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Innovation in materials and the emergence of new
engineering applications are closely intertwined.
The ability to shape metals gave rise to the plow
and the sword; the development of semiconduc-
tors led to the invention of transistors; and, more

recently, the synthesis of composite materials such
as reinforced plastics, polymers, and metal foams
has produced lighter, more fuel-efficient cars and
aircraft. In each case, the meaning of “material” can
be interpreted in an expansive sense as more than
chemical composition. The geometric arrangement
of atoms also matters, and together both geometry
and chemistry help determine a material’s mechan-
ical or electrical properties. Indeed, innovation in
materials can occur not only by discovering new
molecular compounds or doping existing ones but
also by exerting precise control over the com-
pounds’ microstructure. Metal foams, for instance,
are just one example of a material whose density
and stiffness can be tailored by controlling the 
composition and porous microstructure during 
the fabrication process. (See the article by John Ban-
hart and Denis Weaire, PHYSICS TODAY, July 2002,
page 37.)

Granular crystals similarly blur the definition
of a material. As their name suggests, they are fab-

ricated not from atoms or molecules but from
macroscopic grains. More specifically, they are
tightly packed lattices—or more disordered arrange-
ments—of solid particles that deform on contact
with each other. Prototypes can be assembled and
studied using ingredients as generic as ball bear-
ings, as shown above and in figure 1. Think of the
balls as macroscopic analogues of atoms in a crys-
talline solid. Like atoms in a crystal, the particles in
a granular crystal can be arranged in one-, two-, or
three-dimensional lattices. However, unlike atoms,
which interact through chemical bonds, macro-
scopic particles exchange forces and momenta
through their geometric contact interactions. 

The macroscopic particles can themselves be
composed of different materials, such as metals,
polymers, and ceramics. The choice of each parti-
cle’s composition and shape affects the interactions
and, ultimately, the mechanical response of the bulk
granular crystal. Defects, such as dislocations, va-
cancies, and the presence of particles with a differ-
ent composition, are akin to extended or point de-
fects in atomic crystals; and they can similarly affect
the bulk crystal behavior. In stark contrast to the
random presence of defects in atomic crystals, how-
ever, defects in granular crystals can be placed in
specific locations. That ability to precisely engineer
defects into a material provides a knob for control-
ling its behavior. 

As in other artificial materials, such as optical
and acoustic metamaterials (see the article by Mar-
tin Wegener and Stefan Linden, PHYSICS TODAY, Oc-
tober 2010, page 32), wave propagation in granular
crystals can be controlled through the crystals’ struc-
tural periodicity and local resonances. However, their
dynamic behavior is governed by the elastic defor-
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The freedom to choose the
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acoustic switches, and 

other exotica.
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mations experienced by each particle. When two
component spheres are adjacent, contact initially oc-
curs at a single point. When the spheres are slowly
pressed together, they overlap by a length δ, and the
contact point becomes a 2D region. The compressive
force is proportional to δ3/2, as outlined in the box
below. The strongly nonlinear response sets granu-
lar crystals apart from other materials—for instance,
microtruss lattices and microlaminate composites—
that have a custom-made microstructure (see
PHYSICS TODAY, January 2012, page 13).

The behavior of granular crystals has inspired
numerous studies of the interplay between nonlin-
earity and discreteness.1 The nearly three decades of
work on such crystals since the pioneering studies
of Vitali F. Nesterenko in the 1980s and early 1990s
has produced exciting advances in experiment,

computation, and theory. For example, new theoret-
ical developments capture the effects of dissipation
on propagating waves, and new experiments and
numerical simulations include the effect of plastic-
ity on contact between spheres.1

As with granular crystals, amorphous granular
materials such as soils, sand, and cereals are also
tunable, but their physics is very different and beyond
the scope of this article. See, for example, reference 2
and the article by Anita Mehta, Gary Barker, and Jean-
Marc Luck, PHYSICS TODAY, May 2009, page 40.

In this article, we focus on recent developments
of granular crystals—in particular, the major ad-
vances toward such potential engineering applica-
tions as the creation of shock-absorbing materials,
acoustic lenses, switches, logic elements, and en-
ergy-harvesting systems.
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 materials engineering

In 1882, Heinrich Hertz published a de-
scription of the contact interaction be-
tween two elastic bodies.18 When the par-
ticles are compressed, they deform
slightly and exert repulsive forces. Such
forces, which are nonlinear because the
contact area increases with the deforma-
tion, govern the interactions between
each pair of particles in a granular crystal.  

