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A Survey of Vectorization Methods in
Topological Data Analysis
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Abstract—Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several
techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an
organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks.
Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary
statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with
various vectorization methods.

Index Terms—Topological data analysis, persistent homology, barcodes, vectorization methods

✦

1 INTRODUCTION

P ROPELLED by deep theoretical foundations and a host of
computational breakthroughs, topological data analysis

emerged roughly three decades ago as a promising method
for extracting insights from unstructured data [1], [2], [3],
[4]. The principal instrument of the enterprise is persistent
homology; this consists of three basic steps, each relying on
a different branch of mathematics.

1) Metric geometry: construct an increasing family {Xt}
of cell complexes around the input datasetX , where
the indexing t is a scale parameter in R≥0.

2) Algebraic topology: compute the d-th homology vec-
tor spaces Hd(Xt) for scales t in R≥0 and dimen-
sions d in Z≥0.

3) Representation theory: decompose each family of vec-
tor spaces {Hd(Xt) | t ≥ 0} into irreducible sum-
mands, thus producing a barcode.

The resulting barcodes are finite multisets of real inter-
vals [p, q] ⊂ R, which admit concrete geometric interpreta-
tions in low dimensions — see Figure 1. The ultimate goal is
to infer the coarse geometry ofX across various scales by ex-
amining the longer intervals in its barcodes. Crucially, once
the method for constructing {Xϵ} from X has been fixed,
the entire persistent homology pipeline is unsupervised: one
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Fig. 1. An increasing family of cell complexes built around a point cloud
dataset; the associated barcode in dimensions 0 (blue) and 1 (red)
catalogues the connected components and cycles respectively.

requires neither labelled data nor hyperparameter tuning to
produce barcodes from X .

At the other end of the data analysis spectrum lies su-
pervised machine learning using contemporary neural net-
works, which are replete with billions of tunable parameters
and gargantuan training datasets [5]. The practical aspects
of deep neural networks appear to be light years ahead of
the underlying theory. It nevertheless remains the case that
machine learning has driven astonishing progress in the
systematic automation of several important classification
tasks. One direct consequence of these success stories is
the irresistible urge to combine topological methods with
machine learning. The most common avenue for doing
so is to turn barcodes into vectors (lying in a convenient
Euclidean space) which then become input for suitably-
trained neural networks.

The good news, at least from an engineering perspective,
is that barcodes are inherently combinatorial objects, and as
such, they are remarkably easy to vectorize. Several dozen
vectorization methods have been proposed across the last
decade, and new ones continue to appear with alarming
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frequency and increasing complexity — the reader will
encounter thirteen of them here. The bad news, on the
other hand, comes in the form of three serious challenges
which must be confronted by those who build or use such
vectorizations:

1) Given the large number of options, even established
practitioners are not aware of all the vectorization
techniques; similarly, knowledge of which vector-
izations are suitable for which types of data is diffi-
cult – if not impossible – to glean from the published
literature.

2) There is a natural metric between barcodes called
the bottleneck distance; when it is endowed with
this metric, the space of barcodes becomes infinite-
dimensional and highly nonlinear. As such, it does
not admit any faithful embeddings into finite-
dimensional vector spaces.

3) Even the stable vectorizations, which preserve
distances by mapping barcodes into infinite-
dimensional vector spaces, may suffer from a lack
of discriminative power in practice: by design, they
are poor at distinguishing between datasets whose
coarse structures are similar and whose differences
reside in finer scales.

In This Paper
Here we seek to comprehensively describe, catalogue and
benchmark vectorization methods for persistent homology
barcodes. The first contribution of this paper is the following
taxonomy of the known methods, which we hope will serve
as a convenient organizational framework for beginners and
experts alike —

1) Statistical vectorizations: these summaries consist of
basic statistical quantities;

2) Algebraic vectorizations: these are generated from
polynomials;

3) Curve vectorizations: these come from maps R → H ,
where H is a vector space;

4) Functional vectorizations: these are maps of the form
X → H for X ̸= R;

5) Ensemble vectorizations: these are generated from
collections of training barcodes.

There are unavoidable overlaps between these five cate-
gories. When such an overlap occurs, we have placed the
given vectorization technique in the earliest relevant cate-
gory among those in the list above; thus, an algebraic vec-
torization given by polynomial functions of basic statistical
quantities will be placed in category (1) rather than category
(2). The reader might claim, quite reasonably, that category
(3) should be subsumed into category (4). However, the
sheer number of curve-based vectorizations compelled us
to set them apart.

The second contribution of this paper is a comprehensive
benchmarking of thirteen vectorization techniques across
these five categories on three well-known image classifi-
cation datasets. These datasets were selected to simultane-
ously (a) provide an increasing level of difficulty for topo-
logical methods, and (b) to be instantly recognizable for the
broader machine learning community. These are: the Outex

texture database [6], the SHREC14 shape retrieval dataset
[7], and the Fashion-MNIST database [8]. Surprisingly, the
best-performing vectorization in all three cases is a rather
naı̈ve one obtained by collecting basic statistical quantities
associated to (the multiset of) intervals in a given barcode.

Our third contribution is a companion web application
which computes and visualizes all thirteen vectorization
techniques which have been investigated in this paper.
In addition to running online1, this web app can also be
downloaded2 and run locally on more challenging datasets.

Not In This Paper
Vectorization methods form but a small part of the ever
expanding interface between topological data analysis and
machine learning. As such, there are several related tech-
niques which are not benchmarked here. The precise inclu-
sion criteria for our study in this paper are as follows.

1) We restrict our attention to those methods which
produce genuine vectors from barcodes. In particu-
lar, kernel methods [9], [10] are beyond the scope of
this paper.

2) We only consider those vectorizations that are either
straightforward for us to implement, or have an
easily accessible and trusted implementation. For
instance, path signature based vectorizations [11],
[12] are excluded.

3) We do not compare machine learning architectures
designed for the explicit purpose of inferring (per-
sistent) homology [13], [14], [15].

4) We do not touch upon various attempts to design or
study neural networks using tools from topological
data analysis [16], [17].

5) Finally, even among methods which satisfy the first
four criteria, we have discarded techniques which
regularly obtained a classification accuracy below
fifty percent.

Similar Efforts
The authors of [18] have summarised – but not compared
– several vectorization and kernel methods for barcodes.
Another summary (sans comparison) may be found in [19],
with emphasis on metric aspects of the chosen vectoriza-
tions. The work of [20] describes a common overarching
framework for what we have called curve vectorizations
here. More recently, [21] and [22] have described and com-
pared five and four vectorization methods respectively.

