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A quasi-centralized limit order book (QCLOB) is a limit order book (LOB) in which financial institutions
can only access the trading opportunities offered by counterparties with whom they possess sufficient
bilateral credit. In this paper, we perform an empirical analysis of a recent, high-quality data set from
a large electronic trading platform that utilizes QCLOBs to facilitate trade. We argue that the quote-
relative framework often used to study other LOBs is not a sensible reference frame for QCLOBs, so
we instead introduce an alternative, trade-relative framework, which we use to study the statistical
properties of order flow and LOB state in our data. We also uncover an empirical universality: although
the distributions that describe order flow and LOB state vary considerably across days, a simple, linear
rescaling causes them to collapse onto a single curve. Motivated by this finding, we propose a semi-
parametric model of order flow and LOB state for a single trading day. Our model provides similar
performance to that of parametric curve-fitting techniques but is simpler to compute and faster to
implement.
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I. Introduction

More than half of the world’s financial markets use electronic limit order books (LOBs) to facilitate
trade (Roşu 2009). In contrast to quote-driven systems, in which prices are set by designated market
makers, trades in an LOB occur via a continuous double-auction mechanism, in which institutions
submit orders that state their desire to buy or sell a specified quantity of an asset at a specified price.
Active orders reside in a queue until they are either cancelled by their owner or executed against an
order of opposite type. Upon execution, the owners of the relevant orders trade the agreed quantity of
the asset at the agreed price.

During the past 20 years, a large body of empirical and theoretical work has addressed a specific
type of LOB in which all institutions are able to trade with all others (see Gould et al. (2013) for a
review). We call this market organization a centralized LOB. Although several large platforms –
including the London Stock Exchange (LSE) Electronic Trading Service (The London Stock Exchange
2015), Nasdaq (Nasdaq 2015), and the Euronext Universal Trading Platform (Euronext 2013) – employ
centralized LOBs, many other platforms use alternative LOB configurations. In contrast to the wealth
of publications on centralized LOBs, discussion of alternative LOB configurations is limited to a
handful of technical descriptions of matching mechanisms on specific platforms (Barker 2007, Gallardo
and Heath 2009, Rime 2003, Sarno and Taylor 2001). Given their widespread use, detailed study of
alternative LOB configurations is an important task.

A prominent example of an alternative LOB configuration is an LOB in which financial institutions
can only access the trading opportunities offered by counterparties with whom they possess sufficient
bilateral credit. We call this market organization a quasi-centralized limit order book (QCLOB) because
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different institutions have access to different subsets of a centralized liquidity pool. QCLOBs are used
by several major multi-institution trading platforms in the foreign exchange (FX) spot market,
including Reuters (Thomson–Reuters 2011), EBS (EBS 2011), and Hotspot FX (Knight Capital Group
2015a), which together facilitate a mean turnover in excess of 0.6 trillion US dollars (USD) each day
(Bank for International Settlements 2010).

Despite this enormous volume of trade, a lack of adequate data has hindered investigation of many
important questions regarding QCLOBs. Do the statistical properties of QCLOBs differ from those of
centralized LOBs? Do arbitrage opportunities arise? How do institutions assess market state when
deciding how to act? In this paper, we present an empirical study of a recent, high-quality data set
from Hotspot FX that enables us to address these issues.

In comparison to the statistics that are widely reported in empirical studies of centralized LOBs (see
Gould et al. (2013)), we observe much lower levels of order flow at the prevailing quotes and a much
higher ratio of active liquidity to market order flow. We also identify periods during which the global
bid–ask spread is negative. Due to the extremely high levels of market activity on Hotspot FX, we are
able to perform both cross-sectional (i.e., between different currency pairs) and longitudinal (i.e., across
different time periods) comparisons of our findings. We find several longitudinal differences in market
activity, and we thus argue that using long-run statistical averages to formulate short-run forecasts may
produce misleading results. We also uncover a striking empirical universality: applying a simple, linear
rescaling to the distributions that describe order flow and market state causes the data to collapse onto
a single curve. Motivated by this finding, we propose a semi-parametric model of these distributions
that gives similar performance to parametric curve-fitting techniques but is simpler to compute and
faster to implement.

Our findings are important for several reasons. First, they provide a detailed overview of recent
trading activity on a large electronic trading platform. Second, they illustrate similarities and
differences between market activity on different trading days. Third, they highlight how several
properties of QCLOBs differ from those of centralized LOBs. Fourth, they motivate a semi-parametric
model for the distributions that describe order flow and market state in a QCLOB. Together, our
results help to illuminate the delicate interplay between order flow, liquidity, and price formation for a
widely used but hitherto unexplored market organization.

The paper proceeds as follows. In Section II, we present several definitions that we use throughout
the paper, provide a detailed description of centralized LOBs and QCLOBs, and highlight the
important differences between these mechanisms. In Section III, we describe the data that forms the
basis for our empirical study and discuss the Hotspot FX platform. In Section IV, we describe the
methodology that we use for our empirical study. We present our main results in Section V and discuss
our findings in Section VI. We conclude in Section VII. In Appendix A, we describe our method of
performing parametric fits to daily data. In Appendix B, we describe how we quantify the strength of
curve collapse when rescaling each day’s data in our semi-parametric model.

II. Centralized and Quasi-Centralized Limit Order Books

Let Θ = {θ1, θ2, . . .} denote the set of institutions that trade a given asset on a given platform. In an
LOB, these institutions interact by submitting orders. An order x = (px, ωx, tx) submitted at time tx
with price px and size ωx > 0 (respectively, ωx < 0) is a commitment by its owner to sell (respectively,
buy) up to |ωx| units of the asset at a price no less than (respectively, no greater than) px.

Whenever an institution submits a buy (respectively, sell) order x, an LOB’s trade-matching
algorithm checks whether it is possible for x to match to an active sell (respectively, buy) order y such
that py ≤ px (respectively, py ≥ px). If so, the matching occurs immediately and the owners of the
relevant orders agree to trade the specified amount at the specified price. If |ωx| > |ωy|, any residue of x
is then considered for matching to other active sell (respectively, buy) orders until either x becomes
fully matched or there are no further active sell (respectively, buy) orders eligible for matching to x.
Any portion of x that does not match becomes active at the price px, and it remains active until it
either matches to an incoming sell (respectively, buy) order or is cancelled.

Orders that match completely upon arrival are called market orders. Orders that do not match upon
arrival — instead becoming active in the LOB — are called limit orders.∗ Some platforms allow other
order types – such as fill-or-kill, stop-loss, or peg orders (Knight Capital Group 2015b) – but it is
always possible to decompose the resulting order flow into limit and/or market orders. Therefore, we
study LOBs in terms of these simple building blocks.

∗Some orders match partially upon arrival. Such orders can be construed as partly a market order and partly a limit order.
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The global† LOB L(t) is the set of all active orders for a given asset on a given platform at time t.
The global bid price b(t) is the highest price among active buy orders in L(t). The global ask price a(t)
is the lowest price among active sell orders in L(t). The global bid–ask spread is s(t) = a(t)− b(t). The
global mid price is m(t) = [b(t) + a(t)] /2.

A. Centralized LOBs

In a centralized LOB, all institutions can trade with all others. Whenever an institution θi submits a
buy (respectively, sell) market order, the order matches to the highest-priority active sell (respectively,
buy) order that is owned by another institution θj 6= θi, irrespective of the identities of θi and θj .
Therefore, all institutions in a centralized LOB face the same trading opportunities. A sell order with
px > b(t) or a buy order with px < a(t) is always a limit order, a sell order with arbitrarily small px or a
buy order with arbitrarily large px is always a market order, and a sell order with px ≤ b(t) or a buy
order with px ≥ a(t) at least partially matches immediately upon arrival. For a detailed discussion of
centralized LOBs, see Gould et al. (2013).

B. Quasi-Centralized LOBs

In a QCLOB, each institution can specify the maximum level of counterparty credit exposure that it is
willing to extend to each other institution trading on the platform.∗ Specifically, each institution θi in a
QCLOB notifies the exchange of its counterparty credit limit (CCL) c(i;j) ≥ 0 for each other institution
θj . Assigning a CCL to a given counterparty does not require posting collateral; instead, it simply
involves notifying the exchange of the relevant value c(i,j). Institution θi cannot access any trading
opportunities offered by another institution θj that would make θi’s total exposure to θj exceed c(i,j) or
that would make θj ’s total exposure to θi exceed c(j,i). Hence the maximal amount that θi and θj can
trade is min

(
c(i,j), c(j,i)

)
. We call this quantity the bilateral CCL between θi and θj. The bilateral CCLs

determine the subset of trading opportunities available to each institution. This subset changes over
time according to the relevant institutions’ trading activity.

Institution θi can ensure that it never trades with θj by setting c(i,j) = 0, because arranging any
trade with θj would result in a non-zero exposure and would thereby violate this CCL. Institution θi
can also assign an unlimited amount of credit to θj by setting c(i,j) =∞. Irrespective of the CCL set by
θi, it still remains open to θj to further restrict the bilateral exposure by choosing c(j,i) appropriately.
In particular, the choice c(j;i) = 0 indicates unwillingness to trade at all.

