, Jones, and Segal on Morse theory in early 90’s.
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1. Introduction

The goal of this paper is to describe a new combinatorial theory of gradient flow on 
cell complexes which provides direct insight into discrete Morse homotopy, and hence to 
extend Forman’s discrete Morse theory [18,19].

1.1. Discrete Morse theory

The central objects of study in Forman’s adaptation of Morse theory to CW complexes 
are discrete Morse functions, which assign (real) values to cells. Every discrete Morse 
function f on a regular CW complex X imposes a partial pairing on its constituent cells, 
i.e. a bijection μf : D(μf ) → U(μf ) between disjoint subsets D(μf ), U(μf ) of the face 
poset F (X). The unpaired cells are analogous to critical points from smooth Morse the-
ory, while the paired cells generate combinatorial gradient paths between critical ones. 
Such gradient paths have been proved to be quite useful in computing homology and 
cohomology in various contexts such as topological combinatorics [1,39], hyperplane ar-
rangements [35,14,15], cohomology of algebraic structures [2,26,40,23,3], and topological 
data analysis [31].

Compared to these nice applications to homology, it is disappointing to see the failure 
of the use of Forman’s gradient paths to the study of homotopy types. Recall that a 
gradient path, in the sense of Forman, from a critical cell c to another c′ is an alternating 
sequence of cells

c � d1 ≺ u1 � · · · ≺ uk−1 � dk ≺ uk � · · · ≺ un � c′,

where di ∈ D(μf ) and ui ∈ U(μf ) with μf (di) = ui, and all the face relations ≺ and �
appearing in this sequence are of codimension 1, which imposes the dimension constraint 
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Fig. 1. A partial matching on ∂Δ3.

dim c = dim c′ + 1. This failure is best illustrated by the following simple example. 
Consider the “height function” h on the boundary of a 3-simplex Δ3 = [v0, v1, v2, v3], 
whose associated partial matching μh is indicated by arrows in Fig. 1. For example, 
the vertex [v1] is matched with the edge [v0, v1] and the edge [v1, v2] is matched with 
the face [v0, v1, v2]. The remaining two cells, the bottom vertex [v0] and the top face 
[v1, v2, v3], are critical. There is no gradient path between these two critical cells because 
of the dimension gap, although there is an apparent deformation indicated by the arrows, 
which results in the minimal cell decomposition of a sphere S2 = e0 ∪ e2.

In fact, Forman generalized the deformation in the previous example and showed that 
matched pairs of cells can be collapsed together without changing the homotopy type. 
Thus we obtain a new cell complex Xf , whose cells are indexed by the set Cr(f) of 
critical cells of f . However, there is no explicit description of the resulting cell complex 
in terms of gradient paths. In smooth Morse theory, on the other hand, there is a well-
known construction of a cell decomposition of a smooth manifold M from gradient flows 
generated by a Morse–Smale function f : M → R, whose cells are indexed by critical 
points [24,20].

1.2. Main result

In this paper, we introduce flow paths of acyclic partial matchings. These generalize 
Forman’s gradient paths, and they may be used to explicitly recover the homotopy type 
of the original cell complex.

Definition 1.1. A flow path from a critical cell c to another c′ is a sequence of cells of the 
following form

c � u1 � · · · � ui1−1 � di1 ≺ μf (di1) = ui1 � · · ·

� ui2−1 � di2 ≺ μf (di2) = ui2 � · · · � un � c′

or
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c � d1 ≺ μf (d1) = u1 � · · · � ui1−1 � di1 ≺ μf (di1) = ui1 � · · ·
� ui2−1 � di2 ≺ μf (di2) = ui2 � · · · � un � c′,

where ui ∈ U(μf ) and di ∈ D(μf ).

There are two differences from Forman’s gradient paths. We allow descending se-
quences of cells in U(μf ) to appear in a flow path and the face relations uik−1 � dik
have no codimension restrictions.

This simple extension of gradient paths turns out to contain enough information to 
reconstruct the homotopy type. The crucial property is the existence of a partial order 
on the set FP(μf ) of all flow paths, which induces a partial order on the set C(μf)(c, c′)
of flow paths from c′ to c.

Recall that there is a standard way of constructing a simplicial complex BP from 
a poset P , called the order complex [4]. Regarding posets as a special class of small 
categories, the order complex construction has been extended to small categories as 
the classifying space construction [36]. By regarding the poset C(μf )(c, c′) as a small 
category, our flow category C(μf ) becomes a category enriched over the category of small 
categories, i.e. a (strict) 2-category [28]. The classifying space construction has been also 
extended to 2-categories, with which our main theorem can be stated as follows.

Theorem 1.2. Let X be a finite regular CW complex and f a discrete Morse function on 
the face poset F (X). Then the classifying space of the flow category C(μf) is homotopy 
equivalent to X.

Note that there are several ways to take classifying spaces of 2-categories. One of 
the most popular models is the classifying space of the topological category obtained 
by taking the classifying space of each morphism category. This construction is denoted 
by B2 in this paper. We also make use of the “normal colax version” Bncl in the proof 
of the theorem. It is known that these two, including several other constructions, are 
homotopy equivalent to each other. This is proved by Carrasco, Cegarra, and Garzón 
in [7].

The classifying space B2C(μf ) is described by the combinatorial data associated to 
a discrete Morse function or an acyclic partial matching. Thus it provides a systematic 
way of reconstructing the homotopy type of the original cell complex purely in terms of 
Morse data.

For example, this description as the classifying space of a 2-category or a topological 
category can serve as an alternative systematic approach to computing homology via dis-
crete Morse theory. Given a multiplicative homology theory h∗(−) satisfying the strong 
form of the Künneth isomorphism, the homotopy equivalence in Theorem 1.2 gives rise 
to a spectral sequence

E2 ∼= H∗(h∗(BC(μf ))) =⇒ h∗(B2C(μf )) ∼= h∗(X)
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by [36], where h∗(BC(μf )) is the category enriched over graded h∗-modules whose set 
of objects is Cr(μf ) and whose module of morphisms from c to c′ is h∗(BC(μf )(c, c′)). 
And H∗(−) is the homology of linear categories, studied, for example, in [42].

As a version of Morse theory, it would be desirable to find a cell decomposition 
of B2C(μf ) or BnclC(μf ) indexed by Cr(μf ). Our categorical construction is also useful 
to study this problem. We discuss this problem in a separate paper.

One of the sources of inspiration for this work is an unpublished manuscript of Ralph 
Cohen, John Jones, and Graeme Segal [12] that appeared in early 90’s, in which they 
proposed a way to reconstruct the homotopy type (and even a homeomorphism type) of 
a smooth manifold from a topological category consisting of critical points and moduli 
spaces of gradient flows associated to a Morse–Smale function. Our main theorem can 
be regarded as a realization of their proposal in a discrete setting. Another possible 
use of our result is, therefore, to give an alternative proof of the homotopy-equivalence 
part of Cohen–Jones–Segal Morse theory and its extensions. As is done by Gallais [21], 
it is possible to use discrete Morse theory to approximate smooth Morse theory. The 
original motivation of the paper [12] seems to develop a toy model for Floer homotopy 
theory [10,11]. It would be interesting if the theory of flow paths developed in this paper 
provides an alternative approach to Floer homotopy theory.

1.3. Organization of the paper

The paper is organized as follows.

• We recall basics of discrete Morse theory in §2.1 to fix notation and terminology. 
The notion of flow paths is introduced in §2.2 together with a partial order on the 
set FP(μ) of all flow paths with respect to a partial matching μ. We also introduce 
reduced flow paths and compare the set FP(μ) of reduced flow paths with FP(μ). In 
§2.3, we introduce geometric flows associated to flow paths to define a subdivision 
Sdμ(X) of X.

• §3 is the main body of this paper. After reviewing notation and terminology for 
small categories in §3.1, the flow category C(μ) and its reduced version C(μ) are 
introduced in §3.2.
Theorem 1.2 is proved as follows
1. In the first half of §3.3, we construct a normal colax functor τ : FP(μ) → C(μ), 

called the collapsing functor, by assigning the terminal cell to each flow path. It 
is shown that the collapsing functor can be restricted to a functor τ : FP(μ) −→
C(μ).

2. In the second half of §3.3, we show that τ induces a homotopy equivalence between 
“normal colax” classifying spaces

Bnclτ : BFP(μ) = BnclFP(μ) �−→ BnclC(μ)

by a 2-categorical version of Quillen’s Theorem A.
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3. In §3.4, we show that the face poset of the subdivision Sdμ(X) constructed in 
§2.3 is isomorphic to FP(μ). Thus we obtain a chain of homotopy equivalences

X ∼= BF (Sdμ(X)) ∼= BFP(μ) 	 BnclC(μ) 	 B2C(μ) 	 B2C(μ).

• An appendix on one of our main tools, i.e. homotopy theory of small categories, is 
attached at the end of this paper with the hope of making this article self-contained.
Although homotopy theory of small categories has been an indispensable tool in 
topology and combinatorics since Segal [36] and Quillen [32], there seems to be no 
standard reference for novices.

2. Discrete Morse theory

The main aim of this section is to introduce the notion of flow paths for discrete Morse 
functions.

2.1. Discrete Morse functions

Let us briefly recall Forman’s discrete Morse theory. Throughout the rest of this 
section, we fix a regular CW complex X, whose face poset is denoted by F (X). We denote 
the partial order in F (X) by e 
 e′, which means that e is a face of e′. Moreover, we 
use ≺1 to denote the cover relation, i.e. e ≺1 e′ if and only if e 
 e′ and dim e = dim e′−1.

Definition 2.1. For a function f : F (X) → R and a cell e ∈ F (X), define

N+
f (e) = {e′ ∈ F (X) | e ≺1 e′, f(e) ≥ f(e′)}

N−
f (e) = {e′ ∈ F (X) | e′ ≺1 e, f(e′) ≥ f(e)} .

f is called a discrete Morse function if |N+
f (e)| ≤ 1 and |N−

f (e)| ≤ 1 for all e ∈ F (X). 
A cell e ∈ F (X) is said to be critical if N+

f (e) = N−
f (e) = ∅. The set of critical cells is 

denoted by Cr(f).

Remark 2.2. We sometimes regard f as a locally constant function on X under the com-
position X

πX−→ F (X) f−→ R, where πX is the map which defines the cell decomposition 
or stratification of X, i.e. πX(x) = e if x ∈ e.

Forman observed that, for a noncritical cell e, either |N+
f (e)| = 1 or |N−

f (e)| = 1
happens. This allows us to define a partial matching on the face poset F (X).

Definition 2.3. A partial matching on the face poset F (X) is a bijection μ : D(μ) → U(μ)
between disjoint subsets D(μ), U(μ) of F (X) such that d ≺1 μ(d) for each d ∈ D(μ). 
Elements of
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Cr(μ) = F (X) \D(μ) ∪ U(μ)

are called critical.

Definition 2.4. Given a discrete Morse function f on F (X), define a partial matching μf

as follows. The domain and the range of μf are given by

D(μf ) =
{
e ∈ F (X)

∣∣∣ N+
f (e) �= ∅

}
U(μf ) =

{
e ∈ F (X)

∣∣∣ N−
f (e) �= ∅

}
.

For e ∈ D(μf ), μf (e) is the unique cell in N+
f (e).

Note that Cr(f) = Cr(μf ) for a discrete Morse function f . We identify two discrete 
Morse functions when their partial matchings agree.

Definition 2.5. Two discrete Morse functions f and g on a regular CW complex X are 
said to be equivalent if, for every pair e ≺1 e′ of cells in X, we have

f(e) < f(e′) ⇐⇒ g(e) < g(e′).

Definition 2.6. A Forman path ρ with respect to a partial matching μ is a sequence of 
distinct noncritical cells

ρ : d1 ≺ μ(d1) � d2 ≺ μ(d2) � · · · � dn ≺ μ(dn),

with dim di+1 = dimμ(di) − 1. Equivalently it is a sequence ρ = (d1, . . . , dn) of distinct 
cells of the same dimension in D(μ) with μ(di) � di+1 for all i = 1, . . . , n − 1. ρ is called 
a gradient path if either n = 1 or d1 ⊀ μ(dn).

Forman observed that partial matchings associated to discrete Morse functions have 
the following significant property.

Definition 2.7. A partial matching is called acyclic if all of its Forman paths are gradient.

Conversely, it is known that any acyclic partial matching comes from a discrete Morse 
function.

Proposition 2.8. For any acyclic partial matching μ on a finite regular CW complex X, 
there exists a discrete Morse function f on X with μ = μf .

Proof. See Theorem 9.3 in [18]. �
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This implies that discrete Morse theory can be developed entirely in terms of acyclic 
partial matchings. It is, however, useful to have good discrete Morse functions at 
hand.

Forman already observed that any discrete Morse function on a finite CW complex 
is equivalent to an injective one,1 which can be perturbed further into a faithful Morse 
function.

Definition 2.9. A discrete Morse function f is said to be faithful if it satisfies the following 
conditions:

1. f is injective.
2. If e ≺ e′ and e′ �= μf (e), then f(e) < f(e′).

Proposition 2.10. For any discrete Morse function f on a finite regular CW complex X, 
there exists a Z-valued faithful discrete Morse function f̃ equivalent to f .

Our proof of this fact is closely related to the notion of flow paths, which will be 
introduced in §2.2. A proof of this proposition is given there, after Remark 2.12.

By Proposition 2.10, the discrete Morse function in Proposition 2.8 can be chosen to 
be faithful. In the rest of this paper, we fix an acyclic partial matching μ on a regular 
CW complex X. When X is finite we also choose a faithful discrete Morse function f
with μ = μf . In particular, all critical values of f are distinct.

2.2. Combinatorial flows on face posets

As we have recalled in Definition 2.6, gradient paths in the sense of Forman can only 
connect pairs of cells of dimension difference 1. Such flows are enough for computations 
of homology. We need more general flows, called flow paths, to describe relations among 
cells of arbitrary dimension differences. We also need to define a partial order on the set 
of all flow paths to describe “the topology of the space of flow paths”, which can be used 
to recover the homotopy type of the original CW complex.

Definition 2.11. A flow path with respect to an acyclic partial matching μ is a sequence 
γ = (e1, u1, . . . , en, un; c) of cells satisfying the following conditions:

1. ui ∈ U(μ) for 1 ≤ i ≤ n;
2. either ei = ui or ei = μ−1(ui) for 1 ≤ i ≤ n;
3. the last cell c is critical;
4. ui � ei+1 for 1 ≤ i ≤ n, where en+1 = c;

1 See the first paragraph of the proof of Theorem 3.3 in [19].
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The number n is called the length of γ and denoted by �(γ). We allow n to be 0, in which 
case γ = (c).

The critical cell c is called the target of γ and is denoted by τ(γ). The cell e1 is called 
the initial cell of γ and is denoted by ι(γ). When �(γ) = 0, ι(γ) is defined to be c. We 
also use the notation en+1 = c when n = �(γ). The set of flow paths with respect to μ is 
denoted by FP(μ). When μ comes from a discrete Morse function f , it is also denoted 
by FP(f).

Remark 2.12. Recall that a Forman path is a sequence of cells of the following form

d1 ≺ μ(d1) � d2 ≺ μ(d2) � · · · � dn ≺ μ(dn) � c

with di ∈ D(μ) or

μ−1(u1) ≺ u1 � μ−1(u2) ≺ u2 � · · · � μ−1(un) ≺ un � c

with ui ∈ U(μ). And all the face relations are of codimension 1.
A flow path, on the other hand, is a sequence of the following form

e1 
 u1 � e2 
 u2 � · · · � en 
 un � c

in which either ei = ui or μ−1(ui). And face relations ui � ei+1 are arbitrary.
Thus a flow path can be written as

u1 � · · · � ui1−1 � μ−1(ui1) ≺ ui1 � · · · � ui2−1 � μ−1(ui2) ≺ ui2 � · · · � un � c

or

μ−1(u1) ≺ u1 � · · · � ui1−1 � μ−1(ui1) ≺ ui1 � · · · � ui2−1 � μ−1(ui2) ≺ ui2

� · · · � un � c

depending on e1 = u1 or μ−1(u1). Note that both of these sequences are considered to 
be of length n.

If μ = μf for a faithful discrete Morse function f , a flow path γ = (e1, u1, . . . , en, un; c)
gives rise to a decreasing sequence of real numbers

f(e1) ≥ f(u1) > · · · > f(en) ≥ f(un) > f(τ(γ)).

This is why we regard flow paths as a discrete analogue of gradient flows on smooth 
manifolds.

There is another interpretation of flow paths.
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Definition 2.13. Define a relation �1 on F (X) as follows: e �1 e′ if either e � e′ with 
μ(e′) �= e, or e ∈ D(μ) and μ(e) = e′. Write � for the transitive closure of �1.

Remark 2.14. If e � e′, there exists a sequence of cells

e = e1 �1 e2 �1 · · · �1 en−1 �1 en = e′.

