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Abstract. From a sufficiently large point sample lying on a compact Rie-

mannian submanifold of Euclidean space, one can construct a simplicial com-
plex which is homotopy-equivalent to that manifold with high confidence. We

describe a corresponding result for a Lipschitz-continuous function between

two such manifolds. That is, we outline the construction of a simplicial map
which recovers the induced maps on homotopy and homology groups with high

confidence using only finite sampled data from the domain and range, as well

as knowledge of the image of every point sampled from the domain. We provide
explicit bounds on the size of the point samples required for such reconstruc-

tion in terms of intrinsic properties of the domain, the co-domain and the
function. This reconstruction is robust to certain types of bounded sampling

and evaluation noise.

1. Introduction. The use of algebraic topological methods for the analysis of non-
linear data has become a subject of considerable interest with a wide variety of
promising applications [3, 5, 7, 10]. With modern technology, large and high-
dimensional datasets are easily collected. However, in many cases the data are
generated by a nonlinear system with many fewer degrees of freedom than the am-
bient dimension, and thus one may expect that the data actually lie on a much
lower dimensional manifold. In this setting, it seems reasonable that the geometry
generated by the data may provide insight concerning the original system. Given
that such data are typically finite and noisy, relatively crude invariants – such as
homology or homotopy groups – appear to be natural tools for capturing aspects
of their underlying topological structure. The same heuristic arguments extend to
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transformations from one dataset to another. In such analysis, one is interested not
only in the geometry associated with the data, but also in the action of an unknown
nonlinear process on the data. This action may be partially characterized by the
maps which it induces on homology and homotopy groups.

Given these arguments, an obvious but mostly unresolved mathematical issue is
to quantify the extent to which we can extract correct topological features from noisy
data. An important first step in this direction is the following result due to Partha
Niyogi, Steve Smale, and Shmuel Weinberger [13]. Let Rn denote Euclidean n-
dimensional space with the standard metric, and consider a compact k-dimensional
Riemannian submanifold X ⊂ Rn. The condition number 1/τX of X is defined as
follows: τX is the largest positive real number such that for any r ∈ (0, τX ), the
normal bundle of radius r about X can be embedded in Rn.

Theorem 1.1. ([13, Thm 3.1]) Let X be a compact k-dimensional Riemannian
submanifold of Rn with condition number 1/τX . Given

1. some probability parameter δ ∈ (0, 1],
2. a radius ε < τX/2, and
3. a finite set X ⊂ X of independent and identically distributed (i.i.d.) uniformly

sampled points,

let U(X) denote the union of n-dimensional open ε-balls centered at the points in X.
If the sample size #X is larger than a bounding value βX (ε, δ) (see Definition 3.1),
then Uε(X) is homotopy-equivalent to X with probability exceeding (1− δ).

Thus, the union of balls of a suitably chosen radius around a sufficiently large
point sample suffices to recover the homotopy type of that manifold with high
confidence. From a computational perspective, recall that the nerve of a cover [12,
15] is the abstract simplicial complex where each d-dimensional simplex corresponds
to an intersection of d + 1 sets of that cover. If we let N(X) denote the nerve
corresponding to the cover of U(X) by its constituent open balls, then one obtains

an isomorphism H∗(X ) ' H∆
∗ (N(X)) between the singular homology of X and

the simplicial homology of N(X) by using the nerve lemma. Thus, it is possible to
successfully compute the homology of an unknown manifold X with high probability
from a sufficiently dense point sample X ⊂ X .

An obvious next step is to obtain bounds on the probability of reconstructing,
up to homotopy, a continuous function between Riemannian manifolds from images
of dense samples. This is the focus of our work with the main result as follows.

Theorem 1.2. Let X ⊂ Rn and Y ⊂ Rm be compact Riemannian submanifolds
with condition numbers 1/τX and 1/τY respectively and let f : X → Y be a Lipschitz
continuous function with Lipschitz constant bounded above by some κ ≥ 0. Given

1. probability parameters δX , δY ∈ (0, 1],
2. radii εX < τX/2 and εY < τY/2 satisfying 4κ · εX < εY , and
3. finite sets X ⊂ X and Y ⊂ Y of independent and identically distributed (i.i.d.)

uniformly sampled points,

let N(X) and N(Y ) be nerves of the covers generated by open balls of radius εX
and εY around X and Y respectively. If #X > βX (εX , δX ) and #Y > βY(εY , δY),
then there exists a simplicial map φ : N(X)→ N(Y ) which

1. recovers the homotopy class of f with probability exceeding (1 − δX )(1 − δY),
and
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2. can be explicitly constructed using only X, Y , εX , εY , κ and the restriction
f |X .

In particular, the morphisms induced by φ on the simplicial homology as well as
homotopy groups of the nerves faithfully capture their singular counterparts induced
by f with high confidence. Note from Theorem 1.1 that the upper bound on the
probability of failing to produce φ is no larger than the corresponding bound on
failing to reconstruct both X and Y from the sample sets X and Y .

The third hypothesis in Theorem 1.1 which requires the sampled points to lie
on the underlying manifold is too strong from the perspective of practical sampling
considerations. A more reasonable hypothesis is that the data is noisy and lies
near – rather than on – the respective underlying manifolds. This situation is
also considered in [13]. Using their framework, we show that Theorem 1.2 can be
extended to this more general setting (see Theorem 5.6).

The rest of the paper is organized as follows. In Section 2 we mention relevant
definitions and tools from combinatorial algebraic topology. Section 3 describes
results from [13] that are used in our work. The simplicial reconstruction of func-
tions and its verification are presented in Section 4. Section 5 demonstrates the
robustness of this reconstruction by providing a version of Theorem 1.2 which holds
in the case of bounded sampling and evaluation noise. Our argument relies on a
controlled version of the nerve lemma whose proof is described in Section 6.

