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1 Question 1

i. (6 points) Define a saddle-node bifurcation and show that the first
order system

dx

dt
= r − x− e−x

undergoes a saddle-node bifurcation as the real parameter r is varied.

Solution: The saddle-node bifurcation is the simplest mechanism by
which equilibria are created or destroyed. There is a single bifurcation
parameter (i.e., it has codimension 1); call it r. On one side of the
bifurcation value, there are 2 equilibria (a saddle and a node—so one
unstable one and one stable one) and on the other side, there are none.

In the equation of interest, equilibria satisfy f(x) = r − x − e−x =
0. We can solve this equation in closed form, but we can find the
points geometrically: plot g1(x) = r− x and g2(x) = e−x on the same
coordinates and see where they intersect. Those intersections give the
desired equilibria. This also allows us to tell stability because the flow
is to the right when the line is above the curve (as ẋ > 0 in this case)
and to the left when it is below it. As we decrease the parameter r,
the line r−x slides down, so we go from 2 intersections to 1 (tangent)
intersection to 0 intersections. As we can see in Fig. 1, a saddle and a
node coalesce in this bifurcation.
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Figure 1: Saddle-node bifurcation for part (i).

ii. (6 points) Consider the linear dynamical system

dx

dt
= ax+ by ,

dy

dt
= cx+ dy , (1)

where a, b, c, and d are real constants. Show that the eigenvalues of
the associated Jacobian matrix are completely determined by the trace
and determinant of the Jacobian matrix. Use this result to classify the
qualitative behavior of equilibria of (1) in the trace-determinant plane.
Comment on when this behavior is representative of a nonlinear system
whose linearization is given by (1).

Solution: The Jacobian matrix is

J =
(
a b
c d

)
. (2)

Calculating the eigenvalues gives

λ2 − τλ+ ∆ = 0 , (3)

where

τ = trace(J) = a+ d ,

∆ = det(J) = ad− bc . (4)

Therefore, the eigenvalues are

λ± =
τ ±
√
τ2 − 4∆
2

. (5)
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Figure 2: Classification of equilibria for part (ii).

One thereby obtains the classification show in Fig. 2 It’s useful to note
that ∆ = λ+λ−, which one can obtain from (3).

If ∆ < 0, eigenvalues are real and have opposite sign, which gives a
saddle.

If ∆ > 0, eigenvalues are either real with the same sign (nodes) or
complex conjugate (spirals or centers). Nodes satisfy τ2 − 4∆ > 0
and spirals satisfy τ2 − 4∆ < 0. The parabola τ2 − 4∆ = 0 contains
star nodes and degenerate nodes. (I don’t think I gave you the term
”star”, so I’d only expect a brief mention of degeneracy.) The stability
of nodes and spirals is determined by the sign of τ . When τ < 0, the
equilibrium is stable; when τ > 0, it is unstable.

If ∆ = 0, at least one eigenvalue is 0. One then gets either a line of
equilibria or an entire plane of them (if J = 0).

For a nonlinear system, such a classification arises from calculation of
linear stability, which is a local stability. The nonlinear system is a
small perturbation of the linear one as long as one is sufficiently near
an equilibrium. If no eigenvalues have 0 real part, then the stability
results carry through sufficiently near the equilibrium, as the pertur-
bation is not large enough to change the sign of the real part. Any
equilibrium with eigenvalue with 0 real part could might be either
stable (possibly asymptotically stable or maybe just neutrally stable)
or unstable based on the results of the linearization, so one has to
consider the nonlinearity to determine the stability.
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iii. (6 points) Consider the system of phase oscillators

dθ1
dt

= ω1 + α1 sin(θ2 − θ1) ,

dθ2
dt

= ω2 + α2 sin(θ1 − θ2) . (6)

Derive a condition for the motion to be phase locked and also derive
a formula for the common locked frequency.

