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Superdiffusive transport and energy localization in disordered granular crystals
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We study the spreading of initially localized excitations in one-dimensional disordered granular crystals.
We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to differ
fundamentally from localization in linear and weakly nonlinear systems. We conduct a thorough comparison
of wave dynamics in chains with three different types of disorder—an uncorrelated (Anderson-like) disorder
and two types of correlated disorders (which are produced by random dimer arrangements)—and for two types
of initial conditions (displacement excitations and velocity excitations). We find for strongly precompressed
(i.e., weakly nonlinear) chains that the dynamics depend strongly on the type of initial condition. In particular,
for displacement excitations, the long-time asymptotic behavior of the second moment m̃2 of the energy has
oscillations that depend on the type of disorder, with a complex trend that differs markedly from a power law and
which is particularly evident for an Anderson-like disorder. By contrast, for velocity excitations, we find that a
standard scaling m̃2 ∼ tγ (for some constant γ ) applies for all three types of disorder. For weakly precompressed
(i.e., strongly nonlinear) chains, m̃2 and the inverse participation ratio P −1 satisfy scaling relations m̃2 ∼ tγ

and P −1 ∼ t−η, and the dynamics is superdiffusive for all of the cases that we consider. Additionally, when
precompression is strong, the inverse participation ratio decreases slowly (with η < 0.1) for all three types of
disorder, and the dynamics leads to a partial localization around the core and the leading edge of a propagating
wave packet. For an Anderson-like disorder, displacement perturbations lead to localization of energy primarily
in the core, and velocity perturbations cause the energy to be divided between the core and the leading edge. This
localization phenomenon does not occur in the sonic-vacuum regime, which yields the surprising result that the
energy is no longer contained in strongly nonlinear waves but instead is spread across many sites. In this regime,
the exponents are very similar (roughly γ ≈ 1.7 and η ≈ 1) for all three types of disorder and for both types of
initial conditions.

DOI: 10.1103/PhysRevE.93.022902

I. INTRODUCTION

The study of wave propagation in disordered lattice and
continuum systems has been an important and popular research
theme during the past several decades. Some of the most promi-
nent recent studies on these topics [1–8] have generalized to
weakly nonlinear settings the ideas of P. W. Anderson, who
showed theoretically that the diffusion of waves is curtailed
in linear random media (where the randomness arises from
defects or impurities) [9,10]. This interplay between disorder
and nonlinearity—which often arises in the presence of lattice
discreteness—is of considerable interest to a vast array of
ongoing studies, as is evidenced by recent reviews [11,12]
(see also the numerous references therein). The set of different
physical scenarios in which Anderson localization has been
investigated is staggering: it ranges all the way from electro-
magnetism [1] and acoustics [7] to subjects such as quantum
chromodynamics [13].

As in the above studies, we are interested in waves in
disordered media, but we depart from earlier work in a very
important way: we seek to explore order–disorder transitions
with a particular emphasis on strongly nonlinear media. This
contrasts sharply with the linear and weakly nonlinear media
in which Anderson-like models have been studied tradi-
tionally [11,12]. Our approach is motivated predominantly
by the strong (and increasing) interest in granular crystals

[14–17], which (as we discuss below) are very important
both for the study of fundamental nonlinear phenomena
and for numerous engineering applications. The examination
of disordered systems in general—and of Anderson-like
phenomena in particular—is a key challenge in the study of
nonlinear chains [18–27].

One-dimensional (1D) granular crystals, which consist
of closely packed chains of elastically colliding particles,
are a paradigmatic system for the investigation of chains
of strongly nonlinear oscillators. Their strongly nonlinear
dynamic response has inspired numerous studies of the
interplay between nonlinearity and discreteness [14–16]. One
can construct granular crystals using materials of numerous
types and sizes, and their properties are thus extremely tunable,
tractable, and flexible [14,15,28,29]. This also makes them
very well suited for investigating the effects of structural
and material heterogeneities on nonlinear wave dynamics.
Studies have examined the role of defects [30–33] (includ-
ing in experimental settings [34]), interfaces between two
different types of particles [35,36], decorated and/or tapered
chains [37,38], chains of diatomic and triatomic units [39–44],
and quasiperiodic and random configurations [45–47]. The
tunability of granular crystals is valuable not only for
fundamental studies of their underlying physics but also
in potential engineering applications—including shock and
energy absorbing layers [36,47,48], sound focusing devices
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and delay lines [49], actuators [50], vibration absorption
layers [40], sound scramblers [35,51], and acoustic switches
and logic gates [52]. Because one can model granular chains
as a type of Fermi–Pasta–Ulam (FPU) lattice, they have
also been employed in studies of phenomena such as energy
equipartition (see, e.g., Refs. [53,54]).

As was illustrated recently, localization in strongly non-
linear systems can have a fundamentally different character
from localization in linear and weakly nonlinear systems [21].
Importantly, one can use the setting of granular crystals to
explore a regime (the “sonic vacuum”) in which no linear
counterpart exists [14]. It is our goal in the present paper to
investigate this regime and nearby regimes in detail and to
conduct what we believe is the first systematic study of the
differences between localization is linear, weakly nonlinear,
and strongly nonlinear systems. There are numerous types of
disorder in a granular chain, and—as we demonstrate in this
paper—it matters whether the disorder is uncorrelated (as in
the original Anderson model) or correlated. Moreover, there
are multiple types of possible correlations in disordered ar-
rangements, and we illustrate using randomized arrangements
of dimers (see Ref. [21] for an example arrangement that was
studied in the context of granular crystals) that seemingly small
differences in disorder can have a large impact on the dynamics
of wave propagation in strongly nonlinear systems. Moreover,
because granular chains are a type of FPU system [55]—so
nonlinearities arise from the potentials that connect adjacent
nodes of a lattice—they differ fundamentally from the non-
linear Schrödinger (NLS) and Klein–Gordon (KG) lattices
in which disordered configurations have been extensively
studied recently [11,12]. In fact, as we will demonstrate in
the present paper, this difference leads to much more rapid
transport in disordered granular chains than what occurs in
either NLS or KG lattices. This fundamental difference is
one of the main findings of our work: strongly nonlinear,
disordered granular crystals include regimes with superdif-
fusive transport. See also the complementary study of energy
transport properties in disordered granular crystals in Ref. [24]
(which became available while the present article was under
review).

Much of the significant volume of work involving nonlinear
disordered lattices has focused on the effect of weak nonlin-
earity on the well-established Anderson model [11,12,56–60].
One of the most remarkable findings in this body of work is
the fact that a small amount of nonlinearity in a disordered
lattice can induce interaction between Anderson modes, which
eventually can lead to a subdiffusive delocalization process.
Interestingly, this phenomenon emerges in a highly nontrivial
way: even when both disorder and nonlinearity separately
tend to localize energy, they also “interfere” with each other’s
transport-generation processes and may thereby destroy the
Anderson-localization mechanism. In the context of strongly
nonlinear disordered lattices, a noteworthy recent effort is that
of Ref. [61]. The authors of that paper examined disordered
lattices—where disorder is introduced via either a linear or
a nonlinear on-site term—in which the coupling leads to a
strongly nonlinear setting. They found that initially localized
wave packets tend to spread in a subdiffusive way. We believe
that the subdiffusive behavior in their setting is a consequence
of the local potential, because (as we demonstrate in our

paper) the dynamics tends to be superdiffusive when only
strongly nonlinear interactions are present.1

The remainder of our paper is organized as follows. In
Sec. II, we describe the fundamental equations that charac-
terize a disordered granular chain with Hertzian interactions,
and we examine different approximations that depend on
the amount of precompression. In Sec. III, we present
three different types of disorder and study their correlation
properties, which will prove to be of crucial importance for
the qualitatively different transport dynamics that can occur.
In Sec. IV, we briefly discuss the influence of impurities in
homogeneous chains on the modes that emerge and on the
dynamics more generally. In Sec. V, we present our com-
putational results. We describe the fundamental differences
between the different types of disorder, and we discuss the
properties of the linear spectrum and the different types of
impurity modes that appear for each type of disorder. We also
study the transport and localization properties for both linear
and nonlinear waves for each type of disorder. In the strongly
nonlinear regime, we demonstrate with numerical simulations
that the energy is not solely localized in the form of traveling
waves. Additionally, for strongly precompressed chains with
initially localized displacement excitations, we demonstrate
that the second moment exhibits a complicated trend that
differs markedly from a power law. By contrast, we observe
superdiffusive transport for all of the other configurations and
initial conditions. We summarize our conclusions and discuss
future challenges in Sec. VI.

II. DISORDERED GRANULAR CRYSTALS

A. Equations of motion

One can describe a 1D crystal of N spherical particles
as a chain of nonlinear coupled oscillators with Hertzian
interactions between each pair of particles [14–16]. Hertzian
forces are applicable to a wide variety of materials [63]
(including steel, aluminum, brass, bronze, and many more).
The equations of motion in this setting are

ün = An

mn

[�n+un−1−un]3/2
+ − An+1

mn

[�n+1+un − un+1]3/2
+ ,

(1)

where un is the displacement of the nth particle (where n ∈
{1,2,. . .,N}) measured from its equilibrium position in the
initially compressed chain, mn is the mass of the nth particle,
and

�n =
(

F0

An

)2/3

(2)

1We note in passing that superdiffusive behavior was reported very
recently in a “pseudo-two-dimensional” random dimer [62]. Both
the setting and qualitative behavior of the system in Ref. [62] are
different from ours in fundamental ways. The authors of Ref. [62]
considered purely linear dynamics, whereas we consider both
linear and (especially) nonlinear dynamics. Additionally, they found
superdiffusive transport for lattices with short-range correlations but
subdiffusive transport for uncorrelated disorder (such as the type in
the Anderson model), whereas we find superdiffusive transport in
lattices with either correlated or uncorrelated disorder.
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is a static displacement that arises from the static load F0 =
const. The parameter An is given by

An =
4En−1En

(
Rn−1Rn

Rn−1+Rn

)1/2

3
[
En

(
1 − ν2

n−1

) + En−1
(
1 − ν2

n

)] , (3)

where the elastic modulus of the nth particle is En, the Poisson
ratio of the nth particle is νn, and the radius of the nth particle is
Rn. A Hertzian interaction between a pair of particles occurs
only when they are in contact, so each particle is affected
directly only by its nearest neighbors and experiences a force
from a neighbor only when it overlaps with it. This yields the
bracket

[x]+ =
{
x , if x > 0
0 , if x � 0 (4)

in Eq. (1). The exponent 3/2 and prefactor An in Eq. (1) are
consequences of the elastic nature of the particle interactions
and of the particle geometry [14,15]. Other particle shapes,
such as ellipsoids [64] and cylinders [65], can also exhibit
Hertzian interactions.