Outline
Notation and preliminaries involving barcodes are estab-
lished in Section 2. In Sections 3 and 4 we introduce the
thirteen vectorizations (suitably organised into our taxon-
omy) and the three datasets. Section 5 contains the results
of our experiments whose finer details have been relegated
to Appendices A and B. We provide a description of the
web app in Section 6 and some brief concluding remarks in
Section 7.

1. https://persistent-homology.streamlit.app
2. https://github.com/dashtiali/vectorisation-app
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2 PERSISTENCE BARCODES FROM DATA

At its core, persistent homology studies sequences of finite-
dimensional vector spaces V = {Vi | 0 ≤ i ≤ n} and linear
maps a = {ai : Vi−1 → Vi | 1 ≤ i ≤ n}:

V0
a1 // V1

a2 // · · · an // Vn.

Such sequences (V, a) are called persistence modules. Among
the simplest examples are interval modules — for each pair
of integers p ≤ q with [p, q] ⊂ [0, n], the corresponding
interval module (I [p,q], c[p,q]) has

dim I
[p,q]
i =

{
1 if p ≤ i ≤ q

0 otherwise;

similarly, the map c[p,q]i is the identity whenever p+1 ≤ i ≤
q and zero otherwise.

2.1 Structure and Stability

Every persistence module decomposes into a direct sum
of interval modules. In particular, we have the following
structure theorem [23], [24].

Theorem 2.1. For every persistence module (V, a), there
exists a unique set Bar(V, a) of subintervals of [0, n]
along with a unique function Bar(V, a) → Z>0 denoted
[p, q] 7→ µp,q for which we have an isomorphism

(V, a) ≃
⊕

[p,q]∈Bar(V,a)

(
I [p,q], c[p,q]

)µp,q

.

Thus, the algebraic object (V, a) may be fully recovered (up
to isomorphism) from purely combinatorial data consisting
of the set of intervals Bar(V, a) and the multiplicity function
µ. Alternately, one may view Bar(V, a) itself as a multiset
with µp,q copies of each interval [p, q]. This multiset is called
the barcode of (V, a). It is often useful in applications to let
the vector spaces Vi be indexed by real numbers rather than
integers. With this modification in place, Bar(V ) becomes a
collection of real intervals [p, q] ⊂ R.

The most important property of persistence modules,
beyond the structure theorem, is their stability [24]. There
is a natural metric on the set of persistence modules called
the interleaving distance and a metric on the set of barcodes
called the bottleneck distance.

Theorem 2.2. The assignment (V, a) 7→ Bar(V, a) is an
isometry from the space of persistence modules (with
interleaving distance) to the space of barcodes (with
bottleneck distance).

The advantage of this theorem is that barcodes remain
robust to (certain types of) perturbations of the original
dataset, thus conferring upon the topological data anal-
ysis pipeline a degree of noise-tolerance. The significant
difficulty from a statistical perspective, however, is that
the metric space of persistence barcodes with bottleneck
distance is nonlinear — even averages can not be defined
for arbitrary collections of barcodes [25], [26], [27].

2.2 Barcodes from Data

Persistence modules arise naturally from a wide class of
datasets. The first step in topological data analysis involves
imposing the structure of a filtered cell complex – either
simplicial [28, Chapter 8] or cubical [29] – from the data [1],
[2], [3]. The two most prominent examples of filtered cell
complex structures arising from data are as follows.

1) Given a finite point cloud X ⊂ Rn, one con-
structs a family of increasing simplicial com-
plexes {Sϵ | ϵ ≥ 0} defined as follows. A collection
{x0, . . . , xk} forms a k-simplex in Sϵ if and only if
the (Euclidean) distance between xi and xj is no
larger than ϵ for all i, j in {0, . . . , k}. Since there are
only finitely many ϵ values at which new simplices
are introduced, the filtration is indexed by a subset
of the natural numbers. The collection Sϵ is called
the Vietoris-Rips filtration of X . These filtrations
can be similarly defined for any metric space.

2) Consider a grayscale image I , given in terms
of m × n pixels with intensity values in the
set {0, 1, . . . , 255}. This naturally forms a two-
dimensional cubical complex, which can be en-
dowed with the upper-star filtration by intensity
values. In particular, each elementary cube of di-
mension < 2 appears at the smallest intensity en-
countered among the 2-dimensional cubes in its
immediate neighbourhood. Higher-dimensional cu-
bical filtrations may be similarly generated from
higher-dimensional pixel grids.

There are several other filtration types which may be
used to model point and image datasets. Once the data has
been suitably modeled by a filtered simplicial or cubical
complex, persistence modules are obtained by computing
homology groups with coeffiecients in a field. In general,
these homology groups are not invariant to the choice of
filtration. The reader who is interested in the definition
and computation of homology is urged to either consult
standard algebraic topology references such as [30, Ch 2]
or see the more recent [3], [4], [31], [32].

A substantial difficulty in topological data analysis is
that although persistent homology barcodes can be readily
associated with a large class of datasets, the space of all
such barcodes is notoriously unpleasant to encounter from
a statistical perspective. Fortunately, barcodes are combina-
torial objects which can be mapped to Hilbert spaces in a
plethora of reasonable ways. Indeed, across the last decade,
such vectorization methods have been proposed by various
authors, and our main purpose in this work is to benchmark
many of these methods against standard classification tasks.

3 VECTORIZATION METHODS FOR BARCODES

Throughout this section, we assume knowledge of the bar-
code B := Bar(V, a) of an R-indexed persistence module
along with its multiplicity function µ : B → Z>0. We note
that for each interval [p, q] in B the numbers p and q are
called its birth and death respectively, and the length q − p is
called its lifespan.
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3.1 Statistical Vectorizations
The first and simplest category of vectorizations considered
in this paper are generated from basic statistical quantities
associated to the given barcode. Variants of the following
vectorization have been defined and used on several occa-
sions — see for instance [33, sec 2.3] , [20, Sec 6.2.1] and [18,
Sec 4.1.1].
Definition 3.1. The persistence statistics vector of µ : B →

Z>0 consists of:

1) the mean, the standard deviation, the median, the
interquartile range, the full range, the 10th, 25th, 75th

and 90th percentiles of the births p, the deaths q,
the midpoints p+q

2 and the lifespans q − p for all
intervals [p, q] in B counted with multiplicity;

2) the total number of bars (again counted with multi-
plicity), and

3) the entropy of µ, defined as the real number

Eµ := −
∑

[p,q]∈B

µp,q ·
(
q − p

Lµ

)
· log

(
q − p

Lµ

)
,

where Lµ is the weighted sum

Lµ :=
∑

[p,q]∈B

µp,q · (q − p). (1)

The entropy from Definition 3.1(3) was introduced in
[34], [35]. Our second statistical vectorization is from [36],
where entropy has been upgraded to a real-valued piece-
wise constant function rather than a single number.
Definition 3.2. The entropy summary function of µ : B →

Z>0 is the map Sµ : R → R given by

Sµ(t) = −
∑

[p,q]∈B

1p≤t<q · µp,q ·
(
q − p

Lµ

)
· log

(
q − p

Lµ

)
.