2. Carriers and nerves. For the sake of completeness and to introduce relevant
notation, we review some classical results from the theory of simplicial complexes.
A much more complete treatment is available in standard texts, for instance [12, 15].

Let U be any finite set whose elements we call vertices. A simplicial complex K
with vertex set U is a collection of nonempty subsets of U – called simplices – which
contains all the vertices is closed under inclusion. More precisely, a collection K of
subsets of U is a simplicial complex if

• for each u ∈ U, we have {u} ∈ K, and
• if σ ∈ K and τ ⊂ σ, then τ ∈ K.

The dimension of each simplex σ ∈ K is the natural number given by dimσ = #σ−1
where # indicates cardinality. A subcomplex of K is a sub-collection of simplices
which forms a simplicial complex in its own right. The notation Kd is used to
indicate all simplices of dimension d in K. Without loss of generality, we may
identify K0 with U by associating each 0-dimensional simplex with the unique
element of U which it contains. Thus, each simplex is uniquely determined by
its constituent vertices. Given simplicial complexes K and L, a simplicial map
ψ : K → L associates to each vertex v ∈ K0 a vertex ψ(u) ∈ L0 so that for each
simplex σ ∈ K the image ψ(σ) is a simplex in L.

2.1. Carriers. The geometric realization |K| of a simplicial complex K is defined
(in [15, Ch. 3.1], for instance) as the space of all maps α : K0 → [0, 1] called
barycentric functions such that for each α ∈ |K|,

1. there exists σ ∈ K with
{
u ∈ K0 | α(u) 6= 0

}
= σ, and

2. the sum
∑
u∈K0 α(u) equals 1.

The realization of a simplex σ ∈ K is defined as the closed subset |σ| ⊂ |K|
consisting of all barycentric functions α ∈ |K| such that α(u) = 0 whenever u /∈ σ.
Observe that if σ ⊂ τ then |σ| ⊂ |τ |; if σ ∈ K then |σ| is contractible in |K|; and
|K| =

⋃
σ∈K |σ|.
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A simplicial map ψ : K → L induces a continuous function |ψ| : |K| → |L|
between geometric realizations defined as follows. For any α ∈ |K|, the action of
the barycentric function |ψ|(α) ∈ |L| on a vertex v ∈ L0 is given by

|ψ|(α)(v) =
∑

ψ(u)=v

α(u).

It is readily seen from this definition that |ψ|(|σ|) ⊂ |ψ(σ)| for each simplicial map
ψ : K → L and each σ ∈ K.

Let U be any topological space and K a simplicial complex. A contractible carrier
C : K =⇒ U from K to U assigns to each simplex σ ∈ K a contractible subset C(σ)
of U so that C(σ) ⊂ C(τ) whenever σ ⊂ τ . A function h : |K| → U is carried by
C if g(|σ|) ⊂ C(σ) for each simplex σ ∈ K. The following result is an extremely
useful tool in combinatorial algebraic topology. We refer the reader to [1] and the
references therein for details.

Lemma 2.1 (Carrier Lemma). Let K be a simplicial complex, U a topological
space and C : K =⇒ U a contractible carrier. Then, there exists a continuous
function from |K| to U carried by C. Moreover, if two continuous functions h, h′ :
|K| → U are carried by C, then

1. they are homotopic, i.e., h ∼ h′, and
2. a homotopy Θ : |K| × [0, 1]→ S may be chosen so that for each t ∈ [0, 1] the

section Θ(∗, t) : |K| → U is also carried by C.

2.2. Nerves. Let U be a topological space equipped with a finite cover U consisting
of subsets of M . The nerve of U is the simplicial complex N(U) with vertex set U
where each subcollection σ ⊂ U constitutes a simplex if and only if the intersection⋂
u∈σ u is a non-empty subset of U . We call this intersection the support of σ

and denote it by bσc ⊂ U . On the other hand, we also make use of the union
dσe =

⋃
u∈σ u ⊂ U . When considering an entire subcomplex K ⊂ N(U) rather than

a single simplex, one defines dKe to be the union of supports of all simplices in K.
It is easy to see1 that dKe =

⋃
u∈K0 u, and that dN(U)e = U .

A cover U of a topological space U is called contractible if the support bσc of
each σ ∈ N(U) is a contractible subset of U . For instance, if U lies in a topological
vector space and if each u ∈ U is convex, then all non-empty intersections are
automatically convex and hence contractible. One reason to consider contractible
nerves is the following classical result (see [2] or [11, Thm. 15.21]).

Lemma 2.2 (Nerve Lemma). Let U be a paracompact topological space equipped
with an open cover U. If U is contractible, then the geometric realization |N(U)| of
its nerve is homotopy-equivalent to U .

Since we always restrict our attention to finite covers by open balls in Eu-
clidean space, we may obtain the following controlled version of the nerve lemma
by strengthening its hypotheses.

Lemma 2.3. Let U be a finite collection of open balls in Euclidean space and let U
be their union. Then,

1. |N(U)| is homotopy-equivalent to U , and
2. a homotopy-equivalence ζ : |N(U)| → U may be chosen so that ζ(|σ|) ⊂ dσe

for each simplex σ ∈ N(U).

1Note that the supports of 0-simplices are maximal among all supports in the partial order
induced by inclusion.
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Note that the first conclusion of Lemma 2.3 follows easily from the traditional
nerve lemma; it is the second assertion which plays a fundamental role in the proofs
of our main results. A detailed verification of the controlled nerve lemma is pre-
sented in Section 6.

3. Recovering manifolds from samples. Our main result focuses on recovering
– up to homotopy type – a Lipschitz continuous function between finitely sampled
unknown compact Riemannian submanifolds of Euclidean space. In order to ac-
complish this, we first use the finite sampled data to construct a simplicial complex
homotopically faithful to the underlying manifold. In this section, we briefly survey
the process from [13] which constructs such a simplicial complex.