The boundary conditions of Eq. (1) are given by considering
u0 = uN+1 = 0 and R0,RN+1 → ∞. If one of the radii in
Eq. (3) is infinite, then one obtains the interaction coefficient
between an elastic plate and an elastic sphere:

A1,N+1 = 4EpE1,NR
1/2
1,N

3
[
E1,N

(
1 − ν2

p

) + Ep

(
1 − ν2

1,N

)] , (5)

where Ep is the elastic modulus and νp is the Poisson ratio
of the elastic plates at the boundaries, and the suffixes 1 and
N + 1, respectively, indicate the left and right boundaries of
the chain. Consequently, the equations of motion for spheres
1 and N are

ü1 = A1

m1
[�1 − u1]3/2

+ − A2

m1
[�2 + u1 − u2]3/2

+ , (6)

üN = AN

mN

[�N + uN−1 − uN ]3/2
+ − AN+1

mN

[�N+1 + uN ]3/2
+ .

(7)

Equation (1) does not include effects from restitution or
dissipation, so we assume that we can neglect energy that dis-
sipates into internal degrees of freedom. Most investigations of
granular crystals make these assumptions, and a conservative
(and Hamiltonian) description of granular crystals has been
extremely useful for numerous comparisons of theoretical
and computational results to laboratory experiments [14,15],
including in the presence of disorder [21,47]. The proper
physical form of dissipation is not known and is still a subject
of ongoing debate; see Refs. [15,66–68] for recent discussions
of dissipative forces in granular crystals. Note additionally
that we will not worry about incorporating proper restitution
forces, as we conduct our simulations in domains of sizes that
ensure that the waves that we examine do not reach the domain
boundary during the reported time horizon.

Even for homogeneous chains, Eq. (1) includes several
interesting features that are not present in other lattice
models (such as the well-known NLS and KG lattices [69]).
From a structural perspective, the present model is a type
of FPU lattice [55]. It exhibits important differences from

NLS and KG lattices, which typically include both a linear
coupling and an on-site nonlinearity. However, there are also
respects in which granular chains differ fundamentally from
traditional FPU models [15]. In particular, when there is
no precompression (which is known as the “sonic-vacuum
regime” [14]), the sound speed goes to 0 and the system
becomes purely nonlinear (i.e., linearizing it simply yields
0). This allows solutions like compactons to occur in certain
partial differential equation (PDE) approximations of Eq. (1).
Additionally, because compactons are not exact solutions of
the original granular chain (which has a fundamentally discrete
nature), traveling waves in a strongly nonlinear regime exhibit
a superexponential decay at their edges instead of having
compact support [70–72]. In the presence of precompression,
which yields a linear term in Eq. (1), Refs. [73,74] illustrated
both analytically and numerically that energy-localizing states
can arise in the form of dark breathers.

B. Precompression regimes

By changing the magnitude of the static load F0 compared
to the relative displacements |un − un+1| between particles,
one can tune the strength of the nonlinearity in Eq. (1). To do
this, we approximate the force using a power-series expansion,
which is known to be suitable for a strongly compressed or
weakly nonlinear chain [14]. We thereby distinguish three
different regimes, which we now discuss.

1. “Linear” regime (�n � |un−1 − un|)
In this regime, we linearize Eq. (1) about the equilibrium

state in the presence of precompression to obtain

mnün = Bnun−1 + Bn+1un+1 − (Bn + Bn+1)un , (8)

where

Bn = 3
2An�

1/2
n = 3

2A2/3
n F

1/3
0 ∝ R1/3. (9)

Note that we have neglected the higher-order terms (even the
quadratic ones) in the expansion for very weak strains (i.e.,
small relative displacements). This linear limit corresponds
to a chain of coupled harmonic oscillators. We represent the
solutions to Eq. (8) as complex wave functions to obtain a
complete set of eigenfunctions of the form un = vne

iωt , where
ω is the eigenfrequency. In the homogeneous case (i.e., for
Bn = B = const for all n) we obtain plane waves vn = eikn,
and the dispersion relation

ω = 2πf =
√

2B

m
[1 − cos(k)] , (10)

where m is the mass of a particle, gives a single acoustic
branch. The frequency satisfies the bounds ω � ω0 = 0 and
ω � � = √

4B/m, so the group velocity in this homogeneous
case is

vg = ∂ω

∂k
=

√
B

2m

sin(k)√
1 − cos(k)

. (11)

The maximum of the group velocity is vm
g = √

B/m = �/2,
and it occurs when k = 0. Using vm

g , we are able to write
expressions for several quantities. For instance, given an
initially localized excitation un(0) = δn,N/2, wave spreading
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takes place within a cone {N/2 ± vm
g t,t}. Therefore, in our

simulations, we consider systems that have at least 	�T 

spheres, where T is the integration time, and we recall
that the ceiling function is 	x
 = min{k ∈ Z|k � x}. This
consideration allows us to avoid boundary effects when we
study dynamics.

For an arbitrary arrangement of spheres in a granular chain,
the eigenvalue problem associated with Eq. (8) takes the
generic form

λv = �v , (12)

where λ = −ω2 is the eigenvalue and � = M−1B, where
Mij = miδi,j are the elements of the diagonal matrix M of
masses and

Bij = Bi+1δi,j−1 + Biδi,j+1 − (Bi + Bi+1)δi,j (13)

are the elements of a tridiagonal symmetric matrix. Note that
we have used fixed boundaries at both ends of the chain [see
Eqs. (6) and (7)]. For a disordered chain (see Sec. III for the
different types of disorder that we study), both matrices have
random entries. Consequently, � is an asymmetric tridiagonal
matrix with random entries.

2. “Weakly nonlinear” regime (�n > |un−1 − un|)
An intermediate regime between Eqs. (1) and (8) is

described by

mnün =
3∑

i=1

[
B(i)

n (un−1 − un)i − B
(i)
n+1(un − un+1)i

]
, (14)

where

B(1)
n = Bn ∝ R1/3 ,

B(2)
n = 3

8A4/3
n F

−1/3
0 ∝ R2/3 , (15)

B(3)
n = − 3

48A2
nF

−1
0 ∝ R .

This amounts to a particular case of the FPU model [55]
that includes the “α” (quadratic) and “β” (cubic) terms from
two of the forms of nonlinearity in the original model. One
interesting feature of this regime is that small-amplitude
intrinsic localized modes (ILMs, which are also often called
“discrete breathers”) [69,75] of the bright type (on top of a
vanishing background) do not exist2 in the absence of disorder
because of the specific relations between the parameters B(1)

n ,
B(2)

n , and B(3)
n in Eq. (15). This phenomenon was discussed

in Ref. [33] based on the consideration of modulational
instabilities (MIs) of linear waves due to nonlinearity. An MI is
a generic mechanism to generate localized waves from linear
waves at band edges of a linear spectrum. However, to have
an MI, it is necessary that 3B(1)

n B(3)
n − 4B(2)

n > 0, which is
not satisfied in the present case. Nevertheless, introducing
impurities in a granular chain leads to the emergence of
breatherlike “defect” solutions that bifurcate from linear
impurity modes [33].

2However, from the linear limit, one can obtain dark breathers on
top of a nonvanishing background [73,74].

3. “Strongly nonlinear” regime (�n � |un−1 − un|)
When precompression is sufficiently weak in comparison

to the strains (and for vanishing precompression), one can no
longer approximate Eq. (1) by truncating a Taylor expansion.
In general, for materials in which the sound speed goes to 0
or remains very small, it is not reasonable to use a standard
linear approximation as a starting point for a perturbative
analysis [14]. This is particularly interesting from the point
of view of transport and localization in disordered nonlinear
systems, because almost all of the research thus far has focused
on the influence of nonlinearity in disordered systems in which
the linear spectrum is initially either full of or consists typically
of localized states [11,12]. Consequently, understanding the
interplay between disorder and nonlinearity in the sonic-
vacuum limit brings new theoretical challenges, and—as we
shall see—it also produces a fundamentally distinct form of
dynamics (see also Ref. [24]).

As a starting point towards developing a theory for transport
and localization in granular crystals, we nevertheless start by
focusing our efforts in a standard way by extending the linear
theory to the nonlinear regime.

C. Physical parameters

We take advantage of the numerous experimental inves-
tigations of granular crystals [15] to incorporate physically
meaningful values for the parameters in Eq. (1). We suppose
that all of the spheres are made of steel, and we use the
parameters given in Ref. [33] unless we specify otherwise.
In particular, the elastic modulus is E = 193 GPa, the Poisson
ratio is ν = 0.3, and the density is 8027.17 kg/m3. We also
suppose that the elastic plates at the boundaries have the
same mechanical properties as the spheres, so ν1 = νN = ν

and E1 = EN = E. In this paper, we examine disordered
bidisperse granular chains, and we choose the radii of the
spheres to be R1 = 4.76 mm and R2 = ξR1, where ξ ∈
(0,1]. Note that ξ = 1 reduces the system to the case of a
homogeneous chain. To explore different nonlinear regimes,
we use values of F0 between 0 N and 10 N. As we discussed
in Sec. II B, the amount of nonlinearity in the dynamics
of each bead depends on the ratio εn = |un−1 − un|/�n. In
Table I, we show the initial value of the ratio ε = εn0 for a
homogeneous chain with an initially localized displacement
excitation {un(0),u̇n(0)} = {α δn,n0 ,0} with α = 10−1 μm.

TABLE I. Calculations of the ratio ε = |un0−1 − un0 |/�n0 for
an initial displacement excitation {un(0),u̇n(0)} = {α δn,n0 ,0} in a
homogeneous chain. We use the value α = 10−1 μm.