Solution: To study (6), define the phase lag φ := θ1− θ2. This yields

dφ

dt
= ω1 − ω2 − (α1 + α2) sinφ , (7)

which is defined on the circle (i.e., φ ∈ S1). An equilibrium of (7)
corresponds to a phase-locked solution of (6). Setting φ̇ = 0 gives

sinφ =
ω1 − ω2

α1 + α2
. (8)

We need these roots to be real, so we obtain the following condition
to obtain phase-locked motion:∣∣∣∣ω1 − ω2

α1 + α2

∣∣∣∣ ≤ 1 . (9)

That is, phase locking requires the difference in uncoupled frequencies
to be small relative to the sum of the coupling constants. Substituting
the expression (8) into (6) gives the common locked frequency, which
is the weighted average of the uncoupled frequencies:

θ̇1 = θ̇2 =
α1ω2 + α2ω1

α1 + α2
. (10)

iv. (7 points) Suppose there are three phase-only oscillators θ1, θ2, and
θ3 that have respective natural frequencies ω1, ω2, and ω3. Suppose
further that when uncoupled, the three equations of motion each have
the form dθi

dt = ωi. If one oscillator is coupled to another only via
terms like K sin(θi − θj) (for i 6= j), write down the equations of
motion for (a) the three oscillators coupled together in a line and (b)
the three oscillators coupled together in a ring. Also give a physical
interpretation for the coupling term K sin(θi−θj). In the case in which
ω1 = ω3 and the oscillators are coupled in a line, show that there is a
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stable phase-locked solution when ρ := (ω2 − ω1)/K < 3. [You may
assume that ρ ≥ 0.]

Solution: This comes from problem 3a,b from problem sheet 2.

The equations of motion for three oscillators coupled in a line are

θ̇1 = ω1 +K sin(θ2 − θ1) ,

θ̇2 = ω2 +K sin(θ1 − θ2) +K sin(θ3 − θ2) ,

θ̇3 = ω3 +K sin(θ2 − θ3) . (11)

Note that only the center oscillator (which I have labeled ”2”) is cou-
pled to both of the other oscillators. In a ring, on the other hand, each
of the 3 oscillators is coupled to the other two oscillators:

θ̇1 = ω1 +K sin(θ2 − θ1) +K sin(θ3 − θ1) ,

θ̇2 = ω2 +K sin(θ1 − θ2) +K sin(θ3 − θ2) ,

θ̇3 = ω3 +K sin(θ2 − θ3) +K sin(θ1 − θ3) . (12)

The coupling term K sin(θi − θj) means that oscillator j only cares
about its phase difference with oscillator i. The prefactor K indicates
how strong this coupling is, and the strength of the coupling gets larger
(and more positive) when i is farther ahead of j (until it gets more
than π ahead) and gets larger (and more negative) when i is farther
behind j (again, until the difference is more than π).

The remaining text comes from the problem sheet solutions (with some
adaptation): The relative phases are φ1 := θ2 − θ1 and φ2 := θ2 − θ3.
We rescale time with t → t′K and introduce the parameter ρ :=
(ω2 − ω1)/K = (ω2 − ω3)/K. This yields the system

φ̇1 = ρ− 2 sinφ1 − sinφ2 ,

φ̇2 = ρ− 2 sinφ2 − sinφ1 , (13)

where we have for convenience renamed t′ as t. The equilibria of (13),
which you should note is defined on the torus (because both variables
are angular), give conditions for phase locking in (11), as this implies
that the phases have a constant difference and travel at the same
frequency.

Equilibria satisfy φ̇1 = φ̇2 = 0, and they exist provided |ρ| ≤ 3. When
|ρ| < 3, there are four equilibria, each of which satisfies 3 sinφ∗ = ρ.
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When |ρ| = 3, there is a single equilibrium at sign(ρ)(π/2, π/2), as a
bifurcation occurs for that value of ρ. We can in fact consider ρ ≥ 0
without loss of generality because we can just apply the reflection
φ′1 = −φ1 and φ′2 = −φ2, and obtain a system with the same properties
as the original system. (In the question, I purposely specified that you
need not consider negative ρ.)

2 Question 2

i. (8 points) Consider the nonlinear two-dimensional autonomous dy-
namical system

dx

dt
= f(x, y) ,

dy

dt
= g(x, y) , (14)

where t denotes time, and suppose that it has an equilibrium at the
point (x0, y0). Linearize (14) about (x0, y0) to derive the usual linear
stability conditions. Use your derivation to explain what happens
when at least one eigenvalue of the Jacobian has a zero real part.
What, if anything, changes if (14) is n-dimensional (for arbitrary n)
instead of two-dimensional? What, if anything, changes if the right-
hand-side of (14) has a term with an explicit time-dependence?