Here 1• is the indicator function — it equals 1 when
the conditional • is true and it equals 0 otherwise. The
number Lµ appearing in the expression above is defined
in (1).

The entropy summary function has also been called the life
entropy curve, e.g., in [20].

3.2 Algebraic Vectorizations
The vectorizations in this category are generated using poly-
nomial maps constructed from the barcode µ : B → Z>0.

The first example considered here is from [37]. It be-
comes convenient, for the purpose of defining it, to arbi-
trarily order the intervals in B as {[pi, qi] | 1 ≤ i ≤ n} with
the understanding that each [p, q] occurs µp,q times in this
ordered list.
Definition 3.3. The ring of algebraic functions on µ : B →

Z>0 consists of all those R-polynomials f in variables
{x1, y1, . . . , xn, yn} for which the following property
holds: there exist polynomials {gi | 1 ≤ i ≤ n} satisfying

∂f

∂xi
+
∂f

∂yi
= (xi − yi) · gi.

(Here ∂f/∂xi indicates the partial derivative of f with
respect to xi, and so forth).

The desired vectorization is obtained by selecting finitely
many algebraic functions from this ring and evaluating
them at xi = pi and yi = qi for all i. The feature maps gen-
erated by making such choices are sometimes called Adcock-
Carlsson coordinates — see for instance [38]. Letting qmax be
the maximum death-value encountered among the intervals
in B, four of the most widely-used algebraic functions are:

f1 =
∑
i

pi(qi − pi) f2 =
∑
i

(qmax − qi) (qi − pi)

f3 =
∑
i

p2i (qi − pi)
4 f4 =

∑
i

(qmax − qi)
2 (qi − pi)

4

Small changes in the barcode (in terms of bottleneck
distance) are liable to create large fluctuations in the associ-
ated algebraic functions. The methods of tropical geometry
were used in [39] to address the bottleneck instability of
algebraic functions. In this setting, the standard polynomial
operations (+,×) are systematically replaced by (max,+).
To define the resulting vectorization, we once again use an
ordering {[pi, qi] | 1 ≤ i ≤ n} of the intervals in B.

Definition 3.4. A tropical coordinate function for µ : B →
Z>0 is a function F of variables {x1, y1, . . . , xn, yn}
which is both tropical and symmetric as described below.

1) Tropical: there is an expression for F which uses only
the operations max, min, + and − on the variables
{xi} and {yi}.

2) Symmetric: any permutation of {1, . . . , n}, when ap-
plied to both {xi} and {yi}, leaves F unchanged.

Let λi be the lifespan qi − pi of the i-th interval in B. To
generate feature maps from the tropical coordinate functions
described above, one simply evaluates them at xi = λi and
yi equal to either max(rλi, pi) or min(rλi, pi) for a positive
integer parameter r. Examples of such tropical coordinate
features include:

F1 = max
i

λi

F2 = max
i<j

(λi + λj)

F3 = max
i<j<k

(λi + λj + λk)

F4 = max
i<j<k<l

(λi + λj + λk + λl)

F5 =
∑
i

λi

F6 =
∑
i

min(rλi, pi),

and the somewhat more complicated

F7 =
∑
j

[
max

i

(
min(rλi, pi) + λi

)
− (min(rλj , pj) + λj)

]
.

These seven tropical coordinates were used in [39] for per-
forming classification on the MNIST database, with r = 28.

The third and final algebraic vectorization considered
here is generated by extracting complex polynomials from
barcodes [40], [41]. In what follows, the symbol i should be
interpreted as

√
−1 (and not as an index for the intervals in
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B). Consider the three continuous maps R,S, T : R2 → C
defined as follows:

R(x, y) = x+ iy

S(x, y) =

{
y−x

α
√
2
· (x+ iy) if (x, y) ̸= (0, 0)

0 otherwise

T (x, y) =
y − x

2
·
[
(cosα− sinα) + i(cosα+ sinα)

]
,

where α is the norm
√
x2 + y2.

Definition 3.5. Given a barcode µ : B → Z>0, let X :
R2 → C be any one of the three functionsR,S, T defined
above. The complex polynomial vectorization of µ of
type X is the sequence of coefficients of the complex
polynomial in one variable z given by

CX(z) :=
∏

[p,q]∈B

[z −X(p, q)]
µp,q .

In practice, it is customary to either take only the first few
highest degree coefficients of CX(z) or to multiply it by
a suitable power of z. This is done to guarantee that the
feature vectors assigned to a collection of barcodes all have
the same dimension.

Other Algebraic Vectorizations: In the subsequent sec-
tion, we describe how to extract vectorizations by using
barcode data to build curves which take values in a vec-
tor space. Once such a curve has been extracted, one can
compute its path signature via iterated integrals [42]. The
path signature resides in the tensor algebra of the target
vector space; elements of the tensor algebra are equivalent
to coefficients of non-commuting polynomials, and hence
constitute algebraic vectorizations of barcodes — see [11],
[12] for examples of this approach.

3.3 Curve Vectorizations
There are several interesting ways of turning barcodes into
one or more curves, which for our purposes here mean
(piecewise) continuous maps from R to a convenient vector
space. Feature vectors can then be constructed by sampling
the given curve at finite subsets of R. Perhaps the simplest
and most widely used curve-based vectorization is the
following.
Definition 3.6. The Betti curve of µ : B → Z>0 is the curve

βµ : R → R given by

βµ(t) =
∑

[p,q]∈B

1p≤t<q · µp,q.

Here 1• is the indicator function as described in Definition
3.2, so this function counts the number of intervals (with
multiplicity) inB which contain t. Very similar in spirit (and
formula) to the Betti curve is the following vectorization
from [20].
Definition 3.7. The lifespan curve of µ : B → Z>0 is the

map Lµ : R → R given by

Lµ(t) =
∑

[p,q]∈B

1p≤t<q · µp,q · (q − p).