F0 (N) ε

10 0.008
1 0.362
0.5 0.575
0.1 1.682
0.01 7.807
0 ∞
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FIG. 1. Examples of different types of disordered chains. A:
Anderson model; RDM1: random dimer model 1; and RDM2: random
dimer model 2. The vertical dashed lines are visual guides to separate
adjacent dimers from each other.

III. TYPES OF DISORDERED CONFIGURATIONS

In this article, we study three qualitatively different con-
figurations of disordered granular chains: an Anderson-like
configuration in which adjacent sites are uncorrelated and
two types of random dimer models (RDMs) that include
correlations across sites.

We consider bidisperse granular chains, so each chain
consists of some configuration that includes two possible
types of spheres: type 1 has radius R1, and type 2 has radius
R2 = ξR1, where ξ ∈ (0,1]. We also suppose that all of the
spheres are made from the same material, so their elastic
properties are the same. That is, E1 = E2 = E, ν1 = ν2 = ν,
and the density is the same. However, their masses m1 and m2

are different. Note that ξ = 1 reduces the system to the case
of a homogeneous chain. We consider three different ways of
distributing the particles to produce disorder: (1) an Anderson-
like distribution that produces an uncorrelated disorder, (2) a
random dimer distribution that follows the choice in Ref. [76]
(RDM1), and (3) a random dimer distribution that follows
the choice in Ref. [21] (RDM2). We show the three types of
disorder in Fig. 1, and we note that both RDM1 and RDM2
are correlated types of disorder. See Ref. [77] for a review of
localization in systems with correlated disorder.

Specifically, we construct our three families of disordered
chains as follows:

(1) Anderson (A): For each of the N particles in a chain, we
choose radius R1 with a probability of q ∈ [0,1] and radius R2

with a probability of 1 − q. (Importantly, note that the choice
for each particle is independent of all other particles.)

(2) Random dimer model 1 (RDM1): For each of the N/2
dimers in an N -particle chain, we choose the configuration
R1R1 (i.e., both particles have a radius of R1) with a probability
of q ∈ [0,1] and the configuration R2R2 with a probability of
1 − q. (In the literature, this family specifically is what is
usually meant by the term “random dimer model” [76].)

(3) Random dimer model 2 (RDM2): For each of the N/2
dimers in an N -particle chain, we choose the configuration
R1R2 with a probability of q ∈ [0,1] and the configuration
R2R1 with a probability of 1 − q. (That is, we are choosing
the orientation of the dimer, which we imagine to be a spin
with two possible states [21].)

Because these granular chains include two types of spheres
(and are oriented horizontally, so we can ignore gravity), there
are three types of sphere–sphere interactions:

(a) A11 = E
√

2R1

3(1−ν2) (between two spheres of radius R1),

(b) A22 = E
√

2R2

3(1−ν2) (between two spheres of radius R2),

(c) A12 = 2E
3(1−ν2) (

R1R2
R1+R2

)
1/2

(between spheres of different
radii).

One can characterize the disorder using two parameters.
The parameter q defines the extent of disorder. Thus, q =
0 and q = 1 are fully ordered cases, and q = 1/2 is the
most disordered case.3 The other parameter is ξ , which is
deterministic and defines the strength of the disorder by
affecting the inertia (via the mass) of the particles and the
magnitude of the interaction coefficients A12 and A22 (via the
radius R2 = ξR1).

It is worth remarking that for the original Anderson configu-
ration, the radius of the nth particle is Rn = R0 + δRn, where
{δRn} corresponds to some uncorrelated random sequence,
δRn ∈ (−W,W ), and W is the disorder strength. The “Ander-
son” model that we study (which is more precisely designated
as “Anderson-like”) is an example of a “random binary al-
loy” [78] that has the same correlation properties as the original
Anderson model. In the most general case, a random binary
alloy can also include correlations due to dimer terms like
the ones in RDM1 and RDM2 [78]. We study the correlation
properties for each type of disorder in the next subsection.

A. Correlations

Let v0 be a random vector generated by the rules that we
described above. Without loss of generality, we label each
entry v0,i of v0 as 0 or 1. Thus, the Anderson chain has vector
components of

v0,i =
{

0 , with probability q

1 , with probability (1 − q) , (16)

where i ∈ {1,2, . . . ,N}. For the dimer models,

v0,i =
{
c0 , with probability q

c1 , with probability (1 − q) , (17)

where i ∈ {1,2, . . . ,N/2}, {c0,c1} = {0 0,1 1} for RDM1, and
{c0,c1} = {0 1,1 0} for RDM2.

Let vn be the n-cyclic permutation of v0 that satisfies

vn,i =
{
v0,i−n , if i > n ,

v0,N−n+i , if i � n .
(18)

To characterize the amount of correlation in each case, we
calculate the Pearson correlation coefficient

ρn,n′ = cov(vn,vn′ )

σvn
σvn′

, (19)

3Note, however, that there are specific chain configurations — such
as a periodic sequence of dimers with alternating spin orientations
in RDM2 — for which q = 1/2 gives maximal order with respect to
higher-order correlations. Upon averaging over many configurations
with the same value of q, such situations contribute little to the
expected dynamics due to their low probability of occurrence.
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where cov(vn,vn′ ) = E[(vn − v̄nI)(vn′ − v̄n′I)] is the covari-
ance between vn and vn′ , the vector I = (1,1, . . . ,1) has all
elements equal to 1, the standard deviation of a vector w is
σw =

√
E[(w − w̄I)2], and the mean of w is given by the

expectation E[w] = w̄. For our computations, it is convenient
to write the covariance as

cov(vn,vn′ ) = 1

N

N∑
i=1

[vn,ivn′,i − (vn,i v̄n′ + vn′,i v̄n) + v̄nv̄n′].

(20)

Note that some statistical properties, such as the mean and
standard deviation, are independent of permutations (i.e., v̄ ≡
v̄n = v̄n′ and σv ≡ σvn

= σvn′ ), so we can write Eq. (19) as

ρn,n′ =
(

1
N

∑N
i=1 vn,ivn′,i

) − v̄2

σ 2
v

, (21)

where one can calculate the term in parentheses as the sum of
conditional probabilities that depend on the type of disorder.

In the next three subsubsections, we calculate the correla-
tion coefficients for each type of disorder in the thermodynamic
(i.e., N → ∞) limit.

1. Anderson

In a granular chain with an Anderson-like disorder, the
mean value of v is v̄ = (1 − q), and the standard deviation is
σv = √

q(1 − q). Both quantities depend on the probability q,
but the correlation

ρa
n,n′ = δ0,|n−n′ | (22)

is independent of q ∈ (0,1). When q = 0 or q = 1, the
correlation becomes ρa

n,n′ = 1 because the granular chain
is homogeneous. Equation (22) implies that the Anderson
disorder is an uncorrelated type of disorder. This is true exactly
in the thermodynamic limit (i.e., as the number of particles
N → ∞). However, it is also true in an average sense for
finite systems, which implies that the mean of the Pearson
correlations for a large number S → ∞ of finite systems
approaches the value of the correlation for a single system
as N → ∞. In Fig. 2(a), we show the Pearson correlation
coefficient as a function of the relative distance between
spheres. The black curve shows the mean value, which tends
to δ0,|n−n′ | (as we just discussed).

2. Random dimer model 1 (RDM1)

As in the Anderson case, the mean value of v for the RDM1
granular chain is v̄ = (1 − q), and the standard deviation is
σv = √

q(1 − q). However, because an RDM1 granular chain
consists of a sequence of dimers, there is now a short-range
correlation. The Pearson correlation coefficient is

ρd
n,n′ = δ0,|n−n′ | + 1

2δ1,|n−n′ | , (23)

which we note is again independent of q ∈ (0,1). Con-
sequently, the chain has the above short-range correlation
(between nearest neighbors) for any q ∈ (0,1).

In Fig. 2(b), we show the Pearson correlation coefficient as
function of the relative distance between spheres.

FIG. 2. Correlation function ρn,n′ versus the distance between
particles for the three types of disordered granular chains: (a)
Anderson model, (b) random dimer model 1 (RDM1), and (c) and
(d) random dimer model 2 (RDM2). The gray curves show 100
realizations for a chain with N = 100 particles, and the black curves
give the mean values. In panels (a)–(c), we use q = 1/2; in panel
(d), we use q = 4/5. The horizontal dashed lines in panel (d) show
analytical values from Eq. (24) for the long-range correlation.

3. Random dimer model 2 (RDM2)

The RDM2 granular chain has rather different statistical
properties from the other two types of disordered chains.

The mean value of v is v̄ = 1/2, and the standard deviation
is σv = 1/4. Both the mean and the standard deviation are
independent of the probability q, because q affects only the
orientation of the the dimer; the numbers of 0 values and 1
values are unchanged. This type of disorder includes a long-
range correlation that one can tune with the parameter q. The
Pearson correlation coefficient is

ρ
s,q

n,n′ = δ0,|n−n′ | − 1

2
[(2q − 1)2 + 1]δ1,|n−n′ |

+
N∑

j=2

(−1)j (2q − 1)2δj,|n−n′ | . (24)

An interesting special case occurs when q = 1/2, as the
correlation reduces to a short-range anticorrelation:

ρ
s,1/2
n,n′ = δ0,|n−n′ | − 1

2δ1,|n−n′ | . (25)

Other interesting limits are the ordered diatomic chains
that arise for q = 0 and q = 1. Because the orientation of the
dimer units is homogeneous in these limits, there is a perfect
correlation between particles that are an even distance apart
and a perfect anticorrelation between particles that are an odd
distance apart:

ρ
s,0
n,n′ = ρ

s,1
n,n′ =

N∑
j=0

(−1)j δj,|n−n′| . (26)

In Figs. 2(c) and 2(d), we show the Pearson correlation
coefficient as a function of the relative distance between
spheres. We use different values of q for the two panels.
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IV. IMPURITIES IN A HOMOGENEOUS
GRANULAR CHAIN

Reference [33] confirmed for granular chains the general
notion that either localized or resonant modes arise when
an otherwise homogeneous system (a “host” chain) includes
impurities. The nature of such modes depends on the rela-
tionship between the parameters of the impurities and those
of the other spheres in the host chain. If an impurity mass
is smaller (respectively, larger) than the rest of the particles,
then the associated mode is localized (respectively, resonant).
Moreover, one can perform a continuation procedure starting
from localized linear modes to obtain localized modes in the
weakly nonlinear regime.