Consider two identical spheres that,
when pressed together, squish each
other by an “overlap” length δ, which is on
the order of microns for materials such as
stainless steel, aluminum, bronze, brass,

and Teflon. The force F between the two
particles is given by Hertz’s law: F = Aδ3/2,
where A = E√―2R/[3(1 − ν2)], the elastic mod-
ulus E is a measure of stiffness, the Poisson
ratio ν is a measure of a material’s ten-
dency to expand in lateral directions when
compressed, and R is the spheres’ radius.
A version of Hertz’s law also applies when
considering nonidentical spheres. For
stiff materials, it is typical (and often rea-
sonable) to ignore dissipative effects in the
model equations for granular materials.

Ball bearings, commonly with radii of
1–10 mm, are a convenient type of stain-

less steel sphere used in experiments. The
elastic modulus of steel is about 193 GPa,
and its Poisson ratio is about 0.3. Remark-
ably, granular crystals assembled from
such spheres have a dramatically low
bulk wave speed—below 100 m/s—due
to the large inertia from each particle’s
mass. The speed of sound in bulk stain-
less steel, by contrast, is about 6000 m/s.

Particles with different geometries
can yield interaction exponents that dif-
fer from 3⁄2. For example, cylindrical parti-
cles have a variable interaction potential
that depends on axis orientation, and
hollow spheres have interaction laws that
vary as a function of shell thickness.

Hertzian interactions

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.119.13.132 On: Thu, 24 Dec 2015 17:11:43



Control knobs
An uncompressed, 1D crystal—that is, a granular
chain with no external force applied to its bound-
aries—is sometimes described as a sonic vacuum,
because the speed of sound is 0 in a system whose
interparticle interactions are purely nonlinear. That
is, the equations of motion contain no linear term.
Such chains (see figure 1) support the propagation
of so-called solitary waves.1 Those elastic waves,
which remain highly localized and coherent while
traveling along the chain, have fascinating features.
For example, the waves’ speed depends on their am-
plitude—the larger their amplitude, the larger their
speed—but their wavelength is independent of am-
plitude and roughly equal to five particle diameters. 

However, if one applies a static external force
to compress the ends of a chain, such that the parti-
cles’ static deformations from the load are compara-
ble to or exceed their dynamic deformations when
struck by another object, the nonlinear behavior in
granular crystals weakens and may even become al-
most linear. In that near-linear regime, granular
crystals have features familiar from discrete peri-
odic systems, including the presence of bandgaps in
their dispersion relation.3

The precompression just described is only one
convenient way to tune a granular crystal’s mechan-
ical behavior. Engineers also have access to a large
variety of solid materials, whose different elastic
properties produce different sound speeds through
the crystal. Control over particle geometries—
cylindrical, toroidal, ellipsoidal, conical, or others—

offers further tunability of the nonlinearity govern-
ing local contact interactions. Moreover, when one
increases the particles’ complexity, such as by coat-
ing them with another material, nesting them inside
larger particles, or embedding them inside a poly-
mer matrix, it becomes feasible to study other dy-
namic effects triggered by internal degrees of free-
dom—including local potentials, whose presence
modifies the contact interactions.4

Waves in chains
A granular chain of N spherical particles can be de-
scribed as a set of coupled oscillators, whose inter-
nal interactions between each pair of particles are
governed by Hertz’s law, as discussed in the box. In
the 1D setting of chains, the Newtonian equations
of motion are

where the + subscript signifies that the term in
brackets is kept when it is positive but set to 0 when
negative, un is the displacement of the nth particle
from its equilibrium position in the initially com-
pressed chain, mn is its mass, and Δn = (F0/An)2/3 is a
static displacement that arises from a constant pre-
compression F0. The interaction parameter An de-
pends on the elastic and geometric properties of the
nth and (n−1)th particles.