It is not difficult to create very different-looking Betti and
lifespan curves from two barcodes which have arbitrarily

small bottleneck distance — we can always add lots of
very small intervals to a given barcode without changing
its bottleneck distance by a significant amount. One way to
rectify the bottleneck instability of Betti and lifespan curves
is to test the containment not only of t in each interval
[p, q] ∈ B, but rather of the largest subinterval of the form
[t− s, t+ s]. This modification leads to one of the oldest and
best-known stable curve vectorizations [43], [44], as defined
below.

Definition 3.8. The persistence landscape of the bar-
code µ : B → Z>0 is a sequence of curves
{Λµ

i : R → [−∞,∞] | i ∈ Z>0} defined as follows. The
image Λµ

i (t) of each t in R equals

sup

s ≥ 0
∣∣∣
 ∑

[p,q]∈B

1[t−s,t+s]⊂[p,q] · µp,q

 ≥ i

 .

By convention, the supremum over the empty set is zero.
Moreover, since our barcode B is assumed to be finite, the
landscape functions Λµ

i become identically zero for suffi-
ciently large i. An alternate approach to defining persistence
landscapes comes from the function ∆ : B × R → R, given
by

∆([p, q], t) := max (min(t− p, q − t), 0) . (2)

For each i ∈ Z>0, the curve Λµ
i from Definition 3.8 equals

the i-th largest number in the multiset that contains µp,q

copies of ∆([p, q], t) for each interval [p, q] in B. The fourth
and final curve vectorization that we consider here was
introduced in [45], and it is also defined in terms of the
functions ∆ from (2).

Definition 3.9. Let w : B → R>0 be any function, which we
will denote [p, q] 7→ wp,q . The w-weighted persistence
silhouette of µ : B → Z>0 is the map ϕwµ : R → R
defined as the weighted average

ϕwµ (t) :=

∑
wp,q · µp,q ·∆([p, q], t)∑

wp,q · µp,q
.

Here both sums on the right are indexed over all [p, q] ∈
B, and ∆ is defined in (2).

Reasonable choices of weight functions are provided by
setting wp,q = (q − p)α for a real-valued scale parameter
α ≥ 0. For small α, the shorter intervals dominate the value
of the silhouette curve, whereas for large α it is the longer
intervals which play a more substantial role — see [45, Sec
4] for details.

Other Curve Vectorizations: See the envelope embedding
from [11], the accumulated persistence function in [46], and the
persistent Betti function of [47]. In [48], the persistent Betti
function is decomposed along the Haar basis to produce a
vectorization. More recently, [20] provides a general frame-
work for constructing several different curve vectorizations.

3.4 Functional Vectorizations

Here we catalogue those barcode vectorizations which are
given by maps from spaces other than R. The first, and
perhaps most prominent member of this category is the fol-
lowing vectorization from [49]. Its definition below makes
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use of two auxiliary components besides the given bar-
code µ : B → Z>0. The first is a continuous, piecewise-
differentiable function f : R2 → R≥0 satisfying f(x, 0) = 0
for all x ∈ R. And the second is a collection of smooth
probability distributions Ψ := {ψp,q | [p, q] ∈ B} where ψp,q

has mean (p, q − p).
Definition 3.10. The persistence surface of µ : B → Z>0 with

respect to f and Ψ (as described above) is the function
R2 → R given by

ρµf,Ψ(x, y) =
∑

[p,q]∈B

µp,q · f(p, q − p) · ψp,q(x, y).

The persistence image Iµf,Φ of µ with respect to (f,Φ)
assigns a real number to every subset Z ⊂ R2; this
number is given by integrating the persistence surface
over Z :

Iµf,Ψ(Z) =

∫∫
Z
ρµf,Ψ(x, y) dx dy.

In order to obtain a vector from the persistence image,
one lets Z range over grid pixels in a rectangular subset
of R2 and renormalizes the resulting array of numbers, thus
producing a grayscale image. Standard choices of f and Ψ =
{ψp,q} are:

f(x, y) =


0 t ≤ 0

t/λmax 0 < t < λmax

1 t > λmax

ψp,q(x, y) =
1

2πσ2
· exp

(
− (x− p)2 + (y − (q − p))2

2σ2

)
.

Here λmax is the largest lifespan max[p,q]∈B(q − p) encoun-
tered among the intervals in B, and σ is a user-defined
parameter which forms the common standard deviation of
every ψp,q in sight.

The second and final functional vectorization which
we will examine was introduced in the paper [38]. Set
W :=

{
(x, y) ∈ R2 | y > 0

}
, and note that points (x, y) ∈ W

parameterize intervals [x, x + y] ⊂ R of strictly positive
length that could possibly lie in a given barcode. Let Cc(W)
be the set of all continuous functions f : W → R with
compact support3. The given barcode µ : B → Z>0 induces
a function Vµ : Cc(W) → R via

Vµ(f) =
∑

[p,q]∈B

µp,q · f(p, q − p). (3)

A subset T of Cc(W) is called a template system if for any
distinct pair µ1 : B1 → Z>0 and µ2 : B2 → Z>0 of barcodes,
there exists at least one f ∈ T so that Vµ1

(f) ̸= Vµ2
(f).

Definition 3.11. Fix an integer n > 0 and let Subn(T )
be the collection of all size n subsets of a template
system T as described above. The template function
vectorization of µ : B → Z>0 with respect to T is
the map τ : Subn(T ) → Rn defined as follows. Given
f = {f1, . . . , fn} in Subn(T ), the associated vector in Rn

is
τµ(f) := (Vµ(f1), . . . , Vµ(fn)) ,

3. In other words, Cc(W) contains those continuous real-valued func-
tions on W which evaluate to 0 outside the intersection of a sufficiently
large rectangle with W in R2.

where Vµ(fi) is as defined in (3).

Two convenient choices of T , called tent functions and in-
terpolating polynomials, have been highlighted in [38]. Tent
functions are indexed by points (u, v) ∈ R2 and require an
additional parameter δ > 0; they have the form

gδu,v(x, y) = max

(
1− 1

δ
·max(|x− u|, |y − v|), 0

)
(4)

By construction, each such function is supported on the
square of side length 2δ around the point (u, v) in the birth-
lifespan plane. The normal pipeline for selecting finitely
many template functions requires covering a sufficiently
large bounded subset of W with a square grid and then
selecting the appropriate tent functions supported on grid
cells. We direct interested readers to [38, Sections 6 and 7]
for details on interpolating polynomials and for suggestions
on how one might select suitable n and f ∈ Subn(T ) for a
given classification task.