Impurities also break the translational symmetry of a chain,
and scattering processes around the impurities thus play a
significant role in the dynamics. This becomes increasingly
important as the number of impurities in a chain increases.
To emphasize the role of impurities in the transport and
localization properties of a system, we highlight the “random
dimer model” [76], which we call RDM1 in the present article.
In Ref. [76], it was shown for a Schrödinger lattice with
on-site energy distributed in an RDM1 way that—even when
almost all of the linear modes are spatially localized—there is
always one mode that is extended for a certain value (which
depends on the strength of the disorder) of the wave number
kd . Furthermore, for finite 1D systems, there is a set of modes
for wave numbers near kd [in particular, for wave numbers
k ∈ (kd − �k,kd + �k), with �k ∼ 1/

√
N as N → ∞] that

have a localization length that is larger than the length of the
system [79].

A similar effect from double impurities has been observed
in acoustic chains with harmonic interactions [79]. However,
due to the acoustic characteristics of the linear spectrum,
the 0-frequency linear mode is extended in either a homo-
geneous or a disordered system (independently of the type of
disorder) and for any system length. Therefore, even for an
Anderson-like disorder configuration, modes with k ∈ [0,�k)
and �k ∼ 1/

√
N (as N → ∞) have a localization length

that is larger than the size of the system [79,80]. We also
expect reflectionless modes to emerge in strongly compressed
granular chains—i.e., in the linear regime (see Sec. II B 1), in
which a harmonic approximation of the interactions is suitable.

V. NUMERICAL RESULTS

In general, it is difficult to precisely determine localization
properties in disordered systems—primarily because most
tests are based on the asymptotic behavior of particular
observables (e.g., energy). From a practical perspective, one
needs to consider long chains (and large areas or volumes
in higher dimensions) and very long integration times, and
(from a theoretical perspective) one should let both time and
system size go to infinity [10]. Such scenarios are difficult
to achieve experimentally, and even numerical simulations
pose considerable difficulties [19]. In particular, one is often
interested in the asymptotic behavior of the energy distribution.
Hence, to conduct long-time simulations without significant
(and unphysical) variation in a system’s total energy, it is
necessary to employ carefully chosen numerical-integration

schemes. Additionally, because we are examining disordered
systems and we thus need to average over a large number
of realizations of a particular type of disorder to obtain
appropriate statistical power, it is also necessary to employ
sufficiently fast numerical-integration schemes that are also
particularly accurate with respect to energy conservation. We
thus use a symplectic integrator from Refs. [19,81].

We also rely on indirect methods to develop intuition about
the asymptotic behavior of disordered granular chains. One
such method is to study the structure of the linear spectrum and
the extent of localization of the linear modes. For instance, in
the classical Anderson model in a 1D electronic system [9], all
of the linear modes are localized exponentially for any amount
of disorder. This leads to an absence of diffusion that manifests
as a saturation in time of the second moment of a suitable
probability distribution. In other words, excitations remain
spatially localized. By contrast, as mentioned in Sec. IV, the
RDM1 [76] behaves differently from the Anderson model in
this respect, as the former includes extended modes that cause
the second moment to grow as a function of time.

In our ensuing discussions, we investigate the influence of
the three different types of disorder on (1) the structure of the
linear spectrum and (2) the presence of localized states in both
the bulk and the surface of a granular chain. We subsequently
investigate transport and dynamical localization in the bulk for
disordered Hertzian chains [see Eq. (1)].

A. Diagonalization of Eq. (12)

There are various ways of measuring localization in linear
modes. In finite systems, it is useful to calculate the inverse
participation ratio (IPR) [10]:

P −1 =
∑N

n=1 h(vn,v̇n)2

[∑N
n=1 h(vn,v̇n)

]2 , (27)

where h(vn,v̇n) is some distribution. For modal analysis, we
use h(vn,v̇n) = v2

n, which allows us to measure the fraction
of particles whose displacement of position from equilibrium
differs markedly from 0. We can thereby measure the extent of
localization. For instance, a plane wave with all sites equally
excited satisfies P −1 → 0 as the number of particles N → ∞.
By contrast, a strongly localized wave satisfies P −1 → 1, and
P −1 = 1 exactly when only one sphere is vibrating (i.e., when
vn = 0 for all n 
= j and vj 
= 0).

Calculating the IPR makes it possible to directly obtain a
qualitative understanding of the nature of the linear modes. In
Fig. 3, we show the spectrum and the extent of localization (i.e.,
its IPR) associated with the linear modes for one realization
of each of the three types of disorder. In Fig. 4, we show
the mean value of the IPR over 100 realizations of each type
of disordered chain (with N = 100 particles in a chain) as a
function of the probability parameter q and the size parameter
ξ . In both figures, we have sorted the modes from smallest
frequency to largest frequency. Diagonalizing Eq. (12) yields
the displacement distribution of the particles in the chain
that are associated with the different modes. In this section,
we use these displacement distributions to compute the IPRs
that we show in Figs. 3 and 4. We also evaluate Eq. (27)
using the energy-density distribution [given by Eq. (29), as
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FIG. 3. Linear spectrum and inverse participation ratio P −1 for different types of disorder with probability parameter q = 0.5 and size
parameter ξ = 0.5. As usual, (A), (RDM1), and (RDM2) denote the Anderson, random dimer model 1, and random dimer model 2, respectively.

The insets show examples of linear modes for both high and low frequencies. The dashed lines mark the cutoff frequency fi = 1
2π

√
4B̃ii

mi
(with

i ∈ {1,2}) associated with a homogeneous chain and the cutoff frequency fbi = 1
2π

√
2B̃12
mi

(with i ∈ {1,2,3}) for a perfectly ordered diatomic

chain, where m3 = m1m2/(m1 + m2). Additionally, B̃ij = 3
2 Aij�

1/2
n , where Aij is defined in Sec. III. Using the parameter values described in

Sec. II C and F0 = 10 N, we obtain f1 ≈ 18.09 kHz, f2 ≈ 45.58 kHz, fb1 ≈ 11.95 kHz, fb2 ≈ 33.81 kHz, and fb3 ≈ 35.86 kHz.

we will discuss in Sec. V C], and we obtain qualitatively
similar results. For each type of disorder, we will use the
energy-density distribution (see Sec. V D) to characterize
dynamical localization.

We first consider Anderson-like disorder. For frequencies
f ∈ (f1,f2) [see Eq. (10) and Fig. 3], we observe a compli-
cated gap structure that includes isolated frequencies between
the two band-edge frequencies. In the frequency range (f1,f2),
there is also a small region in which P −1 has multiple peaks
with values that are close to 1. These peaks are associated with
single-node modes (which are reminiscent of impurity modes),
in which the energy oscillates primarily around one particle.
As discussed in Ref. [33], linear localized modes are bound
to small particles for a single impurity, and the frequency

fimp of these modes is larger than the lower edge frequency
f1 of the host homogeneous chain. Additionally, for a given
precompression force F0, the frequency fimp depends only on
the strength of the impurity, and it thus depends only on the
size parameter ξ . There are also modes with P −1 ≈ 0.5 that
are related to double impurities. More precisely, P −1 is slightly
smaller than 0.5 because the mode does not consist exactly of
two particles that vibrate, as there is also a tail that decays as
a function of space. Modes with a lower IPR are associated
with different local configurations. For example, a mode with
two small masses that vibrate with a large amplitude and are
separated by a large mass that oscillates with a small amplitude
has P −1 ≈ 0.4. Additionally, modes with five spheres that
effectively participate in the system dynamics have P −1 ≈ 0.2,

022902-8



SUPERDIFFUSIVE TRANSPORT AND ENERGY . . . PHYSICAL REVIEW E 93, 022902 (2016)

FIG. 4. Inverse participation ratio (averaged over 100 chain configurations) as a function of the ratio ξ = R2/R1 of radii and the mode
number for different types of disordered chains and different values of the probability parameter q. The black regions are associated with
delocalized waves.

and one can make analogous statements for other values of
P −1.

One can interpret the probability parameter q as a measure
of the density of small impurities (i.e., particles with radius
R2) in a host chain of particles with radius R1. As q → 1,
the granular chain is composed almost exclusively of spheres
with radius R1, and its few small impurities generate impurity
modes whose frequencies are larger than f1. The rest of
the spectrum consists mostly of an acoustic branch that is
bounded above by f1. This explains why the Anderson chain
with q = 0.8 in Fig. 4 has an IPR whose maximum occurs
near the maximum mode number (i.e., it is close to the
frequency edge f1). When q decreases, the fraction of particles
with radius R2 increases, and the population of modes with
frequencies between f1 and f2 increases as well. In particular,
the maximum value of P −1 in Fig. 4 for an Anderson chain with
q = 0.2 is about 0.55, which implies that most localized linear
modes are double-impurity modes instead of single-impurity
modes. However, the frequency of these modes does not
change given a fixed value of ξ , and it is close to the frequency
edge at f1.

Another interesting feature of the Anderson model in
granular chains is that the 0-frequency mode is extended for

all values of q and ξ . In other words, it is independent of both
the amount of disorder and the relative sizes of the two types
of particles. (See Refs. [79,82] for relevant discussions.) Near
ω = k = 0, there is a nontrivial region in the ξ -q parameter
space in which one observes extended modes in a finite-size
chain. One expects the area of this region to vanish as the
system size N → ∞ [79]. However, the presence of this
extended mode opens a channel for the transportation of energy
even in a disordered chain.