Throughout this section, let X ⊂ Rn be a compact Riemannian submanifold with
condition number 1/τX .

Definition 3.1. The bounding function βX : R+ × (0, 1]→ R is given by

βX (ε, δ) = β1 [log(β2) + log(1/δ)] , (1)

where

β1 =
vol(X )

cosk (arcsin(ε/8τX )) · vol(Bkε/4)
,

β2 =
vol(X )

cosk (arcsin(ε/16τX )) · vol(Bkε/8)
,

and vol(Bkε ) denotes the volume of the standard k-dimensional Euclidean ball of
radius ε.

Let Br(x) denote the n-dimensional Euclidean open ball of radius r centered at
x ∈ Rn. For any subset P of Rn and α > 0, we denote by Uα(P ) the set of open
balls {Bα(p) | p ∈ P} and let Uα(P ) be their union. We say that P is α-dense in the
manifold X if we have the inclusion X ⊂ Uα(P ). The following proposition enables
one to recover the homotopy type of X from a finite set X which is sufficiently dense
in X relative to τX .

Proposition 3.2. ([13, Prop 3.1]) Assume ε ∈
(

0,
√

3/5 τX

)
and that a finite set

X ⊂ Rn is ε/2-dense in X . Then, the canonical projection map πX : Uε(X) → X
defined by

πX (w) = arg min
x∈X
‖w − x‖Rn (2)

is a strong deformation-retraction.

As a corollary to this proposition one obtains a string of isomorphisms on ho-
mology:

H∗(X ) ' H∗ (Uε(X)) ' H∗(|Nε(X)|) ' H∆
∗ (Nε(X)).

The first isomorphism comes from the fact that deformation retractions preserve
homotopy type and homology is a homotopy-invariant. The second isomorphism
results from applying the nerve lemma: since Uε is a convex cover of Uε(X) for
each ε, the associated nerve is contractible. The last isomorphism is simply the
equivalence of singular and simplicial homology. We remark here that the nerve of
a cover by balls [6] and the homology groups of finite simplicial complexes [4, 9] are
eminently computable. Thus, one can actually obtain a finite representation of the
homology of X up to isomorphism from a sufficiently dense point sample.
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Adopting the terminology of the proposition, we observe an important property
of the projection map πX : Uε(X)→ X which holds even when ε is allowed to range
over the larger interval (0, τX ). Note that for each w ∈ Uε(X) we have some ξ ∈ X
with ‖ξ − w‖Rn < ε. On the other hand, the distance between w and πX (w) is at
most ε as well, since πX (w) is the nearest point of the manifold X to w. By the
triangle inequality, one has the following estimate for each ξ ∈ X and w ∈ Bε(ξ)
whenever εX ∈ (0, τX ):

‖πX (w)− ξ‖Rn < 2εX . (3)

This is not the best possible estimate one could obtain, but it suffices for our
purposes here.

The following proposition assumes that X is obtained by uniform i.i.d. sampling
on X and provides a lower bound on the sample size #X which guarantees – with
high confidence – the ε/2-density needed by the previous proposition.

Proposition 3.3. ([13, Prop 3.2]) Choose ε ∈ (0, τX/2) and the probability parameter
δ ∈ (0, 1]. Assume that X is obtained by i.i.d. uniform samplings from X . If
#X > βX (ε, δ), then X is ε/2-dense in X with probability exceeding (1− δ).

Propositions 3.2 and 3.3 lead directly to Theorem 1.1, which is the main result
of [13].

4. Recovering functions from samples. In this section we provide a proof of
our main result, Theorem 1.2. The hypotheses of this theorem consist of a variety
of assumptions and a-priori choices of parameters. To clarify their respective roles
we present them via the following exhaustive list. The notation below will remain
fixed throughout this section.

Cnd: Assume that X ⊂ Rn and Y ⊂ Rm are compact Riemannian submanifolds
with condition numbers 1/τX and 1/τY , respectively.

Prb: Choose probability parameters δX , δY ∈ (0, 1].
Lip: Assume f : X → Y is a Lipschitz continuous function with Lipschitz constant

less than κ ≥ 0. More precisely, we require ‖f(x) − f(x′)‖Rm ≤ κ‖x − x′‖Rn
for any pair of points x, x′ ∈ X .

Rad: Choose the radii εX ∈ (0, τX/2) and εY ∈ (0, τY/2) so that 4κεX < εY .
Smp: Assume knowledge of the finite sets X ⊂ X and Y ⊂ Y obtained by i.i.d.

uniform sampling from X and Y respectively. Furthermore, require #X >
βX (εX , δX ) and #Y > βY(εY , δY).

Img: Assume knowledge of the restriction f |X : X → Y ⊂ Rm of f to the point
sample X.

It is important to note that neither Smp nor Img imply that sampled points map
to sampled points, so in general f(X) 6⊂ Y . Since Rad fixes choices of εX and εY ,
we simplify our notation by declaring that N(X) := NεX (X) and N(Y ) := NεY (Y ).
Similarly, we denote the unions of balls UεX (X) and UεY (Y ) by U(X) and U(Y ).
Finally, define ρ ∈ R by

ρ = εY − 2κεX . (4)

Note that by Rad, we have ρ > εY/2 > 0.
By Cnd, Prb, Rad and Smp, Theorem 1.1 establishes that the vertical maps

in the diagram below induce isomorphisms on homotopy with probability exceeding
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(1− δX )(1− δY):

X Y

U(X) U(Y )

//
f

��

ιY

OO

πX

//
g

Here, πX is the canonical projection map (2) and ιY is the inclusion of Y into
the union of balls U(Y ). Let g : U(X) → U(Y ) be the composition ιY ◦ f ◦ πX .
With probability exceeding (1 − δX )(1 − δY), the map induced by g on homotopy
is naturally related by isomorphisms to the corresponding map induced by f .