Eliminating superfluous equalities, we see that such a sequence is either of the following 
forms

e = e1 � · · · � ei1−1 � μ−1(ei1) ≺ ei1 � · · · � ei2−1 � μ−1(ei2) ≺ ei2 � · · · � en = e′

or

e = μ−1(e1) ≺ e2 � · · · � ei1−1 � μ−1(ei1) ≺ ei1 � · · · � ei2−1 � μ−1(ei2) ≺ ei2 � · · ·
� · · · � en = e′,

since there can be no successive sequence of two or more matched pairs μ−1(ei) ≺ ei. 
In particular, e � e′ and dim e = dim e′ imply that the sequence is a strictly alternating 
sequence of ≺1 and �1 in which ≺1 are matched pairs. In particular it is a Forman path 
in the sense of Definition 2.6.

It should be also noted that flow paths are special kind of such sequences, in which 
we require the last cell is critical and that cells ei belong to U(μ).

Lemma 2.15. The relation � is a partial order on F (X).

Proof. Since reflexivity and transitivity of � follow immediately by definition, we es-
tablish antisymmetry. Assume, for contradiction, that e � e′ � e holds for distinct 
cells e and e′ of X. Then, there must exit two chains e �1 e1 �1 · · · em �1 e′ and 
e′ �1 em+1 �1 · · ·�1 em+n � e. By concatenating these flow paths, we obtain a sequence

e �1 e1 �1 · · · �1 em �1 e
′ �1 em+1 �1 · · · �1 em+n �1 e.

By Remark 2.14, we obtain a Forman path from e to itself, which contradicts the acyclic-
ity of μ. �

We are now ready to prove Proposition 2.10.

Proof of Proposition 2.10. By Lemma 2.15, the acyclic partial matching μf associated 
to f defines a partial order � on F (X). Take a linear extension of this partial order and 
g : F (X) → N be an injective enumeration of cells so that if e � e′ then g(e) ≥ g(e′). To 
see that g is a discrete Morse function, suppose e ≺1 e′ and g(e) ≥ g(e′). By Remark 2.14, 
this happens only when e ∈ D(μf ) and μf (e) = e′. Thus, g is a discrete Morse function 
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with μg = μf . Since both f and g are injective, their equivalence follows immediately 
from the fact that their partial matchings coincide. �
Remark 2.16. We may define a category whose objects are cells in X and whose mor-
phisms from e to e′ are sequences of the form e �1 e1 �1 · · · �1 em �1 e′. The above 
argument implies that this is an acyclic category and the partial order � is the partial 
order associated with this acyclic category.

A flow path does not contain a cycle as in the case of gradient paths, but it can go 
back to the boundary of one of previous cells. We restrict our attention to the following 
reduced paths in which such moves are not allowed.

Definition 2.17. A flow path γ = (e1, u1, . . . , en, un; c) is called reduced if ei+1 ⊀ μ−1(ui)
for all i. When there is a pair ei+1 ≺ μ−1(ui), we say that γ is reducible at i. The set of 
reduced flow paths is denoted by FP(μ) or FP(f) if μ = μf .

For a flow path γ = (e1, u1, . . . , en, un; c), if γ is not reducible at b − 1 and eb ≺
μ−1(ub−1), eb ≺ μ−1(ub−2), . . ., eb ≺ μ−1(ua), but eb ⊀ μ−1(ua−1), the set {a, a +
1, . . . , b} is called a reducible interval for γ.

Lemma 2.18. When a flow path γ = (e1, u1, . . . , en, un; c) is reducible at i, define

ri(γ) = (e1, u1, . . . , ei−1, ui−1, ei+1, ui+1, . . . , en, un; c).

Then ri(γ) is a flow path.

Proof. When γ is reducible at i, we have ui−1 � ei � μ−1(ui) � ei+1. Hence the 
condition 4 in the definition of flow path is satisfied. �
Definition 2.19. For γ ∈ FP(μ) and a reducible interval I = {a, a + 1, . . . , b}, define

rI(γ) = ra(ra+1(· · · rb(γ) · · · )).

Let I1, . . . , I� be the collection of all reducible intervals with i < j for all i ∈ Ip and 
j ∈ Ip+1 and all p = 1, . . . , � − 1. Define

r(γ) = rI1(rI2(· · · rI�(γ) · · · )).

By Lemma 2.18, r defines a map

r : FP(μ) −→ FP(μ).

This is called the reduction map.

We define a relation 
 on FP(μ) as follows.
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d1

u1

d2

u2

d3 u3 c

Fig. 2. A partial matching on 2-simplex.

Definition 2.20. For flow paths γ = (e1, u1, . . . , em, um; c) and γ′ = (e′1, u′
1, . . . , e

′
n, u

′
n; c′), 

define γ 
 γ′ if and only if there exists a strictly increasing function

ϕ : {0, 1, . . . , k} −→ {0, 1, . . . , n + 1}

for some 1 ≤ k ≤ m + 1 satisfying the following conditions:

1. ϕ(0) = 0,
2. uj = u′

ϕ(j) for each 1 ≤ j < k,
3. ϕ(k) = n + 1, and
4. for each 1 ≤ j ≤ k, ej 
 e′p for all ϕ(j − 1) < p ≤ ϕ(j).

When γ 
 γ′, γ is called a subpath of γ′. The function ϕ is called the embedding function 
for γ 
 γ′.

Remark 2.21. Note that we denote e′n+1 = c′ for γ′ = (e′1, u′
1, . . . , e

′
n, u

′
n, c

′). Thus the 
conditions 3 and 4 imply that ek 
 c′ = τ(γ′).

In particular, the map ϕ : {0, 1} → {0, 1, . . . , n + 1} defined by ϕ(1) = n + 1 is an 
embedding function for (τ(γ)) 
 γ if τ(γ) 
 e1, where (τ(γ)) is the flow path consisting 
of a single critical cell τ(γ). Another typical example is the following.

Example 2.22. For γ = (e1, u1, e2, u2, . . . , en, un; c), define

u(γ) = (u1, u1, e2, u2, . . . , en, un; c).

The identity map {0, . . . , n + 1} → {0, . . . , n + 1} is an embedding function and we have 
γ 
 u(γ). �

In order to understand the meaning of the relation 
 on FP(μ), let us take a look at 
a more practical example.

Example 2.23. Consider the 2-simplex in Fig. 2 with the acyclic partial matching μ
indicated by the arrows. The only critical cell is c with D(μ) = {d1, d2, d3} and U(μ) =
{u1, u2, u3}.
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The sequences

δ = (d1, u1, u2, u2, d3, u3; c)

γ = (d1, u1, d3, u3; c)

are reduced flow paths terminating at c. Let us renumber cells in γ as γ =
(d′1, u′

1, d
′
2, u

′
2; c).

Define ϕ : {0, 1, 2, 3} → {0, 1, 2, 3, 4} by ϕ(0) = 0, ϕ(1) = 1, ϕ(2) = 3, ϕ(3) = 4. Then 
this is an embedding function for γ ≺ δ. In fact, uϕ(1) = u1 = u′

1, uϕ(2) = u3 = u′
2 and 

the condition 2 is satisfied. For the condition 4, d′1 = d1 is a face of d1, d′2 = d3 is a face 
of u2 and d3. Thus γ ≺ δ. �

In order to prove that 
 is a partial order on FP(μ), we need to prepare a couple of 
Lemmas.

Lemma 2.24. For γ 
 γ′ in FP(μ), embedding function ϕ in Definition 2.20 is unique.

Proof. Let γ = (e1, u1, . . . , em, um; c) and γ′ = (e′1, u′
1, . . . , e

′
n, u

′
n; c′) be flow paths. 

Suppose γ 
 γ′ and that there exist two embedding functions

ϕ : {0, 1, . . . , k} −→ {0, 1, . . . , n + 1}
ϕ′ : {0, 1, . . . , k′} −→ {0, 1, . . . , n + 1}

for this relation.
By the condition uj = u′

ϕ′(j) = u′
ϕ(j), it suffices to show that k = k′. Suppose k < k′. 

By Remark 2.21, we have ek 
 c′ by using the conditions for ϕ. Let f be a faithful 
discrete Morse function with μ = μf . Since c′ is critical, we have f(ek) ≤ f(c′). On the 
other hand, we have uk = u′

ϕ′(k) by the conditions for ϕ′. By Remark 2.12, we have 
decreasing sequences

f(e1) ≥ f(u1) > · · · > f(em) ≥ f(um) > f(c)

f(e′1) ≥ f(u′
1) > · · · > f(e′n) ≥ f(u′

n) > f(c′).

In particular, we have

f(ek) ≥ f(uk) = f(u′
ϕ′(k)) > f(c′),

which contradicts to f(ek) ≤ f(c′). �
An analogous argument implies the following. The proof is omitted.

Lemma 2.25. Let f be a faithful discrete Morse function with μ = μf . For γ, γ′ ∈ FP(μ), 
γ 
 γ′ implies f(τ(γ)) ≤ f(τ((γ′)).
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Recall that �(γ) is the length of a flow path γ.

Lemma 2.26. If γ 
 γ′ and τ(γ) = τ(γ′), then we have �(γ) ≤ �(γ′).

Proof. Suppose γ = (e1, u1, . . . , em, um; c) and γ′ = (e′1, u′
1, . . . , e

′
n, u

′
n; c). Let

ϕ : {0, . . . , k} −→ {0, . . . , n + 1}

be the embedding function for γ 
 γ′. Note that we have ek ≺ τ(γ′) = τ(γ) by Re-
mark 2.21.

Let f be a faithful discrete Morse function with μ = μf . By Lemma 2.25, we have 
f(τ(γ)) ≤ f(ek) ≤ f(τ(γ′)). Since τ(γ) = τ(γ′), we obtain f(ek) = f(τ(γ)) and the 
injectivity of f implies that ek = τ(γ). Thus we have m = k − 1 by the definition of 
length of γ. On the other hand, the injectivity of ϕ implies m + 1 = k ≤ n + 1. And we 
have �(γ) ≤ �(γ′). �
Remark 2.27. The above proof implies that, when τ(γ) = τ(γ′) and γ 
 γ′, its embedding 
function ϕ is of the form

ϕ : {0, . . . , �(γ) + 1} −→ {0, . . . , �(γ′) + 1}.

Thus when τ(γ) = τ(γ′) and �(γ) = �(γ′), the embedding for γ 
 γ′ must be the identity 
map.

Proposition 2.28. The relation 
 is a partial order on the set FP(μ) of flow paths.

Proof. For γ ∈ FP(μ), the relation γ 
 γ is given by the identity embedding function.
Suppose γ 
 γ′ and γ′ 
 γ′′. Let

ϕ : {0, . . . , k} −→ {0, . . . , �(γ′) + 1}

ϕ′ : {0, . . . , k′} −→ {0, . . . , �(γ′′) + 1}

be embedding functions for γ 
 γ′ and γ′ 
 γ′′, respectively.
Since k′ ≤ �(γ′) + 1, there exists r such that ϕ(r − 1) < k′ ≤ ϕ(r). Define a function 

ϕ′′ : {0, . . . , r} → {0, . . . , �(γ′′) + 1} by

ϕ′′(i) =
{

(ϕ′ ◦ ϕ)(i), i < r

ϕ′(k′) = �(γ′′) + 1, i = r.

This is an embedding function for γ 
 γ′′.
Finally suppose that γ 
 γ′ and γ′ 
 γ for γ = (e1, u1, . . . , em, um; c) and γ′ =

(e′1, u′
1, . . . , e

′
n, u

′
n; c′). By Lemma 2.25 we have f(τ(γ)) = f(τ(γ′)). Since our Morse 
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function f is assumed to be injective, we have τ(γ) = τ(γ′). By Lemma 2.26, we have 
�(γ) = �(γ′).

The relation γ 
 γ′ implies that, if ej = uj in γ, then

uj = ej 
 e′ϕ(j) 
 u′
ϕ(j) = uj

and we have e′ϕ(j) = u′
ϕ(j). Thus we have

{ui | ei = ui} ⊂
{
u′
j

∣∣ e′j = u′
j

}
.

The assumption γ′ 
 γ then implies that

{ui | ei = ui} =
{
u′
j

∣∣ e′j = u′
j

}
.

Furthermore, by Remark 2.27, the embedding function ϕ for the relation γ 
 γ′ is the 
identity map. Thus the relations γ 
 γ′ and γ′ 
 γ show that the corresponding cells 
in γ and γ′ are identical and we have γ = γ′. �

We regard the set of reduced flow paths FP(μ) as a subposet of FP(μ). On the other 
hand, we have the reduction map r : FP(f) → FP(μ).

Lemma 2.29. The reduction r : FP(μ) → FP(μ) is a poset map. It is also a retraction.

Proof. Suppose γ 
 δ in FP(μ) for γ = (e1, u1, . . . , em, um; c) and δ = (e′1, u′
1, . . . , e

′
n, u

′
n;

c′) and let ϕ : {0, . . . , k} → {0, . . . , n + 1} be the embedding function for γ 
 δ.
Let I1, . . . , I� and J1, . . . , J�′ be the reducible intervals for γ and δ, respectively. Let 

us first show that the embedding function ϕ can be restricted to

ϕ : {0, . . . , k} \
�⋃

i=1
Ii −→ {0, . . . , n + 1} \

�′⋃
j=1

Jj .

In other words, we want to show that, if δ is reducible at ϕ(i), then γ is reducible at i. 
When δ is reducible at ϕ(i), e′ϕ(i)+1 ≺ μ−1(u′

ϕ(i)). By the conditions for embedding 
functions, on the other hand, we have ei+1 ≺ e′ϕ(i)+1 and u′

ϕ(i) = ui. Thus

ei+1 ≺ e′ϕ(i)+1 ≺ μ−1(u′
ϕ(i)) = μ−1(ui),

which implies that γ is reducible at i.
Let k′ be the cardinality of {1, . . . , k} \

⋃�
i=1 Ii and n′ = n − |J1| − . . . − |J�′ |. The 

order preserving bijections are denoted by

ψ : {0, . . . , k′} −→ {0, . . . , k} \
�⋃
Ii
i=1
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θ : {0, . . . , n′ + 1} −→ {0, . . . , n + 1} \
�′⋃

j=1
Jj .

Then we have a strictly increasing function ϕ′ by the composition

ϕ′ : {0, . . . , k′} ψ−→ {0, . . . , k} \
�⋃

i=1
Ii

ϕ−→ {0, . . . , n + 1} \
�′⋃

j=1
Jj

θ−1

−→ {0, . . . , n′ + 1}.

The fact that ϕ′ is the embedding function for r(γ) 
 r(δ) follows immediately from the 
fact that ϕ is the embedding function for γ 
 δ. �

Recall that, when we regard posets as small categories, order preserving maps corre-
spond to functors. The following is an important property of the reduction map from 
the view point of category theory.

Proposition 2.30. The composition FP(μ) r−→ FP(μ) ↪→ FP(μ) is a descending closure 
operator.2

Proof. Let us show that r(γ) 
 γ for any γ ∈ FP(μ). Let I1, . . . , I� be the reducible 
intervals in γ and

ψ : {0, 1, . . . , �(r(γ)) + 1} −→ {0, . . . , n + 1} \
�⋃

i=1
Ii

the order preserving bijection. Then the composition

r(ϕ) : {0, 1, . . . , �(r(γ)) + 1} ψ−→ {0, . . . , n + 1} \
�⋃

i=1
Ii ↪→ {0, 1, . . . , n + 1}

is the embedding function for r(γ) 
 γ. �
Remark 2.31. The reduction r(γ) is the maximal reduced flow path contained in γ by 
Proposition 2.30.

By Corollary A.22, we obtain the following important fact.

Corollary 2.32. BFP(μ) is a strong deformation retract of BFP(μ).

2 See Definition A.21.



V. Nanda et al. / Advances in Mathematics 340 (2018) 723–790 739
2.3. From combinatorial flows to stable subdivision

In order to relate the combinatorial definition of flow paths to the homotopy type 
of X, we construct a continuous flow starting from each x ∈ X by using a faithful 
discrete Morse function. We also construct a subdivision of X by using those continuous 
flows.

The first step is to replace characteristic maps for cells as follows.

Proposition 2.33. Given an acyclic partial matching μ on a finite regular CW complex X, 
we may choose characteristic maps for cells in X in such a way that they satisfy the fol-
lowing conditions: For each matched pair d ≺ μ(d) = u with dim u = n, the characteristic 
map ϕ for u is a homeomorphism of triples

ϕ :
(
Dn, Sn−1

+ , Sn−1
−

) ∼=−→
(
u, d, ∂u \ d

)
,

where Sn−1
+ and Sn−1

− are the northern and southern hemispheres of ∂Dn = Sn−1, 
respectively.

We need a version of generalized Schönflies theorem to prove this. We first need to 
recall the notion of locally flat embeddings.

Definition 2.34. Let M and N be topological manifolds without boundaries of dimen-
sion m and n, respectively. An embedding of M into N is called locally flat at x ∈ M , 
if there exists a neighborhood U of x in N such that (U, U ∩ M) is homeomorphic to 
(Rn, Rm).

The following theorem is due to M. Brown [5].

Theorem 2.35. Let f : Sn−1 ↪→ Sn be a locally flat embedding. Then there exists a 
homeomorphism ϕ : Sn → Sn with

ϕ(f(Sn−1)) = Sn−1 = {(x0, . . . , xn) ∈ Sn | xn = 0} .