Other Functional Vectorizations: See the generalised per-
sistence landscape in [50] and the crocker stacks of [51].

3.5 Ensemble Vectorizations
Our last category contains two methods which require ac-
cess to a sufficiently large collection of training barcodes
µi : Bi → Z>0 in order to generate a vectorization. The first
of these methods, introduced in [52], [53], is a modification
of the template system vectorization from Definition 3.11.
We recall that W ⊂ R2 is defined as {(x, y) | 0 ≤ x < y} and
that every barcode B is identified with a subset P (B) ⊂ W
via the map that sends intervals [p, q] of positive length to
points (p, q).
Definition 3.12. The adaptive template system induced by

a collection of barcodes {µi : Bi → Z>0} is obtained via
the following two steps. Letting P ⊂ W be the union⋃

i P (Bi), one

1) identifies finitely many ellipses Ej ⊂ W which
tightly contain P , and then

2) constructs suitable functions gj supported on Ej , as
described in (5) below.

The desired vectorization of a new barcode µ : B → Z>0

is now obtained by using these gj , rather than tent functions,
as template functions in Definition 3.11. Three different
methods for finding the Ej can be found in [52, Sec 3]. Let
v∗ denote the transpose of a given vector v in R2. Now
each ellipse E with centre x = (x1, x2)

∗ corresponds to a
symmetric 2× 2 matrix A satisfying

E =
{
z ∈ R2 | (z − x)∗A(z − x) = 1

}
.

Setting h(z) := (z − x)∗A(z − x), the adaptive template
function g supported on E is

g(z) =

{
1− h(z) h(z) < 1

0 otherwise.
(5)

The second instance of an ensemble vectorization frame-
work which we benchmark in this paper is from [54]. Let
µi : Bi → Z>0 be a collection of training barcodes as before,
and fix a dimension parameter b ∈ Z>0. Much like the
adaptive template systems of Definition 3.12, the automatic
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topology-oriented learning (ATOL) vectorization is a two-step
process for mapping each Bi to a vector space, which in this
instance is always Rb.
Definition 3.13. The ATOL contrast functions correspond-

ing to the collection of barcodes {µi : Bi → Z>0} and
parameter b ∈ Z>0 are obtained as follows:

1) Treating the point clouds

Pi :=
{
(p, q) ∈ R2 | [p, q] ∈ Bi and q > p

}
as discrete measures on R2, one estimates their
average measure E.

2) Let z := (z1, z2, . . . , zb) be a point sample in R2

drawn (in independent, identically distributed func-
tion) along E. Define the real numbers σi(z) for
1 ≤ i ≤ b by

σi(z) :=
1

2
max
j ̸=i

∥zj − zi∥2,

where ∥ • ∥2 denotes the usual Euclidean norm on
R2.

The contrast functions
{
Ωi : R2 → R | 1 ≤ i ≤ b

}
are now

given by

Ωi(x) = exp

(
−∥x− zi∥

σi(z)

)
.

The reader is directed to [54, Algorithm 1] for further details.
Once the contrast functions have been produced in the man-
ner described above, the corresponding ATOL vectorization
of a given barcode µ : B → Z>0 equals (Ωµ

1 , . . . ,Ω
µ
b ), where

Ωµ
i :=

∑
[p,q]∈B

µp,q · Ωi(p, q).

Other Ensemble Vectorizations: The persistence code-
books approach from [55] proposes three different types of
barcode vectorizations; these are based on bag-of-word em-
beddings, VLAD (vector of locally aggregated descriptors),
and Fisher Vectors respectively.

4 DATASETS

The vectorization methods described in the preceding
section have been benchmarked against three standard
datasets; these are described below and arranged in in-
creasing order of difficulty for topological methods. All
three of them have been used in the past for comparing
vectorizations (or kernels) for persistence barcodes [9], [10],
[11], [38], [52], [56].

4.1 Outex
Outex is a database of images developed for the assessment
of texture classification algorithms [6] — see Fig. 2, right-
bottom, for some samples of textures from the 68 categories.
Each texture class contains 20 images of size 128 × 128
pixels, which results in 1, 360 images in total. We designed
a reduced version of the experiment by randomly selecting
10 of the total 68 classes in the dataset, which we refer to
as Outex10 below. The full classification is referred to as
Outex68. In both cases, a train/test split of 70/30 has been
applied.

Fig. 2. Samples from datasets used in our experiments

We treat each image as a cubical complex; the filtration
is induced by considering the pixel intensity on the 2-
dimensional cells, which is inherited by other cells via the
lower-star and upper-star filtrations. Persistent homology
barcodes are computed in dimensions 0 and 1 using the
GUDHI library [57]. No pre-processing has been applied to
the images.

4.2 SHREC14

The Shape Retrieval of a non-rigid 3D Human Models
dataset, usually abbreviated SHREC14 [7], is designed to
test shape classification and retrieval algorithms. It contains
real and synthetic human shapes and poses stored as 3D
meshes (which are already simplicial complexes). We use the
synthetic part of the dataset; this constitutes a classification
task with 15 classes (5 men, 5 women and 5 children), each
one with 20 different poses — see the upper-right corner of
Fig. 2.

We apply the Heat Kernel Signature (HKS) to obtain
filtrations [9], [58]. For a fixed real parameter t > 0, this
filtration assigns to each mesh point x the value

HKSt(x) =
∞∑
i=0

e−λit · ϕi(x)2 (6)

Here λi and ϕi are eigenvalues and corresponding eigen-
functions of (a discrete approximation to) the Laplace-
Beltrami operator of the given mesh. Every simplex of
dimension > 0 is assigned the largest value of HKSt en-
countered among its vertices. We used the pre-computed
barcodes (for such filtrations across a range of t-values)
which have been provided in the repository4 accompanying
[21]. Of the 300 samples, 70% were used for training and
the other 30% for testing.