Definition 4.1. A simplicial reconstruction of f is defined to be any simplicial map
φ : N(X)→ N(Y ) so that g(dσe) ⊂ dφ(σ)e for each σ ∈ N(X).

We know from Lemma 2.3 that it is possible to find continuous maps ζZ :
|N(Z)| → U(Z) for Z ∈ {X,Y } which induce isomorphisms on homotopy and
satisfy ζZ(|σ|) ⊂ dσe for each simplex σ ∈ N(Z). For any choice of such maps, the
next proposition establishes that the following diagram commutes up to homotopy
whenever φ is a simplicial reconstruction of f :

U(X) U(Y )

|N(X)| |N(Y )|

//
g

//
|φ|

OO

ζX

OO

ζY

Proposition 4.2. If φ is a simplicial reconstruction of f , then ζY ◦ |φ| and g ◦ ζX
share a contractible carrier and hence are homotopic.

Proof. For each σ ∈ N(X), define F (σ) = dφ(σ)e. Note that σ ⊂ σ′ implies
F (σ) ⊂ F (σ′) since the latter is the union over a superset. The F -image of each
σ ∈ N(X) is contractible in U(Y ), being a union of convex sets (in our case, balls
in Euclidean space) with a non-empty intersection. Thus, F : N(X) =⇒ U(Y ) is a
contractible carrier. Given any σ ∈ N(X), we have

ζY ◦ |φ|(|σ|) ⊂ ζY (|φ(σ)|), since φ is a simplicial map,

⊂ dφ(σ)e , by assumption on ζY ,

= F (σ).

On the other hand,

g ◦ ζX(|σ|) ⊂ g (dσe) , by assumption on ζX ,

⊂ dφ(σ)e , since φ is a simplicial reconstruction of f ,

= F (σ).

Thus, both ζY ◦ |φ| and g ◦ ζX are carried by F .

With the goal of building a simplicial reconstruction in mind, we consider the
correspondence ∆ : X → 2Y defined on each ξ ∈ X by

∆(ξ) = {η ∈ Y so that ‖η − f(ξ)‖Rm < ρ} . (5)
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Proposition 4.3. With probability exceeding (1−δY), the following holds. For each
ξ ∈ X, the set ∆(ξ) ⊂ Y is non-empty.

Proof. Since Cnd, Prb, Rad and Smp satisfy the hypotheses of Proposition 3.3
for Y, we see that Y is εY/2-dense in Y with probability exceeding (1 − δY). This
density suffices to guarantee a non-empty ∆(ξ) for each ξ ∈ X in the following way.
For any ξ ∈ X there exists some η ∈ Y with ‖f(ξ) − η)‖Rm < εY/2. Since εY/2 < ρ
as a consequence of Rad and (4), we have η ∈ ∆(ξ).

Let vX : N(X) → 2X denote the map taking each simplex σ ∈ N(X) to its
vertex set vX(σ) ⊂ X which corresponds to (the centers of) those balls whose non-
empty intersection determines the support of σ. Note that σ ⊂ σ′ in N(X) if and
only if we have the inclusion vX(σ) ⊂ vX(σ′). Define vY : N(Y ) → 2Y similarly.
For each σ ∈ N(X), define ∆σ ⊂ Y by

∆σ =
⋃

ξ∈vX(σ)

∆(ξ). (6)

Proposition 4.4. With probability exceeding (1 − δX ), the following holds. For
each σ ∈ N(X), any non-empty subset of ∆σ determines a simplex in N(Y ).

Proof. By Cnd, Prb, Rad and Smp, Proposition 3.3 holds for X . Therefore, with
probability exceeding (1− δX ) we are guaranteed that X is sufficiently dense in X
so that the canonical projection map πX from (2) induces homotopy-equivalence.
Assuming this density, pick w ∈ bσc and recall that g(w) = ιY ◦ f ◦ πX (w) by
definition. Setting x = πX (w), we note from (3) that ‖x − ξ‖Rn < 2εX for each
ξ ∈ vX(σ). By Lip, for each such ξ we have:

‖f(x)− f(ξ)‖Rm < 2κεX . (7)

Given η ∈ ∆σ, by (6) there is some ξ∗ ∈ vX(σ) so that η ∈ ∆(ξ∗), whence ‖η −
f(ξ∗)‖Rm < ρ by (5). Since (7) implies ‖f(x) − f(ξ∗)‖Rn < 2κεX , the triangle
inequality yields

‖f(x)− η‖Rm < ρ+ 2κεX < εY .

Since the point f(x) lies in the intersection
⋂
η∈∆σ

BεY (η), this intersection is non-

empty and must determine a simplex of N(Y ). Clearly, any subset of ∆σ determines
a face of this simplex, and hence constitutes a simplex in its own right.

Proposition 4.3 guarantees with probability exceeding (1 − δX ) that ∆(ξ) is
nonempty for each ξ ∈ X and so we may choose a selector function h : X → Y so
that h(ξ) ∈ ∆(ξ) for each such ξ. By definition of ∆ and (4), we have

g(BεX (ξ)) ⊂ BεY (h(ξ)) for each ξ ∈ X. (8)

Proposition 4.4 guarantees with probability exceeding (1− δY) that for each σ ∈
N(X), the collection {h(ξ) | ξ ∈ vX(σ)} determines a simplex of N(Y ). Therefore,
with probability exceeding (1−δX )(1−δY), there exists a map h : X → Y of points
which induces a simplicial map φh : N(X) → N(Y ). The following proposition
demonstrates that the homotopy type of the induced simplicial map is independent
of the choice of h.