Any piecewise-linear (PL) embedding of a PL m-manifold into a PL n-manifold is 
known to be locally flat, if n − m �= 2. See Theorem 1.7.2 in Rushing’s book [34], for 
example. By the Jordan–Brouwer separation theorem, for any embedding Sn−1 ↪→ Sn, 
the complement of Sn−1 has two connected components. In particular, we obtain the 
following fact.

Corollary 2.36. Let Σn−1 be a PL (n − 1)-sphere embedded in a PL n-sphere Σn. Let 
us denote the closures of the connected components of Σn \ Σn−1 by Δn

+ and Δn
−. Then 

both Δn
+ and Δn

− are homeomorphic to an n-disk Dn.
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Remark 2.37. Note that this Corollary is not the PL Schönflies theorem, which implies 
that Δn

+ and Δn
− are PL disks.

Proof of Proposition 2.33. We modify characteristic maps by induction on dimensions of 
cells. Suppose we have succeeded in modifying characteristic maps for cells of dimension 
less than n. Let u be an n-cell and ϕ : Dn → u the original characteristic map for u. 
Since X is assumed to be regular, the restriction

ϕ|Sn−1 : Sn−1 −→ ∂u

is a homeomorphism. The regularity of X also implies that, u has a structure of a PL 
n-disk containing ∂u as a PL (n − 1)-sphere. This can be done by taking the barycentric 
subdivision of X twice, if necessary.

The boundary ∂u contains a PL (n − 2)-sphere ∂d. By Corollary 2.36, there exist 
homeomorphisms

ϕ+ : Dn−1 −→ d

ϕ− : Dn−1 −→ ∂u \ d.

The composition

Sn−2 = ∂Dn−1 ϕ+−→ ∂d
ϕ−1

−−→ Sn−2

can be extended radially to a homeomorphism ψ : Dn−1 → Dn−1. The composition

ϕ̃− : Dn−1 ψ−→ Dn−1 ϕ−−→ ∂u \ d

is a homeomorphism which agrees with ϕ+ on Sn−2. Thus we obtain a homeomorphism 
ϕ∂ : Sn−1 → ∂u by gluing ϕ+ and ϕ̃− along Sn−2.

The composition

Sn−1 ϕ∂−→ ∂e
ϕ−1

−→ Sn−1

is a homeomorphism. Extend this to a homeomorphism ϕ̃ : Dn → Dn radially. Then the 
composition

ϕ′ : Dn ϕ̃−→ Dn ϕ−→ u

is a characteristic map for u which satisfies the required condition. �
Definition 2.38. Let d ≺ μ(d) = u and ϕ be as above. The complement ∂u \ d of d in 
∂u ∼= Sn−1 is denoted by dc.
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The retraction r : Dn → Sn−1
− given by (x, xn) �→

(
x,−

√
1 − ‖x‖2

)
induces a 

retraction of u onto dc through ϕ, which is denoted by Ru : u → dc. The composition 

d ↪→ u
Ru−→ dc is denoted by Rd.

Remark 2.39. We have the following commutative diagram

Dn−1 × [−1, 1] Dn u

Dn−1 Sn−1
− dc,

ψ

pr1 r

ϕ

Ru

ψ− ϕ|
S
n−1
−

where ψ and ψ− are maps defined by

ψ(x, t) =
(
x, t

√
1 − ‖x‖2

)
ψ−(x) =

(
x,−

√
1 − ‖x‖2

)
.

Note that ψ|Dn−1×∂[0,1]∪IntDn−1×[0,1] is a homeomorphism onto Dn \ Sn−2. It should 
be also noted that Rd(A) = A if and only if R−1

d (A) = A if and only if A ⊂ ∂d. These 
facts will be used in §3.4 to construct a subdivision Sdμ(X) of X.

When d is not a face of any other cell, the deformation retraction Rd can be extended 
to X → X \ (d ∪ μ(d)). Such a deformation retraction is called an elementary collapse
in simple homotopy theory [9]. Thus matched pairs can be regarded as generalizations 
of elementary collapses.

In the rest of this paper, we fix a deformation retraction Ru : u → dc = ∂u \ d for 
each matched pair d ≺1 u. Now we are ready to construct continuous flows on X. Let

L : [−1, 1] × [0, 1] −→ [−1, 1]

be the linear flow on [−1, 1] which carries x ∈ [−1, 1] to −1, i.e. L(x, t) = (1 − t)x − t. By 
extending this flow, we obtain a flow on Dn−1×[−1, 1] and hence a flow Ld,u : u×[0, 1] →
u which makes the following diagram commutative

Dn−1 × [−1, 1] × [0, 1] Dn × [0, 1] u× [0, 1]

Dn−1 × [−1, 1] Dn u.

ψ×1

1×L

ϕ×1

Ld,u

ψ ϕ

Definition 2.40. Suppose X is finite. For each x ∈ X, we assign a nonnegative number hx

and define a continuous path Lx : [0, hx] → X with the following properties:
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1. Lx(0) = x.
2. When u ∩ Lx([0, hx]) �= ∅ for u ∈ U(μ), the restriction of Lx to u coincides with a 

restriction of Lμ−1(u),u with a certain parameter shift.

Choose a faithful discrete Morse function f for μ. We proceed by induction on f(x). 
(Recall that we regard f as an integer-valued locally constant function on X.)

When f(x) is the minimum value of f , the path Lx is defined to be the constant path 
at x with length 0.

Suppose we have defined paths Ly for all points y with f(y) < f(x). Let e be the 
unique cell containing x in its interior. If e ∈ Cr(μ), we also define Lx to be the constant 
path at x with length 0. When e ∈ U(μ), there exist y ∈ μ−1(e) and s ∈ [0, 1] with 
x = Lμ−1(e),e(y, s). Note that y and s are uniquely determined by x. Let e′ be the unique 
cell containing x′ = Lμ−1(e),e(y, 1) in its interior. Then e′ ≺ e but e′ is not matched 
with e, since e′ �= μ−1(e). Thus f(e′) < f(e), since f is faithful. By the inductive 
hypothesis, there exist a number hx′ and a continuous path Lx′ : [0, hx′ ] → X satisfying 
the required conditions. Define hx = hx′ + 1 − s and

Lx(t) =
{
Lx′(t− 1 + s), if t ∈ [1 − s, hx]
Lμ−1(e),e(y, t + s), if [0, 1 − s].

When e ∈ D(μ), let e′ be the unique cell containing x′ = Le,μ(e)(x, 1) in its interior. 
Then f(e′) < f(e) and the inductive hypothesis applies to x′. Now define hx = hx′ + 1
and

Lx(t) =
{
Lx′(t− 1), if t ∈ [1, hx]
Le,μ(e)(x, t), if [0, 1].

And we obtain a continuous path

Lx : [0, hx] −→ X

satisfying the desired conditions. The number hx defined by the above procedure is called 
the height of x with respect to f . And the path Lx is called the flow associated to f with 
initial point x.

Remark 2.41. The finiteness of X is used to choose a faithful discrete Morse function f
for an acyclic partial matching. If we start from a faithful discrete Morse function, the 
finiteness assumption is not necessary.

The continuous path constructed above is closely related to flow paths.

Lemma 2.42. For each x ∈ X, there exists a unique reduced flow path γx which contains x
in its initial cell ι(γx) and contains the image of Lx in the union of cells in γx.
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Conversely, for each reduced flow path γ = (e1, u1, . . . , en, un; c), there exists x ∈ e1
such that γx = γ.

Proof. Let e1, . . . , en be the sequence of cells appeared in the construction of Lx. De-
pending on ei ∈ D(μ) or ei ∈ U(μ), define ui = μ(ei) or ui = ei. By the construction, Lx

lands in a critical cell, say c. Then the sequence γx = (e1, u1, . . . , en, un; c) is a reduced 
flow path. The uniqueness follows from the uniqueness of the choices of cells e1, . . . , en.

Conversely, let γ = (e1, u1, . . . , en, un; c) be a reduced flow path. Choose a point z ∈ c. 
Starting with z, let us reverse the construction of flows in Definition 2.40 to obtain x ∈ X

with γx = γ and Lx(hx) = z. We proceed by induction on the length n of γ. When n = 0, 
γ = (c) and there is nothing to prove.

Suppose we have found such points for reduced flow paths of lengths ≤ n − 1. Let 
γ′ = (e2, u2, . . . , en, un; c) and apply the inductive hypothesis. Then there exists x′ ∈ e2
such that the image of Lx′ is contained in the union of cells in γ′. Since γ is reduced, 
e2 ⊂ ∂u1 \ μ−1(u1). When e1 = μ−1(u1), there exists x ∈ e1 such that Le1,u1(x, 1) = x′. 
When e1 = u1, there exist x ∈ e1 and s ∈ (0, 1) such that x′ = Lμ−1(u1),u1(x, s). By 
construction, cells containing the image of Lx form γ and thus γ = γx. �

This lemma allows us to define a surjective map

πμ : X −→ FP(μ)

by πμ(x) = γx. Hence we have a stratification on X

X =
⋃

γ∈FP(μ)

eγ , (2.1)

where eγ = π−1
μ (γ), for a reduced flow path γ.

Note that we have a commutative diagram

X

FP(μ) F (X),

πμ πX

ι

(2.2)

where πX is the defining map for the cell decomposition of X, i.e. x ∈ X is mapped to 
the unique cell containing x. Thus

eλ =
⋃

ι(γ)=eλ

eγ

for eλ ∈ F (X).
The following description of eγ is useful.
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Lemma 2.43. For a reduced flow path γ = (e1, u1, . . . , en, un; c), we have

eγ = {x ∈ e1 | Lx(hx) ∈ c} .

Proof. By definition

eγ = {x ∈ e1 | γx = γ} .

The condition γx = γ is equivalent to saying that γ consists of cells which intersect with 
the image of Lx. By the construction of Lx, this is equivalent to Lx(hx) ∈ c. �
Corollary 2.44. For a reduced flow path γ = (e1, u1, . . . , en, un; c), let γ′ = (e2, u2, . . . , en,
un; c). Then

eγ = R−1
u1

(eγ′) ∩ e1.

When e1 = μ−1(u1), we also have

eγ = R−1
e1 (eγ′) ∩ e1.

Proof. Suppose e1 = μ−1(u1). By the construction of Lx, we have

eγ = {x ∈ e1 | Le1,u1(x, 1) ∈ eγ′}

and the map Le1,u1(−, 1) : u1 → ec1 coincides with Ru1 . The case e1 = u1 is analogous 
and is omitted. �

The rest of this section is devoted to the proof of the following fact.

Proposition 2.45. The subdivision (2.1) of X is a regular cell decomposition.

In order to prove this, let us consider the following more general situation. Suppose 
we have a regular cell complex X. Suppose further that each cell eλ in X is equipped 
with a decomposition

eλ =
⋃

α∈Aλ

eλ,α.

We would like to know when the decomposition of X

X =
⋃

α∈Aλ

⋃
λ∈Λ

eλ,α (2.3)

is a regular cell decomposition.
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It is easy to see that the closure of eλ has the following decomposition

eλ =
⋃
μ∈Λ

⋃
β∈Aμ

⋃
eμ,β∩eλ 	=∅

eμ,β . (2.4)

Lemma 2.46. If (2.4) is a regular cell decomposition of eλ for all λ, then (2.3) is a regular 
cell decomposition of X, which is a subdivision of the original cell decomposition on X.

Proof. By assumption, each eλ,α is equipped with a characteristic map

ϕλ,α : Ddim eλ,α −→ eλ.

Composed with the inclusion eλ ↪→ X, we obtain a characteristic map for eα,λ in X, 
since the closure of eλ,μ in eλ coincides with the closure in X.

The condition that ∂eλ,α = eλ,α \ eλ,α is covered with cells of dimension < dim eλ,α
follows from the assumption. �

The following observation is essential in the proof of Proposition 2.45.

Lemma 2.47. Let K be a triangulation of a convex polytope P of dimension n. Define 
a relation ∼ on P × [0, 1] = |K| × [0, 1] by (x, s) ∼ (x, t) for x ∈ ∂P and s, t ∈ [0, 1]. 
The equivalence relation generated by ∼ is also denoted by ∼. Denote the quotient space 
P × [0, 1]/∼ by E and the canonical projection onto P by

p : E −→ P.

Then for any simplex σ ∈ K, p−1(σ) is homeomorphic to Ddim σ+1.
More generally for any subcomplex L ⊂ K whose geometric realization is homeomor-

phic to a disk of dimension n, p−1(|L|) is homeomorphic to a disk of dimension n + 1.

Proof. When σ ∩ ∂P = ∅, p−1(σ) can be identified with σ × [0, 1] and is homeomorphic 
to Ddim σ+1. Suppose σ ∩ ∂P �= ∅. Then τ = σ ∩ ∂P is a face of σ. We have

p−1(σ) = σ × [0, 1]/∼σ
,

where the equivalence relation ∼σ is the restriction of ∼ and thus (x, s) ∼σ (x, t) for 
x ∈ σ ∩ ∂P and s, t ∈ [0, 1].

Let {v0, v1, . . . , vk} be the set of vertices of σ. We may assume that the vertices 
belonging to τ are the first � +1 vertices v0, . . . , v�. Define a convex polytope Q contained 
in σ × [0, 1] by

Q = Conv((v0, 0), . . . , (v�, 0), (v�+1, 0), . . . , (vk, 0), (v�+1, 1), . . . , (vk, 1)).
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We claim that p−1(σ) is homeomorphic to Q. A homeomorphism π : p−1(σ) → Q is, for 
example, defined by

π

([
k∑

i=0
tivi, s

])
=

�∑
i=0

ti(vi, 0) +
k∑

i=�+1

(1 − s)ti(vi, 0) +
k∑

i=�+1

sti(vi, 1).

Since elements in the face τ correspond to 
∑k

i=0 tivi with t�+1 = · · · = tk = 0, this map 
is well defined and continuous. And this is easily seen to be bijective.

Let L be a subcomplex of K with |L| ∼= Dn. We prove that p−1(|L|) is homeomorphic 
to an (n + 1)-disk by induction on the number of n-simplices and n. Suppose we have 
proved the statement for n ≤ m − 1. Furthermore suppose that we have proved the 
statement for subcomplexes of dimension m and the number of m-simplices less than k.

Suppose L has k m-simplices. Choose an m-simplex σ in L. Let L′ be the subcomplex 
of L obtained by removing σ and its faces in ∂|L|. Since |L| is homeomorphic to a disk, 
it is collapsible to a point. Thus we may choose σ with which |L′| is homeomorphic to 
an m-disk. Then σ ∩ |L′| is homeomorphic to an (m − 1)-disk. By inductive assumption 
on dimension, p−1(σ ∩ |L′|) is homeomorphic to an m-disk. By inductive assumption on 
the number of m-cells, p−1(|L′|) is homeomorphic to an (m + 1)-disk. Thus p−1(|L|) =
p−1(|L′|) ∪ p−1(σ) is homeomorphic to an (m + 1)-disk as a union of two (m + 1)-disks 
along an m-disk. �
Proof of Proposition 2.45. Let us verify the condition in Lemma 2.46. By the dia-
gram (2.2), we have

eλ =
⋃

ι(γ)=eλ

eγ

for a cell eλ in F (X), which leads to a decomposition of X

X =
⋃

λ∈F (X)

⋃
ι(γ)=eλ

eγ .

We need to construct a characteristic map for each eγ and prove that

eλ =
⋃
γ

⋃
eγ∩eλ 	=∅

eγ

is a regular cell decomposition of eλ.
Let us first construct a characteristic map ϕγ for eγ . Choose a faithful discrete Morse 

function f with μ = μf . We construct ϕγ by induction on f(ι(γ)).
When f(ι(γ)) is the minimum value of f , ι(γ) is critical and γ is the constant flow 

path (ι(γ)). The characteristic map ϕγ for eγ = ι(γ) is defined to be the characteristic 
map for ι(γ).
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Suppose we have constructed a characteristic map of eγ for γ with f(ι(γ)) ≤ k. Let 
γ = (e1, u1, . . . , en, un; c) be a reduced flow path with f(e1) = k + 1. (Recall that our f
is Z-valued.) Since γ is nontrivial, e1 is not critical. Let γ′ = (e2, u2, . . . , en, un; c). Let 
ϕ : Dn → u1 be the characteristic map for u1. By Proposition 2.33, we may assume that 
ϕ is a homeomorphism of triples

ϕ : (Dn, Sn−1
+ , Sn−1

− ) −→
(
u1, d1, d

c
1
)
,

where d1 = μ−1(u1). By Remark 2.39, we have a commutative diagram

Dn−1 × [−1, 1] Dn u1

Dn−1 Sn−1
− dc1.

