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A perturbative analysis of modulated amplitude waves
in Bose—Einstein condensates
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We apply Lindstedt’s method and multiple scale perturbation theory to analyze spatio-temporal
structures in nonlinear Schiinger equations and thereby study the dynamics of
gquasi-one-dimensional Bose—Einstein condensates with mean-field interactions. We determine the
dependence of the amplitude of modulated amplitude waves on their wave number. We also explore
the band structure of Bose—Einstein condensates in detail using Hamiltonian perturbation theory and
supporting numerical simulations. @004 American Institute of Physics.
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Bose-Einstein condensate§BECs) were observed experi- quencies, and the mean healing length 1/y8m|aln,
mentally in 1995 using dilute vapors of sodium and ru- wheren is the mean density ana, the (two-body s-wave
bidium. The macroscopic behavior of BECs at zero tem-  scattering length, is determined by the atomic species of the
perature is modeled by the nonlinear Schidinger  condensaté*’® Interactions between atoms are repulsive
equation in the presence of an external potential. This whena>0 and attractive whea<0. For a dilute ideal gas,
model has proven to be an excellent one for most experi- a=~0. The length scales in BECs should be contrasted with
ments on BECs. When the external potential is spatially those in systems like superfluid helium, in which the effects
periodic (e.g., due to an optical lattice, which may be of inhomogeneity occur on a microscopic scale fixed by the
created using counter-propagating laser beamsthe spec-  interatomic distanc®.
trum of the BEC exhibits a band stucture (spatial reso- If considering only two-body, mean-field interactions, a
nance structure). This paper utilizes Hamiltonian pertur- dilute Bose—Einstein gas can be modeled using a cubic non-
bation theory and supporting numerical simulations to  linear Schrdinger equationNLS) with an external poten-
study this structure in detail. tial, which is also known as the Gross—Pitaev$&P) equa-
tion. BECs are modeled in the quasi-one-dimensipgaasi-
(1D)] regime when the transverse dimensions of the
I. INTRODUCTION condensate are on the order of its healing length and its lon-
) i i . gitudinal dimension is much larger than its transverse
At low temperatures, particles in a dilute gas can res'debnes?'g‘llln the quasi-1D regime, one employs the 1D limit

:2_ the_ sam(z quar;é_tirt(r%found .:,_tate, bformmg a Bc_)se— of a 3D mean-field theory rather than a true 1D mean-field
Instein condensate.” This was first observed experimen- yhe oy which would be appropriate were the tranverse di-

tally n 1995 with vapors of rubl'd|um. and soduﬁﬁ.ln these mension on the order of the atomic interaction length or the
experiments, atoms were confined in magnetic traps, evapQs .- o 2-13
ratively cooled to tempuratures on the order of fractions of =\, examining only two-body interactions, the con-

microkelvins, left to expand by switching off the confining densate wave functiofforder parameter) (x,t) satisfies a
trap, and subsequently imaged with optical metHods. cubic NLS

sharp peak in the velocity distribution was observed below a
critical temperature, indicating that Bose—Einstein condensa- 17 44= —[#2/(2m) 1yt 9| |4+ V(X) ¢, ()

tion had occurred. . where||? is the number density/(x) is an external poten-
BECs are inhomogeneous, so condensation can be ol g=[4mh2a/m][1+O(2)], andl=[¢[Fa]? is the di-

served in both momentum and coordinate space. The numbﬁhe gas parametér®Because the scattering lengttcan be
of condensed atormi ranges from several thousand t0 Sev- i sted using a magnetic field in the vicinity of a Feshbach

eral million. Confining traps are usually approximated We”resonancé‘,‘ the contribution of the nonlinearity ifL) is tun-

by harmonic potentials. There are two characteristic lengthp, o

scales: the harmonic oscillator lengil, o= VA/(Mwpo) PotentialsV(x) of interest in the context of BECs in-
[which is on the order of a few microhswhere wno,  clyde harmonic traps, periodic potentiatstanding light

= (wywyw,)™" is the geometric mean of the trapping fre- \4yes7), and periodically perturbed harmonic traps. The ex-
istence of quasi-1D cylindricalcigar-shaped’) BECs mo-
dElectronic mail: mason@math.gatech.edu tivates the study of periodic potentials without a confining