Granular chains can support three primary
types of waves: traveling waves, shock waves, and
intrinsic localized modes, which are also known as
discrete breathers—the spatially localized, time-
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Granular crystals

Figure 1. A granular crystal is a lattice of macroscopic particles. (a) In the chain sketched here, the particles are
stainless steel ball bearings; they could also have some other geometry (inset) or composition. The chain supports
traveling waves that can be excited by a piezoelectric actuator attached to one end; the greater the wave 
amplitude, which can be measured by a static force sensor at the opposite end, the faster the wave propagates
through the chain. A vibrometer uses a laser (red line) to measure the displacement and velocity of a selected
particle, and a sensor embedded in another (central) particle measures the forces it experiences.15 (b) In this 
experimental implementation of the chain, each stainless steel ball bearing is about 2 mm in diameter. (c) An
array of such chains embedded in a polymer matrix forms a three-dimensional granular metamaterial. 
(Panels a and b courtesy of Joseph Lydon.)
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periodic, and stable (or at least long-lived) excita-
tions sometimes found in periodic systems3,5 (see
the article by David Campbell, Sergej Flach, and
Yuri Kivshar, PHYSICS TODAY, January 2004, page
43). Figure 2 illustrates each type of wave. 

A straightforward way to produce traveling
waves is to strike one end of the chain. The traveling
waves resemble conventional solitary waves,6 but
with tails that decay at a much faster rate (doubly
exponentially) than that of a typical solitary wave7

when the tunable parameter Δn = 0. When Δn ≠ 0, the
waves decay exponentially and can, at least for
small amplitudes, be approximated by hyperbolic-

secant-squared profiles. Chains of disparate parti-
cles, such as alternating steel and aluminum spheres
in a diatomic chain, produce intriguing generaliza-
tions of the traveling waves. Just a few years ago,
however, it was realized that the traveling waves do
not survive long in such heterogeneous chains, ex-
cept for isolated parameter values—particular mass
ratios of adjacent spheres in the chain.8

The ability of granular crystals to support the
propagation of stresses in the form of solitary waves
makes them attractive as materials that can focus and
guide coherent structures. For one thing, traveling
waves in granular crystals are far less susceptible to
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Figure 2. Granular chains support three primary types of waves: (a) dispersionless traveling waves; (b) shock
waves, whose trailing amplitude profile decays slowly; and (c) discrete breathers, which are spacially localized,
temporally periodic, and long-lived excitations. Panel a plots the force experienced by two particles—number 10
(blue) and 35 (red) on a 40-particle chain—when a single wave propagates along the chain. The wave passes
through the two particles in succession and then subsequently reflects at the chain’s end and propagates back
toward the left. Panel b shows the temporal evolution of the compressive force experienced by a particle in a
chain subject to a shock wave. Panel c shows the normalized relative displacement experienced by a family of
discrete breathers. Each breather oscillates at a frequency f close to or within the bandgap of a numerically
simulated chain of 81 particles, whose displacements are represented as red dots. Subpanels 1–4 depict breathers
excited at ever-decreasing frequencies: (1) close to the lower edge of the optical band; (2 and 3) inside the
bandgap; and (4) near the acoustic band edge of the compressed chain. (Panel a courtesy of Jinkyu Yang; 
panel b adapted from ref. 6; panel c adapted from ref. 16.) 
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Figure 3. Wave propagation through a face-centered, square granular crystal. The crystal consists of a 20 × 20 square array of
spheres containing a 19 × 19 square array of cylinders. Waves are produced by a localized impact on the left side of the crystal.
Variations in the distribution of the material ingredients in the unit cell (inset) dramatically alter the shape of the wavefront.
From left to right, the crystal is composed of polymer cylinders and steel spheres, steel cylinders and steel spheres, polymer
cylinders and polymer spheres, and steel cylinders and polymer spheres. (For a larger picture of the last configuration, see
page 88.) The cylindrical polymers are made of Teflon, and the spherical polymers are made of Delrin, which is about six 
times as stiff. (Adapted from A. Leonard, C. Daraio,  Phys. Rev. Lett. 108, 214301, 2012.)
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dispersion than such waves in linear materials. For
another, the propagation of such waves can be
tuned to ultraslow speeds, a characteristic suitable
for impact mitigation and other applications.

As we have discussed, a short input signal can
lead to a solitary wave, but a longer input—or, alter-
nately, a force from a particle whose mass far exceeds
that of the particles in the chain—can produce a shock
wave. The spatial profile of a shock wave is that of a
solitary wave but with a trailing wave train whose
modulated amplitudes eventually decay to a constant.
Theoretical and experimental methods have been
used to study shock waves in both homogeneous and
heterogeneous granular chains.9 Additionally, to de-
termine the merits of granular crystals as potential
shock absorbers in armor and sports helmets, several
groups are now analyzing numerical simulations
and experiments to understand the materials’ re-
sponse to large-amplitude blasts and other threats. 