ψ

r

ϕ

Rd1

ψ− ϕ|
S
n−1
−

(See Definition 2.38 and Remark 2.39 for definitions of r, ψ, and ψ−.)
By Remark 2.12, we have

k + 1 = f(e1) ≥ f(u1) > f(e2) = f(ι(γ′))

and the inductive hypothesis applies to γ′. Let

ϕγ′ : Ddim eγ′ −→ eγ′

be the characteristic map for eγ′ . Note that eγ′ ⊂ ∂u1\d1 by construction. Since ϕ|Sn−1
−

is 
a homeomorphism, there exists an embedding α : Ddim eγ′ ↪→ Dn−1 making the following 
diagram commutative

Dn−1 Sn−1
− dc1

Ddim eγ′ eγ′ .

ψ−
ϕ|

S
n−1
−

α

ϕγ′

There are two cases; e1 = d1 or e1 = u1.

The case e1 = d1: We have eγ = R−1
d1

(eγ′) ∩ d1 by Corollary 2.44. Let i0 : Dn−1 ↪→
Dn−1 × [−1, 1] be the inclusion into Dn−1 × {1}. Then the composition

Ddim eγ′ α−→ Dn−1 i0−→ Dn−1 × [−1, 1] ψ−→ Dn ϕ−→ en ↪→ X

is a characteristic map for eγ .
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Fig. 3. An acyclic partial matching on T 2.

The case e1 = u1: In this case eγ = R−1
u1

(eγ′) ∩ u1. By pulling back the regular cell 
decomposition of dc1 via ϕ, Sn−1

− has a structure of regular cell complex. Let K
be a simplicial subdivision of this regular cell decomposition. Then the map ψ
can be regarded as the quotient map

|K| × [0, 1] −→ |K| × [0, 1]/∼

in Lemma 2.47. Thus, by Lemma 2.47, ϕ−1(R−1
u1

(eγ′)) is homeomorphic to a disk 
of dimension dim eγ′ + 1 and we obtain a characteristic map for eγ .

The fact that eγ \ eγ is covered with cells of dimension < dim eγ follows from the 
construction of the characteristic map for eγ , or the construction of a homeomorphism 
in Lemma 2.47. �
Definition 2.48. The decomposition (2.1) is called the stable subdivision of X associated 
to μ and is denoted by Sdμ(X) or Sdf (X) when μ = μf for a faithful discrete Morse 
function f .

For a critical cell c, the subspace

W s(c) =
⋃

τ(γ)=c

eγ

is called the stable subspace of c.

Remark 2.49. Recall that a smooth Morse function on a manifold M induces a decom-
position of M by stable manifolds. The stable manifold W s(c) at a critical point c is 
a submanifold of M consisting of points on gradient flows going down to c. The stable 
subdivision defined above is a discrete analogue of this decomposition.

Example 2.50. Consider the cubical cell decomposition of a torus T 2 given by the left 
picture in Fig. 3. Define an acyclic partial matching on this cell complex by the right 
picture in Fig. 3, in which critical cells are drawn by black.

The decomposition by stable subspaces and the stable subdivision are drawn in 
Fig. 4. �
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Fig. 4. Stable subdivision on T 2.

3. The flow category

The aim of this section is to construct a poset-enriched category C(μ), called the flow 
category, having critical cells of μ as objects and show that the classifying space of C(μ)
is homotopy equivalent to X.

3.1. Small categories

Let us first fix notation and terminology for categories and functors. We regard a 
small category as a monoid in the category of quivers.

Definition 3.1.

1. A quiver Q consists of a set Q0 of vertices and a set Q1 of arrows together with maps

s, t : Q1 −→ Q0.

For x, y ∈ Q0 and u ∈ Q1, when s(u) = x and t(u) = y, we write u : x → y. 
By definition, the set of arrows from x to y equals s−1(x) ∩ t−1(y) and is denoted 
by Q(x, y).

2. For a quiver Q, define

N2(Q) =
{
(u, v) ∈ Q2

1
∣∣ s(u) = t(v)

}
.

3. A (small) category is a quiver C equipped with maps

◦ : N2(C) −→ C1

ι : C0 −→ C1

satisfying the associativity and the unit conditions, i.e.

(u ◦ v) ◦ w = u ◦ (v ◦ w)

u = ι(t(u)) ◦ u = u ◦ ι(s(u))
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for all u, v, w ∈ C1 with s(u) = t(v) and s(v) = t(w). We also require that s(u ◦ v) =
s(v), t(u ◦ v) = t(u), and s(ι(x)) = t(ι(x)) = x.
For x ∈ C0, ι(x) is denoted by 1x and is called the identity morphism at x.

4. A category C is said to be acyclic if either C(x, y) or C(y, x) is empty for any 
x, y ∈ C0 with x �= y and C(x, x) = {1x} for any x ∈ C0.

Definitions of functors and natural transformations in this formulation should be obvious 
and are omitted.

Remark 3.2. A poset is a typical example of an acyclic category. Many of properties and 
constructions for posets can be extended to acyclic categories.

For a small category C, we have a coproduct decomposition

C1 =
∐

x,y∈C0

C(x, y).

Thus a small category C can be defined as a collection of a set C0, a family of sets 
{C(x, y)}x,y∈C0 , maps

◦ : C(y, z) × C(x, y) −→ C(x, z),

and elements 1x ∈ C(x, x) satisfying the associativity and the unit conditions.
In order to study higher structures, we need categories whose sets of morphisms 

C(x, y) are topological spaces, posets, small categories, and so on. More generally, there 
is a notion of categories enriched over a monoidal category. Recall that, roughly speaking, 
a monoidal category is a category equipped with a “tensor product operation” for pairs 
of objects.

Definition 3.3. Let (V , ⊗, 1) be a strict monoidal category.3

1. A V -quiver Q consists of a set Q0 of vertices and a family {Q(x, y)}x,y∈Q0 of objects 
in V .

2. A category enriched over V or simply a V -category consists of a V -quiver C together 
with
• a morphism

◦ : C(y, z) ⊗ C(x, y) −→ C(x, z)

in V for each triple x, y, z ∈ Co and

3 It is well known that any monoidal category can be replaced by a strict one. See Mac Lane’s book [29]
or Kassel’s book [25], for example.
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• a morphism 1x : 1 → C(x, x) in V for each x ∈ C0
that are subject to the standard requirements of being a small category.

Examples of monoidal categories include the category Poset of posets, the category 
Top of topological spaces, and the category Cat of small categories. Monoidal structures 
are given by products in all of these categories. We use the following terminologies.

Definition 3.4. Categories enriched over Poset, Top and Cat are called poset-categories, 
topological categories, and (strict) 2-categories respectively.

Remark 3.5. Note that poset-categories can be regarded as 2-categories under the inclu-
sion Poset ⊂ Cat.

Our first task in this section is to construct a poset-category C(μ) from an acyclic par-
tial matching μ. Since poset-categories are 2-categories, we need to recall basic definitions 
and properties of 2-categories.

Definition 3.6. For a 2-category C and objects x, y ∈ C0, C(x, y) is a small category. Thus 
it consists of the set of objects C(x, y)0 and morphisms C(x, y)1. Elements of C(x, y)0
and C(x, y)1 are called 1-morphisms and 2-morphisms in C, respectively. When θ ∈
C(x, y)(u, v), we write θ : u ⇒ v.

The classes of all 1-morphisms and 2-morphisms in C are denoted by C1 and C2, 
respectively. When C2 is a set, C is called a small 2-category.

There are two kinds of compositions in a 2-category C. First of all, given a triple 
x, y, z ∈ C0 of objects, we have the horizontal composition functor

◦ : C(y, z) × C(x, y) −→ C(x, z).

On the other hand, for a triple u, v, w ∈ C(x, y)0, we have the vertical composition
denoted by

∗ : C(x, y)(v, w) × C(x, y)(u, v) −→ C(x, y)(u,w).

There are weaker versions of 2-categories such as bicategories and (∞, 2)-categories. 
Although we only use strict 2-categories, we are often forced to use weaker notions of 
functors between 2-categories.

Definition 3.7. Let C and D be small 2-categories. A colax functor f from C to D consists 
of the following data:

• a map

f : C0 −→ D0,
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• a family of functors

f = fy,x : C(x, y) −→ D(f(x), f(y)),

• a family of natural transformations

f(x)
f(w)

f(w′◦w)

fx′′,x′,x

f(x′)
f(w′)

f(x′′)

• a family of natural transformations

f(x)
f(1x)

1f(x)

fx f(x).

These maps are subject to the following additional conditions:

1. The following diagram is commutative in D(f(x), f(t))

f((w ◦ v) ◦ u)
fq,y,x

f(w ◦ v) ◦ f(u)
fq,z,y◦1f(u)

(f(w) ◦ f(v)) ◦ f(u)

f(w ◦ (v ◦ u))
fq,z,x

f(w) ◦ f(v ◦ u)
1f(w)◦fz,y,x

f(w) ◦ (f(v) ◦ f(u))

(3.1)

for any composable 1-morphisms x u−→ y
v−→ z

w−→ q in C.
2. The following diagrams are commutative in D(f(x), f(y))

f(u ◦ 1x)
fy,x,x

f(u) ◦ f(1x)
1f(u)◦fx

f(u) ◦ 1f(x)

f(u) f(u)

(3.2)

f(1y ◦ u)
fy,y,x

f(1y) ◦ f1(u)
fy◦1f(u)

1f(y) ◦ f(u)

f(u) f(u)

(3.3)

for any 1-morphism u : x → y in C.
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f is called a normal colax functor when fx is the identity for all objects x ∈ C0.
For simplicity, we suppress the indices in fz,y,x and fx and denote them by f , when 

there is no danger of confusion.

Remark 3.8. Note that colax functors are often called oplax functors in the literature. 
The choice of the term “colax” is based on the general principle that, when 2-morphisms 
are reversed, we put a suffix “co”.

Remark 3.9. We may reverse the directions of natural transformations fx,y,z and fx to 
obtain the notion of lax functors.

When these natural transformations are isomorphisms, f is called a pseudofunctor. In 
particular, a pseudofunctor can be regarded as a lax functor and a colax functor.

3.2. Categories of combinatorial flows

Here we construct a poset category C(μ) out of the poset of flow paths FP(μ). A re-
duced version C(μ) is also introduced.

We first define poset-enriched quivers4 Q(μ) and Q(μ).

Definition 3.10. Define Q(μ)0 = Cr(μ) and

Q(μ)1 = {(c, γ) ∈ Cr(μ) × FP(μ) | c � ι(γ)} .

Extend the target map τ : FP(μ) → Cr(μ) to a structure of quiver

σ, τ : Q(μ)1 −→ Q(μ)0

by σ(c, γ) = c. Similarly we define Q(μ)0 = Q(μ)0 = Cr(μ) and

Q(μ)1 =
{
(c, γ) ∈ Cr(μ) × FP(μ)

∣∣ c � ι(γ)
}
.

The source and the target maps σ, τ : Q(μ)1 → Q(μ)0 are defined analogously.
For each pair (c, c′) of critical cells, the forgetful map

Q(μ)(c, c′) −→ FP(μ)

is injective. Define a partial order on Q(μ)(c, c′) as a full subposet of FP(μ) under this 
injection. The poset structure on Q(μ)(c, c′) is induced analogously from that of FP(μ).

The resulting poset-quivers Q(μ) and Q(μ) are called the flow quiver and the reduced 
flow quiver of μ, respectively. When μ = μf for a discrete Morse function f , they are 
also denoted by Q(f) and Q(f), respectively.

4 Definition 3.3.
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Remark 3.11. When γ = (e1, u1, . . . , en, un; c′), we denote (c, γ) ∈ Q(μ)(c, c′) by 
(c; e1, u1, . . . , en, un; c′) or simply by γ when there is no danger of confusion.

In order to make these quivers into small categories, we need to specify how to compose 
morphisms. For the flow quiver Q(μ), it is simply given by concatenations.

Definition 3.12. For γ ∈ Q(μ)(c1, c2) and γ′ ∈ Q(μ)(c2, c3), define γ ∗ γ′ by

γ ∗ γ′ = (c1; e1, u1, . . . , em, um, e′1, u
′
1, . . . , e

′
n, u

′
n; c3)

when γ = (c1; e1, u1, . . . , em, um; c2) and γ′ = (c2; e′1, u′
1, . . . , e

′
n, u

′
n; c3).

Remark 3.13. The fact that γ ∗ γ′ belongs to Q(μ)(c1, c3) can be verified as follows. 
Suppose γ = (c1; e1, u1, . . . , em, um; c2) and γ′ = (c2; e′1, u′

1, . . . , e
′
n, u

′
n; c3). By definition, 

we have um � c2 and c2 � e′1. Thus um � e′1 and we obtain a flow path γ ∗ γ′.

Lemma 3.14. The concatenation of flow paths defines a poset map

∗ : Q(μ)(c1, c2) ×Q(μ)(c2, c3) −→ Q(μ)(c1, c3),

where Q(μ)(c1, c2) ×Q(μ)(c2, c3) is equipped with the product poset structure.

Proof. Suppose that (γ, γ′) and (δ, δ′) in Q(μ)(c1, c2) × Q(μ)(c2, c3) satisfy the order 
relation (γ, γ′) 
 (δ, δ′). In other words, γ 
 δ and γ′ 
 δ′ hold in Q(μ)(c1, c2) and 
Q(μ)(c2, c3), respectively.

Suppose

γ = (c1; e1, u1, . . . , em, um; c2)

γ′ = (c1; e′m+1, u
′
m+1, . . . , e

′
m+m′ , u′

m+m′ ; c3)

δ = (c2; e′′1 , u′′
1 , . . . , e

′′
n, u

′′
n; c2)

δ′ = (c2; e′′′n+1, u
′′′
n+1, . . . , e

′′′
n+n′ , u′′′

n+n′ ; c3).

By Remark 2.27, the embedding functions for the relations γ 
 δ and γ′ 
 δ′ are of the 
following form

ϕ : {0, . . . ,m + 1} → {0, . . . , n + 1}
ϕ′ : {0, . . . ,m′ + 1} → {0, . . . , n′ + 1}

According to our numbering scheme, the conditions for γ 
 δ are

1. ϕ(0) = 0,
2. uj = u′′ for 1 ≤ j < m + 1,
ϕ(j)
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3. ϕ(m + 1) = n + 1,
4. for each 1 ≤ j ≤ m + 1, ej 
 e′′p for all ϕ(j − 1) < p ≤ ϕ(j)

and the conditions for γ′ 
 δ′ are

1. ϕ′(0) = 0,
2. u′

j = u′′′
ϕ′(j−m)+n for m + 1 ≤ j < m + m′ + 1,

3. ϕ′(m′ + 1) = n′ + 1,
4. for each m +1 ≤ j ≤ m +m′+1, ej 
 e′′p for all ϕ′(j−1 −m) +n < p ≤ ϕ′(j−m) +n.

Now define a map

ϕ ∗ ϕ′ : {0, . . . ,m + m′ + 1} → {0, . . . , n + n′ + 1}

by

(ϕ ∗ ϕ′)(i) =
{
ϕ(i), 0 ≤ i ≤ m

ϕ′(i−m) + n, m + 1 ≤ i ≤ m + m′ + 1.

Let us verify that this map gives rise to the relation γ ∗ γ′ 
 δ ∗ δ. The conditions 
(ϕ ∗ϕ′)(0) = 0 and (ϕ ∗ϕ′)(m +m′ + 1) = n + n′ + 1 are immediate from the definition. 
The remaining conditions in Definition 2.20 can be split into the following:

1. uj = u′′
ϕ∗ϕ′(j) for 1 ≤ j < m + 1,

2. u′
j = u′′′

ϕ∗ϕ(j) for m + 1 ≤ j < m + m′ + 1,
3. for each 1 ≤ j ≤ m + 1, ej 
 e′′p for all (ϕ ∗ ϕ′)(j − 1) < p ≤ (ϕ ∗ ϕ′)(j), and
4. for each m + 1 ≤ j ≤ m + m′ + 1, e′j 
 e′′′p for all (ϕ ∗ ϕ′)(j − 1) < p ≤ (ϕ ∗ ϕ′)(j).

By the definition of ϕ ∗ ϕ′, these conditions are

1. uj = u′′
ϕ(j) for 1 ≤ j < m + 1,

2. u′
j = u′′′

ϕ′(j−m)+n for m + 1 ≤ j < m + m′ + 1,
3. for each 1 ≤ j ≤ m + 1, ej 
 e′′p for all ϕ(j − 1) < p ≤ ϕ(j), and
4. for each m +1 ≤ j ≤ m +m′+1, e′j 
 e′′′p for all ϕ′(j−1 −m) +n < p ≤ ϕ′(j−m) +n.

And we obtain γ ∗ γ′ 
 δ ∗ δ′. �
Lemma 3.15. The concatenation operation is associative, i.e.

(γ1 ∗ γ2) ∗ γ3 = γ1 ∗ (γ2 ∗ γ3)

for γ1 ∈ Q(μ)(c1, c2), γ2 ∈ Q(μ)(c2, c3), and γ3 ∈ Q(μ)(c3, c4).
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Proof. By definition. �
The following relations are useful.