1054-1500/2004/14(3)/739/17/$22.00 739 © 2004 American Institute of Physics

Downloaded 07 Sep 2004 to 132.248.209.71. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


http://dx.doi.org/10.1063/1.1779991

740 Chaos, Vol. 14, No. 3, 2004 M. A. Porter and P. Cvitanovic

trap along the dimension of the periodic latticeExperi-  [From a physical perspective, we consider the cas®, as
mentalists use a weak harmonic trap on top of the periodi®/(x") =V(x—wvt).] When the(temporally perioditcoherent
lattice to prevent the particles from spilling out. To achievestructure(3) is also spatially periodic, it is called modu-
condensation, the periodic lattice is typically turned on aftedated amplitude wavéMAW).2>3° The orbital stability of
the trap. If one wishes to include the trap in theoretical analyMAWS for the cubic NLS with elliptic potentials has been
ses,V(x) is modeled by studied by Bronski and co-authots'! To obtain stability
B . 2 information about the sinusoidal potentials we consider, one

VX)=Vosin(x(x=xXo)) +V1x*, @ {akes the limit as the elliptic modSIusapproaches zerd):*2
wherex is the lattice wave numbeY/, is the height of the WhenV(x) is periodic, the resulting MAWSs generalize
periodic lattice, anc, is the offset of the periodic potential. the Bloch modes that occur in the theory of linear systems
(Note that these three quantities can all be tuned experimenvith periodic potentials, as one is considering a nonlinear
tally.) The periodic term dominates for small but the har-  Floquet—Bloch theory rather than a linear dié%223334n
monic trap otherwise becomes quickly dominant. WMan  this paper, we employ phase space methods and perturbation
<V, the potential is dominated by its periodic contribution theory to examine MAWSs and their concomitant band struc-
for many (20 or more periodst®~8 (For example, when ture.
V,/V1=500, k=10, andx,=0, the harmonic component of The novelty of our work lies in its illumination of BEC
V(x) essentially does not contribute for 10 periods. this  band structure through the use of perturbation theory and
work, we usually let/;=0 and focus on periodic potentials. supporting numerical simulations to examinm21 spatial
Spatially periodic potentials have been employed in experisubharmonic resonances in BECs in periodic lattices. Such
mental studies of BEC$?° and have also been studied resonances correspond to spatially periodic solutignsf
theoretically?~1:17:18:21-25 period 2n’ and generalize the “period doubled” statéa

When the optical lattice has deep weflarge |Vo|), an  |4]?) studied by Machholnet al® which pertain to the ex-
analytical description of BECs in terms of Wannier wave periments of Cataliottet al>®
functions can be obtained in the tight-binding Previous theoretical work in this area has focused on
approximatior® The Bose—Hubbard Hamiltonian, which is different aspects of BEC band structure, such as loop
a better description thafi) in the tight-binding approxima- structurd’=2° and hysteresi& In contrast to the coherent
tion, is derived by expanding the field operator in a Wannierstructures we consider, these authors studied band structure
basis of localized wave functions at each lattice site. Thisusing a Bloch wave ansatz. In our notation, they assuaned
Hamiltonian has has three contributions: A kinetic energypriori that R(x)=R(x+ 27/«) has the same periodicity of
term yielding contributions from tunnelling between adjacentthe underlying spatial lattic¥(x), whereas we have made
wells, an energy offset in each lattice sftue, for example, no such assumption and instead use Hamiltonian perturba-
to external confinemeptand a potential energy term char- tion theory to study the dynamical behavior Rfx). Addi-
acterized by atom-atom interactiorithat indicates how tionally, the analytical components of these works are con-
much energy it takes to put a second atom into a lattice sitéined to two-to-three Fourier mode truncations of the Bloch
that already has one atom prege@ne can use the Bose— wave dynamicg’~3°
Hubbard Hamiltonian to examine transitions between super- Inserting (3) into the NLS (1) and equating real and
fluidity and Mott insulatior?.’ imaginary parts yields

In the present paper, we examine in detail the band struc- )
ture of BECs in shallow periodic lattices using Hamiltonian AuR(X) = — ﬁ—R”(x)+
perturbation theory and supporting numerical simulatféns. 2m
Our methodology, which yields analytical expressions de-