In Figure 1, we show two possible network representations of the CCLs in a QCLOB populated by
institutions Θ = {θ1, θ2, θ3, θ4} with CCLs

c(1,2) =∞, c(1,3) =∞,

c(2,1) = 3, c(2,3) = 10,

c(3,2) = 12, c(3,4) = 2,

c(4,2) = 100, c(4,3) =∞,

(1)

and with all other CCLs equal to 0. In both representations, nodes corresponds to institutions and edge
weights to CCLs. The first representation is a directed network in which the weight of the edge from
node i to node j is equal to the CCL c(i,j). The second representation is an undirected network in
which the weight of the edge between nodes i and j is equal to the bilateral CCL between institutions i
and j (i.e., min

(
c(i,j), c(j,i)

)
).

Institutions trading on a QCLOB platform cannot in general see the state of the global LOB L(t).
Instead, each institution θi sees only the active orders that correspond to trading opportunities that it
can access (i.e., do not violate any of its bilateral CCLs) at time t.† This filtering of L(t) yields local
versions of several key concepts (see Figure 2). Institution θi’s local LOB Li(t) is the subset of active
orders in L(t) that θi can access. More precisely, for each j 6= i, the volume of each separate limit order

†We use the term “global” to highlight the differences between these definitions and the local definitions in Section II.B.
∗In the FX spot market, trades agreed on day d are settled on day d + 2. Therefore, each trade by an institution in this
market entails exposure to the counterparty during the period between trade agreement and trade settlement. Mitigation of
the resulting credit risk is one reason for the use of CCLs.
†Some QCLOB platforms (such as Reuters and EBS) offer institutions the ability to access an additional data feed that provides

snapshots of the global LOB L(t) at regular time intervals in exchange for a fee.
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Figure 1. Two weighted network representations of the CCLs in a QCLOB; see the main text for details. (Top)
Directed network with edge weights equal to the corresponding CCLs. (Bottom) Undirected network with edge
weights equal to the corresponding bilateral CCLs. In both networks, edges with zero weight are omitted.

placed by θj is reduced (if necessary) in Li(t) so that its size does not exceed the bilateral CCL between
θi and θj .

Institution θi’s local bid price bi(t) is the highest stated price among active buy orders in Li(t).
Institution θi’s local ask price ai(t) is the lowest stated price among active sell orders in Li(t).
Institution θi’s local bid–ask spread is si(t) = ai(t)− bi(t). Institution θi’s local mid price is
mi(t) = [bi(t) + ai(t)] /2.

When an institution θi submits a buy (respectively, sell) market order, the order matches to the
highest-priority active sell (respectively, buy) order in Li(t). Importantly, there may be higher-priority
active sell (respectively, buy) orders in the global LOB L(t) owned by another institution θj with whom
θi has insufficient bilateral credit to perform the trade, but such orders are not considered for matching
to θi’s market order because they do not appear in θi’s local LOB Li(t).

A noteworthy difference between a QCLOB and a centralized LOB follows from the partial nature of
each institution’s local LOB. In a QCLOB, the global spread s(t) (which is observable in our data) can
be negative even though the local spreads si(t) (which are not observable in our data) are positive.
Indeed, in Section V we report that negative global spreads occur reasonably frequently. In a centralized
LOB, a negative spread would represent an arbitrage opportunity, but in a QCLOB, the CCL structure
may prevent its exploitation and render the opportunity as apparent, rather than real. Nevertheless, as
we report in Section V, even such apparent arbitrage opportunities do not persist for long in our data.

In addition to viewing their local LOB Li(t), each institution in a QCLOB can access a trade-data
stream that lists the price, time, and direction (buy/sell) of each trade that occurs. All institutions can
see all entries in the trade-data stream in real time, irrespective of their bilateral CCLs with the
institutions involved in a given trade. Therefore, although institutions in a QCLOB do not have access
to information regarding which trading opportunities are available to other institutions, they do have
access to a detailed historical record of previous trades.

In Figure 2, we illustrate an example of a QCLOB’s global and local LOBs. The figure shows a
simple global LOB and the corresponding local LOBs for the four institutions shown in Figure 1. In the
figure, we label each order according to its owner, although this information is not visible to traders. In
this example, the global spread is negative, but all local spreads are positive.

In this example, the CCL structure is akin to a core of two creditworthy institutions (θ2 and θ3),
which can trade freely with each other, and two peripheral, less creditworthy, institutions (θ1 and θ4),
each of which can only trade with one core partner. If any institution could trade with both θ1 and θ4,
then the negative global spread could by “arbitraged away”; however, the CCLs in this example prevent
this from happening. Observe also that in L1(t), the order owned by θ2 is truncated to size 3, because
this is the value of the bilateral CCL between θ1 and θ2. Similarly, in L4(t), the orders owned by θ3 are
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Figure 2. Schematic of (top) a global LOB L(t) and (top left) θ1’s local LOB L1(t), (top right) θ2’s local LOB L2(t),
(bottom left) θ3’s local LOB L3(t), and (bottom right) θ4’s local LOB L3(t) for a QCLOB with the CCLs described
in Figure 1. To illustrate the role of CCLs, we label each order in the figure according to its owner. However, trading
platforms do not disseminate this information.
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truncated to size 2, because this is the value of the bilateral CCL between θ3 and θ4.

C. Coordinate Frames

Because a financial institution’s activity is driven by its trading needs, its individual actions can appear
extremely erratic. However, many empirical studies of centralized LOBs (see, e.g., Biais et al. (1995),
Bouchaud et al. (2002), Chakraborti et al. (2011), Challet and Stinchcombe (2001), Cont et al. (2010),
Gu et al. (2008a,b), Mike and Farmer (2008), Potters and Bouchaud (2003), Zovko and Farmer (2002))
have noted that when measured in a suitable coordinate frame that aggregates order flows from many
different institutions, robust statistical properties can emerge from the ensemble.

Most studies of centralized LOBs perform such aggregation in a coordinate frame that we call
quote-relative coordinates, in which prices are measured relative to the global bid price b(t) or the global
ask price a(t). Specifically, the quote-relative price of an order x at time t is

φ(px, t) :=

{
b(t)− px, if x is a buy order,
px − a(t), if x is a sell order.

(2)

The difference in signs between the definitions for buy and sell orders ensures that all active orders have
a non-negative quote-relative price at all times.

The use of quote-relative coordinates in centralized LOBs is motivated by the notion that
institutions monitor b(t) and a(t) when deciding how to act. There are many reasons why this is the
case. For example, b(t) and a(t) define the boundary conditions that dictate whether an incoming order
is a limit order or a market order, they are observable to all institutions in real time, and they are
common to all institutions. Therefore, they constitute suitable reference points for aggregating order
flows across different institutions.

In a QCLOB, by contrast, the boundary conditions between limit order and market order placement
for a given institution θi are determined by θi’s local bid price bi(t) and local ask price ai(t), rather
than the global values b(t) and a(t). Moreover, institutions cannot see the state of the global LOB L(t),
so they do not know the values of b(t) and a(t). Therefore, quote-relative coordinates are not a natural
framework for studying QCLOBs. This provides strong motivation to explore alternative avenues.

Given complete information regarding each institution’s local LOB Li(t), one possible approach
would be to measure each institution’s order flow relative to its local quotes bi(t) and ai(t) and to
aggregate the corresponding relative prices across institutions. However, this approach would require
calculating each institution’s local LOB Li(t), which is not possible using the Hotspot FX data (see
Section III.B). Another alternative is to measure all institutions’ order flow relative to a benchmark
price that is common to all institutions and visible to all institutions in real time. Recall from Section
II.B that QCLOBs disseminate a trade-data stream that lists the prices of all previous trades. This
trade-data stream thereby facilitates the use of an alternative coordinate frame, which we call
trade-relative coordinates, in which prices are measured relative to those of the most recent trades. Let
B(t) and A(t) denote, respectively, the price of the most recent seller-initiated and buyer-initiated
trades (across all institutions) that occur at or before time t. The trade-relative price of an order x at
time t is then given by

Φ(px, t) :=

{
B(t)− px, if x is a buy order,
px −A(t), if x is a sell order.

(3)

In contrast to quote-relative prices, all institutions in a QCLOB can calculate trade-relative prices in
real time. Moreover, we can calculate trade-relative prices directly from our Hotspot FX data (see
Section III.B). Therefore, trade-relative coordinates are a useful alternative to quote-relative
coordinates in a QCLOB.

To highlight their similarities and differences, we perform our calculations throughout the paper in
both quote-relative and trade-relative coordinates. We find that using quote-relative coordinates
produces relatively weak statistical signals with high variance, but that using trade-relative coordinates
helps to uncover stable and robust statistical regularities.
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III. Hotspot FX

A. The Hotspot FX Platform

We have been granted access to a recent, high-quality data set from Hotspot FX (Knight Capital
Group 2015a,b), which is one of the largest multi-institution trading platforms in the FX spot market.
The data describes all limit order arrivals, cancellations, and trades during May–June 2010. According
to the 2010 Triennial Central Bank Survey (Bank for International Settlements 2010), the mean daily
turnover of the global FX market around this time was approximately 4.0 trillion USD. Approximately
37% of this volume was due to spot trades, of which approximately 40% was conducted electronically.
In total, the mean daily volume traded on all multi-institution electronic trading platforms was
approximately 0.6 trillion USD (Bank for International Settlements 2010). The mean daily volume
traded on Hotspot FX during the same period was approximately 21.5 billion USD (Knight Capital
Group 2015c). Therefore, trade on Hotspot FX accounted for approximately 4% of all volume traded
electronically in the FX spot market during this period.