Proposition 4.5. Given any pair h, h′ : X → Y of selectors, the maps |φh| and
|φh′ | from |N(X)| to |N(Y )| are homotopic.
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Proof. For each σ ∈ N(X), we know that τσ := v−1
Y (∆σ) is a simplex of N(Y )

by Proposition 4.4. Moreover, if σ ⊂ σ′ then ∆σ ⊂ ∆σ′ by (6) and therefore
τσ ⊂ τσ′ .. For any σ ∈ N(X), note that since φh(σ) and φh′(σ) are faces of τσ, both
|φh(σ)| and |φh′(σ)| are subsets of |τσ|. Now |τσ|, being the realization of a single
simplex, is contractible. Therefore, |φh| and |φh′ | share that contractible carrier
which associates each σ ∈ N(X) to |τσ| ⊂ |N(Y )|.

For any selector h : X → Y , the induced map φh : N(X)→ N(Y ) is a simplicial
reconstruction of f . To see this, note that for any σ ∈ N(X) we can apply (8) to
each element of vX(σ) in order to conclude g(dσe) ⊂ dφh(σ)e. Combining this with
Proposition 4.2 concludes the proof of Theorem 1.2.

5. Robustness to bounded noise. As is indicated in the Introduction, we would
like to extend the results of the previous section to the case where data samples are
noisy. That is, we assume that the sampled points lie close to, rather than on, the
underlying manifolds. Such sampling discrepancies – aside from being ubiquitous
in experimental data – cascade into imprecise knowledge of the images under an
unknown function, particularly if the evaluation of that function is also subject to
some inherent measurement errors. This generalization requires a framework to
describe the noise, and so we adopt the model of [13, Sec. 7]. For any subset P
of Euclidean space Rn and any α > 0, define the tubular neighborhood of radius α
around P as follows:

Tubα(P ) = {x ∈ Rn | there is some p ∈ P with ‖p− x‖Rn < α} .

Definition 5.1. Given a subset P ⊂ Rn and some r > 0, a probability measure µ
on Rn is called r-conditioned about P if

1. the support of µ is contained in Tubr(P ), and
2. for each s ∈ (0, r), there exists some constant Ωs so that

inf
p∈P

µ(Bs(p)) = Ωs > 0

where Bs(p) denotes the n-dimensional open ball of radius s about p.

We write Ω(µ) to denote the constant Ωr/2 > 0.

As in the noiseless case, the following fundamental results concerning sampling of
manifolds are reproduced from [13]. Let X be a compact Riemannian submanifold
of Rn with condition number 1/τX . For r > 0 define the functions

Γ±X (r) =
(τX + r)±

√
τ2
X + r2 − 6τX r

2

and note that 0 < Γ−X < Γ+
X when the quantity under the square root is strictly

positive. It is straightforward to check that this positivity holds for r < (3−
√

8)τX .
Pick such an r and assume that X is a finite set lying in Tubr(X ) ⊂ Rn. For each
α > 0, let Nα(X) be the nerve generated by open balls of radius α about the points
in X and let Uα(X) be their union. The following result is the noisy analogue of
Proposition 3.2.

Proposition 5.2. ([13, Prop 7.1]) Assume that X is r-dense in X for some 0 <

r < (3 −
√

8)τX and choose a radius ε satisfying Γ−X (r) < ε < Γ+
X (r). Then, the

canonical projection map πX : Uε(X)→ X as defined in (2) is a strong deformation
retraction.
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Recall that given ν > 0, the ν-covering number of X – denoted Λν(X ) – is defined
to be the minimum possible q ∈ N satisfying the following property: there exists
some finite set S ⊂ X of cardinality q such that the collection {Bα(s) | s ∈ S} of
n-dimensional open balls covers X . Given an r-conditioned probability measure µ
about X and a probability parameter δ ∈ [0, 1), define the new bounding function
γX as follows:

γX (µ, δ) =
1

Ω(µ)

(
log(Λr/2(X )) + log (1/δ)

)
. (9)

The next result replaces Proposition 3.3 in the setting of conditioned noise.

Proposition 5.3. ([13, Prop 7.2]) Assume that the real numbers r and ε satisfy

0 < r < (3−
√

8)τX and Γ−X (r) < ε < Γ+
X (r). Let µ be any r-conditioned probability

measure about X and assume that a finite set X is drawn from Rn in i.i.d. fashion
with respect to µ. Given a parameter δ ∈ (0, 1], if #X > γX (µ, δ) then X is r-dense
in X with probability exceeding (1− δ).

Combining the preceding propositions yields the main result of [13] as adapted
for conditioned noise.

Theorem 5.4. ([13, Thm 7.1]) Let X ⊂ Rn be a compact Riemannian submanifold

with condition number 1/τX . Fix r ∈ (0, (3−
√

8)τX ) and choose a radius ε satisfying
Γ−X (r) < ε < Γ+

X (r). Assume that µ is an r-conditioned probability measure about
X and that X ⊂ Rn is a finite set obtained by µ-i.i.d. sampling. If #X > γX (µ, δ)
for some δ ∈ (0, 1], then Uε(X) strong deformation retracts onto X with probability
exceeding (1− δ).

The introduction of sampling noise requires the following modifications to our
assumptions and choices.

Lip’: Assume that f : X → Y is a Lipschitz-continuous function whose Lipschitz
constant is bounded above by some κ ≥ 0 satisfying 4κ · τX < (

√
2− 1)τY .

Nse: Choose positive noise bounds rZ < α·τZ where α = (3−
√

8) and Z ∈ {X ,Y}.
Assume that µZ is a rZ -conditioned probability measure about Z.

Rad’: Choose radii εZ satisfying Γ−Z(rZ) < εZ < Γ+
Z(rZ) for Z ∈ {X ,Y} so that

4κ · (εX + rX ) < (εY − rY). (10)

Smp’: Assume knowledge of the finite sets X ′ ⊂ Rn and Y ′ ⊂ Rm obtained by
i.i.d. µX and µY sampling respectively. We require #X ′ > γX (µX , δX ) and
#Y ′ > γY(µY , δY).