4. https://github.com/barnesd8/machine learning for persistence
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Vectorization Method Score Parameters Estimator

Persistence Statistics 0.992 SVM, rbf kernel, C1, γ1
Entropy Summary 0.975 100 SVM, rbf kernel, C1, γ1
Algebraic Functions 0.992 SVM, lin. kernel, C3

Tropical Coordinates 0.975 250 SVM, lin. kernel, C4

Complex Polynomial 0.950 5, R SVM, rbf kernel, C1, γ1
Betti Curve 0.908 200 SVM, rbf kernel, C1, γ1
Lifespan Curve 0.975 100 SVM, rbf kernel, C1, γ1
Persistence Landscape 0.975 50, 20 SVM, rbf kernel, C2, γ2
Persistence Silhouette 0.983 100, 0 SVM, rbf kernel, C1, γ1
Persistence Image 0.938 1, 25 RF, n=500
Template Function 0.958 35, 20 SVM, rbf kernel, C1, γ1
Adaptive Template S. 0.975 GMM, 40 SVM, rbf kernel, C1, γ1
ATOL 0.967 32 SVM, lin. kernel, C4

TABLE 1
Outex10 results. The relevant parameter values are C1 = 936.5391, γ1 = 0.0187, C2 = 914.9620, γ2 = 0.0061, C3 = 86.0442, and

C4 = 998.1848.

Vectorization Method Score Param. Estimator

Persistence Statistics 0.934 SVM, rbf kernel, C1, γ1
Entropy Summary 0.859 100 SVM, poly kernel, C2, γ2, deg=2
Algebraic Functions 0.875 SVM, lin. kernel, C4

Tropical Coordinates 0.887 50 SVM, lin. kernel, C5

Complex Polynomial 0.846 10, R SVM, lin. kernel, C4

Betti Curve 0.804 200 SVM, rbf kernel, C1, γ1
Lifespan Curve 0.842 100 SVM, rbf kernel, C1, γ1
Persistence Landscape 0.822 50, 20 SVM, rbf kernel, C3, γ3
Persistence Silhouette 0.844 100, 1 SVM, lin. kernel, C4

Persistence Image 0.762 1, 150 RF, n=500
Template Function 0.831 35, 20 RF, n=200
Adaptive Template 0.819 GMM, 50 SVM, lin. kernel, C6

ATOL 0.854 16 SVM, lin. kernel, C7

TABLE 2
Outex68 results. The optimal parameter values are C1 = 936.5391, γ1 = 0.0187, C2 = 957.5357, γ2 = 0.0120, C3 = 914.9620, γ3 = 0.0061,

C4 = 998.1848, C5 = 884.1255, C6 = 143.1201 and C7 = 494.0596.

4.3 FMNIST

The Fashion-MNIST database contains 28 × 28 grayscale
images (7, 000 images per class, with 10 classes) — see the
left side of Fig. 2 for some sample images. We split this
dataset into 60, 000 training and 10, 000 testing images.

The filtration used for generating barcodes is as follows:
we performed padding, median filter, and shallow thresh-
olding before computing canny edges [59]. Then each pixel is
given a filtration value equalling its distance from the edge-
pixels. Finally, all other cells inherit filtration values from
the top pixels via the lower star filtration rule.

5 RESULTS

Here we report the classification accuracy of the thirteen
vectorization methods from Section 3 on each of the three
datasets from Section 4. Implementation details and pa-
rameter choices are provided in Appendix A. The source
code is available at the following GitHub repository: https:
//github.com/Cimagroup/vectorization-maps.

5.1 Outex

Table 1 displays the classification accuracy for the smaller
(and easier) experiment on 10 classes. As one might expect,

all techniques perform rather well, with Persistence Statis-
tics and Algebraic Functions sharing the best performance
with 99.2% accuracy each, followed closely by Persistent
Silhouettes with 98.3% each.

Results from the full experiment with 68 classes are
contained in Table 2; as one might expect, the performance
of every single vectorization degrades in the passage from
Outex10 to Outex68. Here Persistence Statistics is the clear
winner by a significant margin, earning 93.4% accuracy.
Tropical Coordinates ranks second with 88.7%. Setting aside
the outstanding performance of Persistence Statistics, it
appears clear from these results that the algebraic vectoriza-
tions perform far better on Outex68 than the vectorizations
from the other categories.

We note that the authors of [20] have also used Outex to
compare the performance of various curve vectorizations,
with Persistence Statistics being used as a baseline. They
also obtained their best results with Persistence Statistics.

5.2 SHREC14
We used 10 different t-values t1 < t2 < · · · < t10, as in
[9], [38], [52], for generating filtrations via the heat kernel
from (6). At t10 we found several sparse or empty barcodes,
which led us to discard that classification problem. Table 3
collects the best performance for each method across the
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Vectorization Method Score Param. Estimator

Persistence Statistics 0.947 t5 RF, n=100
Entropy Summary 0.723 t6, 200 RF, n=300
Algebraic Functions 0.909 t5 RF, n=500
Tropical Coordinates 0.844 t6, 50 SVM, lin. kernel, C5

Complex Polynomial 0.889 t6, 20, S SVM, lin. kernel, C6

Betti Curve 0.728 t5, 200 RF, n=100
Lifespan Curve 0.878 t7, 200 SVM, lin. kernel, C7

Persistence Landscape 0.889 t6, 50, 10 SVM, rbf kernel, C1, γ1
Persistence Silhouette 0.867 t6, 200, 2 SVM, rbf kernel, C2, γ2
Persistence Image 0.916 t5, 1, 10 RF, n=100
Template Function 0.944 t5, 14, 0.7 SVM, rbf kernel, C3, γ3
Adaptive Template Sys. 0.889 t5, GMM, 15 SVM, lin. kernel, C8

ATOL 0.933 t8, 16 SVM, rbf kernel, C4, γ4

TABLE 3
Best performance of each method on SHREC14. The parameters are C1 = 835.6257, γ1 = 0.0002, C2 = 212.6281, γ2 = 0.0031, C3 = 879.1425,

γ3 = 0.0010, C4 = 936.5391, γ4 = 0.0187, C5 = 141.3869, C6 = 625.0300, C7 = 998.1848, C8 = 274.500.

first 9 values of t; it also contains values of the optimal
parameters (see Appendix A) and the optimal values of t.

Persistence Statistics yielded the best classification ac-
curacy of 94.7%, followed closely by Template Functions
at 94.4%. One remarkable feature of these results is that
the dataset does not appear to favour any one category of
vectorizations over the other — it is possible to achieve over
88% accuracy by using a suitable statistical, algebraic, curve,
functional or ensemble vectorization. In fact, only the curve-
based vectorizations failed to achieve over 90% accuracy on
this dataset. The variation of classification accuracy with the
heat kernel parameter t is discussed in Appendix B.