ﬁZ
=16/ (0 1+ gR(X)

scribing the features of BEC resonance bands, exploits the +V(x) [R(x),

elliptic function solutions of the NLS in the absence of a

potential. Note, however, that this paper doesexplore the 52

chaotic dynamics of BECs. 0= ﬁ[ze’(x)R’(x)vL 0" (X)R(x)], 4

which gives the following two-dimensional system of non-
Il. COHERENT STRUCTURES linear ordinary differential equations:

We consider uniformly propagating coherent structures R'=S,
with the ansatzg/(x—uvt,t) =R(X—uvt)exp([ O(x—vt)— ut]), 2muR  2mg om
where R=|y]| is the magnitude(amplitude of the wave S'= A 72—R3+ 7 V(R (5)
function, v is the velocity of the coherent structuré(x)
determines its phasgqy=V @ is the particle velocity, angtis  The parametec is defined via the relation
the chemical potentiglwhich can be termed an angular fre-
qguency from a dynamical systems perspegti@onsidering 0'(x)= < 6)
a coordinate system that travels with speedby defining R%’

I — H ! H
X'=x—vt and relabeling’ asx) yields and therefore plays the role of “angular momentum,” as dis-

P(x,0)=R(x)exp(i[ 8(x) — ut]). (3)  cussed by Bronski and co-authdP{Equation(6) is a state-
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FIG. 1. Phase portraits of coherent structures in BECs with no external potential. The sigasad determine the dynamics ¢5). (a) Repulsive BEC with
u>0. The two-body scattering length &=0.072 nm, the valugRef. 53 for atomic hydrogen H). Orbits inside the separatrixvhich consists of two
heteroclinic orbits have bounded amplitud®(x). The period of such orbits increases as one approaches the separatrix, whose period ighihftitactive

BEC with u>0. The two-body scattering lengthas= —0.9 nm, the valugRefs. 18 and S4for 8°Rb. (c) Attractive BEC(again®Rb) with u<0. Here there
are two separatrices, each of which encloses periodic orbits satidRy#g

ment of conservation of angular momentyi@onstant phase Whenc=0 andR, =0, one obtains\ = + \—2mu/#. Ad-
solutions, which constitute an important special case, satisfditionally, one obtains a center &, 0) when x>0 and a

c=0. saddle whernu<0. One also obtains saddles at tRg+# 0
equilibria for g>0 when x>0 and centers at those same
Ill. BECs WITHOUT AN EXTERNAL POTENTIAL locations forg<<O when u<0. These latter equilibria are

_ ; : surrounded by periodic orbits that satigty= 0. The possible
WhenV(x)=0, the dynamical syste®) is autonomous gualitative dynamicgfor c=0) are illustrated in Fig. 1 and

and hence integrable, as it is two-dimensional. Its equilibriaSummarized in Table |
(R, ,S,) satisfyS, =0 and eitheR, =0, c=0 or '

ﬁZ

gRG— ﬁ/LR4+ %C2= 0, (7) TABLE |. Type of equilibria of (5) whenV(x)=0, andc=0.
which can be solved exactly because it is cubi®f When ~ Eauilibrium at(0,0 Equilibria at R,,0)#(0,0) 9 "
c=0, one obtain®k, = = A u/g. One thus obtains equilib- Center None - +
ria at (R, ,0)#(0,0) forg>0 if u>0 andg<O0 if u<O0. Center None 0 +
The eigenvalues of the equilibriunR(,0) satisfy Center saddles + +
Saddle None + -
3c® 2mu  6mg 5 Saddle None 0 -
A= — R—4 — T + ?— R* . (8) Saddle Centers - -

*
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To study the dependence of the wave number of periodisvhereC?:= A(#7)2+ B(7)? is a constant. The dynamical sys-

orbits (centered at the origjrof (5) on the amplitudér when
V(x)=0, we employ Lindstedt’s methdtand consider null
angular-momentum wave functions for the case 0. We
also assumg==¢cg, wheree<1 andg=O(1). The period
of R(x) is given by
1+ _3gA2 9
8 C)
whereR(€) =Ry(£) + O(g), é=ax, a=1+ea;+O(e?) is
the wave numberA:=R,(0), and

/2
Ro(§)=Acos< %g) .