Img’: Assume knowledge of f ′ : X ′ → Rm so that ‖f ′(ξ)− f ◦ πX (ξ)‖ ≤ d for each
ξ ∈ X ′, where πX is the canonical projection map from (2) and d > 0 satisfies
the following bound:

d <
(εY − rY)− 2κ · (εX + rX )

2
. (11)

The assumptions Cnd and Prb of Section 4 remain unchanged. As usual, we
simplify notation by dropping the fixed quantities εX and εY from various subscripts.
Thus, the nerve NεX (X ′) and the union UεX (X ′) are denoted by N(X ′) and U(X ′)
respectively, and similar simplifications are made for the Y ′ analogues. Note that in
the assumption Img’ we allow evaluation noise. That is, we only assume knowledge
of the true image f ◦ πX (ξ) ∈ Y of each ξ ∈ X ′ up to a distance of d.

The inequality (10) is a constraint that involves the Lipschitz constant of f , the
models for conditioned noise, and the radii for the nerves. It guarantees that the
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restriction (11) is always positive. The following result provides conditions on the
manifolds, the noise models and the function under which (10) can be satisfied.

Proposition 5.5. If 4κ · τX < (
√

2− 1)τY , then there exist valid choices of εX and
εY which satisfy (10).

Proof. First, we check that (εX + rX ) < τX on the domain 0 < rX < (3 −
√

8)τX
imposed by Nse. Recall that εX < Γ+

X (rX ) by Rad’, and consider the following
function

2(Γ+
X (rX ) + rX ) = (τX + 3rX ) +

√
τ2
X + r2

X − 6τX rX

This function has no local maximum in its domain and attains a maximum value
of 2τX at the left endpoint, so (εX + rX ) < τX as desired. Since (10) imposes a
lower bound of 4κ · (εX + rX ) + rY on εY , it suffices to show that the over-estimate
4κ · τX + rY of this lower bound is smaller than the upper bound Γ+

Y (rY) imposed

on εY by Rad’. Equivalently, we must show that Γ+
Y (rY)− rY > 4κ · τX . Observe

that the function

Γ+
Y (rY)− rY =

(τY − rY) +
√
τ2
Y + r2

Y − 6τYrY

2

has no local minima on the domain (0, (3−
√

8)τY) imposed by Nse and attains a

minimum value of (
√

2− 1)τY at the right endpoint. Thus, it is possible to satisfy

(10) if 4κ · τX < (
√

2− 1)τY .

The main result of this section is the following theorem.

Theorem 5.6. Assume Cnd, Lip’, Nse, Rad’, Prb, Smp’, and Img’. Then,
with probability exceeding (1−δX )(1−δY) there exists a simplicial map φ : N(X ′)→
N(Y ′) which

1. is a simplicial reconstruction of f , and
2. can be explicitly constructed using only X ′, Y ′, εX , εY , κ and f ′.

For the most part, the proof of this theorem is analogous to that of Theorem 1.2.
Aside from Proposition 5.5, the only major modification is that the domain’s radius
εX is augmented by the noise bound rX whereas the range’s radius εY is diminished
by the corresponding bound rY . The following quantity plays the role of ρ from (4).

ρ′ = rY + d. (12)

Define ∆′ : X ′ → 2Y
′

as follows: for each ξ ∈ X ′,

∆′(ξ) = {η ∈ Y ′ so that ‖f ′(ξ)− η‖Rm < ρ′} . (13)

The noisy analogue of Proposition 4.3 is as follows.

Proposition 5.7. With probability exceeding (1−δY), the following holds. For each
ξ ∈ X ′, the set ∆′(ξ) ⊂ Y is non-empty.

Proof. Since Cnd, Prb, Nse, Rad’ and Smp’ satisfy the hypotheses of Proposition
5.3 for Y with probability measure µY , the sampled set Y ′ is rY -dense in Y with
probability exceeding (1− δY). Assume that this density holds. Now, ‖f ′(ξ)− f ◦
πX (ξ)‖Rm < d by Img’ and there exists some η ∈ Y with ‖f ◦ πX (ξ)− η‖Rm < rY
by the assumed density of Y ′. By the triangle inequality, ‖f ′(x)− η‖ < rY + d, and
hence η ∈ ∆′(ξ).
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As before, we define maps vZ : N(Z)→ 2Z for Z ∈ {X ′, Y ′} taking each simplex
to its vertex set. For each σ ∈ N(X ′), define

∆′σ =
⋃

ξ∈vX′ (σ)

∆′(ξ). (14)

Proposition 5.8. With probability exceeding (1 − δX ), the following is true. For
each σ ∈ N(X ′), any non-empty subset of ∆′σ determines a simplex in N(Y ′).

Proof. By Cnd, Prb, Rad’, Nse and Smp’, Proposition 5.3 holds for X and the
probability measure µX . Therefore, with probability exceeding (1 − δX ) we are
guaranteed that X ′ is rX -dense in X via Proposition 5.3 and hence that πX is
a strong deformation retraction via Proposition 5.2. Assuming this density, note
that the distance from any ξ ∈ X ′ to its nearest neighbor πX (ξ) in X is at most
rX , since µX is rX -conditioned about X by Nse. Similarly, given any w ∈ U(X ′),
we have ‖w − πX (w)‖Rn < εX + rX . For any w ∈ bσc and ξ ∈ vX′(σ), we have
‖w − ξ‖Rn < εX by definition, so we may make the following estimate:

‖πX (w)− πX (ξ)‖Rn ≤ ‖πX (w)− w‖Rn + ‖w − ξ‖Rn + ‖ξ − πX (ξ)‖Rn
< (εX + rX ) + εX + rX

= 2(εX + rX ).

Write x = πX (w), and observe by Lip’ that

‖f(x)− f ◦ πX (ξ)‖Rm < 2κ(εX + rX ).