Hotspot FX offers trade for more than 60 different currency pairs. Each currency pair is traded
within a separate QCLOB with price-time priority, in which priority is first given to the active orders
with the best (i.e., highest buy or lowest sell) price, and ties are broken by selecting the active order
with the earliest submission time tx. The platform serves a broad range of trading professionals,
including banks, financial institutions, hedge funds, high-frequency traders, corporations, and
commodity trading advisers (Knight Capital Group 2015a).∗

B. The Hotspot FX Data

The data that we study describes all limit order arrivals, cancellations, and trades between
08:00:00–17:00:00 GMT for the EUR/USD (Euro/US dollar), GBP/USD (Pounds sterling/US dollar),
and EUR/GBP (Euro/Pounds sterling) currency pairs† on 30 trading days during May–June 2010.
According to the Bank for International Settlements (2010), global trade for EUR/USD, GBP/USD,
and EUR/GBP constituted about 28%, 9%, and 3%, respectively, of the FX market’s total turnover
during this period. For each of EUR/USD, GBP/USD, and EUR/GBP, the Hotspot FX platform
enforces a minimum order size of 0.01 units of the base currency and a tick size (i.e., smallest
permissible price interval between different orders) of 0.00001 units of the counter currency.

For each currency pair and each day, the Hotspot FX data consists of two files. The first file is the
tick-data file, which lists all limit order arrivals and departures and is timestamped to the nearest
millisecond. For each limit order arrival, this file lists the price, size, direction (buy/sell), arrival time,
and a unique order identifier. For each limit order departure, this file lists the departure time and the
departing order’s unique identifier. A limit order departure can occur for two reasons: (1) because the
order is matched by an incoming market order or (2) because the order is cancelled by its owner. The
data provides no way to deduce with certainty whether a given order departure relates to a cancellation
or a complete matching.‡

The second file is the trade-data file, which lists all trades. For each trade, this file lists the price,
size, direction (buy/sell), and trade time, timestamped to the nearest millisecond. If a market order
matches to several different active orders, then the trade-data file reports each partial matching as a
separate line, with a time stamp that differs from the previous line by at most 1 millisecond. In the
absence of explicit details regarding order ownership, we regard all entries that correspond to a trade of
the same direction and that arrive within 1 millisecond of each other as originating from the same
market order. For each of the three currency pairs, the mean inter-arrival time between trades is of the
order of several seconds, so it is unlikely that two separate market orders would arrive within 1
millisecond. We regard any incorrectly grouped market orders as a source of noise in the data.

By processing each order arrival or departure listed in the tick-data file, we are able to reconstruct
the global LOB L(t) at any time during 08:00:00–17:00:00 GMT. However, Hotspot FX does not
disclose any information regarding CCLs on the platform, and the data contains no information about
institutions’ identities. Therefore, we are not able to reconstruct any given institution θi’s local LOB
Li(t) from the data. By processing each trade listed in the trade-data file, we are able to reconstruct

∗See http://www.hotspotfx.com/download/userguide/HSFX/HSFX_UserGuide_wrapper.html.
†A price for the currency pair XXX/YYY denotes how many units of the counter currency YYY are exchanged per unit of
the base currency XXX.
‡When studying order-flow distributions, we treat all active order departures as cancellations. The percentage of active order
departures that are actually due to complete matching is extremely low, because market orders constitute about 0.05%, about
0.02%, and less than 0.01% of arriving order flow for EUR/USD, GBP/USD, and EUR/GBP, respectively (see Table I).
Incorrectly classifying a tiny fraction of departures in this way should have a negligible impact on our results.
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the trade-price series B(t) and A(t) at any time t during the same period. We are therefore able to
calculate both the quote-relative and trade-relative price of any order at any time (see Section II.C).

The data does not provide a reliable way to perform inference about incoming orders that partially
match and partially become active. For such orders, we treat the matched part as a market order and
the unmatched part as a separate limit order.

IV. Methodology

A. Time Scales

We perform all of our calculations in event time, whereby we advance the clock by 1 unit whenever a
limit order arrives.∗ Measuring time in this way helps to remove the nonstationarities that occur in
calendar time due to irregular bursts of trading activity (Chakraborti et al. 2011, Gouriéroux et al.
1999, Mantegna and Stanley 1999, Stephan and Whaley 1990, Toke 2011). The number of market order
arrivals and active order cancellations varies in each time unit. We reset the clock at the start of each
trading day so that the first limit order arriving after 08:00:00 GMT has tx = 1.

B. Trading Days

Due to the extremely high levels of activity on Hotspot FX, we are able to study order flow and LOB
state on each trading day separately. By contrast, most existing empirical studies of LOBs aggregate
market activity from multiple trading days or multiple different assets to obtain sufficiently many data
points to perform statistically stable estimation (Biais et al. 1995, Bouchaud et al. 2002, Chakraborti
et al. 2011, Cont et al. 2010, Farmer et al. 2005, Gu et al. 2008a,b, Mike and Farmer 2008, Potters and
Bouchaud 2003, Zovko and Farmer 2002).

We choose a single trading day as our longitudinal unit for three reasons. First, a single trading day
represents a structural cycle on Hotspot FX because the platform automatically cancels all active
orders at the end of each day (Knight Capital Group 2015b). Second, a single trading day provides a
compromise between including enough data points to ensure statistical stability and including enough
longitudinal units to perform useful comparisons. Third, several empirical studies have reported that
most institutions implement their investment decisions and trading strategies over a single trading day
(Axioglou and Skouras 2011, Bjønnes and Rime 2005, Sager and Taylor 2006). To such institutions,
statistics that describe market behaviour over this time horizon are likely to be the most useful.

C. Buy and Sell Orders

The use of quote-relative and trade-relative coordinates facilitates the aggregation of buy and sell
orders into a single data set (see Section II.C). Throughout this paper, we report all of our results for
buy and sell orders together, because aggregating the data in this way increases the sample size when
compared to studying buy or sell orders separately. We repeated all of our calculations for buy and sell
orders separately, and we obtained qualitatively similar results to those that we report, albeit with a
smaller sample size and a correspondingly larger statistical noise.

V. Results

A. LOB Activity

In Table I, we list summary statistics that describe aggregate LOB activity for EUR/USD, GBP/USD,
and EUR/GBP on Hotspot FX across all 30 trading days in our sample. In terms of both limit order
and market order arrivals, EUR/USD is the most active and EUR/GBP is the least active of the three
currency pairs. The total volume of arriving limit orders is about 30% larger for GBP/USD and about
60% larger for EUR/USD than it is for EUR/GBP. The corresponding results for market orders are
even more extreme: the total size of market order arrivals for GBP/USD and EUR/USD outstrip that
of EUR/GBP by a factor of about 4 and a factor of more than 10, respectively. Therefore, comparing
our subsequent results for the three different currency pairs enables us to contrast the behaviour of the
QCLOBs for currency pairs with substantially different levels of trading activity.

For each of the three currency pairs, limit order arrivals outstrip market order arrivals by more than
3 orders of magnitude. Market orders constitute less than 0.05% of the total arriving order flow, which

∗This includes orders that are only partially filled upon arrival.
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EUR/USD GBP/USD EUR/GBP

Total size (units of base currency ×109)

Limit orders 301136 235934 184597

Market orders 137 46 12
Cancellations 300959 235868 184580

Total number (orders ×103)

Limit orders 136009 131088 87982
Market orders 168 87 15
Cancellations 135805 130987 87964

Mean inter-arrival time (seconds)

Limit orders 0.00715 0.00741 0.011

Market orders 5.78 11.1 62.9
Cancellations 0.00716 0.00742 0.011

Modal size (units of base currency ×106)

Limit orders 1.00 1.00 1.00

Market orders 1.00 1.00 1.00

Cancellations 1.00 1.00 1.00

Mean size (units of base currency ×106)

Limit orders 2.21 1.8 2.1

Market orders 0.818 0.523 0.777

Cancellations 2.22 1.8 2.1

Percentage of market orders that match at several different prices 8.41% 6.3% 4.25%

Mean total size of active orders (units of base currency ×106) 579 330 189

Mean total depth at best quotes (units of base currency ×106) 6.04 4.8 4.97

Table I. Summary statistics for aggregate activity on all 30 trading days that we study.

indicates that the vast majority of limit orders end in cancellation rather than matching. Indeed, in each
case, the total size of cancellations is very close to the total size of limit order arrivals. The remaining
volume of limit orders (not accounted for either by matching or by cancellation) indicates that the
mean total size of active orders in the global LOBs increases on average through the trading day.

For both limit orders and market orders, the modal size is exactly 1 million units of the base
currency. The empirical cumulative density functions (ECDFs) of order sizes (see Figure 3) reveal that
institutions favour orders with round-number sizes that are integer multiples of 1 million, even though
the minimum order size on Hotspot FX is just 0.01 units of the base currency (see Section III). Despite
their common mode, the mean size of arriving limit orders for each currency pair is more than double
the corresponding number for market orders due to the higher concentration of small market order sizes
than of small limit order sizes.
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Figure 3. Empirical cumulative density functions (ECDFs) of the sizes of arriving (Panel A) limit orders and (Panel
B) market orders for (solid green curves with circles) EUR/USD, (dashed orange curves with squares) GBP/USD,
and (dotted purple curves with triangles) EUR/GBP.