For an RDM1 chain, the frequency structure is similar
to that of an Anderson chain. However, there are several
high-frequency modes, which each have frequency between
f1 and f2, that form an almost flat structure in plots of
frequency versus mode number (see Fig. 3). These frequencies
are related to quasidegenerate modes, which have almost
the same frequency as each other, and such modes arise
more often in an RDM1 chain than in an Anderson-like
chain. As in an Anderson-like chain, an RDM1 chain also
includes some highly localized linear modes that are related
to double impurities. The main difference arises in the P −1

distribution, which for an RDM1 chain includes an extra
minimum near a frequency of fb ∈ (0,f1) that depends on
the parameters ξ and q. For example, when q = ξ = 0.5, we
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obtain roughly fb ≈ 15 kHz for N = 100 and the physical
parameters described in Sec. II C. This is related to extended
modes that are centered at a nonzero frequency. Furthermore,
as one can see from Fig. 4, the IPR tends to be smaller for most
values of ξ and q in an RDM1 chain than in an Anderson-like
chain. This occurs because the impurities in RDM1 chains are
twice as large as those in Anderson chains, which implies in
turn that RDM1 chains have large impurity modes.

An RDM2 chain exhibits completely different—and rather
remarkable—features in its spectrum and IPR distribution
from the other two types of disordered chains. To explain
these differences, it is important to interpret the RDM2 system
as a perturbation of a perfectly ordered diatomic chain instead
of as a perturbation of a monoatomic chain. In fact, most
of the eigenvalues for an RDM2 chain occur between the
frequency edges of the ordered diatomic chain (i.e., within
its pass bands). The rest of the eigenvalues are organized
predominantly into almost flat distributions within the band
gaps (see Fig. 3). Additionally, an RDM2 chain tends to have
more degenerate modes than an RDM1 chain. RDM2 chains
also have very interesting localization properties. In Fig. 4,
for example, we observe that the P −1 distributions are (on
average) almost independent of the degree of disorder (i.e., on
the parameter q). We also see from Fig. 3 that most of the
degenerate modes are also equally localized. In other words,
they have almost the same value of P −1. To explain the features
of the IPR, observe that there exist a few single-impurity
modes with P −1 ≈ 1, but most of the localized modes consist
of two (associated with P −1 ≈ 0.5), three (P −1 ≈ 0.33), or
four (P −1 ≈ 0.25) vibrating particles. Additionally, the RDM2
disorder is symmetric with respect to q = 0.5 by construction
(so, e.g., q = 0.2 and q = 0.8 are equivalent situations).

B. Spreading and partial localization due to
disorder and nonlinearity

Force distributions are particularly useful in granular crys-
tals, because it is easier and more reliable experimentally to
measure forces than to measure energy. Moreover, examining
forces as a function of time allows one to indirectly measure
spreading and localization. Thus, in this section, we examine
how the force evolves at specific spots in a chain and also
how the force distributions differ for different precompression
strengths in homogeneous chains and Anderson-like disor-
dered chains.

In Fig. 5, we show example force distributions from
applying an excitation that consists of an initially localized dis-
placement at the center of a homogeneous chain. For a strongly
compressed chain (e.g., for F0 = 10 N), the initial excitation
spreads along the chain, and the dynamics arise from the
decomposition of the Kronecker δ into linear modes. However,
the spreading is slightly asymmetric, because the nonlinearity
cannot be neglected entirely. Increasing the nonlinearity in
the system by decreasing the precompression strength leads
to shrinkage of the distribution width due a decrease in the
system’s sound speed. One directly observes this effect in
the force distribution, and one can also see it indirectly by
examining the force at different places in the chain as a function
of time. For instance, as one decreases the precompression
strength, it takes longer to detect fluctuations in the force at

FIG. 5. (Left) On-site force as a function of time and (right)
force distribution of particles for various amounts of precompression
when we apply an excitation that consists of an initially localized
displacement to the center of a homogeneous granular chain. In the
left panels, the black curves give the force for particle 601, the blue
curves give the force for particle 631, and the red curves give the
force for particle 661. The chain has N = 1201 particles. For each
example, the initial condition is un = 10−1 × δn,601 μm. For the right
panels, we give the force in newtons at time t = 10−2 s. In each
row, the two panels show results for a chain with the same specified
precompression strength.

particles 30 and 60 sites away from the position of the initial
excitation. Additionally, in the sonic-vacuum regime, solitary
waves emerge clearly, and the energy is divided mainly into
two pulses that move in opposite directions.

In the presence of disorder (see Fig. 6), we observe that
the spatial force distribution changes abruptly (i.e., even
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FIG. 6. (Left) On-site force as a function of time and (right)
force distribution of particles for various amounts of precompression
when we apply an excitation that consists of an initially localized
displacement to the center of an Anderson chain with a particle-size
parameter of ξ = 0.8. In the left panels, the black curves give the
force for particle 601, the blue curves give the force for particle
631, and the red curves give the force for particle 661. The chain
has N = 1201 particles. For each example, the initial condition is
un = 10−1 × δn,601 μm. For the right panels, we give the force in
newtons at time t = 10−2 s. In each row, the two panels show results
for a chain with the same specified precompression strength.

for a small amount of disorder) from the distribution in
an associated homogeneous chain. When linear effects are
dominant (e.g., at F0 = 10 N), the force distribution has a
maximum near the position of the initial excitation, and it
decays exponentially away from this point. Near the central

position of the distribution, the temporal force dynamics
includes large-amplitude, persistent oscillations that exist for
long times. The forces in particles that are even a few sites
away from the center (e.g., see the particles that are 30 and 60
sites away from the center in Fig. 6) have oscillations whose
amplitudes are orders-of-magnitude lower.

When we increase the effective nonlinearity in a granular
chain—in particular, in the weakly nonlinear situation, such
as the one in Eq. (14)—resonances of linear modes are
induced by nonlinear shifts of the frequencies [11]. This leads
to a nonlinear mechanism of energy exchange between the
localized and extended modes in the spectrum (see Sec. V A),
which in turn implies that energy that was previously stored
in localized modes can now be carried through the system
by being transferred either to other localized modes that are
spatially close to the original one or to extended modes.
In short, there is more transport. Consequently, the force
is distributed among a larger number of particles in the
chain. This effect is analogous to phenomena that have
been observed in disordered NLS and KG lattices [11], and
analogous dynamics have also been observed experimentally
in the context of waveguide arrays [83,84]. Remarkably,
the localization (in the form of traveling waves) goes away
completely when the precompression goes to 0, and instead a
pure spreading process occurs. In other words, the localization
phenomenon, in which nearly all of the energy at vanishing
precompression would otherwise be partitioned into localized
traveling waves (which, as illustrated in Fig. 5(l), each have
a support on only a few sites of a chain) [85], is modified
drastically because of the presence of disorder.

C. Energy distribution and second moment

As we stated previously, characterizing whether or not
dynamics is localized—and which particular transport prop-
erties can characterize localization in a quantitative way—
is a difficult task [10], and it has been examined from
many different perspectives by several authors. Such methods
include (1) computing a localization length [86,87], which
gives information on how fast the distributions decay; (2)
computing finite-time Lyapunov exponents [58,88] to study
KAM tori and chaotic dynamics; (3) directly estimating
scaling properties of the energy distribution [61,80]; and (4)
calculating moments of distributions that are associated with
the dynamics [76,79,80,84,89]. The calculation of moments
has been especially popular, and it is particularly common to
investigate the growth of the second moment as a function
of time, as this gives information about the width of a
distribution. However, the exclusive use of the second moment
as a single-parameter description is problematic and can lead
to a misunderstanding of a system’s actual dynamics [11,12],
particularly in strongly nonlinear situations. Consequently,
following [11,12], in the present work, we examine dynamics
by computing not only the second moment but also the IPR
(see Sec. V D).

Proceeding with our analysis, we note that the total energy
of the system is conserved by the dynamics. We are thus
interested in the energy distribution’s second moment

m̃2(t) =
∑

n(n − nc)2En∑
n En

, (28)
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where En is the energy density of the nth particle and nc is the
position of the center of the distribution. The energy density
of the nth particle is given by

En(t) = Kn(t) + Vn(t) , (29)

where

Kn(t) = mn

2
u̇2

n(t) (30)

is the particle’s kinetic energy and the potential energy Vn

depends on the model. For example, in the linear limit, the
potential energy of the nth particle is

Vn(t) = 1

2

[
Bn

2
[un−1(t) − un(t)]2+ Bn+1

2
[un(t) − un+1(t)]2

]
.

(31)

In the weakly nonlinear regime, the potential energy is

V W
n (t) = 1

2

3∑
i=1

[
B(i)

n

(i + 1)
[un−1(t) − un(t)]i+1

+ B
(i)
n+1

(i + 1)
[un(t) − un+1(t)]i+1

]
. (32)

In the strongly nonlinear regime of a Hertzian potential, the
potential energy is

V H
n (t) = 1

2

{
2An

5
[�n + un−1(t) − un(t)]5/2

+

+ 2An+1

5
[�n+1 + un(t) − un+1(t)]5/2

+

}

− 1

2

{
2An

5
�5/2

n + 2An+1

5
�

5/2
n+1

}

− F0

2
{un−1(t) − un+1(t)} . (33)

The two last terms in the right-hand side of the Hertzian
potential energy V H

n (t) of Eq. (33) have minus signs, so
V H

n (t) → V W
n (t) in the weakly nonlinear limit and V H

n (t) →
Vn(t) in the linear limit. The third term in Eq. (33) gives
only a trivial contribution to the total energy, because it
corresponds to the (constant) background energy associated
with the precompression. The last term in Eq. (33) is a
telescopic series when one sums over all n, and we note that
the boundaries do not play a significant role because we are
interested in the bulk dynamics. The displacement and the
momentum at the edges of a chain are both exactly 0 for all
times.

In the linear regime and in the absence of disorder, the
only possible situation after a very long time is for the system
to thermalize [82,90], so one obtains equipartition of energy
between the different degrees of freedom. As a result (and
as is well known), the asymptotic spreading dynamics in a
homogeneous chain is ballistic [i.e., m̃2(t) ∼ t2 as t → ∞]
regardless of whether the initial condition is a local displace-
ment perturbation (e.g., {un(0),u̇n(0)} ∝ {δn,nc

,0}) or a local
velocity perturbation (e.g., {un(0),u̇n(0)} ∝ {0,δn,nc

}) [79,91].
However, introducing either disorder or nonlinearity can
drastically change transport properties [11]. For example,

attempting to estimate a scaling relationship for the sec-
ond moment now typically produces a different exponent:
m̃2(t) ∼ tγ as t → ∞, where γ 
= 2.