Breathers and bands
Since the late 1990s, experimentalists have observed
discrete breathers in such disparate physical sys-
tems as magnetic solids, Josephson junctions, and
laser-induced photonic crystals. In 2010, we and 
several colleagues proposed and experimentally
demonstrated that these spatially localized waves
can be excited in compressed diatomic chains of al-
ternating steel and aluminum spheres.5 In this set-
ting, the precompression is crucial for the breathers
to exist. Small-amplitude Fourier modes associated
with a linear dispersion relation can propagate
through a granular crystal’s acoustic and optical fre-
quency bands. The signature of a discrete breather
is the emergence of sustained oscillations at a fre-
quency that lies inside the band gap of the system’s
Fourier spectrum, accompanied by exponential lo-
calization in space. 

As illustrated in figure 2c, each particle in a
chain oscillates, or breathes, by itself with an am -
plitude that decreases exponentially from the cen-
tral particle. The panel shows (nearly) delocalized
waveforms at the bandgap edges and localized
waveforms inside the gap.

Granular-crystal breathers have earned the at-
tention of the materials engineering community be-
cause of their potential for focusing and harvesting
mechanical vibrations. The nonlinear interactions of
a crystal, which allow it to confine noise or mechan-
ical vibrations in a specific frequency range and in
a specific location, make it an ideal material for con-
verting signals into electrical current that could
drive small sensors or transmitters with microwatt
to milliwatt levels of power. 

Although wave propagation through granular
crystals has been studied most thoroughly in one 
dimension, coherent structures in 2D and 3D 
crystals have also been investigated. The higher-
dimensional systems provide additional freedom
for controlling the propagation directions of nonlin-
ear waves. For instance, the wavefront of a wave in
a 2D granular array can be changed radically by se-
lecting different particle-packing geometries or ma-
terial arrangements of the same packing geometry.
For the case shown in figure 3, in which cylinders
are embedded within the interstitial spaces of an

array of spheres, the lateral stress propagation de-
pends on the mass and elasticity of both types of
particles. 

Progress toward applications
Granular crystals assembled from particles with 
diameters on the scale of centimeters respond to
input signals between 1 Hz and 20 000 Hz, the sonic
range relevant for sound barriers, shock-protection
layers, and underwater sonar devices. Using acoustic
waves in other common engineering applications—
including the nondestructive evaluation of solids,
ultrasonic medical imaging, and surgery—calls for
frequencies on the order of a megahertz. To achieve
such frequencies, the sizes of component particles
have to be reduced to the micron scale.

Preliminary studies on micron-scale crystals re-
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Granular crystals

Figure 4. This impact-dispersing granular network
consists of branching one-dimensional chains of
stainless steel spheres, each 1 cm in diameter, con-
tained in a surrounding polymer matrix.12 The 1D
chains in each branch support the formation and
propagation of solitary waves, which are partially
reflected and partially split at each branching point.
The result is an exponential decay of the wave in
both the lateral and vertical orientation of the 
photograph. (Courtesy of Andrea Leonard.)
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veal that as the components are miniaturized, the
contact dynamics become increasingly difficult to
control and increasingly sensitive to particle imper-
fections and environmental conditions. Moreover,
the interactions between microscopic particles are
no longer adequately modeled as exclusively Hertz-
ian. The particles can be sensitive to electrostatic
forces, adhesive forces, asperities, hydrodynamic
effects (or more specifically, changes to the particles’
elasticity from fluid pressure), and surface charges.

The insights gained from prototype granular
systems are starting to affect practical applications
beyond the laboratory. Recent studies have demon-
strated the feasibility of nonlinear acoustic devices
that are analogous to electronic devices. To make an
acoustic rectifier, for example, consider a granular
chain that is homogeneous except for one less-
massive particle close to its left boundary.10 The odd-
ball particle’s presence produces a localized wave at
frequency fdefect that decays exponentially around
the light-mass defect. A driving force applied to the
right end of the chain with a frequency fdrive near fdefect
in the gap above the acoustic passband produces a
wave that cannot propagate leftward. The same
force applied to the left end, however, produces a
wave that interferes with the defect mode and pro-
duces a linear combination of the respective fre-
quencies, c1 fdrive ± c2 fdefect, where c1 and c2 are integers.
Some of those frequencies lie in the passband and
are thus transmitted through the chain. 