Lemma 3.16. For a pair of composable flow paths γ = (e1, u1, . . . , em, um; τ(γ)) and 
δ = (e′1, u′

1, . . . , e
′
n, u

′
n; τ(δ)), we have

1. δ 
 γ ∗ δ, when either
(a) �(δ) ≥ 1, or
(b) �(δ) = 0 and τ(δ) 
 ep for all 1 ≤ p ≤ m, and

2. γ ∗ δ 
 γ, when either
(a) �(γ) ≥ 1, or
(b) �(γ) = 0 and e′1 
 τ(γ).

Proof. Define ϕ : {0, 1, . . . , n + 1} → {0, 1, . . . , n +m + 1} by ϕ(0) = 0 and ϕ(i) = i +m

for i = 1, . . . , n + 1. Then the first three conditions for δ 
 γ ∗ δ is obvious.
Suppose n > 0. For each 1 ≤ j ≤ n + 1, ϕ(j − 1) < p ≤ ϕ(j) implies that p = m + j. 

Thus the fourth condition is equivalent to e′j 
 e′′m+j = e′j for j = 1, . . . , n where

γ ∗ δ = (e′′1 , u′′
1 , . . . , e

′′
m+n, u

′′
m+n; τ(δ)).

When n = 0, the condition is e′1 
 e′′p for ϕ(0) < p ≤ ϕ(1) = m + 1. Or τ(δ) 
 ep for 
0 < p ≤ m +1. Since τ(δ) = em+1 = τ(γ) in this case, the essential condition is τ(δ) 
 ep
for 0 < p ≤ m.

Let us show that the identity map {0, 1, . . . , m +1} → {0, 1, . . . , m +1} is an embedding 
function for γ ∗ δ 
 γ if �(γ) ≥ 1. Again the first three conditions obviously hold. The 
fourth condition is equivalent to ej 
 ej for 1 ≤ j ≤ m and e′1 
 τ(γ), when �(γ) ≥ 1. 
Since γ ∗ δ is defined, e′1 
 τ(γ) holds. When �(γ) = 0, the fourth condition is equivalent 
to e′1 
 τ(γ). �
Example 3.17. Consider the function f on the boundary ∂[v0, v1, v2] of a 2-simplex de-
fined by

f([v0]) = 0

f([v0, v1]) = 1

f([v0, v2]) = 2

f([v1]) = 4

f([v2]) = 5

f([v1, v2]) = 6.

Then this is a discrete Morse function whose partial matching is given by
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μf ([v1]) = [v0, v1]

μf ([v2]) = [v0, v2].

It has two critical simplices [v0] and [v1, v2]. Here is a list of Forman paths:

γ1 : [v1] ≺ [v0, v1]

γ2 : [v2] ≺ [v0, v2].

We regard each Forman path as a flow path by adding [v0] at the end:

γ1 : [v1] ≺ [v0, v1] � [v0]

γ2 : [v2] ≺ [v0, v2] � [v0].

We have non-Forman flow paths as follows:

γ0 : [v0]

γ01 : [v0, v1] 
 [v0, v1] � [v0]

γ02 : [v0, v2] 
 [v0, v2] � [v0]

γ12 : [v1, v2]

so that

FP(μ) = FP(μ) = {γ0, γ1, γ2, γ01, γ02, γ12}.

Note that

γ01 = γ01 ∗ γ0

γ02 = γ02 ∗ γ0,

which imply, by Lemma 3.16,

γ0 ≺ γ01

γ0 ≺ γ02.

Note also that γ0 ≺ γ1 and γ0 ≺ γ2 do not hold even though γ1 = γ1∗γ0 and γ2 = γ2∗γ0.
Furthermore we also have

γ1 ≺ γ12

γ2 ≺ γ12

γ1 ≺ γ01

γ2 ≺ γ02.
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For example, an embedding function for γ1 ≺ γ01 is given by the identity map {0, 1, 2} →
{0, 1, 2} and an embedding function for γ1 ≺ γ12 is given by the identity map {0, 1} →
{0, 1}.

Thus the Hasse diagram is given by

γ0 γ1 γ2

γ01 γ12 γ02

which implies that BFP(μ) is the boundary of a hexagon and can be identified with the 
barycentric subdivision of X = ∂[v0, v1, v2]. �

Here is a definition of the flow category C(μ).

Definition 3.18 (Flow category). Define a category C(μ) as follows. The set of objects is 
given by

C(μ)0 = Cr(μ).

The set of morphisms C(μ)(c, c′) from a critical cell c to another c′ is given

C(μ)(c, c′) =
{
Q(μ)(c′, c), c �= c′

{1c}, c = c.

The composition ◦ is defined by the concatenation ∗

◦ : C(μ)(c2, c3) × C(μ)(c1, c2) = Q(μ)(c3, c2) ×Q(μ)(c2, c1)
∗−→ Q(μ)(c3, c1)

= C(μ)(c1, c3).

This category C(μ) is called the flow category of μ. When μ = μf for a discrete Morse 
function, we also use the notation C(f).

As a corollary to Lemma 3.14, we see that C(μ) is a poset category. In particular 
it is a 2-category and we may apply any of the classifying space functors reviewed in 
§A.2, i.e. B2, Bcl, and Bncl. By Theorem A.35, these constructions are weakly homotopy 
equivalent to each other.

Example 3.19. Consider the flow paths in Example 3.17. We have

C(μ)([v0], [v1, v2]) = Q(μ)([v1, v2], [v0]) = {γ1, γ2}
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with trivial order relation. Thus C(μ) is a 1-category and we have a homeomorphism

BC(μ) ∼= ∂[v0, v1, v2]. �
We would like to show that this example generalizes, i.e. the classifying space of the 

flow category C(μ) is always homotopy equivalent to X. It is not easy, however, to relate 
these spaces directly. We need intermediate categories and a zigzag of functors

F (Sdf (X))←−FP(μ) τ−→ C(μ) r←− C(μ). (3.4)

Sdf (X) is a subdivision of X which will be defined in §3.4. FP(μ) is the poset of reduced 
flow paths defined in Definition 2.17 and 2.20. The rest of this section is devoted to the 
construction of the reduced flow category C(μ) and a functor r : C(μ) → C(μ) which 
induces a homotopy equivalence of classifying spaces.

Definition 3.20. Define a poset quiver C(μ) by

C(μ)0 = Cr(μ)

C(μ)(c, c′) = Q(μ)(c′, c).

Namely C(μ) is a subquiver of C(μ) consisting of reduced flow paths. Unfortunately 
C(μ) is not closed under the composition in C(μ). We need to take a reduction after the 
concatenation.

Definition 3.21. For γ ∈ C(μ)(c1, c2) and δ ∈ C(μ)(c2, c3), define δ ◦ γ ∈ C(μ)(c1, c3) by

δ ◦ γ = r(γ ∗ δ).

Note that

◦ : C(μ)(c2, c3) × C(μ)(c1, c2) −→ C(μ)(c1, c3)

is a poset map as the composition of poset maps r and ∗.

Proposition 3.22. The following diagram is commutative

C(μ)(c2, c3) × C(μ)(c1, c2) C(μ)(c1, c3)

C(μ)(c2, c3) × C(μ)(c1, c2) C(μ)(c1, c3).

◦

r×r r

◦
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Proof. By Lemma 2.29, r(δ) 
 δ and r(γ) 
 γ. Since r and ∗ are poset maps by 
Lemma 3.14 and Lemma 2.29, we have

r(γ) ◦ r(δ) = r(r(δ) ∗ r(γ)) 
 r(δ ∗ γ)

for (γ, δ) ∈ C(μ)(c2, c3) ×C(μ)(c1, c2). On the other hand, r(δ ∗γ) is obtained from δ ∗γ
by removing cells having indices in reducible intervals of δ ∗ γ. Note, however, it can 
be also obtained by removing cells indexed by reducible intervals in δ and γ, and then 
removing reducible intervals of the resulting path. In particular, r(δ ∗ γ) is a subpath of 
r(δ) ∗ r(γ). Since r is a poset map and a retraction, we have

r(δ ∗ γ) = r(r(δ ∗ γ)) 
 r(r(δ) ∗ r(γ)) = r(γ) ◦ r(δ). �
Corollary 3.23. The following diagram is commutative

C(μ)(c3, c4) × C(μ)(c2, c3) × C(μ)(c1, c2) C(μ)(c3, c4) × C(μ)(c1, c3)

C(μ)(c2, c4) × C(μ)(c1, c2) C(μ)(c1, c4)

1×◦

◦×1 ◦

◦

for any critical cells c1, c2, c3 and c4.

Proof. Since r is surjective by Lemma 2.29 and is compatible with ◦ by Proposition 3.22, 
the result follows from Lemma 3.15. �
Definition 3.24 (Reduced flow category). The poset category obtained from the quiver 
Q(μ) by using the composition in Definition 3.21 is called the reduced flow category C(μ).

Proposition 3.22 implies that the reduction r is a functor of poset categories from C(μ)
to C(μ). The following is an immediate but important consequence of Proposition 2.30.

Theorem 3.25. The reduction r : C(μ) → C(μ) induces a homotopy equivalence

B2r : B2C(μ) −→ B2C(μ).

Proof. By Proposition 2.30, the reduction r is a descending closure operator, which 
implies that it induces a deformation retraction on each classifying space of morphisms

Br(c, c′) : BC(μ)(c, c′) �−→ BC(μ)(c, c′)

by Corollary A.22. By applying Proposition A.31, we see that B2r : B2C(μ) → B2C(μ)
is a homotopy equivalence. �
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3.3. The collapsing functor

Theorem 3.25 says that the right most functor in (3.4) induces a homotopy equivalence 
between classifying spaces. The next step is to define a functor τ : FP(μ) → C(μ) and 
show that it induces a homotopy equivalence between classifying spaces.

Notice that C(μ) is a poset-category, hence a 2-category. On the other hand, FP(μ)
is a poset regarded as a small category. We should regard FP(μ) as a 2-category whose 
2-morphisms are identities and try to construct a 2-functor τ : FP(μ) → C(μ). On 
objects it is given by the target map

τ : FP(μ) −→ Cr(μ) = C(μ)0.

The restriction to FP(μ) is denoted by τ .
We would like to extend these maps to 2-functors by regarding the posets FP(μ) and 

FP(μ) as small categories. Unfortunately this is too much to expect. The best we can 
do is the following.

Proposition 3.26. The map τ can be extended to a normal colax functor5 τ : FP(μ) →
C(μ). Furthermore it induces a normal colax functor τ : FP(μ) → C(μ).

Proof. For a morphism γ 
 γ′ in FP(μ), let ϕ : {0, . . . , k} → {0, . . . , n + 1} be 
the embedding function. Define a flow path τ(γ 
 γ′) to be the subsequence of 
γ = (e1, u1, . . . , en, un; τ(γ)) starting at ek. Note that we have ek 
 τ(γ′) by Remark 2.21
and we have

τ(γ 
 γ′) = (ek, uk, . . . , en, un; τ(γ)) ∈ Q(μ)(τ(γ′), τ(γ)) = C(μ)(τ(γ), τ(γ′)).

Then τ sends the identity γ 
 γ to 1τ(γ) by definition.
For a sequence γ1 
 γ2 
 γ3 in FP(μ), let us show that

τ(γ1 
 γ3) 
 τ(γ2 
 γ3) ◦ τ(γ1 
 γ2)

in C(μ)(τ(γ1), τ(γ3)). Let

ϕ1 : {0, . . . , k1} −→ {0, . . . , n2 + 1}
ϕ2 : {0, . . . , k2} −→ {0, . . . , n3 + 1}

be embedding functions for γ1 
 γ2 and γ2 
 γ3, respectively. By definition, the flow 
path τ(γ1 
 γ2) is the subsequence of γ1 = (e1, u1, . . . , en1 , un1 ; τ(γ1)) starting at the 
cell ek1 and τ(γ2 
 γ3) is the subsequence of γ2 = (e′1, u′

1, . . . , e
′
n2
, u′

n2
; τ(γ2)) starting at 

5 See Definition 3.7.
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the cell e′k2
. According to the proof of Proposition 2.28, on the other hand, the embedding 

function ψ : {0, . . . , k3} → {0, . . . , n3 + 1} for γ1 
 γ3 is given by

ψ(i) =
{

(ϕ2 ◦ ϕ1)(i), i < k3

ϕ2(k2) = n3 + 1, i = k3

where k3 is the number with ϕ1(k3 − 1) < k2 ≤ ϕ1(k3). Thus we have

τ(γ2 
 γ3) ∗ τ(γ1 
 γ2) = (e′k2
, u′

k2
, . . . , e′n2

, u′
n2
, ek1 , uk1 , . . . , en1 , un1 , ; τ(γ1))

τ(γ1 
 γ3) = (ek3 , uk3 , . . . , en1 , un1 ; τ(γ1)).

Let us rename cells in these flow paths as

ẽj = ej+k3−1

ũj = uj+k3−1

in τ(γ1 
 γ3) and

ẽ′j =
{
e′j+k2−1, 1 ≤ j ≤ n2 − k2 + 1
ej+k1+k2−n2−2, n2 − k2 + 2 ≤ j ≤ n1 + n2 − k1 − k2 + 2

ũ′
j =

{
u′
j+k2−1, 1 ≤ j ≤ n2 − k2 + 1

uj+k1+k2−n2−2, n2 − k2 + 2 ≤ j ≤ n1 + n2 − k1 − k2 + 2

in τ(γ2 
 γ3) ∗ τ(γ1 
 γ2) so that we have

τ(γ1 
 γ3) = (ẽ1, ũ1, . . . , ẽn1−k3+1, ũn1−k3+1; τ(γ1))

τ(γ2 
 γ3) ∗ τ(γ1 
 γ2) = (ẽ′1, ũ′
1, . . . , ẽ

′
n1+n2−k1−k2+2, ũ

′
n1+n2−k1−k2+2; τ(γ1)).

With this notation, what we need is a map

ζ : {0, 1, . . . , n1 − k3 + 2} −→ {0, 1, . . . , n1 + n2 − k1 − k2 + 3}

satisfying the following conditions:

1. ζ(0) = 0,
2. ũj = ũ′

ζ(j) for 1 ≤ j < n1 − k3 + 2,
3. ζ(n1 − k3 + 2) = n1 + n2 − k1 − k2 + 3,
4. ẽj 
 ẽ′p for ζ(j − 1) < p ≤ ζ(j) and 1 ≤ j ≤ n1 − k3 + 2.



V. Nanda et al. / Advances in Mathematics 340 (2018) 723–790 763
Define ζ by

ζ(j) =

⎧⎪⎪⎨
⎪⎪⎩

0, j = 0
ϕ1(j + k3 − 1) − k2 + 1, 1 ≤ j ≤ k1 − k3

j + n2 − k1 − k2 + k3 + 1, k1 − k3 + 1 ≤ j ≤ n1 − k3 + 2.

Let us verify that ζ is an embedding function for

τ(γ1 
 γ3) 
 τ(γ2 
 γ3) ∗ τ(γ1 
 γ2). (3.5)

The first and the third conditions are obvious.
For the second condition, suppose 1 ≤ j ≤ k1 − k3. Then

ũj = uj+k3−1

ũ′
ζ(j) = u′′

ζ(j)+k2−1

= u′
ϕ1(j+k3−1).

By the second condition for the embedding function ϕ1, these cells coincide. When 
k1 − k3 + 1 ≤ j ≤ n1 − k3 + 2, we have

n2 − k2 + 2 ≤ ζ(j) ≤ n1 + n2 − k1 − k2 + 3

and thus

ũ′
ζ(j) = uζ(j)+k1+k2−n2−2

= uj+n2−k1−k2+k3+1+k1+k2−n2−2

= uj+k3−1.

On the other hand, ũj = uj+k3−1 by definition and we have ũ′
ζ(j) = ũj .

For the fourth condition, suppose 1 ≤ j ≤ k1 − k3 and ζ(j − 1) < p ≤ ζ(j). In this 
case ζ(j− 1) = ϕ1(j + k3 − 2) − k2 + 1 and ζ(j) = ϕ1(j + k3 − 1) − k2 + 1, which implies 
that

ϕ1(j + k3 − 2) < p + k2 − 1 ≤ ϕ1(j + k3 − 1).

The fourth condition for ϕ1 implies that

ẽj = ej+k3−1 
 e′p+k2−1 = ẽ′p.

When k1 − k3 + 1 ≤ j ≤ n1 − k3 + 2, the condition ζ(j − 1) < p ≤ ζ(j) is equivalent to 
p = j + n2 − k1 − k2 + k3 + 1, in which case



764 V. Nanda et al. / Advances in Mathematics 340 (2018) 723–790
ẽ′p = ep+k1+k2−n2−2

= ej+k3−1

which coincides with ẽj = ej+k3−1. And we obtain an embedding function ζ for (3.5).
Suppose γ 
 δ in FP(μ). Since τ(γ 
 δ) is defined as a subsequence of γ, τ(γ 
 δ)

belongs to C(μ)(τ(γ), τ(δ)). For a sequence γ1 
 γ2 
 γ3 in FP(μ), we have (3.5) in 
Q(μ)(τ(γ3), τ(γ1)). Since the reduction r is a poset map and τ(γ1 
 γ3) is reduced, we 
obtain

τ(γ1 
 γ3) = r(τ(γ1 
 γ3)) 
 r(τ(γ2 
 γ3) ◦ τ(γ1 
 γ2)) = τ(γ2 
 γ3) ◦ τ(γ1 
 γ2))

in C(μ)(τ(γ1), τ(γ3)). And we obtain a normal colax functor

τ : FP(μ) −→ C(μ). �
Example 3.27. Consider the discrete Morse function in Example 3.17. Its flow category 
is described in Example 3.19.