However, one can expect even more complicated phe-
nomena, and in particular it is not always meaningful to fit
the spreading of the second moment to a power law with
a single exponent [80]. When there is reasonable power-
law scaling, the behavior is called “superdiffusive” when
γ ∈ (1,2), “diffusive” when γ = 1, and “subdiffusive” when
γ ∈ (0,1). There is no diffusion when γ = 0. Following the
work by Lepri et al. [80], we attempt to identify the situations in
which it is reasonable to construe the second moment as having
a power-law scaling by calculating the logarithmic derivative

Ld (t) = d(ln m̃2(t))

d(ln t)
, (34)

where m̃2 is the mean over some number of different
realizations of a given type of disorder. We expect that
Ld (t) → γ when m̃2(t) ∼ tγ as t → ∞ but that Ld (t) can
exhibit oscillations when the dynamics are more compli-
cated. In our numerical computations, we estimate the log-
arithmic derivative using the finite-difference approximation
Ld ≈ �(ln m̃2(t))/�(ln t), where we discretize time as in our
numerical integration. The criterion that we use to state when
m̃2 has a power-law scaling is

|Ld (t) − γ | < κ for all t > t∗, (35)

where κ is a small parameter and t∗ is an arbitrary time within
our observation horizon. We thereby separate situations in
which oscillations of the numerical data for the second moment
are admissible as statistical fluctuations from ones in which
oscillations are larger than statistical fluctuations.

It is also useful to compute the spectral density associated
with the dynamics, as that allows one to identify which
frequencies are involved in the dynamics [92]. We use
the spatiotemporal displacement distribution to calculate the
normalized spectral density

g(ν) =
∑

n ū2
n(ν)

max
{∑

n ū2
n(ν)

} , (36)

where

ūn(ν) ≡
K−1∑
k=0

un(tk)e−2πiνtk/Tmax ,

and we use the time points {tk}K−1
k=0 to partition the interval

[0,Tmax] into uniform subintervals.
In Sec. V A, we discussed the effects of disorder in strongly

precompressed chains of spheres, and we showed that disorder
splits the spectrum into a low-frequency region (in which
the modes are extended) and a high-frequency region (in
which modes tend to be localized). We now seek to explore
the interplay between disorder and nonlinearity in both the
strongly precompressed (i.e., weakly nonlinear) regime and
the strongly nonlinear regime (whose limiting case is a sonic
vacuum). We integrate Eq. (1) numerically using a “SABA2C”
algorithm [19,81], which is a symplectic integrator that allows
us to conserve energy for long temporal evolution. Using
SABA2C, the relative error in energy is between �E ≈ 10−9
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FIG. 7. (First and third columns) Absolute value of the spatiotemporal energy distribution and (second and fourth columns) spectral density
for the dynamics of an initially localized displacement perturbation {un(0),u̇n(0)}I = {α δn,801,0}, with α = 10−1 μm, for different amounts
of precompression. The first two columns are for a homogeneous chain, and the last two columns are for an Anderson chain. Each chain has
N = 1601 particles, though we only show the central 1201 particles in our plots of spatiotemporal energy distributions. For each example, the
integration time is Tmax = 10−2 s, and we give the force in units of newtons. For each row, all panels are for a chain with the same specified
precompression strength.

and �E ≈ 10−7 (depending on the simulation parameters)
using a reasonably small time step of τ ≈ 1 μs.

1. Displacement-perturbation initial conditions

In Fig. 7, we show the spatiotemporal energy distribution
and the spectral density for both homogeneous chains and
Anderson-like disordered chains for different levels of pre-
compression and a displacement-perturbation initial condition
{un(0),u̇n(0)}I = {α δn,n0 ,0}, with α = 10−1 μm. (We use the
subscript “I” to label the initial condition.) For F0 = 10 N,
we see that the main contribution to the dynamics comes
from the linear modes (as we discussed previously). For
a homogeneous chain, maxima at nonzero frequencies give
the band-edge frequencies; near the band edges, the linear
spectrum is denser than it is near 0 frequency. When one
decreases the precompression, the band width decreases, and

the spreading of waves from the linear modes becomes slower
because the sound speed also decreases. We observe clear
nonlinear pulses in the dynamics, and the speed of these
pulses is larger than the sound speed for sufficiently small
precompression. (See, for instance, the panels in Fig. 5 with
F0 � 0.01 N.) However, for F0 → 0, the localized initial
condition splits into traveling pulses that propagate in opposite
directions. This occurs because all of the frequencies of the
linear spectrum tend to 0 for F0 → 0.

A chain with Anderson-like disorder exhibits more com-
plicated dynamics than a homogeneous chain. In Fig. 7,
we observe Anderson-like localization for strong levels of
precompression. Spikes in the spectral density indicate the
modes that contribute the most to the dynamics. The highest
spike is located at a high frequency, so the main contribution
comes from a localized mode (see Fig. 3) that is presumably
close to the position of the initial excitation. As we can see
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from the low-frequency spikes in the spectral density, the
localization process occurs on top of a diffuse background
pattern that arises primarily because of extended modes. As
we consider weaker precompression, we observe a narrower
frequency band near 0 frequency in the spectral density, anal-
ogous to our observations for homogeneous chains. Although
there have been many efforts to study the interplay between
disorder and nonlinearity—and their effect on spreading
dynamics—most prior research has concentrated on weakly
nonlinear settings. In fact, the majority of prior work has
focused on NLS and KG lattices (see, e.g., Ref. [11] and
references therein). It has been observed in these settings that
transport is typically subdiffusive. A notable example with
subdiffusive spreading in which neighboring lattice sites are
not coupled linearly was investigated recently in Ref. [61],
which considered strongly nonlinear lattices in which both the
on-site and the intersite interactions are nonlinear. We believe
that the contribution of the on-site nonlinearity is crucial for
obtaining subdiffusive spread in lattices with Anderson-like
disorder, as the energy-spreading exponents in Ref. [61] differ
considerably from the ones that we identify in the present
work. Although effects from nonlinearity and disorder can
separately localize energy—and, indeed, that is their general
predilection, as we can see in Figs. 7(c) and 7(q)—exactly the
opposite can occur in some situations that include both of these
factors [see Figs. 7(o) and 7(s)]. In particular, we find when
both disorder and nonlinearity are present that it is possible
for spreading to be enhanced rather than for the two features
to conspire to create stronger localization.

For granular chains in the strongly nonlinear regime, neither
localization in the form of intrinsic localized modes nor exact
localization as traveling nearly compact waves is possible,
as each of these structures is destroyed by disorder. It is
also impossible to localize in an Anderson-like way, as such
localization is suppressed by nonlinearity and the absence of a
linear limit. Instead, the energy spreads among the particles in a
peculiar but characteristic way. Strongly localized (and nearly
compact) waves are still present at the edges of the energy
distribution during the spreading process for very small static
loads F0 [see Fig. 7(o)]. However, for F0 = 0 N, the disorder
induces multiple scattering events, which in turn causes the
wave amplitudes to decrease [see Fig. 7(s)].

2. Velocity-perturbation initial conditions

To analyze the dynamics for an initial velocity perturbation,
we consider {un(0),u̇n(0)}II = {0,β δn,n0}, and we set these
perturbations to have the same energy as corresponding initial
displacement perturbations {un(0),u̇n(0)}I = {α δn,n0 ,0}. To
express β as a function of α (or vice versa) one needs
to solve

∑
n En|I = ∑

n En|II. For example, to express the
velocity perturbation coefficient in terms of the displacement
perturbation coefficient, we write

β =
√

4A

5m
([� − α]5/2

+ + [� + α]5/2
+ − 2�5/2) . (37)

Thus, in our numerical simulations, we set β ≈ 8 × 10−3 m/s,
which is the value that we obtain for a homogeneous chain with
F0 = 10 N and α = 10−1 μm.

In Fig. 8, we show spatiotemporal energy distributions
and spectral densities for both homogeneous chains and
Anderson-like chains using an initially localized velocity
perturbation. The main—and fundamental—difference, in ad-
dition to the asymmetrically-distributed spatiotemporal energy
profile, compared to what we observed using displacement-
perturbation initial conditions (see Fig. 7) comes from the
spectral density. When there is strong precompression, we
observe that the distribution of modes that are excited by
the velocity-perturbation initial condition is denser near 0
frequency than it is elsewhere. In the disordered case, this
implies that the mean contribution to the dynamics comes
from extended modes rather than localized modes. This
contrasts starkly with our observations using displacement
perturbations, and it leads to dynamics in which the en-
ergy spreads much faster than for displacement excitations.
Moreover, for velocity perturbations, the energy that diffuses
in the background is comparable to the amount of energy
that remains localized. For F0 = 0.1 N, we observe in both
homogeneous chains and Anderson-like chains that a solitary
wave propagates faster than the spreading pattern [see Figs. 8(i)
and 8(k)]. For weaker precompression, the solitary wave still
propagates in the homogeneous chain, but its amplitude decays
in an Anderson-like chain. In particular, for F0 → 0, the
solitary waves are delocalized due to scattering with defects
in the disordered chain, and the energy pattern that emerges
is qualitatively similar to what was observed in Ref. [21] for
transport of solitary waves in RDM2 chains in a high-disorder
regime.

To visualize what happens to the energy from the dynamics
in Anderson-like chains, we average the energy distribution at
t = 10−2 s over 100 realizations. In Fig. 9, we show this energy
distribution using a logarithmic scale for both displacement
excitations and velocity excitations. We examine qualitative
variations in the distribution as we modify the strength of
the nonlinearity. Specifically, we observe that the energy
distribution grows exponentially near the edges of a chain.
For F0 = 10 and F0 = 0.1 N, this occurs in a narrow region
(fewer than 30 sites) of the chain, and energy is localized at
the edge of the distribution because traveling waves persist
in the presence of disorder. This phenomenon is considerably
less prominent for displacement-perturbation initial conditions
than for velocity-perturbation initial conditions. For F0 = 0 N
(i.e., the sonic-vacuum regime), we also observe exponential
growth of the energy distribution near the chain edges. In
this case, however, it occurs over a wider region (about
100 sites for displacement excitations and about 150 sites
for velocity excitations), and the exponential growth has a
considerably smaller exponent than in chains with nonzero
precompression.