For each of the three currency pairs, the mean total depth at the best quotes (i.e., the mean total
size of active orders at b(t) or a(t)) is less than 1% of the total size of all active orders. Despite this
relatively small fraction of liquidity at the global best prices, it still exceeds the mean size of market
orders by a factor of almost 10 in each case. Moreover, only a small percentage of market orders match
at more than one price. Together, these results suggest that institutions employ selective
liquidity-taking, in the sense that they carefully monitor the market state to ensure that they only
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conduct trades at favourable prices.∗

We now assess the relationship between the sizes of market orders and the sizes of the queues to
which they match. In Panel A of Figure 4, we show how the mean order size varies among market
orders that match to a queue of a given length. For all queue lengths, the mean size of arriving market
orders is strictly smaller than the queue length. This result is consistent with our observation that it is
relatively rare for market orders to match at more than one price. For queue lengths up to about 1
million, the mean size of market orders grows approximately linearly with the queue length, with a
scale factor that varies across the three currency pairs but is less than 1 in each case. However, this
does not persist for queue sizes longer than about 1 million, for which the mean market order size
becomes approximately constant for each of the three currency pairs. This finding contrasts to the
results reported by Farmer et al. (2004) for order flow on the LSE (which operates as a centralized
LOB), in which the approximately linear relationship that we observe for small queue lengths persists
across the whole domain, even when the total depth of active orders at the best quotes is very large. In
Section VI, we return to this discussion and propose two possible explanations for the behaviour that
we observe on Hotspot FX.
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Figure 4. (Panel A) Mean order size among market orders that match to a queue of a given length and (Panel B)
ECDFs of the fraction of the queue depth consumed by an incoming market order for (solid green curve with circles)
EUR/USD, (dashed orange curve with squares) GBP/USD, and (dotted purple curve with triangles) EUR/GBP.
In Panel A, we bin the data into deciles according to queue length. The dotted black line in Panel A indicates the
diagonal.

To further illustrate the presence of selective liquidity-taking, we also calculate the fraction of the
relevant queue depth that each market order consumes upon arrival. For a sell market order x
submitted at time tx with price px and size ωx > 0, we calculate the ratio

hx =

∣∣∣∣ ωx

nb(px, tx)

∣∣∣∣ ,
where nb(px, tx) denotes the total size of active buy orders in the global LOB with price px immediately
before the market order arrival at time tx. For a buy market order x, we calculate the same ratio hx,
but we use the corresponding total size na(px, tx) of active sell orders. In Panel B of Figure 4, we show
the ECDFs of hx.

Our results paint an interesting picture of selective liquidity-taking on Hotspot FX. On the one hand,
about 33% of market orders for EUR/USD, about 36% of market orders for GBP/USD, and about 43%
of market orders for EUR/GBP consume the entire queue to which they match. This suggests that a
considerable fraction of institutions condition their market order size to match the depth of active
orders available. On the other hand, some market orders consume a relatively small fraction of the
relevant queue depth. For example, about half of all market orders for EUR/USD consume less than
20% of the relevant queue depth. This may indicate that the institutions that submit these market

∗For a detailed introduction to selective liquidity-taking, see Bouchaud et al. (2009).
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orders do not wish to perform large trades, despite large depths being available to them. However, it
may also be the case that these institutions do not have sufficient CCLs to access the full depths
available in the global LOB, and that they therefore instead condition their market order sizes to the
depth available in their local LOB. We also return to this discussion in Section VI.

In Table II, we list summary statistics for the global bid–ask spread s(t). Both the mean and median
values of s(t) are similar for GBP/USD and EUR/GBP, but they are much smaller for EUR/USD. This
implies that s(t) tends to be smaller for EUR/USD than for the other two currency pairs. In a
centralized LOB, a smaller value of s(t) is often construed as a sign of greater liquidity (Ding and
Hiltrop 2010), because s(t) determines the cost of conducting a round-trip trade (i.e., buying a single
unit at a(t) and selling a single unit at b(t) using a pair of simultaneous market orders). In a QCLOB,
by contrast, s(t) does not have such a clear interpretation because the liquidity available to each
institution θi depends on its local LOB Li(t).

EUR/USD GBP/USD EUR/GBP

Minimum (ticks) −365 −270 −60

Maximum (ticks) 69 147 152

Median (ticks) 4 10 10

Mean (ticks) 3.62 9.54 10.11

Percentage of time for which s(t) < 0 9.99% 4.08% 0.23%

Mean duration for which s(t) < 0 (seconds) 0.10 0.12 0.16

Mean crossed volume (units of base currency ×106) 9.50 7.61 5.11

Table II. Summary statistics for the global bid–ask spread s(t).

Another important contrast between centralized LOBs and QCLOBs is that the global spread s(t) is
always strictly positive in a centralized LOB, but can become negative in a QCLOB (see Figure 2).
This occurs whenever there exist a buy limit order x and a sell limit order y such that py < px. In a
centralized LOB, the arrival of the second such order would trigger an immediate matching, so x and y
would never coexist in L(t). In a QCLOB, however, if the CCLs between the institutions that own x
and y do not permit them to perform the corresponding trade, then both x and y can be active
simultaneously. Therefore, the global bid–ask spread can be negative in a QCLOB. However, as
discussed in Section II.B, negative spreads need not indicate the existence of tradable arbitrage
opportunities, because such opportunities may not be permitted by the CCL structure.

In Panel A of Figure 5, we show the ECDF of s(t). As we also illustrate in Table II, the global
bid–ask spread is negative for almost 10% of the time for EUR/USD and for more than 4% of the time
for GBP/USD, but it is rarely negative for EUR/GBP. In the most extreme case (which occurs for
EUR/USD), the spread is more than 350 ticks negative. Among the times when s(t) is negative, the
mean crossed volume (i.e., the total size of all sell orders with px < b(t) and all buy orders with
p(x) > a(t)) is about 10 million for EUR/USD, about 7.5 million for GBP/USD, and about 5 million
for EUR/GBP. In Panel B of Figure 5, we show the ECDF of time durations for which s(t) remains
negative (i.e., the ECDF of time differences between when the spread becomes negative and when it
next becomes positive). The global bid–ask spread typically remains negative for extremely short
durations.

B. Daily Activity Levels

In Figure 6, we show the total size of arriving limit orders and market orders on each of the 30 days in
our sample. Although aggregate market activity levels vary considerably across trading days, especially
active or especially quiet days tend to coincide for each of the three currency pairs (particularly for
limit order arrivals). This suggests that common, exogenous factors play an important role in
institutions’ trading decisions. In May 2010, the European Central Bank announced and implemented a
series of measures to combat financial instability within the Eurozone; these included providing loans to
countries in financial difficulties, recapitalizing financial institutions, and purchasing bonds from
member states (The European Financial Stability Facility 2014, 2015). The large changes in daily
aggregate activity levels during May 2010 suggest that the implementation of such measures and the
uncertainty surrounding their announcements strongly influenced activity in the FX spot market.

C. Activity on a Single Trading Day

We next calculate these distributions in a single trading day, to help understand the distributions of
order flow and LOB state across different quote- and trade-relative prices. We arbitrarily choose to
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Figure 6. Total size of arriving (top panel) limit orders and (bottom panel) market orders for (solid green curve
with circles) EUR/USD, (dashed orange curve with squares) GBP/USD, and (dotted purple curve with triangles)
EUR/GBP.

present the results for 4 May 2010, which is the first day in our sample. In Section V.D, we investigate
how these distributions vary across trading days.

In Figure 7, we show the quote-relative and trade-relative price distributions of limit order arrivals
on 4 May 2010. For each of the three currency pairs, the maximum limit order arrival rate occurs at a
strictly positive relative price in both quote-relative (12 ticks for EUR/USD, 18 ticks for GBP/USD,
and 14 ticks for EUR/GBP) and trade-relative (12 ticks for EUR/USD, 20 ticks for GBP/USD, and 15
ticks for EUR/GBP) coordinates. Some institutions place limit orders with extremely large quote- and
trade-relative prices, which suggests that they seek to profit from large price swings on long time
horizons.

In Figure 8, we show the quote-relative and trade-relative distributions of cancellations for each of
the three currency pairs. In contrast to limit order arrivals, cancellations can only occur at non-negative
quote-relative prices, because the lowest possible quote-relative price of an active order is 0 (which
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Figure 7. Distributions of limit order arrivals for (solid green curves with circles) EUR/USD, (dashed orange curves
with squares) GBP/USD, and (dotted purple curves with triangles) EUR/GBP on 4 May 2010 in (top) quote-relative
and (bottom) trade-relative coordinates. The main plots show the empirical density functions, and the inset plots
show the corresponding survivor functions (i.e., 1− F (x), where F is the ECDF) in semi-logarithmic coordinates.

occurs for orders at b(t) or a(t)). Each of the three currency pairs’ quote-relative cancellation
distributions have a local maximum at 0. Cancellations for GBP/USD tend to occur further from the
best quotes and cancellations for EUR/USD tend to occur closer to the most recently traded price than
do those for the other two currency pairs. For strictly positive quote-relative prices, the cancellation
distributions have qualitatively similar shapes to the corresponding distributions for limit order
arrivals. In trade-relative coordinates, the cancellation distributions are extremely similar to the
corresponding limit order arrival distributions at all prices.