The collapsing functor τ is given, on objects, by

τ(γ0) = [v0]

τ(γ1) = [v0]

τ(γ2) = [v0]

τ(γ01) = [v0]

τ(γ02) = [v0]

τ(γ12) = [v1, v2].

We have six nontrivial order relations in FP(μ), for which the collapsing functor is defined 
by

τ(γ0 ≺ γ01) = ([v0]) = γ0 = 1[v0]

τ(γ0 ≺ γ02) = ([v0]) = γ0 = 1[v0]

τ(γ1 ≺ γ01) = ([v0]) = γ0 = 1[v0]

τ(γ2 ≺ γ02) = ([v0]) = γ0 = 1[v0]

τ(γ1 ≺ γ12) = γ1

τ(γ2 ≺ γ12) = γ2. �
By Lemma A.33, τ and τ induce maps between normal colax classifying spaces

Bnclτ : BnclFP(μ) = BFP(μ) −→ BnclC(μ)

Bnclτ : BnclFP(μ) = BFP(μ) −→ BnclC(μ).
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Let us show that both Bnclτ and Bnclτ are homotopy equivalences. One of the most con-
venient tools for showing a functor to be a homotopy equivalence is Quillen’s Theorem A, 
which says that a functor between small categories induces a homotopy equivalence be-
tween classifying spaces if “(homotopy) fibers” are contractible. There are variations, 
depending on the three choices for (homotopy) fibers; τ ↓ c, c ↓ τ , and τ−1(c). For 
functors between 2-categories, analogous theorems have been proved. Here we use Corol-
lary A.51 by showing that τ is prefibered and each fiber τ−1(c) is contractible.

Let us first find explicit descriptions of homotopy fibers in order to show that τ is 
prefibered. Note that both left and right homotopy fibers are posets by Corollary A.47.

Lemma 3.28. For a critical cell c, the posets τ ↓ c and c ↓ τ are given by

τ ↓ c =
{
(γ, δ) ∈ FP(μ)2

∣∣ σ(δ) = c, τ(δ) = τ(γ)
}

c ↓ τ =
{
(δ, γ) ∈ FP(μ)2

∣∣ τ(γ) = σ(δ), τ(δ) = c
}
,

respectively. The partial orders 
c and 
c on τ ↓ c and c ↓ τ are, respectively, given by

(γ, δ) 
c (γ′, δ′) ⇐⇒ γ 
 γ′ and δ′ ∗ τ(γ 
 γ′) 
 δ.

(δ, γ) 
c (δ′, γ′) ⇐⇒ γ 
 γ′ and τ(γ 
 γ′) ∗ δ 
 δ′.

Proof. Let us consider the case of the left homotopy fiber. We have

(τ ↓ c)0 = {(γ, δ) ∈ FP(μ) × C(μ)1 | δ ∈ C(μ)(τ(γ), c)}

=
{
(γ, δ) ∈ FP(μ)2

∣∣ δ ∈ Q(μ)(c, τ(γ))
}

=
{
(γ, δ) ∈ FP(μ)2

∣∣ σ(δ) = c, τ(δ) = τ(γ)
}
.

By Corollary A.47, the partial order 
c on τ ↓ c is given by

(γ, δ) 
c (γ′, δ′) ⇐⇒ γ 
 γ′ and δ′ ∗ τ(γ 
 γ′) 
 δ.

The right homotopy fiber is given by

(c ↓ τ)0 = {(δ, γ) ∈ C(μ)1 × FP(μ) | δ ∈ C(μ)(c, τ(γ))}

=
{
(δ, γ) ∈ FP(μ)2

∣∣ δ ∈ Q(μ)(τ(γ), c)
}

=
{
(δ, γ) ∈ FP(μ)2

∣∣ τ(γ) = σ(δ), τ(δ) = c
}

The partial order on this poset set is given by

(δ, γ) 
c (δ′, γ′) ⇐⇒ γ 
 γ′ and τ(γ 
 γ′) ∗ δ 
 δ′. �
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Proposition 3.29. For each c ∈ Cr(μ), define maps ic : τ−1(c) → c ↓ τ and sc : c ↓ τ →
τ−1(c) by ic(γ) = (1c, γ) and sc(δ, γ) = γ ∗ δ, respectively. Then the composition

ρc : c ↓ τ
sc−→ τ−1(c) ic−→ c ↓ τ

is a descending closure operator.

Proof. Obviously ρc ◦ ρc = ρc. Since γ ∗ δ 
 γ by Lemma 3.16 and τ(γ ∗ δ 
 γ) = δ, we 
have

ρc(δ, γ) = (1τ(γ∗δ), γ ∗ δ) 
c (δ, γ)

in c ↓ τ . �
This implies that ρ is the counit for the adjunction i � s and we obtain the following 

corollary.

Corollary 3.30. The collapsing functor τ is prefibered.

Now we are ready to prove the following theorem.

Theorem 3.31. For an acyclic partial matching μ on a finite regular CW complex, the 
collapsing functor τ induces a homotopy equivalence

Bnclτ : BFP(μ) −→ BnclC(μ)

between classifying spaces.

Proof. By Corollary 3.30 and Corollary A.51, it suffices to show that Bτ−1(c) is con-
tractible for each c ∈ Cr(μ).

Recall from Proposition 2.10 that we may choose a faithful and Z-valued discrete 
Morse function f whose associated partial matching is μ. In particular, it is injective. 
For each nonnegative integer �, define

τ−1(c)� = (f ◦ ι)−1(�) ∩ τ−1(c).

Define a filtration on τ−1(c) by

F�τ
−1(c) =

�⋃
i=0

τ−1(c)i.

We are going to show that BF�τ
−1(c) deformation-retracts onto BF�−1τ

−1(c) for all 
� ≥ 1.

By the injectivity of f , f−1(�) contains at most one element. There are three cases;
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1. f−1(�) = ∅
2. f−1(�) = {d} with d ∈ D(μf )
3. f−1(�) = {μf (d)} with d ∈ D(μf ).

In the first case, F�τ
−1(c) = F�−1τ

−1(c) and there is nothing to prove.
Suppose τ−1(c)� = {d} with d ∈ D(μf ). Define a map

m� : F�τ
−1(c) → F�τ

−1(c)

by

m�(γ) =
{

(μf (d), μf (d), e2, u2, . . . , en, un; c), if γ = (d, μf (d), e2, u2, . . . , en, un; c),
γ, otherwise.

Since f(μf (d)) ≤ f(d), m�(γ) belongs to F�τ
−1(c). Let us verify that this is an ascending 

closure operator on F�τ
−1(c). The embedding function for γ 
 m�(γ) is given by the 

identity map. We have m� ◦ m� = m� by definition. It remains to show that this is a 
poset map.

Suppose γ 
 γ′ with embedding function ϕ. In particular, we have ι(γ) 
 ι(γ′). Since 
f is faithful, we have f(ι(γ)) ≤ f(ι(γ′)).

When ι(γ) �= d, we have

m�(γ) = γ 
 γ′ 
 m�(γ′).

When ι(γ) = d the injectivity of f implies that ι(γ′)) = ι(γ) = d, for � = f(ι(γ)) ≤
f(ι(γ′)) ≤ �. Thus the same embedding function ϕ serves as an embedding function 
for m�(γ) 
 m�(γ′). And we have an ascending closure operator m� whose image is 
F�−1τ

−1(c). By Corollary A.22, BF�−1τ
−1(c) is a deformation retract of BF�τ

−1(c).
Let us consider the third case τ−1(c)� = {μf (d)}. Define

b� : F�τ
−1(c) −→ F�τ

−1(c)

by

b�(γ) =
{

(e2, u2, . . . , en, un; c), if ι(γ) = μf (d)
γ, otherwise

for γ = (e1, u1, e2, u2, . . . , en, un; c). As we have seen in Remark 2.12, the faithfulness 
of f implies that

� = f(μf (d)) ≥ f(μf (d)) > f(e2) ≥ f(u2) > · · · > f(en) ≥ f(un) > f(τ(γ))

and thus b�(γ) ∈ F�τ
−1(c).
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Let us show that this is a descending closure operator. For a flow path γ with ι(γ) =
μf (d), consider the map d1 : {0, . . . , �} → {0, . . . , � + 1} given by

d1(i) =
{

0, i = 0
i + 1, i ≥ 2.

This serves as an embedding function for b�(γ) 
 γ, since e2 
 μ(d1). The map b� is 
idempotent by definition. It remains to show that b� is a poset map. Suppose γ 
 γ′

with embedding function ϕ : {0, . . . , �(γ) + 1} → {0, . . . , �(γ′) + 1}. As is the case of 
τ−1(c)� = {d}, γ 
 γ′ implies that f(ι(γ)) ≤ f(ι(γ′)) and we have the following three 
cases.

1. f(ι(γ)) ≤ f(ι(γ′)) < �

2. f(ι(γ)) < f(ι(γ′)) = �

3. f(ι(γ)) = f(ι(γ′)) = �

When f(ι(γ′)) < �, we have b�(γ) = γ 
 γ′ = b�(γ). When f(ι(γ)) = f(ι(γ′)) = �, the 
restriction of the ϕ to {0, 2, . . . , �(γ) +1} → {0, 2, . . . , �(γ′) +1} is an embedding function 
for b�(γ) 
 b�(γ′). Suppose f(ι(γ)) < f(ι(γ′)) = �. We need to show that γ 
 b�(γ′). 
Let γ = (e1, u1, e2, u2, . . . , en, un; c). Since f(ι(γ)) < �, the injectivity of f implies that 
ι(γ) = e1 �= μ(d). Since e1 is either μ−1(u1) or u1, μ−1(u1) �= d. This implies that the 
embedding function ϕ for γ 
 γ′ satisfies ϕ(1) > 1. Thus the same function ϕ regarded as 
a map {0, 1, . . . , �(γ) + 1} → {0, 2, 3, . . . , �(γ′) + 1} is an embedding function for b�(γ) =
γ ≺ b�(γ′). And we obtain a descending closure operator b� : F�τ

−1(c) → F�τ
−1(c) with 

image F�−1τ
−1(c).

Again, by Corollary A.22, BF�−1τ
−1(c) is a deformation retract of BF�τ

−1(c). �
Example 3.32. We continue with Example 3.27. Let us compute [v0] ↓ τ and [v1, v2] ↓ τ . 
As sets, we have

([v0] ↓ τ)0 = {(γ0, γ0), (γ0, γ1), (γ0, γ2), (γ0, γ01), (γ0, γ02), (γ1, γ12), (γ2, γ12)}
([v1, v2] ↓ τ)0 = {(γ12, γ12)}.

By γ0 ≺ γ01, γ02, γ1 ≺ γ01 and γ2 ≺ γ02, the partial order on [v0] ↓ τ is given by

(γ0, γ0) ≺[v0] (γ0, γ01)

(γ0, γ0) ≺[v0] (γ0, γ02)

(γ0, γ1) ≺[v0] (γ0, γ01)

(γ0, γ2) ≺[v0] (γ0, γ02).

By γ1 ≺ γ12 and γ2 ≺ γ12, we have
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(γ0, γ1) ≺[v0] (γ1, γ12)

(γ0, γ2) ≺[v0] (γ2, γ12).

The Hasse diagram of [v0] ↓ τ is given by

(γ0, γ1) (γ0, γ0) (γ0, γ2)

(γ1, γ12) (γ0, γ01) (γ0, γ02) (γ2, γ12)

Thus both B([v0] ↓ τ) and B([v0, v1] ↓ τ) are contractible. Note that τ−1([v0]) is the 
subposet given by the zigzag between (γ0, γ1) and (γ0, γ2) and embedded in [v0] ↓ τ as 
a deformation retract. �
3.4. The face poset of stable subdivision

We have constructed a subdivision Sdμ(X) of X by using flow paths in §2.3. It turns 
out that the face poset of the stable subdivision Sdμ(X) is isomorphic to the poset of 
reduced flow paths FP(μ).

The aim of this section is to complete the proof of Theorem 1.2 by proving this fact. 
To this end, we need to understand relations between partial order on FP(μ) and the 
deformation retraction Ru : u → dc defined for each matched pair d ≺1 u = μ(d).

Definition 3.33. For a reduced flow path γ = (e1, u1, . . . , en, un; c), define a sequence of 
subpaths γ(1), . . . , γ(n+1) of γ by

γ(i) = (ei, ui, . . . , en, un; c)

for i ≤ n and γ(n+1) = (c).
Let i1, . . . , ik be the indices of ei’s with ei ∈ D(μ) and define

W s
γ =

n+1⋃
i=1

eγ(i) ∪
k⋃

�=1

eu(γ(i�)),

for � = 1, . . . , k, where u(γ(i�)) is the operation on flow paths defined in Example 2.22. 
This is called the stable subspace along γ.

Example 3.34. Consider the partial matching on a 2-simplex in Example 2.23, in which 
we have shown γ ≺ δ for the flow paths γ = (e1, e2, e5, e6; e7) = (d1, u1, d2, u2; c) and 
δ = (e1, e2, e4, e4, e5, e6; e7) = (d′1, u′

1, u
′
2, u

′
2, d

′
3, u

′
3; c) (see Fig. 5).
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e1

e2

e3

e4

e5 e6 e7

Fig. 5. A partial matching on 2-simplex.

eγ(1) = eγ

eu(γ(2))

eγ(2) eu(γ(2)) eγ(3)

Fig. 6. Stable subspace along γ.

The subpaths in Definition 3.33 for γ are

γ(1) = (e1, e2, e5, e6; c)

γ(2) = (e5, e6; c)

γ(3) = (c).

Thus

W s
γ = eγ(1) ∪ eγ(2) ∪ eγ(3) ∪ eu(γ(1)) ∪ eu(γ(2)),

which is the one dimensional complex drawn by dotted lines in Fig. 6.
Note that we need to add eu(γ(1)) and eu(γ(2)) to obtain a connected region.
Similarly

δ(1) = δ = (e1, e2, e4, e4, e5, e6; c)

δ(2) = (e4, e4, e5, e6; c)

δ(3) = (e5, e6; c)

δ(4) = (c).

Thus
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eδ(1) = eδ

eu(δ(1))eδ(2)

eδ(3) eu(δ(3)) eδ(4)

Fig. 7. Stable subspace along δ.

W s
δ = eδ(1) ∪ eδ(2) ∪ eδ(3) ∪ eδ(4) ∪ eu(δ(1)) ∪ eu(δ(3)),

which is the union of the shaded area and dotted lines in Fig. 7.
From these figures, we see that W s

γ ⊂ W s
δ . �

Lemma 3.35. For x ∈ eγ, the continuous flow Lx stays in W s
γ . Furthermore the flows 

{Lx}x∈ι(γ) can be glued together to give rise to a continuous flow on W s
γ .

Lγ : W s
γ × [0, h] −→ W s

γ .

Proof. The first statement is obvious from the definition. For a reduced flow path γ =
(e1, u1, . . . , en, un; c), let h = hx for x ∈ eu(γ). This is independent of x, since the initial 
cell of u(γ) belongs to D(μ).

Similarly define h2 = hy for y ∈ eu(γ2) and define a map

L1 : W s
γ × [h2, h] −→ W s

γ

by

L1(x, t) = Ld1,u1(x, t− h2),

where d1 = μ−1(u1). This is a deformation retraction onto W s
γ2

. By iterating this process, 
we obtain a sequence of homotopies {Li : W s

γi
× [hi+1, hi] → W s

γi
}. By concatenating 

these homotopies we obtain a continuous map

L : W s
γ × [0, h] −→ W s

γ

whose restriction to {x} × [0, hx] coincides with Lx. �
By using Lγ , we have the following extension of the description of Lemma 2.43.
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Lemma 3.36. For a reduced flow path γ = (e1, u1, . . . , en, un; c), we have

eγ(k) =
{
x ∈ ek

∣∣ ∃t s.t. Lγ(x, t) ∈ eγ(k+1)
}

for 1 ≤ k ≤ n.

Proof. By definition. �
The stable subspace W s(c) introduced in Definition 2.48 for a critical cell c decomposes 

into a union

W s(c) =
⋃

τ(γ)=c

W s
γ .

The flows Lγ for γ with τ(γ) = c can be glued together to give rise to a flow on W s(c)

Lc : W s(c) × [0, h] −→ W s(c).

The main result of this section is the following theorem, which establishes that the 
map FP(μ) → F (Sdμ(X)) given by γ �→ eγ is an isomorphism of posets.

Proposition 3.37. For γ, δ ∈ FP(μ), we have γ 
 δ if and only if eγ ⊂ eδ.