D. Transport arising from nonlinearity

To quantitatively characterize transport and localization
processes, we conduct long-time simulations—up to Tmax =
0.01 s—in chains with N = 2501 spheres. We use long chains
to avoid boundary effects during the entire numerical inte-
gration; no waves reach the boundary of the system within
the simulation time. We compute the second moment m̃2

and the IPR P −1 as functions of time for the three types of

022902-14



SUPERDIFFUSIVE TRANSPORT AND ENERGY . . . PHYSICAL REVIEW E 93, 022902 (2016)

FIG. 8. (First and third columns) Absolute value of the spatiotemporal energy distribution and (second and fourth columns) spectral density
for the dynamics of an initially localized velocity perturbation {un(0),u̇n(0)}II = {0,β δn,801}, with β = 8 × 10−3 m/s, for different amounts
of precompression. The first two columns are for a homogeneous chain, and the last two columns are for an Anderson chain. Each chain has
N = 1601 particles, though we only show the central 1201 particles in our plots of spatiotemporal energy distributions. For each example, the
integration time is Tmax = 10−2 s, and we give the force in units of newtons. For each row, all panels are for a chain with the same specified
precompression strength.

disorder, and we average our results over 500 realizations of
a chain configuration in each case. To confirm our numerical
results, we conduct several tests. For example, we compare
our results from SABA2C with ones using a Runge-Kutta
scheme with a very small time step (between τ = 0.01 μs
and τ = 0.001 μs), and we obtain quantitatively the same
results for the same realizations of disorder.4 We also test
the SABA2C scheme using smaller time steps (τ = 0.1 μs
and τ = 0.01 μs) and larger system sizes (N = 5000 and
N = 10000 particles), and we again obtain the same results. In
the current section, we compute the IPR [see Eq. (27)] using the

4Importantly, using SABA2C allows much longer simulation times
and a significant improvement in energy conservation in comparison
to using a Runge–Kutta scheme.

energy distribution instead of the displacement distribution. In
other words, h(vn,v̇n) = En(t), so now both m̃2 and P −1 are
computed using the energy distribution.

In Fig. 10, we plot the second moment m̃2 and the IPR as
functions of time for the initial condition with displacement
un = 10−1 × δn,1251 μm and all particles having speeds of
0. We also plot m̃2 and the IPR as functions of time in
Fig. 11, but now we use an initial condition with velocity
u̇n = 8 × 10−1 × δn,1251 m/s and all particles starting from
the equilibrium position. For both cases, we also calculate the
(discretized) logarithmic derivative of the second moment [see
Eq. (34)] for t ∈ [1,10] ms as a diagnostic to test for power-law
scaling. In most cases, we still observe the scaling m̃2 ∼ tγ ,
where the exponent γ depends strongly on the external force
F0 and on the type of disorder, according to our criterion (35)
and within our observation time.
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FIG. 9. Averaged energy distribution for different levels of
precompression (F0 = 0, F0 = 0.1, and F0 = 10 N) at t = 10−2 s
for Anderson-like chains. We show the energy using a logarithmic
scale, and we average our results over 100 realizations of the disorder
for ξ = 0.5, q = 0.5, and N = 2501. (a) Displacement-perturbation
initial condition ({un(0),u̇n(0)}I = {α δn,1251,0}, with α = 10−1 μm)
and (b) velocity-perturbation initial condition [{un(0),u̇n(0)}II =
{0,β δn,1251}, with β ≈ 8 × 10−3 m/s from Eq. (37)]. Using dashed
lines, we show the exponent for the exponential growth of the energy
distribution at the chain edges.

However, for strong precompression and displacement-
perturbation initial conditions, the second moment involves
oscillations that are larger than statistical fluctuations, thereby
rendering it impossible to identify a specific power-law trend
for the second moment in these cases. These oscillations
arise for all three types of disorder, but they are larger for
Anderson-like and RMD2 chains than for RDM1 chains.
Similar behavior was observed by Lepri et al. [80] for FPU
chains with Anderson-like disorder. Their system is similar to
our weakly nonlinear regime, but it is not precisely the same.
In the FPU chains from Ref. [80], disorder arises only in the
linear coupling terms; in our case, disorder arises in nonlinear
coupling terms [see, e.g., Eq. (14)]. We estimate γ and η by
creating log-log plots and fitting the numerical data between
4 × 10−3 s and 10−2 s with a linear function. Specifically,
we use the conjugate-gradient method and we fit for different
intervals of time between 4 × 10−3 s and 10−2 s, and then we
average the slopes and calculate the standard deviation, which
we estimate as the exponents and their error, respectively. We
show our estimates for different values of the precompression
in Tables II (for γ ) and III (for η) and also graphically in the

FIG. 10. In the first four rows, we show log-log plots of (left) the
second moment and (right) IPR as a function of time. Each of these
rows is associated with a certain type of disorder (or lack thereof): “h”
for a homogeneous chain, “A” for an Anderson-like chain, RDM1, and
RDM2. In each panel, the colors and labels indicate different amounts
of precompression F0: (a, dashed black) 10 N, (b, solid red) 0.5 N, (c,
dotted cyan) 0.1 N, (d, dash-dotted pink) 0.01 N, and (e, solid purple)
0 N. To guide the eye, we show slopes of 2 (ballistic transport) and 1
(diffusive transport) for the second moment m̃2 and slopes of 0 and −1
for the IPR P −1. In all cases, we use chains with N = 2501 spheres,
and the initial condition is {un(0),u̇n(0)}I = {α δn,1251,0}, with α =
10−1 μm. For the Anderson-like, RDM1, and RDM2 chains, we use
the parameter values ξ = 0.5 and q = 0.5, and we average over 500
different realizations of a disordered configuration in each case. The
insets in the second, third, and fourth rows show the (discretized)
logarithmic derivative of the second moment for t ∈ [1,10] ms. In the
last row, we show the exponents γ and η that we obtain for t ∈ [4,10]
ms by fitting the data using the relations m̃2 ∼ tγ and P −1 ∼ t−η.

last row of Figs. 10 and 11. We also attempt to estimate a
value of γ even for the cases in which the trend of the second
moment is more complicated than a power law. We highlight
these cases using the symbol “*” in Table II, and we stress that
the reported exponents correspond to mean values of Ld (t) for
t ∈ [4,10] ms.

022902-16



SUPERDIFFUSIVE TRANSPORT AND ENERGY . . . PHYSICAL REVIEW E 93, 022902 (2016)

FIG. 11. In the first four rows, we show log-log plots of (left) the
second moment and (right) IPR as a function of time. Each of these
rows is associated with a certain type of disorder (or lack thereof): “h”
for a homogeneous chain, “A” for an Anderson-like chain, RDM1, and
RDM2. In each panel, the colors and labels indicate different amounts
of precompression F0: (a, dashed black) 10 N, (b, solid red) 0.5 N, (c,
dotted cyan) 0.1 N, (d, dash-dotted pink) 0.01 N, and (e, solid purple)
0 N. To guide the eye, we show slopes of 2 (ballistic transport) and 1
(diffusive transport) for the second moment m̃2 and slopes of 0 and −1
for the IPR P −1. In all cases, we use chains with N = 2501 spheres,
and the initial condition is {un(0),u̇n(0)}II = {0,β δn,1251}, with β ≈
8 × 10−3 m/s from Eq. (37). For the Anderson, RDM1, and RDM2
chains, we use the parameter values ξ = 0.5 and q = 0.5, and we
average over 500 different realizations of a disordered configuration
in each case. The insets in the second, third, and fourth rows show
the (discretized) logarithmic derivative of the second moment for
t ∈ [1,10] ms. In the last row, we show the exponents γ and η that
we obtain for t ∈ [4,10] ms by fitting the data using the relations
m̃2 ∼ tγ and P −1 ∼ t−η.

We also compute the second moment and IPR for several
other combinations of the parameters ξ and q, and we find the
same qualitative behavior: the transport is superdiffusive, and
weaker precompression yields increased transport. However,
we observe that the time required for the system to reach its
asymptotic behavior depends on the parameters ξ and q in a

nontrivial way, and it is faster for q � 0.5 than for q < 0.5 in
most of the cases that we tested.

A remarkable result is that, in the sonic-vacuum regime,
the transport exponents are roughly independent of both the
type of disorder and the type of initial condition. We obtain
γ ≈ 1.7 and η ≈ 1. It seems that the mechanism that underlies
the superdiffusive dynamics in the sonic-vacuum regime may
also be independent of the disorder and the initial condition.
However, further research is necessary to truly understand the
mechanisms that yield the dynamics in this regime.

We now summarize the principal results of our numerical
simulations on the effect of nonlinearity on energy spreading.
For all three types of disorder, the transition from strong
precompression to weak precompression yields an increase
in the energy dispersion, as one can see from the increase
of the exponent γ . Perhaps even more importantly, we find
that the spreading is typically superdiffusive. For RDM1 and
RDM2 chains, we observe superdiffusive transport for all of
the precompression strengths that we consider. By contrast,
for an Anderson-like chain, we observe that the spreading rate
depends on the type of initial condition. It is superdiffusive
for all precompression strengths for velocity perturbations,
whereas we observe superdiffusive transport only for weak
precompression for displacement perturbations. For strong
precompression, our criterion (35) is not satisfied. Moreover,
for sufficiently strong precompression (see, e.g., Fig. 10 for
an Anderson-like disorder at F0 = 10 N), the spreading has
slowed down to the point that Ld (t) < 1. In other words, the
spreading has become subdiffusive.

The dynamics of disordered granular chains departs sub-
stantially from the principally subdiffusive behavior that was
identified previously in KG and NLS lattices [11,12] and even
in the strongly nonlinear lattices of Ref. [61]. It is likely
that the considerably enhanced diffusivity that we observe
arises from the FPU nature of our lattices, as FPU and FPU-
like lattices are significantly more conducive to traveling
waves than, e.g., the NLS or KG lattices that have constituted
the bulk of the settings in previous studies of nonlinear
disordered lattices. The observed asymptotic behavior of the
IPR also illustrates a form of delocalization in which the
energy is no longer split into solitary traveling waves as it is in
homogeneous chains. The IPR scaling exponent η decreases
as F0 increases, which implies that there is an increase in the
number of particles that experience large-amplitude vibrations.
This is contrary to the expectation for the sonic-vacuum
regime in the homogeneous limit, because the energy no
longer is partitioned into strongly nonlinear, strongly localized
waves. Instead, its spatial distribution is reasonably extended,
despite the absence of linear modes. The delicate interplay of
disorder and strong nonlinearity seems to be responsible for
this intuitively unexpected outcome.