In Figure 9, we show the mean depths (i.e., the mean total size of active orders in the global LOB
L(t)) at given quote-relative and trade-relative prices. By definition, the mean depth is 0 for all
negative quote-relative prices. Although all three currency pairs have a local maximum in mean depth
at the best quotes, in each case, it is much smaller than the corresponding local maximum in the
cancellation distributions. In both quote-relative and trade-relative coordinates, the mean depth at
small quote-relative prices is substantially larger for EUR/USD than it is for GBP/USD and
EUR/GBP. In trade-relative coordinates, each currency pair’s local maximum occurs at a strictly
positive relative price (20 ticks for EUR/USD and EUR/GBP, and 30 ticks for GBP/USD). The upper
tails of the distribution of mean depths are much heavier than those of the corresponding distributions
of limit order arrivals and cancellations. This suggests that some institutions leave active orders far
from the best quotes for long periods of time. Although such orders constitute a tiny fraction of the
aggregate order flow, their long lifetimes cause them to contribute significantly to the mean depths
when averaged across the whole sample period.

Figures 7 and 8 illustrate an interesting round-number effect in order flow: limit order arrivals and
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Figure 8. Distributions of cancellations by (top) quote-relative and (bottom) trade-relative price for (solid green
curves with circles) EUR/USD, (dashed orange curves with squares) GBP/USD, and (dotted purple curves with
triangles) EUR/GBP on 4 May 2010 in (top) quote-relative and (bottom) trade-relative coordinates. The main plots
show the empirical density functions, and the inset plots show the corresponding survivor functions (i.e., 1 − F (x),
where F is the ECDF) in semi-logarithmic coordinates.

cancellations occur more frequently at relative prices that are integer multiples of 10 than they do at
neighbouring relative prices. Similarly, Figure 9 illustrates that the total depth in L(t) tends to be
larger at relative prices that are integer multiples of 10 than it does at neighbouring relative prices.

To help quantify the strength of this effect, we calculate magnitude spectra by applying the fast
Fourier Transform (FFT) to the corresponding empirical density functions. In Figure 10, we show the
magnitude spectra of limit order arrivals on 4 May 2010. The corresponding plots for cancellations and
mean depths are qualitatively similar (however, they are slightly noisier). In quote-relative coordinates,
the magnitude spectra exhibit a weak periodicity at integer multiples of 0.1 (which corresponds to a
period of 10 ticks), but they also contain several other local maxima close to these peaks. In
trade-relative coordinates, the magnitude spectra exhibit a much stronger signature of periodicity at
integer multiples of 0.1, with clear local maxima corresponding to these frequencies.

We obtain additional insights into round-number effects by calculating the mean cancellation ratio,
which we measure by rescaling the total size of cancelled active orders at a given relative price by the
corresponding mean depth (see Figure 11). The mean cancellation ratio is a useful quantity for helping
to understand order cancellations, because simply calculating the total size of active order cancellations
at a given relative price (as in Figure 8) does not take into account that the mean depth, and therefore
the mean total size of active orders that could be cancelled, varies substantially across relative prices
(see Figure 9).

In quote-relative coordinates, the mean cancellation ratios vary considerably with relative price, with
no discernible trend or pattern. However, this is unsurprising because institutions in a QCLOB are
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Figure 9. Mean depths at given (top) quote-relative and (bottom) trade-relative prices for (solid green curves
with circles) EUR/USD, (dashed orange curves with squares) GBP/USD, and (dotted purple curves with triangles)
EUR/GBP on 4 May 2010. The plots show the total absolute size of both buy and sell orders at the given relative
prices. The main plots show the empirical mean depths (in units of the base currency), and the inset plots show the
normalized empirical cumulative mean depths (i.e., the empirical cumulative mean depths expressed as a fraction of
the mean total size of all active orders at all prices).

unable to calculate quote-relative prices and therefore cannot use such information when deciding
whether to cancel an order. In trade-relative coordinates, by contrast, two interesting results emerge.
First, each of the three currency pairs’ mean cancellation ratios exhibit a strong round-number
periodicity: the mean lifetime of an active order at a trade-relative price that is an integer multiple of 5
is longer than that of an active order at a neighbouring trade-relative price. Second, aside from this
round-number effect, the mean cancellation ratios for EUR/USD and GBP/USD are approximately
constant for negative trade-relative prices and decrease for positive trade-relative prices. At all
trade-relative prices, the cancellation ratio for EUR/GBP is higher than it is for the other two currency
pairs. However, the round-number effect is particularly strong for EUR/USD, so it is difficult to discern
the variation in mean cancellation ratio across trade-relative prices.

D. Comparisons Across Trading Days

We now investigate how the distributions of order flow and LOB state vary across trading days. In
Figure 12, we show the ECDFs of limit order arrivals for EUR/USD. Each curve indicates the given
distribution for a single trading day. The results for cancellations and normalized mean depths, and the
corresponding results for the other currency pairs, are all qualitatively similar. In each case, the ECDFs
suggest that there are substantial differences across different days. On some days, the majority of order
arrivals and cancellations occur over a narrow range of small relative prices; on other days, the range of
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Figure 10. Magnitude spectra for the distributions of limit order arrivals for (solid green curves with circles)
EUR/USD, (dashed orange curves with squares) GBP/USD, and (dotted purple curves with triangles) EUR/GBP
on 4 May 2010 in (Panel A) quote-relative and (Panel B) trade-relative coordinates. We obtain the magnitudes by
calculating the absolute value of the fast Fourier Transform (FFT) of the corresponding empirical density functions
from Figure 7.

relative prices over which such activity occurs is wider, which indicates that a larger fraction of activity
occurs deeper into the global LOB.

To help quantify the differences between these daily distributions, we also calculate the distance
between a given day’s ECDF and the corresponding ECDF for the aggregate data from all other 29
days in our sample. For example, when studying EUR/USD limit order arrivals on 4 May 2010, we first
calculate the ECDF using the data for just this day (as in Figure 12) and then calculate the ECDF for
EUR/USD limit order arrivals on all other days in our sample. We write Fd(p) to denote the ECDF for
the data on day d, and we write F−d(p) to denote the ECDF for the data on all days except day d. We
then calculate the difference Fd(p)− F−d(p). In Figure 13, we show the resulting plots for limit order
arrivals. The results for cancellations and normalized mean depths are qualitatively similar. As also
illustrated in Figure 12, the distributions on individual trading days often differ substantially from the
aggregate distributions from the other trading days.

To investigate the extent to which differences in the first two moments account for the observed
differences between the daily distributions, we rescale each day’s data according to its sample mean and
standard deviation. When calculating these sample moments, we use a trimmed sample mean and
trimmed sample standard deviation to exclude all order arrivals and cancellations that occur with a
relative price of more than 1000 ticks.∗ This trimming removes a very small number of orders with
extremely large relative prices. For example, all EUR/USD trades in the data occur in the price interval
$1.10–$1.40, but some sell limit orders arrive with a price of more than $500.00. Such orders do not
seem to represent a serious intention to trade. For each of the three currency pairs, for both buy and
sell orders, and in both quote-relative and trade-relative coordinates, trimming the data in this way
removes less than 0.05% of the total order flow. We also obtain qualitatively similar results if we instead
trim all orders whose relative prices are within the the top 1 percentile of the respective distributions.

In Figure 14, we show the ECDFs of EUR/USD limit order arrivals after rescaling the data to
account for the daily differences in its first two moments. The results for the other currency pairs are
qualitatively similar. In quote-relative coordinates, the rescaling causes a reasonably strong collapse for
limit order arrivals and cancellations, but daily differences in the distributions’ upper tails prevents a
stronger collapse in this region. In trade-relative coordinates, the rescaling causes a strong collapse onto
what appears to be a single, universal curve over the whole domain. In both quote-relative and
trade-relative coordinates, the collapse for the distributions of normalized mean depths is slightly
weaker than for the order-flow distributions due to a handful of orders with extremely large relative
prices that remain active for long periods on some days.†

∗For a detailed discussion of trimmed sample moments, see Huber and Ronchetti (2009).
†To verify that such extreme-priced orders are indeed the primary reason for the weaker collapse of these distributions, we
repeated our calculations after excluding all active orders with a relative price of more than 5 standard deviations from the

mean. We found that the resulting curve collapse was similar to that for limit order arrivals and cancellations.
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Figure 11. Mean cancellation ratio (i.e., total size of cancelled active orders at a given relative price divided by the
corresponding mean depth) at given (top) quote-relative and (bottom) trade-relative prices for (solid green curves
with circles) EUR/USD, (dashed orange curves with squares) GBP/USD, and (dotted purple curves with triangles)
EUR/GBP on 4 May 2010.
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Figure 13. Distances between ECDF Fd of limit order arrivals on a given day d and ECDF F−d of limit order
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To investigate the strength of this curve collapse, we calculate the distance between a given day’s
ECDF and the corresponding ECDF for the aggregate data from all other 29 days in our sample (as in
Figure 13) after performing the rescaling to account for daily differences in the first two moments.
Specifically, for a given day d, we first rescale the data from each of the other 29 days by subtracting
each day’s sample mean and dividing by its sample standard deviation. We then aggregate the rescaled
data from these 29 days, multiply the result by the sample standard deviation on day d, and add the
sample mean on day d. Finally, we calculate this rescaled, aggregated data set’s ECDF, which we label
F̂−d, and we then calculate its distance from Fd. We perform our calculations in this way to ensure that
the domain of our distance measurements matches that of the data from day d. This enables us to
perform direct comparisons to our results for the non-rescaled data.