Assume the existence of a pair of reduced flow paths

γ = (e1, u1, e2, u2, . . . , en, un; c), and

δ = (e′1, u′
1, e

′
2, u

′
2, . . . , e

′
m, u′

m; c′)

so that γ 
 δ holds with the embedding function ϕ : {0, 1, . . . , k} → {0, 1, . . . , m +1}. We 
also denote di = μ−1(ui) and d′j = μ−1(u′

j) for each i and j, and recall for the reader’s 
convenience the fact that a deformation retraction Ru : u → ∂u \ d has been chosen for 
each matched cell pair u = μ(d) and used to define a continuous flow in the sense of 
Definition 2.40.

Lemma 3.38. The cell ej is fixed pointwise by the deformation retraction Ru′
�

: u′
� →

∂u′
� \ d′� for each 1 ≤ j ≤ k and φ(j − 1) ≤ � < φ(j).

Proof. Since φ is an embedding function, we have ej 
 e′p for φ(j − 1) < p ≤ φ(j). But 
since δ is a reduced flow path, any such e′p is a face of the subsequent u′

p+1 different 
from d′p+1, and all of its points must therefore be fixed by Ru′

p+1
. For these values of p, 

note that � = p + 1 satisfies φ(j − 1) ≤ � < φ(j). �
Proposition 3.39. For every 1 ≤ j ≤ k and φ(j− 1) ≤ � < φ(j), the following statements 
hold.
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1. If eγ(j) ⊂ eδ(�+1) , then eγ(j) ⊂ eδ(�) for every φ(j − 1) ≤ � < φ(j).
2. If eγ(j) ⊂ eδ(φ(j−1)) , then eγ(j−1) ⊂ eδ(φ(j−1)−1) .

Proof. To see that (1) holds, recall from Lemma 3.36 that eδ(�) consists of precisely 
those points of e′� which are mapped to eδ(�+1) by the deformation retraction Ru′

�
. By 

assumption, ej ⊂ eδ(�+1) and by Lemma 3.38, the cell ej is fixed by these retractions for 
all � in the stated range. Thus, we have

eγ(j) ⊂ ej ⊂ eδ(�) .

Turning to (2), note that uj−1 = u′
φ(j−1) since φ is an embedding function. Therefore, 

the retraction Ruj−1 which defines eγ(j−1) from eγ(j) coincides exactly with the retraction 
Ru′

φ(j−1)
which similarly defines eδ(φ(j−1)−1) . The desired inclusion eγ(j−1) ⊂ eδ(φ(j−1)−1)

now follows from eγ(j) ⊂ eδ(φ(j−1)) . �
Remark 3.40. It is worth noting that the argument in the above proof can be used to 
prove that Lγ is a part of Lδ when γ 
 δ. Namely, if x ∈ eγ , Lδ(x, t) = Lγ(x, t′) for 
some t′.

Recall that ek ≺ c′ because φ is an embedding function. Proposition 3.39, along with 
the initial condition

eγ(k) ⊂ ek ⊂ c′ = eδ(φ(k))

proves one half of Proposition 3.37 by reverse-induction on j ∈ {1, . . . , k} (recall that 
γ = γ(0) and similarly for δ). Conversely, suppose that eγ ⊂ eδ. In order to prove γ 
 δ, 
we need to find an embedding function ϕ.

Define a sequence of nonnegative integers i0 = 0, i1, i2, . . . inductively by

ij =
{

max
{
p > ij−1

∣∣ eγ(j) ⊂ eδ(p)
}
, if

{
p > ij−1

∣∣ eγ(j) ⊂ eδ(p)
}
�= ∅,

m + 1, otherwise

and set k = min {j | ij = m + 1}. Then we obtain a strictly increasing function

ϕ : {0, . . . , k} −→ {0, . . . ,m + 1}

by ϕ(j) = ij .
Let us verify that this is an embedding function for γ 
 δ. By definition, it is a strictly 

increasing function with ϕ(0) = 0 and ϕ(k) = m + 1. It remains to prove that

1. uj = u′
ϕ(j) for each 1 ≤ j < k, and

2. for each 1 ≤ j ≤ k, ej 
 e′p for all ϕ(j − 1) < p ≤ ϕ(j).
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The second part is immediate. By definition, eγ(j) ⊂ eδ(p) for ϕ(j − 1) < p ≤ ϕ(j). 
But eγ(j) ⊂ ej and eδ(p) ⊂ e′p, which imply that ej ∩ e′p �= ∅. Thus we have ej 
 e′p.

For the first part, let us first prove that, for each j, eγ(j) �⊂ (d′ϕ(j))c. Suppose eγ(j) ⊂
(d′ϕ(j))c. Then Ru′

ϕ(j)
(eγ(j)) = eγ(j) by the definition of the retraction Ru′

ϕ(j)
: u′

ϕ(j) →
(d′ϕ(j))c. Since eγ(j) ⊂ eδ(ϕ(j)) , we have

eγ(j) = Ru′
ϕ(j)

(eγ(j)) ⊂ Ru′
ϕ(j)

(eδ(ϕ(j))) = eδ(ϕ(j)+1) ,

which contracts to our choice of ϕ(j). Hence eγ(j) �⊂ (d′ϕ(j))c or

eγ(j) ⊂ u′
ϕ(j) \ (d′ϕ(j))c = d′ϕ(j) ∪ u′

ϕ(j).

If eγ(j) ⊂ u′
ϕ(j), u′

ϕ(j) ∩ ej �= ∅ and we obtain ej = uj = u′
ϕ(j). When eγ(j) ⊂ d′ϕ(j), 

d′ϕ(j) ∩ ej �= ∅ and we have ej = dj = d′ϕ(j). Apply the matching μ, and we obtain 
uj = u′

ϕ(j).
This concludes the proof of Proposition 3.37, and we have the following desired con-

sequence.

Corollary 3.41. The map FP(μ) → F (Sdμ(X)) given by γ �→ eγ is an isomorphism of 
posets.

Proof of Theorem 1.2. The isomorphism in Corollary 3.41 induces a homeomorphism be-
tween classifying spaces BFP(μf ) ∼= BF (Sdμf

(X)). It is well known that the composition 
BF is nothing but the barycentric subdivision6 Sd and we obtain a homeomorphism

BFP(μf ) ∼= Sd(Sdμf
(X)) ∼= X.

By combining the homotopy equivalences in Theorem 3.31, Theorem A.35, and Theo-
rem 3.25 with this homeomorphism, we obtain a homotopy equivalence

X ∼= BFP(μf ) 	 BnclC(μf ) 	 B2C(μf ) 	 B2C(μf ). �
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Appendix A. Homotopy theory of small categories

Our main technical tool in this paper is homotopy theory of small categories, including 
2-categories. We collect definitions and important properties in homotopy theory of small 
categories used in this paper for the convenience of the reader.

Our main references include §11 of May’s book [30], Dugger’s exposition [16] on ho-
motopy colimits, and Segal’s papers [36–38].

A.1. Simplicial sets and simplicial spaces

In homotopy theory of small categories, each small category C is made into a topo-
logical space by the classifying space construction, which is defined as the geometric 
realization of a simplicial set NC, called the nerve of C. When C is a topological cate-
gory, the nerve NC is a simplicial space.

In this section, we recall homotopy theoretic properties of simplicial spaces, including 
simplicial sets.

Definition A.1. A simplicial object in a category C consists of a sequence of objects 
{Xn}n=0,1,... in C and morphisms

di : Xn −→ Xn−1

si : Xn −→ Xn+1

for 0 ≤ i ≤ n satisfying the following relations:

1. dj ◦ di = di ◦ dj−1 for i < j

2. sj ◦ di = di ◦ sj−1 for i < j

3. sj ◦ dj = 1 = sj ◦ dj+1

4. sj ◦ di = di−1 ◦ sj for i > j + 1
5. sj ◦ si = si ◦ sj+1 for i ≤ j.

Simplicial objects in the categories of sets and topological spaces are called simplicial 
sets and simplicial spaces, respectively.

It is convenient to introduce the following small category.

Definition A.2. The category of isomorphism classes of finite totally ordered sets and 
order-preserving maps is denoted by Δ. The object of cardinality n +1 is denoted by [n]
and is identified with the subposet 0 < 1 < · · · < n of Z.

The subcategory of injective morphisms is denoted by Δinj.
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Lemma A.3. The category of simplicial sets is isomorphic to the category Cat(Δop, Set)
of contravariant functors from Δ to Set. Similarly the category of simplicial spaces is 
isomorphic to the category Cat(Δop, Top) of contravariant functors from Δ to Top.

Definition A.4. We denote the categories of simplicial sets and simplicial spaces by SetΔ
op

and TopΔop
, respectively. We regard SetΔop

as a full subcategory of TopΔop
consisting 

of simplicial spaces with discrete topology.
For a simplicial space X and a morphism ϕ : [m] → [n] in Δ, the induced map is 

denoted by ϕ∗ : Xn → Xm.

The following variation is useful when we study acyclic categories.

Definition A.5. A functor X : Δop
inj → Top is called a Δ-set.

Remark A.6. A Δ-set X can be regarded as a “simplicial set without degeneracies”, i.e. 
it consists of a sequence of sets {Xn} together with maps di : Xn → Xn−1 satisfying the 
same relations as in the definition of simplicial sets. See [33] by Rourke and Sanderson, 
for more details on Δ-sets.

There are two popular ways to form a topological space from a simplicial space.

Definition A.7. For a simplicial space X, define

|X| =
( ∞∐

n=0
Xn × Δn

)/
∼

‖X‖ =
( ∞∐

n=0
Xn × Δn

)/
∼inj

,

where Δn is the standard n-simplex whose vertices are identified with elements in [n]
and ∼ is the equivalence relation generated by (ϕ∗(x), s) ∼ (x, ϕ∗(s)) for x ∈ Xn, 
s ∈ Δm, and ϕ ∈ Δ([m], [n]). The map ϕ∗ : Δm → Δn is the affine map induced by 
the map between vertices ϕ : [m] → [n]. The equivalence relation ∼inj is generated by 
(ϕ∗(x), s) ∼ (x, ϕ∗(s)) for ϕ ∈ Δinj([m], [n]).

|X| and ‖X‖ are called the (geometric) realization and the fat realization of X, respec-
tively. The canonical quotient map from the fat realization to the realization is denoted 
by

qX : ‖X‖ −→ |X|.

One of the advantages of the fat realization ‖X‖ is the following homotopy invariance.
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Proposition A.8. For a morphism f : X → Y of simplicial spaces whose n-th stage 
fn : Xn → Yn is a homotopy equivalence for all n, the induced map on fat realizations

‖f‖ : ‖X‖ −→ ‖Y ‖

is a homotopy equivalence.

Proof. See Appendix A of Segal’s paper [38], for example. �
Thus the realization is homotopy invariant for simplicial spaces X whose realiza-

tion |X| is homotopy equivalent to the fat realization ‖X‖. The following is a sufficient 
condition for the quotient qX : ‖X‖ → |X| to be a homotopy equivalence.

Definition A.9. For a simplicial space X, define the n-th latching space LnX by

LnX =
n−1⋃
i=0

si(Xn−1).

A simplicial space X is said to be cofibrant if the inclusion in : LnX ↪→ Xn, the n-th 
latching map, is a closed cofibration for all n.

Remark A.10. For a pair (X, A) of topological spaces, the inclusion A ↪→ X is a closed 
cofibration if and only if (X, A) is an NDR pair, i.e. there exist a continuous function 
u : A → [0, 1] and a homotopy h : X × [0, 1] → X such that A = u−1(0), h(x, t) = (x, t)
for (x, t) ∈ X × {0} ∪A × [0, 1], and h(x, 1) ∈ A for x ∈ h−1([0, 1)).

Recall that one of the most important examples of closed cofibrations is an inclusion 
of a subcomplex in a CW complex.

Example A.11. If X is a simplicial space consisting of CW complexes in which the latching 
space LnX is a subcomplex of Xn for all n, then X is cofibrant.

In particular, for a 2-category C the nerve NBC of the associated topological category 
BC is a cofibrant simplicial space. �
Proposition A.12. When X is a cofibrant simplicial space, the quotient map qX : ‖X‖ →
|X| is a homotopy equivalence.

Proof. See also Appendix A of Segal’s paper [38]. �
Corollary A.13. Let f : X → Y be a map of simplicial spaces. Suppose X and Y are 
cofibrant and that fn : Xn → Yn is a homotopy equivalence for all n. Then the induced 
map |f | : |X| → |Y | is a homotopy equivalence.
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A.2. Nerves and classifying spaces

The nerve construction transforms small categories to simplicial sets, and then to 
topological spaces by taking the geometric realization functor. The nerve construction 
can be extended to 2-categories and topological categories by using simplicial spaces.

Definition A.14. For a small category C, define

Nn(C) = {(un, . . . , u1) ∈ Cn
1 | s(un) = t(un−1), . . . , s(u2) = t(u1)} .

Elements of Nn(C) are called n-chains.

Lemma A.15. For a small category C, these sets {Nn(C)}n≥0 together with maps

di : Nn(C) −→ Nn−1(C)

si : Nn(C) −→ Nn+1(C)

defined by

di(un, · · · , u1) =

⎧⎪⎪⎨
⎪⎪⎩

(un, . . . , u2) i = 0
(un, . . . , ui+2, ui+1 ◦ ui, . . . , u1), 1 ≤ i ≤ n− 1
(un−1, . . . , u1), i = n,

si(un, · · · , u1) =
{

(un, . . . , u1, 1s(u1)), i = 0
(un, . . . , ui+1, 1t(ui), ui, . . . , u1) 1 ≤ i ≤ n

form a simplicial set.

Definition A.16. The simplicial set N(C) is called the nerve of C. The geometric real-
ization of the nerve N(C) is denoted by BC and is called the classifying space of C.

Remark A.17. When C is a poset, BC agrees with the geometric realization of the order 
complex of C.

The following fact is fundamental.

Lemma A.18. Regard the totally ordered set [n] = {0 < 1 < · · · < n} as a small category. 
Then, for a small category C, we have a natural isomorphism of sets

Nn(C) ∼= Cat([n], C).

Furthermore, under the identification between simplicial sets and functors Δop → Set, 
the nerve construction defines a functor
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N : Cat −→ SetΔop
,

where SetΔop
is the category of simplicial sets.

Thus the classifying space construction is also a functor

B : Cat N−→ SetΔop |−|−→ Top,

where | −| denotes the geometric realization functor. In particular, any functor f : C → D

induces a continuous map of topological spaces Bf : BC → BD.
A natural transformation between functors induces a homotopy.

Lemma A.19. A natural transformation θ : f ⇒ g between functors f, g : C → D induces 
a homotopy

Bθ : BC × [0, 1] −→ BD

between Bf and Bg.

As a corollary, we obtain the following well-known but useful fact.

Corollary A.20. Suppose a functor f : C → D between small categories has a right or a 
left adjoint g : D → C. Then Bf : BC → BD is a homotopy equivalence. In particular, 
when C has an initial or a terminal object, BC is contractible.

Proof. Suppose g is right adjoint to f . We have natural transformations

1C =⇒ g ◦ f
f ◦ g =⇒ 1D.

By Lemma A.19, they induce homotopies

Bg ◦Bf = B(g ◦ f) 	 B1C = 1BC

Bf ◦Bg = B(f ◦ g) 	 B1D = 1BD

and thus Bg is a homotopy inverse of Bf : BC → BD.
When C has an initial object ∗, the collapsing functor p : C → ∗ is a right adjoint to 

the inclusion ∗ ↪→ C. And we have BC 	 B∗ = ∗. �
Furthermore we obtain a deformation retraction in the following special case.

Definition A.21. A map of poset f : P → P is called a descending closure operator if 
f ◦ f = f and f(x) ≤ x for all x ∈ P . Dually it is called an ascending closure operator
if f ◦ f = f and f(x) ≥ x for all x ∈ P .
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Corollary A.22. If a poset P has a descending or an ascending closure operator f : P →
P , B(f(P )) is a strong deformation retract of BP .

Proof. Regard P as a small category. A poset map f : P → P is an endofunctor. Let 
i : f(P ) ↪→ P be the inclusion. When f is a descending closure operator, we have 
f ◦ i = 1f(P ). Furthermore the relation f(x) ≤ x gives rise to a natural transformation 
i ◦ f ⇒ 1P , which is identity on f(P ). Thus we have a homotopy Bi ◦Bf 	 1BP which 
is identity on Bf(P ).

When f is a descending closure operator, we have a natural transformation 1P ⇒ i ◦f
and the same conclusion holds. �
Remark A.23. It can be proved that BP collapses onto B(f(P )) under the same assump-
tion. See §13.2 of Kozlov’s book [27].

When C is acyclic, we only need nondegenerate chains.

Definition A.24. For a small category C, define

Nn(C) = Nn(C) −
n−1⋃
i=0

si(Nn−1(C)).

Elements of Nn(C) are called nondegenerate n-chains.

Lemma A.25. When C is acyclic, the face operators di can be restricted to nondegenerate 
chains. Thus the collection N(C) = {Nn(C)}n≥0 forms a Δ-set.

Definition A.26. For an acyclic category C, elements of Nn(C) are called nondegenerate 
n-chains and the Δ-set N(C) is called the nondegenerate nerve of C.