Solution: Because (x0, y0) is an equilibrium point, we have f(x0, y0) =
g(x0, y0) = 0. Let u = x − x0 and v = y − y0 denote the components
of a small disturbance from the equilibrium point. To see whether the
disturbance grows or decays, we need to derive differential equations
for u and v. The equation for u is

u̇ = ẋ

= f(x0 + u, y0 + v)

= f(x0, y0) + ufx + vfy +O(u2, v2, uv) . (15)

In the Taylor expansion above, note that fx and fy are evaluated at
(x0, y0). Similarly, we get

v̇ = g(x0, y0) + ugx + vgy +O(u2, v2, uv) . (16)
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We thus get (
u̇
v̇

)
=
(
fx fy
gx gy

)(
u
v

)
+ quadratic terms . (17)

The matrix of partial derivatives in (17) is the Jacobian matrix J .
This, then, gives the usual stability conditions in terms of the eigen-
values of J (evaluated at the equilibrium in question). When those
eigenvalues all have negative real part, the equilibrium is (locally)
asymptotically stable. When at least one has a positive real part, it’s
unstable. An eigenvalue that has zero real part is marginally stable.
It is stable in the linearization, but perturbations can either cause it
to become positive, become negative, or remain zero, so one has to
deal with the nonlinearity to actually determine stability.

Nothing changes if the system is n-dimensional for integers n > 2.
(If n = 1, there is just a single eigenvalue, which is J itself.) Things
like stable, unstable, and center manifolds can of course become more
complicated—and more complicated types of bifurcations can occur—
but looking at the real parts of eigenvalues remains the same.

If there is an explicit time-dependence in the right-hand-side, one can’t
apply these considerations, although some generalizations (not dis-
cussed in the course) do exist.

Note: This is a question that could have included my asking a quali-
tative question about things like bifurcations or stable/unstable man-
ifolds.

ii. (8 points) State the Poincaré-Bendixson theorem.

Solution: This answer is directly out of lectures. To get the full 5
points, the statement has to be pretty pristine (though it does not
need to be word-for-word from the lectures), but partial credit would
be awarded for partially correct statements—e.g., ones that get certain
salient features correct (the fact that this theorem is specifically for
planar regions) but not others. Anyway, on to the theorem statement...

Suppose that:

1. R is a closed, bounded subset of the plane;

2. ẋ = f(x) is a continuously differentiable vector field on an open
set containing R; note importantly that x ∈ R2 and f ∈ R2;
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3. R does not contain any equilibrium points; and

4. there exists a trajectory C that is ”confined” in R in the sense
that it starts in R and stays in R for all future time.

Then either C is a closed orbit or it spirals towards a closed orbit as
t→∞. (In either case R contains a closed orbit.)

Note: This theorem inherently requires the topology of R2 to work.
I could have asked something related to this in the context of, say,
chaotic orbits in vector fields in R3.

iii. (9 points) Use multiple timescale perturbation theory (with fast time
τ = t and slow time T = εt) to show that the van der Pol equation

ẍ+ ε(x2 − 1)ẋ+ x = 0 (18)

has for 0 < ε � 1 a stable limit cycle that is nearly circular, with
radius of 2 +O(ε) and a frequency of ω = 1 +O(ε2). [Recall that the
expansion is x(t, ε) = x0(τ, T ) + εx1(τ, T ) +O(ε2).]

Solution: First, we need to use the chain rule:

ẋ = ∂τx+ ε∂Tx , (19)

and similarly for ẍ. Note the shorthand that I am using for the partial
derivatives. Using the given expansion, we have

ẋ = ∂τx0 + ε(∂Tx0 + ∂τx1) +O(ε2) ,

ẍ = ∂ττx0 + ε(∂ττx1 + 2∂Tτx0) +O(ε2) . (20)

We then need to collect terms in like powers of ε order by order. At
O(1), we get

∂ττx0 + x0 = 0 , (21)

and at O(ε) we get

∂ττx1 + x1 = −2∂τTx0 − (x2
0 − 1)∂τx0 . (22)

The O(1) is of course the simple harmonic oscillator, so it has solution

x0 = r(T ) cos(τ + φ(T )) , (23)

where r(T ) is a slowly varying amplitude and φ(T ) is a slowly varying
phase.
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To find equations governing r and φ, we insert (23) into (22). This
yields