2T
=—=27
a

T +0(?),

(10

Note that all periodic orbits are centered at the origin
when u>0. Wheng<0, the spatial period becomes smaller

with increasingA. When g>0, the period becomes larger
with increasingA. In the latter case, the wave number-

tem (11) is autonomous whenV,(#7)=0. Equilibria
(A, ,B,)#(0,0) of (11) correspond to periodic orbits @5)
with c=0. The equilibrium value of the squared amplitude is
denotedC2 =A%+ B2 .

Converting to polar coordinates with A(#%)
=Ccos((n) and B(7)=C sin(¢(7) and integrating the
resulting equation yields

d(17)=p(0)+| a1 B+ %C }77+2,l!«_ﬁ Vi(n)da.
(13)
The wave number of the periodic motion is given by
(C)=1—3—gcz— iv (X)+O(&?) (14)
“ 8uh 2ub L e

When k= *+23, we show that the slow flow equations
have an extra term due to resonance. Without loss of gener-

amplitude relation holds only for solutions inside the separay|ity, we let k= + 2, as changing the sign of, produces
trix, as the trajectories are unbounded outside the separatri§e x= — 23 case. Whem=0.5, =10, andi =1, for ex-

and hence not periodic.

ample, one obtains this resonant situation o+ = 10. Ad-

Before deriving the wave number-amplitude relationsgjtionally, we show thaC is no longer constant in this reso-
when V(x) #0, we comment briefly on the preceeding re- nant situation.

sults. The spatial period for smalk 0 is similar to(9), but
it cannot be estimated as easily because(E)gnow includes
a term of orde®(R™3) with coefficientc. Although(9) can

be computed exactly in terms of elliptic functions, here we

In polar coordinates, the slow flow equations are

365, , Vob

O =Bt g 2 CP SN2 b o]

are interested in elucidating the qualitative dynamics of the

MAWSs of interest as well as establishing the methodology to

be employed in the presence of potentigléx). We will
utilize elliptic function solutions in Sec. V in our detailed
study of band structur® The physical relevance of elliptic

functions to BECs has been discussed by Carr an

collaboratorg*4?

IV. BECs IN A PERIODIC LATTICE

To study the wave number-amplitude relations of peri-

8 —
+2M—ﬁvl(7])’

C’=—VLBCCOi2(¢—2ﬁ§ )] (15
d duh 0
Integrating the equation fa€’ yields

C=Coexr{—m cog2(¢p(n)—Béo)ldn|, (16

odic orbits in the presence of external potentials, we expanghich one may then insert into the equation for the angular

the spatial variable in multiple scales. We define “stretched
space” &:=ax as in the integrable situation and “slow
space” n:=ex. We consider potentials of the fornd(x)
=eV(&,7m), where V(& 7)=Vosin«(§—4&)]+Vi(n) and
V1, which is of orderO(1), is arbitrary but slowly varying.
Cases of particular interest includg =0 (periodic poten-
tial) and V;=V,(%— 7,)? (superposition of periodic and
harmonic potentiajs

Whenk# *+28:=+22mu/f, the equations of motion
for the slow dynamics of5) with c=0 are

dA_ ’_ Bﬁg 2 ﬁ N7
B 3By, B

whereg=eg. The leading-order expression for the ampli-
tude is

Ro(¢,7)=A(7)cog B§) +B(7)sin(B¢), 12

dynamics.
To determine equilibria, one pu'=¢'=0. FromC’
=0, one determines that equilibri€( ,¢,) satisfy

(2j+1)m _
b= Bk, [e{0.1.23, (17
which is independent of the scattering coefficient. Inserting
(17) into C’ =0 yields the wave number-amplitude relation
(C)= (C)_EHD( %) (18)

aR [a% +4,uﬁ £°),
for periodic orbits of(5). In (18), the minus sign is obtained
when je{0,2}, and the plus sign is obtained when
€{1,3}. Equation(18) is valid for 2:1 spatial resonances. We
examine 2n':1 resonances for integen’ in Sec. V using
Hamiltonian perturbation theory and the elliptic function so-
lutions of (5) whenV,=0.