5.3 FMNIST

The results of our experiments on FMNIST are recorded in
Table 4. We note that these experiments only used infor-
mation contained in the 0-dimensional barcodes and that
the SVM classifier was not used. The classification accuracy
of all the methods is much lower than the corresponding
figures for the two preceding datasets. Once more, the
Persistence Statistics vectorization takes the top spot with
74.9% and Template Functions are slightly behind at 74.7%

Vectorization Method Accuracy Parameters

Persistence Statistics 0.749
Entropy Summary 0.696 30
Algebraic Functions 0.710
Tropical Coordinates 0.696 10
Complex Polynomial 0.661 10, R
Betti Curve 0.618 50
Lifespan Curve 0.692 30
Persistence Landscape 0.694 30, 5
Persistence Silhouette 0.670 30, 0
Persistence Image 0.698 1, 12
Template Functions 0.747 10, 2
Adaptive Template System 0.602 GMM, 5
ATOL 0.730 16

TABLE 4
FMNIST results. All the scores have been achieved for Random

Forest classifier with 100 trees.

One rather surprising aspect of these results is the fact
that Adaptive Template Systems performed far worse than

ordinary Template Functions despite having recourse to
60, 000 training barcodes. We do not have a clear explana-
tion for this phenomenon, particularly in light of a fairly
competitive performance from ATOL (which was also ex-
posed to the same training data).

6 WEB APPLICATION

In order to illustrate and visualize the vectorization methods
described here, we have built an interactive web application
Brava that runs on any modern browser; it is available at

https://persistent-homology.streamlit.app/

The app has been built in Python using the Streamlit library
along with several existing Python libraries. The sidebar
contains options for selecting different types of input data
and displays several options for data visualization. One
sample image/point-cloud from each of the three datasets
used in this paper has been pre-loaded, but the user is
free to upload their own data. Specifications, formatting
guidelines, and downloading instructions are available in
our GitHub repository:

https://github.com/dashtiali/vectorisation-app

Fig. 3. A screenshot of the web app

All of the barcode vectorization methods considered in
this paper can be computed and visualized in different
formats (tables, bar graphs, scatter plots), depending on the

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3308391

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://persistent-homology.streamlit.app/
https://github.com/dashtiali/vectorisation-app


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 4. Intervals in barcodes of dimensions 0 and 1 as displayed by the
web app.

type of vectorization being invoked. Barcodes are computed
by default in dimensions 0 and 1, depicted as in Figure 4.

The vectorizations are depicted in Brava as follows.

1) The Persistence Statistics vectorization is numerical,
so we show its values in a table, as in Figure 5.

Fig. 5. The Persistence Statistics vectorization as shown in the web app.

2) Algebraic vectorizations are illustrated as bar
graphs. In Figure 6, for instance, one finds bars
whose heights correspond to values attained by the
7 chosen tropical coordinate polynomials on the
input barcodes.

3) Curve vectorizations, such as persistence land-
scapes, are depicted via piecewise-linear graphs (see
Figure 7). Sliders have been provided to set the
resolution parameter.

4) Persistence images are displayed as heat maps —
see Figure 8.

5) Template Functions, their adaptive version, and
ATOL are all displayed as bar graphs with heights of
bars indicating the values of the selected functions.
Figure 9, for instance, depicts Template Functions.

It is our hope that users will benefit from the ability
to generate these visualizations without having to write
any code of their own. In order to facilitate downstream

Fig. 6. A visualization of the Tropical Coordinates vectorization from the
web app.

Fig. 7. Persistence landscapes in the web app

Fig. 8. Persistence images as shown in the web app

analysis, the web app also provides the ability to download
the vectors generated by each vectorization method.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3308391

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Fig. 9. The web app visualization of template functions

7 CONCLUSION

At the time of writing, it remains difficult to accurately
pinpoint those attributes which might make a given vec-
torization method a good choice for a particular classifi-
cation problem. There are no powerful theorems or im-
mutable doctrines available to guide scientists who wish to
incorporate topological information into machine learning
pipelines. In the absence of such theoretical foundations,
the best that one can expect are principled heuristics sup-
ported by reproducible empirical evidence. This paper is
an outcome of our efforts to provide such evidence. En
route, we have organized thirteen available vectorization
methods into five categories in Section 3 and provided a
web application which will allow others to conduct their
own experiments involving these methods.

One possible conclusion that may be drawn from the
results of Section 5 is that we can dispense with sophisti-
cated vectorization techniques and only use (some variant
of) Persistence Statistics. We do not necessarily suggest such
a course of action. While it is certainly true that Persistence
Statistics earned top honors in all of our experiments and is
much faster to compute than the alternatives, there are other
factors to consider. In particular, no comparative study such
as ours can be truly exhaustive. There is always the chance
that making different choices – for instance, using another
dataset for classification, or adding some new polynomials
to one of the algebraic vectorizations – could dramatically
update our priors about which methods perform best.

APPENDIX A
IMPLEMENTATION AND PARAMETER DETAILS

We have made use of several existing software packages,
such as GUDHI [60], Teaspoon5 or Scikit-learn [61], as well
as our own implementations in some cases. Salient informa-
tion regarding each method has been provided in the list
below. Full details can be found in the GitHub repository
accompanying this paper6.

5. https://lizliz.github.io/teaspoon/index.html
6. https://github.com/Cimagroup/vectorization-maps

A.1 Persistence Statistics
The persistence statistics vectorization from Definition 3.1
requires no additional parameters. We have implemented
this method ourselves.

A.2 Entropy Summary Function
We have used the GUDHI implementation of the entropy
summary function from Definition 3.2. There is a single
resolution parameter which selects the grid points on which
the entropy summary function is sampled.

A.3 Algebraic Functions
The algebraic functions of Definition 3.3 are implemented in
the Teaspoon package. For reasons which remain unclear to
us, this implementation includes a fifth tropical polynomial
f5 = maxi{(qi − pi)} beyond the four ordinary polynomi-
als f1, . . . , f4 which were described after Definition 3.3. We
do not expect that removing this function will improve the
results described below.

A.4 Tropical Coordinates
We have implemented the tropical polynomials F1, . . . , F7

described after Definition 3.4. The parameter r has been
optimized over the set {10, 50, 250, 500, 800} for Outex and
SHREC14, and over {10, 50, 250} for FMNIST.

A.5 Complex Polynomials
We have used the GUDHI implementation of complex
polynomials, which have been described in Definition 3.5.
We generated the polynomials with respect to all three of
the transformations R,S, T : R2 → C. The number of
coefficients used was chosen from {5, 10, 20} for Outex and
SHREC14 and {3, 5, 10} for FMNIST.