Lemma A.27. For a small acyclic category C, we have a natural homeomorphism

BC = |N(C)| ∼= ‖N(C)‖,

where ‖ − ‖ denotes the geometric realization of Δ-sets.

It is straightforward to extend the construction of the classifying space to topological 
categories.

Lemma A.28. For a topological category C, NC = {Nn(C)}n≥0 forms a simplicial space.

Definition A.29. For a topological category C, the geometric realization of the simplicial 
space NC is called the classifying space of C and is denoted by BC.
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There are several ways to define the classifying space of a 2-category. A good reference 
is the paper [7] by Carrasco, Cegarra, and Garzón in which they compare ten different 
nerves for bicategories (weak 2-categories).

One of the most classical constructions is the following bisimplicial nerve.

Definition A.30. For a 2-category C, define a topological category BC by (BC)0 = C0
and

(BC)(x, y) = B(C(x, y))

for x, y ∈ C0. The classifying space of this topological category is denoted by B2C and 
is called the classifying space of C.

B2 obviously defines a functor

B2 : Cat2 −→ Top

from the category Cat2 of 2-categories and 2-functors to the one of topological spaces 
and continuous maps.

Proposition A.31. If a strict 2-functor f : C → D induces a homotopy equivalence

Bf(x, y) : BC(x, y) −→ BD(f(x), f(y))

for all pairs of objects x, y ∈ C0, then

B2f : B2C −→ B2D

is a homotopy equivalence.

Proof. By assumption, f induces a homotopy equivalence

NnBf : NnBC −→ NnBD

for all n. Now the result follows from Lemma A.13 and Example A.11. �
Note that the functor B2 : Cat2 → Top, cannot be extended to lax or colax functors. 

In order to construct a classifying space which is functorial with respect to lax or colax 
functors, one of the ways is to modify the description in Lemma A.18.

Definition A.32. For a 2-category C, define

N cl
n (C) = {u : [n] → C | colax functors}
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Nncl
n (C) = {u : [n] → C | normal colax functors}

N l
n(C) = {u : [n] → C | lax functors}

Nnl
n (C) = {u : [n] → C | normal lax functors} .

Lemma A.33. The collections N cl(C) = {N cl
n (C)}n≥0, NnclC = {Nncl

n (C)}n≥0, 
N l(C) = {N l

n(C)}n≥0, and Nnl(C) = {Nnl
n (C)}n≥0 form simplicial sets and we ob-

tain functors

Bcl : Cat2,cl −→ SetΔop

Bncl : Cat2,ncl −→ SetΔop

Bl : Cat2,l −→ SetΔop

Bnl : Cat2,nl −→ SetΔop
.

Remark A.34. The above construction is originally due to Duskin [17] in the case of lax 
functors. See also a paper [41] by Street.

It is known that all of these constructions give rise to the same homotopy type.

Theorem A.35. We have weak homotopy equivalences

BclC 	 BnclC 	 B2C 	 BnlC 	 BlC.

Proof. See the paper [7] by Carrasco, Cegarra, and Garzón. �
A.3. Comma categories and Quillen’s Theorem A

Given a functor f : C → D between small categories, a basic question is when the 
induced map

Bf : BC −→ BD

is a homotopy equivalence. In order to measure the difference between C and D via f , 
one might want to look at fibers of f .

Definition A.36. For a functor f : C → D, the fiber f−1(y) over y ∈ D0 is defined to be 
the subcategory of C whose sets of objects and morphisms are given by

f−1(y)0 = f−1
0 (y) = {x ∈ C0 | f0(x) = y}

f−1(y)1 = f−1
1 (1y) = {u ∈ C1 | f1(u) = 1y} .
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Unfortunately Bf fails to be a fibration in general, and genuine fibers do not tell 
us differences. The standard technique in homotopy theory suggests to take homotopy 
fibers. Quillen [32] found that homotopy fibers of Bf can be described in terms of comma 
categories.

Definition A.37. For a small category C and an object x ∈ C0, define a category C ↓ x

as follows. Objects are morphisms in C of the form u : y → x:

(C ↓ x)0 = {u ∈ C1 | t(u) = x} = t−1(x).

A morphism from u : y → x to v : z → x is a morphism w : y → z in C satisfying 
u = v ◦ w

(C ↓ x)(u, v) = {w ∈ C(y, z) | u = v ◦ w} .

Compositions of morphisms are given by compositions in C. Dually we define a category 
x ↓ C whose objects are morphisms in C of the form u : x → y. A morphism from 
u : x → y to v : x → z is a morphism w : y → z satisfying v = w ◦ u.

More generally, given a functor f : C → D and an object y ∈ D0, define a category 
f ↓ y as follows. The set of objects is given by

(f ↓ y)0 = {(x, u) ∈ C0 ×D1 | u ∈ D(f(x), y)} .

The set of morphisms from (x, u) to (x′, u′) is given by

(f ↓ y)((x, u), (x′, u′)) = {w ∈ C(x, x′) | u = u′ ◦ f(w)} .

Dually define a category y ↓ f by

(y ↓ f)0 = {(u, x) ∈ D1 × C0 | u ∈ C(y, f(x))}

(y ↓ f)((u, x), (u′, x′)) = {w ∈ C(x, x′) | u′ = f(w) ◦ u} .

The categories f ↓ x and x ↓ f are called left and right homotopy fibers of f at x, 
respectively.

Remark A.38. The categories f ↓ x and x ↓ f are often called comma categories. The ter-
minology used above is based on a homotopy-theoretic point of view. The name comma 
category actually refers to a more general construction. Categories defined in Defini-
tion A.37 are sometimes called coslice/slice categories and under/over categories.

Note that different authors use different notations for these categories. The notation 
f ↓ x and x ↓ f can be found in Mac Lane’s book [29]. Quillen [32] denotes them by 
C/x, x\C, f/y, and y\f , respectively.



784 V. Nanda et al. / Advances in Mathematics 340 (2018) 723–790
The following result is due to Quillen [32] and is called Quillen’s Theorem A.

Theorem A.39 (Theorem A). For a functor f : C → D between small categories, if 
B(f ↓ y) is contractible for all y ∈ D0, then Bf : BC → BD is a homotopy equivalence.

The same is true when B(y ↓ f) is contractible for all y ∈ D0.

This fact says that the family of spaces B(f ↓ y) measures the difference of BC and 
BD via Bf in the homotopy category of topological spaces.

We close this section by describing relations between genuine fibers and homotopy 
fibers.

Definition A.40. For a functor f : C → D between small categories and an object y ∈ D0, 
define functors

iy : f−1(y) −→ y ↓ f

jy : f−1(y) −→ f ↓ y

by

iy(x) = (1y, x)

jy(x) = (x, 1y)

on objects.
When iy has a right adjoint sy for each object y in D, the functor f is called prefibered

or a prefibered category. The collection {sy}y∈D0 is called a prefibered structure on f . 
Dually when jy has a left adjoint tx for each object y in D, the functor f is called 
precofibered or a precofibered category. The collection {ty}y∈D0 is called a precofibered 
structure on f .

Corollary A.41. Suppose f : C → D is either prefibered or precofibered. If Bf−1(y) is 
contractible for each y ∈ D0, then Bf : BC → BD is a homotopy equivalence.

A.4. Comma categories and Quillen’s Theorem A for 2-categories

We need to extend Theorem A.39 to poset-categories and, more generally, to 
2-categories for our purposes. We first need to define homotopy fibers or comma cat-
egories for colax functors. According to Cegarra [8], comma categories for 2-functors 
were introduced by Gray [22], whose extension to colax functors can be found in del 
Hoyo’s paper [13].7

7 Note that colax functors in the sense of this paper are called “lax functors” in del Hoyo’s paper.
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Definition A.42. Let C and D be 2-categories.

1. For a colax functor f : C → D and an object y ∈ D0, define a 2-category f ↓ y as 
follows.
(a) The set of objects is given by

(f ↓ y)0 = {(x, u) ∈ C0 ×D1 | u ∈ D(f(x), y)0} .

(b) For (x, u), (x′, u′) ∈ (f ↓ y)0, the sets of objects and morphisms in the category 
(f ↓ y)((x, u), (x′, u′)) are defined by

(f ↓ y)((x, u), (x′, u′))0 = {(θ, w) ∈ D2 × C1 | θ : u′ ◦ f(w) ⇒ u}

(f ↓ y)((x, u), (x′, u′))((θ, w), (θ′, w′))

= {ϕ ∈ C(x, x′)(w′, w) | θ′ = θ ∗ (u′ ◦ f(ϕ))} .

f(x)

f(w′)

θ′

u

f(x′)

u′

y

=
f(x)

f(w)

f(w′)

f(ϕ)

u

θ

f(x′)

u′

y

(c) For an object (x, u) ∈ (f ↓ y)0, define 1(x,u) = (u′ ◦ fx, 1x).

f(x)

u

f(1x)

1f(x)

fx f(x)

u

y.

(d) The horizontal composition in f ↓ y

◦ : (f ↓ y)((x′, u′), (x′′, u′′)) × (f ↓ y)((x, u), (x′, u′)) −→ (f ↓ y)((x, u), (x′′, u′′))
(A.1)

is defined by the following diagram

f(x)
f(w)

u

f(w′◦w)

f

θ

f(x′)
f(w′)

u′
θ′

f(x′′)

u′′

y.
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(e) The vertical composition in f ↓ y is given by that of C.
2. For a lax functor f and an object y ∈ D0, define a 2-category y ↓ f as follows.

(a) The set of objects is given by

(y ↓ f)0 = {(u, x) ∈ D1 × C0 | u ∈ D(y, f(x))0} .

(b) For (u, x), (u′, x′) ∈ (y ↓ f)0, the sets of objects and morphisms in the category 
(y ↓ f)((u, x), (u, x′)) are defined by

(y ↓ f)((u, x), (u′, x′))0 = {(θ, w) ∈ D2 × C1 | θ : u′ ⇒ u ◦ f(w)}

(y ↓ f)((u, x), (u′, x′))((θ, w), (θ′, w′))

= {ϕ ∈ C(x, x′)(w,w′) | θ = (f(ϕ) ◦ u) ∗ θ′} .

f(x′) f(x)

f(w)

θ

y

u′ u

=
f(x′) f(x)

f(w′)

f(w)

f(ϕ)

y

u′

θ

u

(c) For an object (u, x) ∈ (y ↓ f)0, define 1(u,x) = (fx ◦ u, 1x).

f(x) f(x)
1f(x)

f(1x)

fx

y.

u u

(d) The horizontal composition in y ↓ f

◦ : (y ↓ f)((u′, x′), (u′′, x′′)) × (y ↓ f)((u, x), (u′, x′)) −→ (y ↓ f)((u, x), (u′′, x′′))

is defined by the following diagram

f(x) f(x′)
f(w)

f(x′′)
f(w′)

f(w′◦w)

f

y.

u′′

θ
θ′

u′
u

(e) The vertical composition in y ↓ f is given by that of C.



V. Nanda et al. / Advances in Mathematics 340 (2018) 723–790 787
Remark A.43. For a colax functor f , y ↓ f cannot be defined, since the direction of fx :
f(1x) ⇒ 1f(x) does not allow us to define an identity morphism on (u, x). This is the only 
obstruction to defining y ↓ f . When f is normal, therefore, y ↓ f is defined. For example, 
a 1-morphism from (u, x) to (u′, x′) in y ↓ f is given by a pair (θ, w) ∈ D2 × C1 with

θ : f(w) ◦ u =⇒ u′.

Horizontal compositions are given by the following diagram

f(x)
f(w)

f(w′◦w)

f

f(x′)
f(w′)

f(x′′)

y.

u′′

θ
θ′

u′
u

Similarly, for a normal lax functor, f ↓ y can be defined.

Lemma A.44. For a colax functor, the above data define a 2-category f ↓ y. When f is 
a lax functor, y ↓ f becomes a 2-category.

Proof. Consider the case of a colax functor. We need to verify the following:

1. (f ↓ y)((x, u), (x′, u′)) is a category for each pair (x, u), (x′, u′) ∈ (f ↓ y)0.
2. The horizontal composition (A.1) is a functor.
3. The horizontal composition is associative.
4. 1(x,u) serves as a unit for each (x, u) ∈ (f ↓ y)0.

Note that the set (f ↓ y)((x, u), (x′, u′))1 is a subset of C(x, x′)1 ⊂ C2. It can be easily 
verified that (f ↓ y)((x, u), (x′, u′))1 is closed under compositions. Thus (f ↓ y)((x, u),
(x′, u′)) is a subcategory of C(x, x′)1.

The fact that (A.1) is a functor follows from the naturality of fx′′,x′,x′ : f(w′ ◦ w) ⇒
f(w′) ◦ f(w). The associativity for the horizontal composition follows from the commu-
tativity of (3.1).

The fact that 1(x,u) is a unit follows from the commutativity of (3.2) and (3.3). �
Definition A.45. The 2-categories f ↓ y and y ↓ f are called the left homotopy fiber and 
the right homotopy fiber of f over y, respectively.

When C is a 1-category regarded as a 2-category, the homotopy fiber f ↓ y has a 
simpler description, since 2-morphisms in f ↓ y are defined by 2-morphisms in C.

Lemma A.46. Let f : C → D be a colax functor and suppose that C is a 1-category. Then 
the left homotopy fiber f ↓ y is a 1-category for any object y ∈ D0.
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Corollary A.47. Let f : C → D be a colax functor from a poset C to a poset-category D. 
Then the left homotopy fiber f ↓ y is a poset whose order relation ≤y is defined by

(x, u) ≤y (x′, u′) ⇐⇒ x ≤ x′ in C and u′ ◦ f(x ≤ x′) ≤ u in D(f(x′), y).

When f is normal, the right homotopy fiber y ↓ f is also a poset whose order rela-
tion ≤y is defined by

(u, x) ≤y (u′, x′) ⇐⇒ x ≤ x′ in C and f(x ≤ x′) ◦ u ≤ u′ in D(y, f(x′)).

Proof. A morphism from (x, u) to (x′, u′) in f ↓ y is a pair (θ, w) with θ : u′ ◦ f(w) ⇒ u. 
Here w is a morphism w : x → x′ in C and θ is a morphism in D(f(x), y). Since C is a 
poset, such w exists if and only if x ≤ x′. D(f(x), y) is also a poset and thus θ exists if 
and only if u′ ◦ f(x ≤ x′) ≤ u. Furthermore such w and θ are unique if exist. Thus f ↓ y

is a poset.
When f is normal, y ↓ f is defined. A morphism from (u, x) to (u′, x′) in y ↓ f is a pair 

(θ, w) with θ : f(w) ◦ u ⇒ u′. Since both C and D(y, f(x′)) are posets, such morphisms 
are unique and thus y ↓ f is a poset. �

An analogue of f−1(x) can be defined as follows.

Definition A.48. For a colax functor f : C → D between 2-categories and an object 
y ∈ D0, define a 2-subcategory f−1(y) of C by

f−1(y)0 = {x ∈ C0 | f(x) = y}
f−1(y)1 = {u ∈ C1 | f(u) = 1y}
f−1(y)2 =

{
θ ∈ C2

∣∣ f(θ) = 11y

}
.

Define

j : f−1(y) −→ f ↓ y

by j(x) = (x, 1y) on objects. For a 1-morphism w : x → x′ in f−1(y), define a 1-morphism 
in f ↓ y by the pair (11y

, w). j sends a 2-morphism ϕ in f−1(x) to ϕ.

A generalization of Quillen’s Theorem A to colax functors was proved by del Hoyo 
[13] based on the work [6] of Bullejos and Cegarra on Theorem A for 2-functors.

Theorem A.49 (Theorem A for colax functors). Let f : C → D be a colax functor between 
2-categories. If Bcl(f ↓ y) is contractible for every object y ∈ D0, then the induced map

Bclf : BclC −→ BclD
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is a homotopy equivalence. When f is normal, the induced map

Bnclf : BnclC −→ BnclD

is a homotopy equivalence as long as Bncl(f ↓ y) is contractible for every object y ∈ D0.

We need the following version of a 2-categorical analogue of Corollary A.41. Recall 
from Lemma A.46 that homotopy fibers f ↓ y and y ↓ f are 1-categories, if the domain 
category C of f : C → D is a 1-category. The fiber f−1(y) is also a 1-category.

Definition A.50. Let f : C → D be a colax functor from a small 1-category to a small 
2-category. We say f is precofibered if the canonical inclusion jy : f−1(y) −→ f ↓ y has 
a left adjoint for each y ∈ D0. Dually a lax functor f : C → D is said to be prefibered if 
the inclusion iy : f−1(y) → y ↓ f has a right adjoint for each y ∈ D0.

Corollary A.51. Let f : C → D be either a precofibered colax functor or a prefibered lax 
functor from a small 1-category C to a small 2-category D. If Bf−1(y) is contractible 
for each y ∈ D0, Bf : BC → BclD or Bf : BC → BlD is a homotopy equivalence. 
When f is a prefibered normal colax functor or a precofibered normal lax functor, Bf :
BC → BnclD or Bf : BC → BnlD is a homotopy equivalence, respectively.
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