In Figure 15, we show the distances Fd − F̂−d for limit order arrivals; the results for cancellations and
normalized mean depths are qualitatively similar. In quote-relative coordinates, rescaling the data to
account for daily differences in the first two moments produces a considerable reduction in distances
between the daily ECDFs. This reduction is particularly strong for the days whose distributions are
furthest from the aggregate distribution across the other days (see Figure 13). In trade-relative
coordinates, the rescaling causes very strong curve collapse across the entire domain and on all days.
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Figure 15. Distances between ECDF Fd of limit order arrivals on a given day d and rescaled ECDF F̂−d of limit
order arrivals on all other days, at given (left panel) quote-relative and (right panel) trade-relative prices for (green
curves) EUR/USD, (orange curves) GBP/USD, and (purple curves) EUR/GBP. Each curve indicates the distances
for a single day d.

To quantify the strength of this curve collapse, we compute the mean ratio C of the Cramér–von
Mises (CvM) distances (Cramér 1928, Huber-Carol et al. 2012) between the distributions before and
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after applying the rescaling (see Table III).∗ We give a detailed discussion of our methodology in
Appendix B.

Coordinates Order Flow EUR/USD GBP/USD EUR/GBP

Quote relative
Limit orders 4.36 4.10 5.11
Cancellations 3.92 3.83 4.92
Mean depths 1.45 2.03 2.83

Trade relative
Limit orders 20.73 25.13 21.78
Cancellations 20.20 24.37 21.65
Mean depths 3.04 10.06 11.07

Table III. Mean CvM ratios C (see the description in the main text and in Appendix B) for limit order arrivals,
cancellations, and mean depths. Values larger than 1 indicate that rescaling each day’s data to account for

differences in its first two moments reduces the mean distance between the daily distributions. Larger values
correspond to stronger curve collapse.

In quote-relative coordinates, the reductions in CvM distance for limit orders and cancellations range
from a factor of about 4 to a factor of about 5. This indicates a moderately strong curve collapse. The
corresponding reductions for normalized mean depths are weaker because of a small number of
extreme-priced orders that remain active for long periods of time and thereby prevent stronger collapse
in the upper tails of these distributions. In trade-relative coordinates, the reductions in CvM distance
for limit order arrivals and cancellations range from a factor of about 20 to a factor of more than 25.
This indicates very strong curve collapse. Again, the corresponding reductions for normalized mean
depths are weaker (particularly for EUR/USD), but they still indicate a moderate curve collapse for
EUR/USD and a strong curve collapse for GBP/USD and EUR/GBP.

E. Models of Order Flow and LOB State

In recent years, many authors have studied simple models of order flow and LOB state to help
understand the complex dynamics that occur in financial markets (see Gould et al. (2013)). When
constructing such models, it is often desirable to incorporate simple, statistical descriptions of order
flow and LOB state that capture the salient features of real market activity. In this section, we use our
results from the previous sections to motivate two approaches to this problem in a QCLOB.

The first approach that we consider is a parametric approach. In their study of order flow on the
LSE, Mike and Farmer (2008) used a generalized t distribution to model the distributions of
quote-relative prices of arriving orders. For order flow and LOB state on Hotspot FX, we find that this
distribution provides a moderate fit in quote-relative coordinates and a strong fit in trade-relative
coordinates. Several other parametric distributions with more than four parameters (most notably, the
five-parameter logistic distribution (Gottschalk and Dunn 2005)) also fit the data well, but the
inclusion of additional parameters increases the computational complexity of the required optimization,
and could also lead to over-fitting. We therefore restrict our attention to the generalized t distribution.

In Figure 16, we show our fit of the generalized t distribution to the quote-relative and trade-relative
distributions of limit order arrivals for EUR/USD on 4 May 2010. We describe our method of fitting
the distribution in Appendix A. The results for the other currency pairs and other dates are
qualitatively similar. Although the distribution fails to capture some of the features of the order flow
that we observe on Hotspot FX (such as the tendency for orders to arrive more frequently at
round-number relative prices), the fits perform reasonably well. In quote-relative coordinates, the fits
match the approximate shape of the empirical density in the middle of the domain, but they fail to
capture the strong kurtosis of the data, and they therefore do not perform very well in the upper and
lower tails. In trade-relative coordinates, the fits perform well over the whole domain.

In trade-relative coordinates, we again find that a generalized t distribution provides a good fit to the
distribution of active order cancellations (see Figure 17 for EUR/USD on 4 May 2010; the results for
the other currency pairs and other dates are all qualitatively similar). In quote-relative coordinates, the
local maximum in active order cancellations at a quote-relative price of 0 hinders this approach because
the shape of the generalized t distribution does not capture this feature of the data. Therefore, the fits

∗We also find qualitatively similar results when using the Kolmogorov–Smirnov (KS) distance (Smirnov 1939, Wasserman
2004). There are many other possible distance measures (Deza and Deza 2006) that we could use; we choose the CvM and KS

distances because they are widely used, easy to interpret, and fast to compute.
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Figure 16. Fits of the generalized t distribution to the distribution of limit order arrivals for EUR/USD on 4 May
2010 in (top) quote-relative and (bottom) trade-relative coordinates. The main plots show (green circles) the empirical
density functions and (green curves) our fits of the generalized t distribution. In the inset, we show quantile-quantile
(Q-Q) plots of (vertical axis) the ECDFs versus (horizontal axis) our fits of the generalized t distribution. The points
indicate the 1st, 2nd, . . . , 99th percentiles of the distributions. The solid black lines indicate the diagonal. The results
for the other currency pairs are qualitatively similar.

for quote-relative cancellations are outperformed by the fits for quote-relative limit order arrivals (see
Figure 16). The results for the normalized mean depths are qualitatively similar to those for
cancellations, so we omit these plots.

The results in Figure 15 and Table III also motivate an alternative, semi-parametric approach to
modelling the distributions of order flow and LOB state. For a single trading day d, let µd and σd

denote, respectively, the mean and standard deviation of a specified property (e.g., EUR/USD limit
order arrivals in trade-relative coordinates). Given data from a set D of trading days, we rescale the
data on each day d by subtracting µd then dividing by σd, and we then aggregate the rescaled data for
all days into a single data set. To obtain the model for the distribution on another trading day d′ /∈ D,
we multiply each entry in the aggregated data set by σd′ then add µd′ .

In Figure 18, we show the result of applying this semi-parametric approach to model the
trade-relative distribution of limit order arrivals for EUR/USD on 4 May 2010. The results for
cancellations, for the other currency pairs, and for the other days in our sample are all qualitatively
similar. As illustrated by the Q-Q plot, the fit performs well over the whole domain. The corresponding
fits for normalized mean depths and for the distributions in quote-relative coordinates perform slightly
less well because of a small number of extreme-priced orders in the upper tail (see Figure 9), but given
that such activity corresponds to limit orders with very low fill probabilities, we do not regard a close fit
in this region to be as important as it is for the main body of the distribution, where the fits are strong.

In all cases, the performance of our semi-parametric method is similar to that of fitting the
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Figure 17. Fits of the generalized t distribution to the distribution of cancellations for EUR/USD on 4 May 2010
in (top) quote-relative and (bottom) trade-relative coordinates. The main plots show (green circles) the empirical
density functions and (green curves) our fits of the generalized t distribution. In the inset, we show Q-Q plots of
(vertical axis) the ECDFs versus (horizontal axis) our fits of the generalized t distribution. The points indicate the
1st, 2nd, . . . , 99th percentiles of the distributions. The solid black lines indicate the diagonal. The results for the other
currency pairs are qualitatively similar.

generalized t distribution directly to the data (see Figure 16). However, our semi-parametric approach
offers a considerable computational advantage: after computing the aggregated data set – which, given
a historical database of trading days, can be performed offline and in advance of fitting a single trading
day – performing the semi-parametric fit requires only a multiplication and an addition. By contrast,
fitting the generalized t distribution requires numerical optimization of a nonlinear objective function
(see Appendix A), which is much slower to perform.

In some applications, the simplicity of employing a well-known parametric distribution may outweigh
the possible gains of our semi-parametric approach. In others, the reduction in computational overhead
offered by our semi-parametric approach may outweigh the benefits of using a parametric distribution.
Therefore, we anticipate that both of these approaches will be useful in different contexts.

VI. Discussion

In this section, we address several interesting points raised by our results, and we compare our findings
for QCLOBs to those reported by empirical studies of centralized LOBs in order to highlight some
important differences between these two market organizations.