A.6 Betti Curve
The Betti curve vectorization from Definition 3.6 has been
implemented in GUDHI, and it only requires a resolution
parameter. This parameter was chosen from {50, 100, 200}
for Outex and SHREC14 and {15, 30, 50} for FMNIST.

A.7 Lifespan Curve
We implemented the lifespan curve ourselves, with a res-
olution parameter optimised across the set {50, 100, 200}
for Outex and SHREC14 and across the set {15, 30, 50} for
FMNIST.

A.8 Persistence Landscapes
We have used the GUDHI implementation of persis-
tence landscapes (see Definition 3.8). The are two pa-
rameters to consider: the resolution (to identify the grid
points where each landscape is sampled) and the to-
tal number of landscapes used. The resolution was opti-
mized over {50, 100, 200} for Outex and SHREC14, and
over {15, 30, 50} for FMNIST; the number of landscapes
ranged over {2, 5, 10, 20} for Outex and SHREC14 and over
{1, 2, 3, 5} for FMNIST.
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Method t1 t2 t3 t4 t5 t6 t7 t8 t9

Pers Stat 0.729 0.785 0.662 0.704 0.947 0.910 0.915 0.915 0.908
Ent Sum 0.378 0.333 0.522 0.536 0.656 0.723 0.633 0.656 0.530
Alg Fun 0.467 0.456 0.556 0.567 0.909 0.878 0.863 0.833 0.711

Trop Coord 0.505 0.556 0.522 0.612 0.822 0.844 0.833 0.767 0.800
Com Poly 0.322 0.456 0.400 0.467 0.856 0.889 0.844 0.850 0.790

Bet Cur 0.511 0.467 0.628 0.660 0.728 0.633 0.611 0.644 0.536
Lif Cur 0.456 0.411 0.593 0.639 0.789 0.833 0.878 0.833 0.798

Pers Land 0.700 0.511 0.789 0.778 0.878 0.889 0.857 0.833 0.789
Pers Sil 0.400 0.378 0.556 0.589 0.811 0.867 0.856 0.856 0.656

Pers Img 0.644 0.691 0.795 0.856 0.916 0.794 0.871 0.811 0.718
Temp Func 0.778 0.735 0.933 0.789 0.944 0.919 0.908 0.932 0.922

Ad Temp Sys 0.802 0.872 0.833 0.727 0.889 0.856 0.889 0.844 0.633
ATOL 0.828 0.786 0.911 0.833 0.906 0.867 0.900 0.933 0.867

TABLE 5
Best Results for SHREC14 for various vectorization methods across nine t-values.

A.9 Persistence Silhouette
We have used the GUDHI implementation of persistence
silhouettes (see Definition 3.9). The resolution parameter
was optimized over {50, 100, 200} for Outex and SHREC14
and over {15, 30, 50} for FMNIST; the weight w ranged over
{0, 1, 2, 5, 10, 20} for Outex and SHREC14 and {0, 1, 2, 5}
for FMNIST.

A.10 Persistence Images
Persistence images (from Definition 3.10) have been im-
plemented in GUDHI. The resolution parameter r, which
results in images of size r × r, ranged over {25, 75, 150}
for Outex, over {10, 20, 40} for SHREC14, and over
{3, 6, 12, 20} for FMNIST. Bandwidth values of the Gaussian
kernel (σ in Definition 3.10) were chosen from {0.05, 1}
for Outex and from {0.05, 0.5, 1} for both, SHREC14 and
FMNIST.

A.11 Template Functions
We have used code from the repository7 provided with the
paper [38] for computing template functions (see Definition
3.11). We use tent functions as described in (2), which
require two parameters: a grid resolution δ and a padding
parameter π (for enlarging the area covered by the square
grid). We optimized over

• δ in {35, 50, 65} and π in {20, 25, 30} for Outex;
• δ in {3, 4, . . . , 14, 15} and π in {0.5, 0.6, . . . , 1.1, 1.2}

for SHREC14;
• δ in {2, 3, 5, 10} and π in {0.5, 1, 2} for FMNIST.

A.12 Adaptive Template Systems
The implementation of adaptive template systems (Defini-
tion 3.12) has also been sourced from the same repository
as template functions. We have used the Gaussian mixture
model for generating ellipsoidal domains, and require only
one parameter: the number of clusters. This has been opti-
mized over

• {10, 20, 30, 40, 50} for Outex,
• {5, 10, 15, 20, 25, 30, 35, 40, 45} for SHREC14, and
• {3, 4, 5, 10, 15} for FMNIST.

7. https://github.com/lucho8908/adaptive template systems

A.13 ATOL
The ATOL vectorization from Definition 3.13 has been im-
plemented in GUDHI, and it also requires the number of
functions b as a parameter. We have optimized this over
{2, 4, 8, 16, 32, 64} for Outex and over {2, 4, 8, 16} for both
SHREC14 and FMNIST.

A.14 Dimensions, Classifiers and Hyperparameters
In the case of Outex, we have concatenated vectors arising
from barcodes of dimensions 0 and 1; for SHREC14, the
vectors computed from only dimension 1 barcodes per-
formed better, so the results are only reported for them.
Finally, only dimension 0 barcodes were taken to build
vectors for FMNIST. We considered both Support Vector
Machine (SVM) [62] and Random Forest (RF) [63] classifiers.
Due to convergence issues, only RF has been performed for
FMNIST.

For each parameter of each vectorization method, we
accomplished a hyperparameter optimization process based
on random search (when optimizing SVM and RF jointly) or
grid search (for optimizing RF), with 5-fold cross-validation
on the training data, to find the best (hyper)parameters for
both the machine learning models and the vectorization
methods; then, we assigned to each method the parameters
with the best average score among all the 5-fold cross-
validation scheme; finally the vectorization methods were
evaluated on the test dataset 100 times, to report the average
accuracy.

APPENDIX B
HEAT KERNEL PARAMETER DEPENDENCE

As mentioned in Section 4, the filtration for SHREC14 is
generated using the Heat Kernel Signature (6) which de-
pends on a single parameter t. In Table 5 we depict the best
classification accuracy of each vectorization method across
all 9 values of t which were used in our experiments.

We note that for small values of t, the ensemble vector-
izations perform best, whereas for intermediate and larger
values both ensemble and functional vectorizations achieve
good performance. The algebraic and curve based vector-
izations perform quite poorly for low t-values, but tend to
become more competitive between t5 and t8.
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