∂ττx1 + x1 = −2(r′ sin(τ + φ) + rφ′ cos(τ + φ))− r sin(τ + φ)[r2 cos2(τ + φ)− 1] ,
(24)

where ′ = d/dT . We need to avoid resonant terms on the right-hand-
side; these are the terms proportional to sin(τ + φ) and cos(τ + φ).
Note that we need to do a Fourier expansion on the right-hand-side
(which, in practice, means just using a trig identity in this case). One
can either remember or derive the identity (say, by justing do the
computation with complex exponentials)

sin(τ + φ) cos2(τ + φ) =
1
4

[sin(τ + φ) + sin(3[τ + φ])] . (25)

We thus have

∂ττx1 + x1 = [−2r′ + r − 1
4
r3] sin(τ + φ) + [−2rφ′] cos(τ + φ)− 1

4
r3 sin[3(τ + φ)] .

(26)

To avoid secular (aka, resonant) terms, we thus require that

−2r′ + r − 1
4
r3 = 0 ,

−2rφ′ = 0 . (27)

The first equation in (27), which is defined on the half line, can be
written

r′ =
r

8
(4− r2) . (28)

We find equilibria with r′ = 0 and see that r = 0 is unstable but r = 2
is stable. Hence, r(T ) → 2 as T → ∞. The second equation in (27)
implies that φ′ = 0 (unless r = 0), so φ(T ) = φ0 = constant. Hence,
x0(τ, T )→ 2 cos(τ + φ0) and thus

x(t)→ 2 cos(t+ φ0) +O(ε) (29)

as t→∞. Thus, x(t) approaches a stable limit cycle of radius 2+O(ε).

To find the frequency of the limit cycle, let θ = t + φ(T ) denote the
argument of the cosine. The angular frequency is then

ω = θ̇ = 1 + φ′Ṫ = 1 + εφ′ = 1 +O(ε2) . (30)
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Figure 3: Graphs of f(x) = λex for λ > 0.

3 Question 3

i. (10 points) Consider the map xn+1 = f(xn) = λexn for λ > 0. Classify
the bifurcation at λ = 1/e.

Solution: This was problem 1a on homework sheet 3. Below I repeat
the text and graphics from that answer sheet.

As depicted in Fig. 3, this family of functions has a bifurcation at
λ = 1/e. (One looks at the relation between the graph of f(x) and
the graph of g(x) = x.)

When λ > 1/e, the graph of f does not intersect the diagonal, so f
has no fixed points. When λ = 1/e, the graph of f meets the diagonal
g(x) = x tangentially at (x, y) = (1, 1). When λ < 1/e, the graph
intersects the diagonal at 2 points—at q such that f ′(q) < 1 and at p
such that f ′(p) > 1. Hence, f has two fixed points when λ < 1/e. By
looking at the graphs (and using, e.g., cobwebbing), one obtains the
following observations:

1. When λ > 1/e, fn(x)→∞ for all x.

10



Figure 4: Bifurcation diagram for the map f(x) = λex for λ > 0. Note that
the vertical axis gives the location of the fixed points.

2. When λ = 1/e, then f(1) = 1. If x < 1, then fn(x) → 1. If
x > 1, then fn(x)→∞.

3. When 0 < λ < 1/e, then f(q) = q and f(p) = p. If x < p, then
fn(x)→ q. If x > p, then fn(x)→∞.

4. At the bifurcation, we have f ′(1) = 1 and f ′′(1) = 1.

What we have seen in this problem is a saddle-node (or ”tangent”)
bifurcation of maps. We plot the bifurcation diagram in Fig. 4.

ii. (5 points) Suppose you are given the map xn+1 = f(xn) = r− x2
n and

the equation
f(x,R∞) ≈ αf2

(x
α
,R∞

)
, (31)

where α is a constant and r = R∞ designates the lowest value of r at
which chaotic dynamics first occurs. State briefly what equation (31)
means. Also state the meaning and illustrate with plots the meaning
of the equation

f(x,R0) ≈ αf2
(x
α
,R1

)
, (32)

where r = Rn (for finite n) denotes the lowest value of r at which a
2n-cycle becomes superstable.