One important difference between QCLOBs and centralized LOBs is the shape of the distributions of
order flow. Several empirical studies of centralized LOBs have reported that the maximum limit order
arrival rate occurs at a quote-relative price of 0 (Biais et al. 1995, Bouchaud et al. 2002, Gu et al. 2008a,
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Figure 18. Semi-parametric fit of the distribution of limit order arrivals for EUR/USD on 4 May 2010 in trade-
relative coordinates. The main plot shows (green circles) the empirical density function for limit orders and (solid
green curve) the corresponding semi-parametric fit obtained by rescaling and aggregating the data from all other
days in our sample then inverting the rescaling according to the mean and standard deviation on 4 May 2010. In
the inset, we show a Q-Q plot of (vertical axis) the ECDFs versus (horizontal axis) our semi-parametric fits of the
distribution. The points indicate the 1st, 2nd, . . . , 99th percentiles of the distributions. The solid black line indicates
the diagonal. The results for cancellations, for the other currency pairs, and for the other days in our sample are all
qualitatively similar.

Hollifield et al. 2004, Mike and Farmer 2008, Potters and Bouchaud 2003), whereas the maximum limit
order arrival rate on Hotspot FX occurs at a strictly positive quote-relative price (see Figure 7). We
propose the following explanation for this observation. In a QCLOB, each institution θi sees the values
of bi(t) and ai(t), but cannot see the values of b(t) and a(t). By definition, bi(t) ≤ b(t) and ai(t) ≥ a(t),
so if each institution bases its trading decisions on bi(t) and ai(t), and if bi(t) and ai(t) both typically
reside at strictly positive quote-relative prices, then the maximum arrival rate of the aggregate limit
order flow generated by all institutions will occur at a strictly positive quote-relative price.

Similarly, several empirical studies of centralized LOBs have reported that cancellations occur most
often among active orders at b(t) and a(t), and less often among active orders deeper into the LOB
(Cont et al. 2010, Potters and Bouchaud 2003). Several authors have conjectured that the high number
of cancellations at these prices indicate that many institutions compete for priority at the best quotes,
and that the lower cancellation rates among other orders indicate that their owners aim to profit from
large price movements on longer time horizons (Challet and Stinchcombe 2001, Potters and Bouchaud
2003, Zovko and Farmer 2002). We also observe a local maximum in the distribution of cancellations at
a quote-relative price of 0 (see Figure 8), but we find the distribution’s global maximum to be strictly
positive. After rescaling to account for differences in the mean depths, we find that the quote-relative
cancellation ratios vary considerably, with no clear trend (see Figure 11). In trade-relative coordinates,
we find that the cancellation distributions closely resemble those of limit order arrivals, with a slightly
lower cancellation ratio among orders with larger trade-relative prices.

Many centralized LOBs have been reported to exhibit a “hump” shape that first increases and then
subsequently decreases away from the best quotes (Bouchaud et al. 2002, Gu et al. 2008b, Hollifield
et al. 2004, Potters and Bouchaud 2003). Roşu (2009) conjectured that such a hump represents a
trade-off between an optimism that limit orders placed far from the spread may eventually result in a
significant profit and a pessimism that such orders may never match. We also observe a hump shape in
the mean state of L(t) in both quote-relative and trade-relative coordinates (see Figure 9). For the
LOBs examined in other empirical studies, however, market orders accounted for about 10%–30% of
the total arriving order flow, and they therefore played an important role in maintaining the hump
shape of L(t) (Challet and Stinchcombe 2001, Gereben and Kiss 2010, Hasbrouck and Saar 2002, Lo
and Sapp 2010, Potters and Bouchaud 2003). On Hotspot FX, market orders constitute less than 0.05%
of the total arriving order flow (see Table I). Therefore, the hump shapes that we observe are primarily
a consequence of similar shapes in the distributions of limit order arrivals and cancellations.

Why do institutions submit so many limit orders, given that so few result in trades? We propose two
possible explanations. First, institutions may place limit orders on several different trading platforms
simultaneously to increase their chance of receiving a matching. If one such order matches, an
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institution can simply cancel the duplicates on other platforms. Cont and Kukanov (2014) recently
noted that this strategy, which they called “overbooking”, becomes more prominent as the number of
venues for a given asset increases. In some markets, overbooking exposes an institution to the risk of
receiving near-simultaneous matchings on multiple platforms, but several FX spot trading platforms
(including Hotspot FX) allow liquidity providers to apply a “last look” feature to their limit orders.
This feature enables liquidity providers to reject an incoming market order after it arrives.∗ Even
though the total volumes of trade on Hotspot FX are very large, they constitute only a small fraction of
the total volumes across all electronic trading platforms in the FX spot market (see Section III.A).
Together, the availability of alternative trading opportunities on other platforms and the protection
offered by last look against unintended matches make overbooking extremely attractive, and could
therefore result in a large volume of cancellations from institutions that adopt this strategy. Second,
many high-frequency and algorithmic trading techniques involve the submission and cancellation of
large numbers of limit orders (Biais et al. 2011, Chaboud et al. 2011, Hendershott et al. 2011, Kirilenko
et al. 2011). The recent surge in popularity of trading strategies that utilize such techniques could
account for a high percentage of the cancellations that we observe.

Another important difference between QCLOBs and centralized LOBs is the possibility for the
appearance of market configurations that would not be possible in a centralized LOB. On Hotspot FX,
we observe a negative global spread reasonably often for EUR/USD and GBP/USD (see Table II). This
observation motivates another question: What fraction of the global liquidity in L(t) can an institution
θi typically access in its local LOB Li(t)? Although the Hotspot FX data does not provide a way to
reconstruct local LOBs for specific institutions, several of our results and observations provide insight
into this question.

First, as noted above, we observe periods during which the global bid–ask spread for a given currency
pair is negative for several seconds. This suggests that among the institutions that place limit orders
close to the best quotes, there exist some pairs of institutions, θj and θk, such that no other institution
θi is able to access the limit orders posted by both θj and θk. Otherwise, θi would submit a pair of buy
and sell market orders to capitalize on the arbitrage opportunity, and would thereby widen the spread
to a non-negative size. In Section II.B, we exhibited a toy QCLOB (suggestive of a core–periphery
structure) in which negative global bid–ask spreads are caused by institutions that have relatively poor
CCLs. If an institution with only one trading partner posts a limit order that exceeds its bilateral CCL,
at least part of that order will be unseen by any other institution at all, and could in principle cause an
arbitrarily large negative bid–ask spread.

Second, we also observe surprising results when studying selective liquidity-taking on Hotspot FX
(see Figure 4). Institutions appear to condition their market order sizes on the depth available when
this depth is small, but they appear not to do so when this depth is large. One possible explanation is
that when an institution θi seeks to submit a buy (respectively, sell) market order, if the total depth of
active orders at ai(t) (respectively, bi(t)) is larger than θi’s desired market order size, then it may no
longer be necessary for the institution to condition its order size according to the available liquidity.
However, in a similar study of selective liquidity-taking on the LSE (which operates as a centralized
LOB), Farmer et al. (2004) reported the approximately linear relationship that we observe for smaller
queue lengths to persist across the whole domain (i.e., even when the queue length is very large). An
alternative explanation is that the effect that we observe is a consequence of the CCLs in a QCLOB,
and specifically that some institutions are only able to access a relatively small fraction of the active
orders at a given price in the global LOB. When the depth at ai(t) (respectively, bi(t)) is small, it is
likely to consist of a single active order. In this scenario, the linear relationship that we observe for
small queue lengths could be caused by θi conditioning its market order size according to the size of
this single active order. When the depth at ai(t) (respectively, bi(t)) is larger, however, it is more likely
to consist of several different active orders, each with a different owner. Because the Hotspot FX data
describes the global LOB L(t), we are able to see all such orders at the given price. However, a given
institution θi that trades on the platform can only see the subset of these orders that are owned by
other institutions with whom it has sufficient CCLs. Therefore, θi may only see a small subset of the
liquidity that is available globally, and it may therefore condition its market order size according to the
depth that it sees.

Third, the ratio of the mean total size of market orders on a single day to the mean total size of
active orders (which is often used as a simple measure of liquidity) is much smaller on Hotspot FX than
has been reported by Wyart et al. (2008) for the LSE and Paris Stock Exchange, which operate as
centralized LOBs. Specifically, Wyart et al. (2008) reported ratios in the range 100–1000 for the stocks
that they studied, and they argued that this provides strong evidence that available liquidity (in the
form of limit orders) is generally in short supply. On Hotspot FX, the same ratios (see Table I) vary

∗For a detailed discussion of last look, see Cartea and Jaimungal (2015).
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between roughly 2 (for EUR/GBP) and roughly 10 (for EUR/USD). One simple explanation for this
result is that liquidity is much more plentiful on Hotspot FX than is the case in other markets.
Although this explanation is somewhat plausible, it seems unrealistic that the corresponding results for
the different markets should differ by a factor of 50 or more. In a QCLOB, the appropriate quantity to
assess the liquidity available to a given institution θi is not the mean total size of all active orders in
the global LOB L(t), but rather the mean total size of active orders in θi’s local LOB Li(t). If the
fraction of liquidity from L(t) available in Li(t) is also small, then the corresponding ratio of the mean
total size of market orders on a single day to the mean total size of active orders available to θi could
be similar to the range reported by Wyart et al. (2008) for centralized LOBs.