To provide reference values, Tables II and III also include
our results for the computation of characteristic exponents
for homogeneous granular chains. For linear homogeneous
chains, one can derive analytically that γ = 2 and η =
−1 [79]. The transport is ballistic for all values of F0, but
the IPR saturates below certain values of F0. (As one can see
in Figs. 10 and 11, this saturation is clear for F0 = 0.01 N.)
This is related to the system becoming strongly nonlinear, with
no linear waves propagating, so the initial wave splits into two
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TABLE II. Numerical estimates for the scaling exponent γ for a homogeneous chain (h), Anderson chains (A), RDM1 chains (RDM1),
and RDM2 chains (RDM2) using the same data as in Fig. 10. Recall that we computed γ using the scaling m̃2 ∼ tγ as t → ∞, and
the asterisks (*) highlight the cases in which the behavior of m̃2 differs markedly from that of a power law. We give the precompression
strengths in the left column, and the sets of columns in the middle and right parts of the table represent, respectively, the data associated with
displacement-perturbation and velocity-perturbation initial conditions.

Displacement perturbations Velocity perturbations
F0 (N) (h) (A) (RDM1) (RDM2) (h) (A) (RDM1) (RDM2)

10 2.000 0.759 ± 0.028(∗) 1.306 ± 0.026 1.299 ± 0.037(∗) 2.000 1.457 ± 0.011 1.445 ± 0.010 1.752 ± 0.008
0.5 2.000 0.941 ± 0.041(∗) 1.231 ± 0.033 1.339 ± 0.028(∗) 2.003 1.498 ± 0.012 1.471 ± 0.009 1.755 ± 0.008
0.1 2.012 1.385 ± 0.035 1.284 ± 0.054 1.684 ± 0.026 2.009 1.532 ± 0.007 1.546 ± 0.020 1.776 ± 0.006
0.01 2.025 1.634 ± 0.016 1.614 ± 0.021 1.808 ± 0.006 2.011 1.673 ± 0.012 1.690 ± 0.011 1.752 ± 0.013
0 2.020 1.781 ± 0.011 1.776 ± 0.017 1.731 ± 0.007 2.010 1.763 ± 0.012 1.767 ± 0.009 1.758 ± 0.006

traveling energy-carrying pulses. These pulses are spatially
localized, so P −1 does not grow as a function of time.

VI. CONCLUSIONS AND DISCUSSION

We characterized the localization and transport properties
of one-dimensional disordered granular crystals for both
uncorrelated and correlated types of disorder. We found, in
the linear regime, that there are different extended modes
that can contribute to the transport in a disordered system.
We investigated the correlation properties of three types
of disorder—an Anderson model and two random dimer
models—and we demonstrated that the rules that generate
the spin-based dimer chain (i.e., RDM2) can contain either
short-range or long-range correlations in the disorder.

We showed, by direct computation of the linearized eigen-
modes of the granular chain in the presence of precompression,
that localized linear modes are mostly impurity modes and
that the spectrum of the linearized chain includes a mixture of
extended and localized modes. The extended modes usually
occur at low frequencies. Using a spectral perspective, we
again found that RDM2 chains are rather special, as (in contrast
to RDM1, which is the traditional “random dimer model”) they
are related much more closely, with respect to structure, to a
perfectly ordered diatomic chain than to a homogeneous chain.

Armed with an understanding of the linear modes, we
set out to quantify the nonlinear dynamics of the three
different types of disordered lattices. Although the effects
of nonlinearity (in the absence of disorder) in strongly
nonlinear homogeneous granular crystals are known to be
rather unusual—the energy tends to split into strongly lo-
calized traveling pulses, which leads to a saturation of the

inverse participation ratio—we found very surprising and
previously unexplored behavior when one introduces disorder
into granular chains. When there is strong precompression
(i.e., weak nonlinearity), disorder tends to localize energy due
to Anderson-like effects. Surprisingly, however, localization
no longer emerges for sufficiently small precompression, as
a disordered chain tends to a sort of “thermalization” as the
energy spreads throughout the whole chain. In this case, neither
the second moment nor the inverse participation ratio saturates,
and presumably traveling waves cannot survive the presence
of disorder in this regime. Nevertheless, it is conceivable in
such a setting that stable localized waves may exist due to
disorder. Furthermore, very recently, Ref. [93] reported that
solitary-wave mobility can be enhanced in certain classes of
nonlinear disordered lattices either by specific realizations of
a particular type of disorder or with specific initial conditions.
It is not clear when the joint presence of disorder and
nonlinearity destroys localization, and investigating when this
occurs is an important open question. In the sonic-vacuum
regime of no precompression, the exponents of the temporal
asymptotic scaling of the inverse participation ratio are close
to −1, which is what occurs for displacement perturba-
tions in a linear homogeneous chain (e.g., see F0 = 10 N
in Table III). In other words, the energy is delocalized. How-
ever, the transport remains superdiffusive rather than ballistic.
In fact, we found that each of our three disordered chain
models is typically superdiffusive, in stark contrast to what
is known about disorder in other lattice models [11], in which
a self-trapping mechanism always dominates as the strength
of the nonlinearity increases (independently of the disorder).

By computing a (discretized) logarithmic derivative Ld of
the second moment, we find for strongly precompressed (i.e.,

TABLE III. Numerical estimates for the scaling exponent η for a homogeneous chain (h), Anderson chains (A), RDM1 chains (RDM1),
and RDM2 chains (RDM2) using the same data as in Fig. 10. Recall that we computed η using the scaling P −1 ∼ t−η as t → ∞. We give the
precompression strengths in the left column, and the sets of columns in the middle and right parts of the table represent, respectively, the data
associated with displacement-perturbation and velocity-perturbation initial conditions.

Displacement perturbations Velocity perturbations
F0 (N) (h) (A) (RDM1) (RDM2) (h) (A) (RDM1) (RDM2)

10 1.000 0.025 ± 0.012 0.029 ± 0.022 0.096 ± 0.011 0.882 0.011 ± 0.017 0.097 ± 0.022 0.090 ± 0.042
0.5 1.000 0.023 ± 0.006 0.037 ± 0.019 0.042 ± 0.009 0.470 0.027 ± 0.037 0.132 ± 0.014 0.010 ± 0.038
0.1 0.828 0.181 ± 0.026 0.235 ± 0.025 0.226 ± 0.024 0.004 0.114 ± 0.029 0.149 ± 0.032 0.102 ± 0.033
0.01 0.002 0.695 ± 0.021 0.631 ± 0.046 0.642 ± 0.034 0.003 0.795 ± 0.037 0.744 ± 0.032 0.949 ± 0.035
0 0.001 0.991 ± 0.027 0.944 ± 0.022 1.132 ± 0.018 0.000 0.994 ± 0.011 0.963 ± 0.024 1.025 ± 0.011
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weakly nonlinear) chains with initially localized displacement
excitations that the spreading does not show a clear power-
law trend. The second moment behaves in a complicated
way and exhibits oscillations that are larger than statistical
fluctuations (analogous to what was observed in Ref. [80]).
For Anderson-like disorder and F0 = 10 N, we observed that
Ld (t) < 1 during the time interval that we consider. This
behavior is clearer in Anderson-like and RDM2 chains than
in RDM1 chains. By contrast, for initially localized velocity
excitations, we found that Ld satisfies (35), and we thus
observed a standard power-law growth for the second moment:
m̃2(t) ∼ tγ , with γ > 1 (i.e., superdiffusive spreading) for all
types of disorder. However, for weakly precompressed (i.e.,
strongly nonlinear) chains, the dynamics is superdiffusive
for all types of disorder and both types of initial conditions.
Surprisingly, in the sonic-vacuum regime, the exponents are
very similar (roughly γ ≈ 1.7 and η ≈ 1), and they seem to be
independent of both the type of disorder and whether we use
a displacement or velocity excitation as an initial condition.
Moreover, granular lattices—which are intersite interaction
lattices of FPU type—appear to be far more conducive to
energy transport than the previously explored KG and NLS
lattices. Presumably, this feature arises from the ability of the
granular lattices to transport energy in the strongly nonlinear
regime in the form of robust traveling waves.

Our work opens a panorama of both theoretical and
experimental possibilities. From a theoretical perspective,
future challenges involve deriving the mechanisms that relate
the type of correlation in chain disorder to the spectral and
transport properties of the system, incorporating dissipation
(and possibly also restitution) effects into disordered gran-
ular crystals, studying higher-dimensional granular crystals,
examining other types of initial excitations, and more. For
example, we tried initializing granular chains at a particular
localized mode of their underlying linear system, and we
observed that the spreading can be considerably slower than
what we observed for the initial conditions that we discussed
in the present article. Further investigation is necessary to

quantitatively characterize the dynamics. We note, however,
that the absence of the experimental capability to initialize
a granular chain with a specific initial distribution in present
settings renders such a study more theoretically motivated than
practically motivated at the moment.

Indirect experimental measurements of the dynamical
properties of granular crystals are possible using approaches
such as the ones in Ref. [94]. Additionally, recently-developed
techniques, such as laser Doppler vibrometry, now make it
possible to measure the spatiotemporal properties of an entire
granular chain (see, e.g., Ref. [74]). Using this experimental
technique, one can track the force at each particle as a function
of time, and one can consequently directly measure quantities
such as m̃2 or P −1 as a function of time. Naturally, it is rather
tedious to conduct experiments with very long chains and using
many realizations of a given type of disorder. Nevertheless,
neither of these is presently out of reach, as experiments
with as many as 188 particles have been reported [67], and
multiple realizations to obtain ensemble averages have also
been performed previously (e.g., in Ref. [21]). Extending the
considerations of the present paper and enabling experimental
estimations of the exponents presented herein would be ex-
tremely exciting for corroborating the superdiffusive transport
dynamics that we have observed commonly in disordered,
strongly nonlinear lattices.
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