By (11) we know ‖f ′(ξ)− f ◦ πX (ξ)‖Rm < d, so we obtain

‖f(x)− f ′(ξ)‖Rm < 2κ(εX + rX ) + d. (15)

Pick any η ∈ ∆σ, so by (14) there is some ξ∗ ∈ vX′(σ) with η ∈ ∆′(ξ∗), whence
‖η−f ′(ξ∗)‖Rm < ρ′ by (13). Since (15) implies ‖f(x)−f ′(ξ∗)‖Rm < 2κ(εX+rX )+d,
the triangle inequality followed by (12) yields

‖f(x)− η‖Rm < 2κ(εX + rX ) + d+ ρ′ = 2κ(εX + rX ) + rY + 2d.

Using (11), we finally obtain ‖f(x)−η‖Rm < εY . Thus, the intersection
⋂
η∈∆σ

BεY (η)

is non-empty: it contains f(x), and therefore determines a simplex of N(Y ′). Any
subset of ∆′σ determines a face of this simplex and must also be a simplex in its
own right.

The proof of Theorem 5.6 concludes with the observation that Propositions 5.7
and 5.8 permit – with probability larger than (1 − δX )(1 − δY) – the construction
of a selector h′ : X ′ → Y ′ for ∆′ which satisfies h′(ξ) ∈ ∆′(ξ). It is easy to check
that ιY ◦ f ◦ πX (BεX (ξ)) ⊂ BεY (h′(ξ)) for any such h′, so the induced simplicial
map φh′ : N(X ′)→ N(Y ′) is a simplicial reconstruction of f as desired.

6. A proof of the controlled nerve lemma. In this section we prove Lemma
2.3, which was used to control the maps ζZ : |N(Z)| → U(Z) for Z ∈ {X,Y } in the
proof of Proposition 4.2.
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6.1. General Considerations. The mapping cylinder M(γ) of a continuous func-
tion γ : U → V between topological spaces is given by the quotient

M(γ) =
(U × [0, 1])

∐
V

(x, 1) ∼ γ(x)
.

In other words, the mapping cylinder of γ consists of the product of its domain
U with [0, 1] glued onto the co-domain V via the identification of each (x, 1) with
the image γ(x). It is easy to see that there is a strong deformation retraction from
M(γ) to the codomain V obtained by sliding each (x, t) ∈ U × [0, 1] to the endpoint
γ(x). If γ is a homotopy-equivalence, then M(γ) also admits a strong deformation
retraction to the domain U ' U × {0} ⊂M(γ).

Definition 6.1. A metrizable topological space V is an absolute neighborhood re-
tract (henceforth abbreviated ANR) if for each triple (U ,A, ψ) of metrizable space
U , closed subset A ⊂ U and continuous function ψ : A → V, there exists a pair
(A′, ψ′) consisting of an open set A′ with A ⊂ A′ ⊂ U and a map ψ′ : A′ → V
whose restriction ψ′|A to A equals ψ.

Throughout the sequel, every ANR is assumed to be finite-dimensional in the
sense that it admits a continuous embedding into Rm for some m ≥ 0. We will
highlight all those basic facts about finite-dimensinal ANRs which are relevant to
our proofs and refer the reader to [8, Ch. 11] for details and proofs. Recall that
a pair (U ,A) of topological spaces satisfies the homotopy extension property if for
any triple (V, ωt, γ) of topological space V, homotopy ωt : A → Y and function
γ : U → V with γ|A ≡ ω0, there exist continuous functions ω′t : U → V so that
ω′0 ≡ γ on U and ω′t|A ≡ ωt for each t ∈ [0, 1].

We make use of the following facts in our next lemma:

1. the mapping cylinder of a continuous function between ANRs is also an
ANR, and

2. any pair (U ,A) of compact ANRs with A is closed in U satisfies the homotopy
extension property.

Lemma 6.2. Let γ : (U ,A)→ (V,B) be a map of ANR pairs with A and B closed
in U and V, such that γ : U → V and γ|A : A → B are homotopy-equivalences.
Then, γ is a homotopy-equivalence of pairs.

Proof. Let ωt : M(γ|A)→M(γ|A) be a strong deformation retraction from M(γ|A)
to A. By the homotopy extension property, we can construct a map ω′t : M(γ) →
M(γ) extending ωt so that ω′0|U is the identity on U . Let νt : M(γ) → M(γ) be a
strong deformation retraction from M(γ) to U . Define

θt =

{
ω′2t 0 ≤ t ≤ 1/2

ν2t−1 ◦ ω′1 1/2 ≤ t ≤ 1
.

This is a strong deformation retraction of pairs from (M(γ), M(γ|A)) to (U ,A).
Therefore, (U ,A) is homotopy-equivalent as a pair to (M(γ), M(γ|A)), which in
turn is homotopy-equivalent as a pair to (V,B).

As a corollary of the proof, we see that any strong deformation retraction of
M(γ|A) to A can be extended to a strong deformation retraction of M(γ) to U
with a new parameterization. The given strong deformation retraction over A takes
place in the first half of the interval [0,1] and remains stationary thereafter.
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Proposition 6.3. Let L be a topological space, N a finite simplicial complex and
ρ : L → |N | a continuous surjection. If Lσ := ρ−1(|σ|) is a contractible ANR for
each simplex σ ∈ N , then there is a strong deformation retraction from M(ρ) to L
whose restriction to the mapping cylinder of ρ|Lσ : Lσ → |σ| is a strong deformation
retraction onto Lσ for each σ ∈ N .