Last year, two of us (Kevrekidis and Daraio)
and colleagues proposed that acoustic switches and
logic elements could be developed from a similar
approach.11 Unlike the rectifier, a switch works on
the basis of two input signals: the first, at a frequency
in the chain’s bandgap, acts as the input; and the sec-
ond, at a frequency in the passband, acts as a con-
trol. Combinations of the two signals transmit the
input; however, when the control signal is turned

off, the input signal is not transmitted. Acoustic ana-
logues of AND and OR gates work on the same prin-
ciple using dual control signals. On and off excita-
tion states correspond to Boolean states 1 and 0,
respectively.

Quasi-1D systems that consist of intercon-
nected chains of particles can serve as efficient load
bearers to mitigate both vibrations and impacts. The
granular network in figure 4, in which a 1D chain
branches into a root-like configuration of several
limbs, is a good example. The branches fragment
stress waves spatially and temporally. An initial
pulse is first broken into a train of solitary waves
that travel at different velocities. The wave train 
is then partially reflected and partially split at 
the branches. As a result, the waves’ amplitudes 
decay exponentially in both propagation and lateral
directions.12

Ordered 2D and 3D arrangements of granular
crystals can also be used as acoustic lenses to focus
energy for applications like noninvasive surgery,
outlined schematically in figure 5a; damage detec-
tion in materials; and underwater imaging. Very 
recent demonstrations of underwater focusing and
imaging have moved the technology a step closer to
practical use.13 The idea in an acoustic lens is to pre-
compress a granular array differentially, such that
the phase velocity of incoming acoustic waves is de-
layed in some parts of the array. Compact acoustic
pulses, known as sound bullets, form from the con-
structive interference of incident waves at the desired
focal point in an object of interest. The dramatic 
focusing effect from the coalescence of waves in a
granular crystal can deliver pulses with energies
that are orders of magnitude larger than lenses
made from other materials. 

Recent work on hexagonally packed 2D crys-
tals has revealed another advantage of tunable 
compression—the ability to switch between localized
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Figure 5. Tunable precompression. (a) An acoustic lens can be made from a granular crystal such as the two-
dimensional array of spheres illustrated here. In this fanciful depiction, an incident acoustic signal generates 
traveling waves that, provided the crystal is properly clamped, experience phase delays and constructively interfere
to focus the signal into a highly localized pulse known as a sound bullet. The focused pulse is superimposed on 
a brain MRI scan to suggest possible medical applications. (b) In a hexagonal crystal array containing a single,
small-mass defect (red), one can tune the particles’ oscillations near the defect from localized to delocalized by
varying the extent of precompression (red arrows) at the crystal boundaries.17 (Panel a courtesy of Alessandro
Spadoni and Mike Tysazka; panel b adapted from ref. 17.)
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and delocalized energy states near a defect,14 as il-
lustrated in figure 5b. 

On the horizon
Research in the fundamental physics and emerging
applications of granular crystals is flourishing, and
many developments are in progress. Disordered
configurations of particles, for instance, enable one
to study strongly nonlinear generalizations of phe-
nomena like Anderson localization. (For a primer on
Anderson localization, see the article by Ad La-
gendijk, Bart van Tiggelen, and Diederik Wiersma,
PHYSICS TODAY, August 2009, page 24.) Another
major challenge is the study of metamaterial lat-
tices, whose particles have their own structure—
containing internal or external masses—which dra-
matically alters a granular crystal’s band structure
and resonance frequencies. Still others include
miniaturization—the behavior of micron-scale crys-
tals are slowly becoming experimentally accessi-
ble—and the need to model the effects of intermo -
lecular adhesive forces and surface roughness on
the behavior of granular crystals. 

An increasing amount of work is being devoted
to 2D and 3D granular crystals, which produce a
much richer set of phenomena than 1D crystals. To
understand these higher-dimensional phenomena,
it is important to consider additional physical ef-
fects, such as rotational forces between particles. On
the practical side, researchers continue to make
progress in developing novel, tunable, and even
programmable acoustic materials that might, for ex-
ample, find their way into industrial production

lines as quality-control sensors. Our article just
scratches the surface of applications that may ma-
ture with time and ingenuity. 

We thank our many research collaborators. We also thank
NSF and the Air Force Office of Scientific Research (FA 9550-
12-1-0332) for funding and Chris Chong, Karen Daniels, and
Tapio Schneider for numerous helpful comments.
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