Our results suggest that institutions monitor Li(t) carefully when deciding how to act. For example,
we observe few market orders that match at several different prices (see Table I). This suggests that
many institutions implement selective liquidity-taking strategies by monitoring Li(t) and only
submitting market orders with a size smaller than the depth at bi(t) or ai(t). Correspondingly, we find
that the mean size of market orders is less than half of the mean size of limit orders (see Table I).

Our results suggest that trade-relative coordinates provide a useful perspective for studying
QCLOBs. Naturally, there are some weaknesses with this approach: For example, an institution θi may
not regard the most recent trade prices as particularly important if they deviate significantly from its
local quotes bi(t) and ai(t). Moreover, the mean inter-arrival time for EUR/GBP market orders is more
than 1 minute (see Table I), so the values of B(t) and A(t) update relatively infrequently, yet our
results suggest that some institutions act extremely quickly to capitalize on possible arbitrage
opportunities that arise in their local LOB Li(t). Together, these results suggests that institutions may
regard the information in their local LOB to be more important when making quick-fire trading
decisions on short timescales of seconds or milliseconds, but may regard the values of B(t) and A(t) to
be more important when making less rapid trading decisions on longer time scales.

The slow updating of B(t) and A(t) may also be regarded as a benefit of trade-relative coordinates,
because it ensures that price measurements are stable over time. The rise in popularity of electronic
trading has led to a sharp increase in the frequency of order arrivals near the best quotes (Biais et al.
2011, Chaboud et al. 2011, Cont 2011, Hendershott et al. 2011, Kirilenko et al. 2011), which cause the
values of b(t) and a(t) — and therefore the quote-relative prices of all orders — to fluctuate rapidly. By
contrast, trade-relative prices change only when a trade occurs, and they consequently avoid the
difficulties caused by the extremely fast update frequency of the best quotes.

The strong round-number effects that we observe in the trade-relative distributions (see Figures 7, 8,
9, and 11) suggest that institutions do indeed calculate and consider trade-relative prices. In centralized
LOBs, quote-relative distributions often contain strong round-number periodicities at integer multiples
of 10 ticks (Challet and Stinchcombe 2001, Gu et al. 2008b, Mu et al. 2009, Zhao 2010). We find
relatively weak evidence for this behaviour on Hotspot FX (see Figure 10). The strong periodicities
that we observe in trade-relative coordinates are extremely unlikely to emerge by chance, so it seems
that institutions regard B(t) and A(t) as important sources of information when deciding how to act.

In both quote-relative and trade-relative coordinates, the distributions of limit order arrivals,
cancellations, and normalized mean depths on Hotspot FX exhibit considerable variation across
different trading days (see Figure 12). In all cases, however, rescaling the data to account for differences
in the first two moments significantly reduces the mean pairwise CvM distance between daily
distributions (see Figure 14 and Table III). In trade-relative coordinates, the resulting curve collapse for
limit order arrivals and cancellations is particularly strong. Given the turbulent macroeconomic activity
that occurred during this period, such strong curve collapse is surprising, because it indicates that the
first two moments provide significant explanatory power for daily order flow and highlights that the vast
majority of daily variations in order flow appear to be linear transformations of a single, universal curve.

VII. Conclusions and Outlook

During the past decade, a rich and diverse literature has helped to illuminate many important aspects
of trading via LOBs. To date, however, almost all work in this area has addressed only centralized
LOBs, in which all institutions can trade with all others. In this paper, we have provided a detailed
description of an alternative LOB configuration, which we call a QCLOB, and performed an empirical
analysis of a recent, high-quality data set from a large electronic trading platform, Hotspot FX, which
utilizes this mechanism to facilitate trade.

Our results reveal some important differences between QCLOBs and centralized LOBs. For example,
we observed many instances in the Hotspot FX data where the global bid-ask spread was negative,
whereas this is not possible in a centralized LOB. We also observed differences between the
distributions of order flow and LOB state on Hotspot FX and the corresponding distributions reported
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by empirical studies of centralized LOB. These differences underline the need for detailed investigations
of other widely used market organizations to complement the sizeable literature on centralized LOBs.

Our use of trade-relative coordinates illuminated several interesting properties of order flow and LOB
state that are not apparent when measuring prices relative to the prevailing quotes, as is common when
studying centralized LOBs. The strong round-number effects that we observed in trade-relative
coordinates suggest that institutions trading on Hotspot FX regard the most recent trade prices as an
important source of information when deciding how to act. Although our use of trade-relative
coordinates was motivated by the structure of a QCLOB, we conjecture that this coordinate frame may
also provide useful insight into centralized LOBs. It would be interesting to perform an empirical
analysis of a centralized LOB in trade-relative coordinates to facilitate comparisons with our findings.
To our knowledge, no such empirical studies have yet been conducted. We therefore believe this to be
an interesting avenue for future research.

In a recent study of the LSE, Axioglou and Skouras (2011) conjectured that the statistical properties
of financial markets change every day. At present, however, many of the most widely discussed LOB
models operate under the assumption that order flow is governed by stochastic processes with fixed rate
parameters (Challet and Stinchcombe 2001, Cont et al. 2010, Farmer et al. 2005, Mike and Farmer
2008, Smith et al. 2003, Tóth et al. 2011). The empirical verification of such models has typically
consisted of comparing their output to long-run statistical averages from large data sets. Our results,
together with those of Axioglou and Skouras (2011), bring into question the usefulness of using long-run
statistical averages to forecast activity on a specific day. It would be interesting to study the
performance of several existing LOB models to assess their performance on shorter timescales. Given
that regulators require many institutions to make risk calculations on a daily basis, this is an important
task for future research.

Finally, we note that our statistical analysis mainly examined aggregate order flow and the global
LOB L(t). An interesting challenge for future research will be to gain a deeper understanding of the
subset of liquidity in L(t) that individual institutions can access in their local LOBs. There are several
aspects to this question – including understanding the structure of the network of CCLs ci,j between
individual institutions, understanding how Li(t) varies across different institutions, and assessing how
the restriction of trading opportunities to institutions with sufficient CCLs impacts price formation and
market stability. We aim to address these, and many other related questions, in our forthcoming work.

Appendix A. Fitting the Generalized t Distribution

Let Z be a random variable from the standard normal distribution, and let V be an independent
random variable from the chi-squared distribution with ν degrees of freedom. The random variable

T = σ
Z + ξ√
V/ν

+ µ (A1)

then follows a generalized t distribution. The parameters µ, σ, and ξ extend the classical Student’s t
distribution by providing explicit control over the distribution’s mean, variance, and skewness,
respectively (Gosset 1908).

For each day d ∈ {1, 2, . . . , 30}, we fit the generalized t distribution to a given property of the
Hotspot FX data (e.g., EUR/USD limit order arrivals in trade-relative coordinates) by minimizing the
Cramér–von Mises (CvM) distance (Cramér 1928)

C =

∫
p

[Fd(p)− F (p;µ, σ, ξ, ν)]2 dF (p;µ, σ, ξ, ν) (A2)

between the ECDF Fd of the given property on day d and the cumulative density function F of the
generalized t distribution with parameters µ, σ, ξ, and ν. We use Newton’s method (Dennis and
Schnabel 1983) to optimize the objective function in Equation (A2) over these parameters. On a
standard desktop computer with a 2GHz processor and 8GB RAM, this process requires approximately
1–2 minutes of computation to fit the distribution of a given property for a given currency pair on a
given day.

Fitting a distribution by minimizing the CvM distance is equivalent to minimizing a least-squares
objective function that assigns more weight to the regions of the distribution with greater density. It is
also possible to fit the generalized t distribution via moment-matching (Hall 2005) or
maximum-likelihood (Casella and Berger 2001) techniques, but the resulting estimates do not perform
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as well due to the existence of a handful of orders with extremely large relative prices that strongly
impact the sample moments and maximum-likelihood estimates.

Appendix B. Quantifying the Strength of Curve Collapse

To quantify the strength of curve collapse from rescaling each day’s data, we calculate the mean of the
ratio of CvM distances (see Equation (A2)) between the ECDFs of a chosen property on a given pair of
trading days before and after applying the rescaling. More precisely, we calculate

C =
1

30× 29

∑
d1,d2
d1 6=d2

C
(1)
d1,d2

C
(2)
d1,d2

, (B1)

where C
(1)
d1,d2

denotes the CvM distance between the ECDFs of a chosen property (e.g., EUR/USD limit

order arrivals in quote-relative coordinates) on days d1 and d2, and C
(2)
d1,d2

denotes the CvM distance
between the same ECDFs after rescaling the data on day d2 by subtracting the mean for day d2 and
dividing by the standard deviation for day d2, then multiplying the result by the standard deviation for
day d1, and finally adding the mean for day d1. Larger values of C correspond to stronger collapse of
the ECDFs. Note that we do not rescale the data from both days to measure the distance between the
rescaled distributions directly, but we instead apply the inverse rescaling from day d1 to the rescaled
data from day d2. This ensures that we measure our results in units of price for both C

(1)
d1,d2

and C
(2)
d1,d2

,

rather than using units of rescaled price for C
(2)
d1,d2

.
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