Proof. We proceed by induction on skeleta of N using Lemma 6.2. Pick any 0-
dimensional simplex σ ∈ N0. Now, ρ|Uσ : Uσ → |σ| is a homotopy-equivalence
by assumption, and therefore Uσ is a strong deformation retract of the mapping
cylinder M(ρ|Uσ ). The disjoint union of such strong deformation retractions as σ
ranges over N0 yields a strong deformation retraction over all N0, thus establishing
the base case of our induction. Assume the inductive hypothesis for the (d − 1)-
skeleton of N for some d ≥ 1. For each σ ∈ Nd, we have a strong deformation
retraction from the mapping cylinder M(ρ|Lσ ) to Lσ since the restriction of ρ to Lσ
is a homotopy-equivalence. On the other hand, the inductive hypothesis guarantees
a strong deformation retraction from the mapping cylinder M(ρ|∂σ) to ∂σ, where
∂σ denotes the boundary of σ in N . Lemma 6.2 now gives us a strong deformation
retraction from M(ρ|Lσ ) to Lσ extending the strong deformation retraction over
∂σ. Piecing these extensions together for all σ ∈ Nd gives the desired result.

The following corollary is immediate; it plays a central role in our proof of the
controlled nerve lemma.

Corollary 6.4. Let L be a topological space, N a finite simplicial complex and
ρ : L → |N | a continuous surjection. If ρ−1(|σ|) is a contractible ANR for each
σ ∈ N , then ρ admits a homotopy-inverse ι : |N | → L so that ι(|σ|) ⊂ ρ−1(|σ|) for
each σ ∈ N .

6.2. Specific Considerations. Let U be a finite collection of open balls in Eu-
clidean space Rn whose union is denoted by U . Let N(U) be the nerve of the cover
of U by the balls in U. We remark that a finite union of balls in Rn is an ANR,
and so is the geometric realization of a finite simplicial complex. Note also that
ANRs are closed under the operation of taking finite products.

The following consequence of the main theorem from [14] will be used frequently
in order to establish homotopy-equivalences.

Theorem 6.5 (The Vietoris-Smale Theorem). Let γ : U → V be a proper
surjective continuous map of connected, locally contractible separable metric spaces.
If the fiber γ−1(v) ⊂ U is contractible for each v ∈ V, then the map induced by γ
on the homotopy groups of U and V is an isomorphism.

In order to use this theorem, one must construct proper functions2 and hence
deal with closed rather than open balls.

Remark 6.6. We may modify U into a finite collection of closed balls without
altering the homotopy type of N(U). For each top-dimensional simplex σ ∈ N(U),
fix a witness point xσ ∈ bσc and note by openness that there exists some dσ > 0 so
that the ball of radius dσ around xσ lies entirely in bσc. Now, set

dU = min
σ
dσ,

where σ ranges over all top-dimensional simplices in N(U). Pick any d ∈ (0, dU) and
replace each open ball u ∈ U by a closed ball u′ with the same center and with radius

2Recall that γ : U → V is proper if γ−1(K) ⊂ V is compact whenever K ⊂ U is compact.
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shrunk by d. This modification preserves the non-emptiness of all intersections. The
contractibility of the new closed intersections follows immediately from the fact that
they are convex sets.

In light of the preceding remark, we assume that U is a finite collection of closed
balls in Rn and hence that the union U is also closed. Our goal is to establish the
existence of a homotopy-equivalence ζ : N(U) → U so that ζ(|σ|) is contained in
the union of balls dσe. To this end, consider the subset L of the product |N(U)|×U
defined as follows. We include (α, x) in L if and only if there exists some simplex
σ ∈ N(U) with α ∈ |σ| and x ∈ bσc.

We now have surjective, continuous and proper projection maps from L onto
each of the constituent factors of the product:

L

|N(U)| M

��

ρ1

��

ρ2

Proposition 6.7. The maps ρ1 and ρ2 are homotopy-equivalences.

Proof. Since all spaces in sight certainly satisfy the requirements of the Vietoris-
Smale theorem, it suffices to check that the fibers of ρ1 and ρ2 are contractible. First
consider the fiber ρ−1

1 (α) over some barycentric function α ∈ |N(U)|. By finiteness
of the cover U, there is a unique simplex σα ∈ N(U) of minimal dimension so that
α ∈ |σα|. By definition, we have

ρ−1
1 (α) = {(α, x) | x ∈ bσc for some σ ⊃ σα}

= {α} ×
⋃
σ⊃σα

bσc

= {α} × bσαc .
The second factor bσαc is contractible, being an intersection of convex sets – and
therefore, so is the fiber ρ−1

1 (α). Applying the Vietoris-Smale theorem concludes
this half of the proof.

On the other hand, pick any x ∈ U and consider the fiber ρ−1
2 (x) ⊂ L. Since the

cover U is finite by assumption, there is a unique simplex σx ∈ N(U) of maximal
dimension satisfying x ∈ bσxc. By definition, we have

ρ−1
2 (x) = {(α, x) ∈ |σ| × {x} | σ ∈ N(U) satisfies x ∈ bσc}

= |σx| × {x}

Since the realization of any simplex is contractible, the fiber ρ−1
2 (x) is the product

of contractible sets and hence is contractible itself. By the Vietoris-Smale theorem,
ρ2 induces an isomorphism of homotopy groups.

In order to apply Corollary 6.4, we re-examine the fibers of ρ1. For each σ ∈ N(U)
one obtains the following:

ρ−1
1 (|σ|) = {(α, x) | ∃σ′ ⊂ σ with α ∈ |σ′| and x ∈ bσ′c}

= |σ| ×
⋃
σ′⊂σ

bσ′c

= |σ| × dσe .
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The second factor dσe is contractible, being a union of convex sets (i.e., balls in
Euclidean space) with a non-empty intersection. Now, |σ| × dσe is a product of
contractible ANRs, and hence a contractible ANR. Therefore, ρ1 satisfies the
hypotheses of Corollary 6.4 and hence admits a homotopy-inverse ι : |N(U)| → L
so that

ι(|σ|) ⊂ ρ−1
1 (|σ|) = |σ| × dσe .

Letting ζ : |N(U)| → U be the composition ρ2 ◦ ι of homotopy-equivalences gives
the desired inclusion ζ(|σ|) ⊂ dσe and concludes the proof of Lemma 2.3.
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