Solution: This was discussed in the lecture notes.
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Figure 5: Bifurcation diagram and iterates of the map f .

Figure 6: Zooming in to illustrate renormalization.
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Let’s answer the second part of the equation first. Take a look at
Figs. 5, 6. Iterating the quadratic map f twice (i.e., applying the
map f2) gives a quartic map. If we zoom in on the local minimum by
some amount and take a negative sign so that it’s a local maximum
instead of a local minimum (these two operations together determine
α) gives a window that looks similar to the original window. That is
the equality in (32). Additionally, we need to advance which point
we’re talking about (one with twice the periodicity) because the map
is f2 rather than f . At superstable fixed points, the Jacobian (i.e., the
eigenvalue) is 0. A superstable cycle of a unimodal map like f always
contains xm as one of its points, as depicted in Fig. 5, so in particular
xm is a superstable point in a cycle for both f and f2, and this allows
us to compare them as in (32). Note that r = rn denotes the smallest
value of r at which a 2n cycle is born. That is where the branching
in the diagram occurs. Recall that α is universal for generic unimodal
maps (generic in the sense that the extremum has a nonzero quadratic
term in its Taylor series).

Equation (31) is the limit of equations like (32) that is valid at the
onset of chaos. The nice thing here is that R∞ is on both sides of
the equation, so r no longer needs to be shifted when we renormalize.
(Remember that consecutive Rn get progressively closer to each other
as one iterates.) This then gives us a functional differential equation
for a universal function g(x). (See the notes for how it’s defined.) One
can study this equation—with additional boundary conditions that are
discussed in the notes—to try to estimate the value of the universal
scale factor α and also the value of the universal Feigenbaum constant
δ.

Note: This answer has more detail than I’d expect, but I would expect
appropriate diagrams and comments about what things like α, etc. are
doing.

iii. (10 points) Use symbolic dynamics to show that the binary shift map
yn+1 = f(yn) = 2yn (mod 1) has (a) a countably infinite number
of periodic orbits, (b) an uncountable number of nonperiodic orbits,
(c) sensitive dependence on initial conditions, and (d) a dense orbit.
[Note: These conditions together guarantee that the map is chaotic.]
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Solution: Note that we can write yn as a binary expansion

yn =
∞∑
k=1

ak
2k
, (33)

where ak ∈ {0, 1}.

a. A point y is a period-n cycle of f if

fn(x) = 2nx mod 1 . (34)

We thus need 0 = fn(x)− x = 2nx− x− k (for some integer k),
which implies that

x =
k

2n − 1
. (35)

That is, we need x to be rational.
As x is rational, we write it as x = p/q, where p, q ∈ Z and
q 6= 0. We consider 2mp (mod q) for nonnegative integer m.
When considering the quantity 2mp, we note that we can only
obtain at most q possibilities after taking things mod q. Hence,
for some nonnegative integers m and n, we have

2mp = 2np( mod q)
=⇒ 2m(p/q) = 2n(p/q)( mod 1)
=⇒ 2mx = 2nx( mod 1)
=⇒ (2m − 2n)x = k ∈ Z

=⇒ x =
k2−n

2m−n − 1
, (36)

so that the symbol sequence of fnyn repeats after a finite number
of iterations (i.e., the orbit is periodic). As n ∈ N, we have a
countably infinite number of periodic orbits.

b. Irrational numbers are an uncountable set and they are given by
the symbol sequences with non-terminating binary expansions:

yn = .a1a2 · · · . (37)

There are uncountably infinitely many points with such expan-
sions, so there are uncountably infinitely many irrational orbits.
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c. Consider two nearby points

y1 = .a1 · · · anc ,
y2 = .a1 · · · and , (38)

with c 6= d. After n iterations, we have fn(y1) = c and fn(y2), so
now the two points have eventually become very far away from
each other. By making n larger, we see that this occurs for points
that start out arbitrarily close to each other, which gives sensitive
dependence on initial conditions.

d. Consider a concatenation of all periodic orbits:

y = .0, 1, 00, 01, 10, 11, · · · . (39)

This point y visits a neighborhood of every periodic orbit, so this
orbit is dense (as it spends time arbitrarily close to any given
sequence). [Recall that a subset is dense if its closure is the
entire space.]
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