To examine the spatial stabilit§i.e., stability with re-
spect to spatial evolutigrof these periodic orbits in the pres-
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FIG. 2. As the wave numbet of the perturbation is increased, periodic behavior persists for laxggr The initial condition in this plot is R(0),S(0))
=(0.05,0.05), and the parameter valaes0.072, u=10, m=0.5, andx,=0 are used for each trajectora) Poincaresection determined by sik)=0.
Trajectory(1) corresponds to«,V,)=(100,10), trajectory?) to (x,Vy)=(100,100), and trajector{B) to («,V,)=(10,10). These quasiperiodic solutions
indicate the existence of nearby periodic orhils.Phase space plots of the trajectoriesan Trajectory(1) is the closest to being periodic and traject(8y

is the furthest away(c) Amplitude R as a function of space for trajectories(1)—(3). The band structure of BECs can be studied not only in real space but
also in phase space by plotting Poincaeetions and trajectories, as indicatedanand (b). Examining the proximity of a trajectory to periodicity is most
easily accomplished in phase spa@d). Coherent structure corresponding to quasiperiodic trajedtbryThis plot depictsRe(¢). The horizontal axis
represents time, and the vertical one represents space. The darkest portions are the most negative, and the lightest are the most positive.

ence of resonant periodic potentials, we compute the spatialbserve “period-multiplied” states. Whem’=1, one ob-
stability of equilibria of(15) whenV,(7)=0. The eigenval- tains period-doubled states ifi As verified numerically in
ues of the periodic orbits are Sec. VI, our qualitative results are excellent. Given that our
method is a leading-order one, our quantitative results are

A= B ;3V0§C (199  @lso remarkably good.
“2u 2r% Recent work by Machholm and co-authtren period-

We show numerical simulations f¢8) in the presence of a doubled statesin |#1?) follows up experimental studies by
periodic potential in Fig. 2. In this situatiofs) is a nonlin-  Cataliotti and co-_author?, who observed superfluid current
ear Mathieu equatio??3*“3Figure 2d) shows the coherent disruption in chains of weakly couplefj BECS, WhICh is re-
structure for the trajectory witk=100 andV,=10. Figure lated to the dependenpe of the dyngmlcgl |nstap|I|ty of Blgch
3 depicts a Poincarsection describing the dynamics of Statés on the magnitude of particle interactions. Period-
8Rb, for whicha=—0.9 nm. Figure 4 depicts spatial pro- dqubled states, V\{hmh may'l.)fa interpreted as soliton trains,
files of the coherent structures corresponding to the locallj?iseé from dynamical instabilities of the energy bands asso-
chaotic and globally chaotic trajectories in Fig. 3. ciated with Bloch state¥. In the present work, we offer a
dynamical systems perspective on period-doubled states and
their generalizations. Our theoretical and computational
analysis reveals period-multiplied solutions of the Q@p.

In this section, we analyze spatial subharmonic resoThe existence of these wave functions can be explored ex-
nances and the band structure of repulsive BECs with a posperimentally.
tive chemical potential. We perturb off the elliptic function A detailed examination of the band structure of BECs in
solutions of the underlying integrable system in order toperiodic lattices requires a more intricate perturbative analy-
study 2n’:1 spatial resonances with a leading-order pertursis than that discussed earlier in this work. Previous authors
bation method. Perturbing off simple harmonic functions, byhave concentrated on numerical studies of band
contrast, requires a perturbative method of omiérto study  structure*>?223The approach we take, on the other hand, is
2m’:1 resonances. At the center of the KAM islands, weto analyze the spatial resonance structure that arises from the

V. SUBHARMONIC RESONANCES
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0 30
-2 2 @ space

FIG. 3. Poincaresection for the parameter valugs= —10, m=0.5, x,
=0, Vg=5, k=10, anda=—0.9 nm, corresponding to the experimentally
determined scattering lengtRefs. 18 and S@for ®Rb. The depicted tra-
jectories include examples which are quasiperiodic, locally ch&ogar the
resonances and globally chaotidthe stochastic sea

nonlinear Mathieu equation obtained upon the application of
a coherent structure ansatz to the cubic NLS. We examine
situations with null angular momentune€0), but one ob-
serves similar behavior when# 0 whenR is away from the
origin. The analytical approach we employ was introduced
by Zounes and Rarfélifor g<0 andw>0 [see Fig. )], the
technically easiest case to consider. Their study of nonlinear
Mathieu equations is directly applicable to BECs. Our work -2.
is an extension of their work to the situatigi>0, u>0 [see

Fig. 1(a)], the second easiest case to consider. We study this 0 100
case in detail and also apply the results of Zounes and Ranc

to attractive BECs with a positive chemical potential. We (b) Space

briefly discuss attractive BECs with a negative chemical po-

tential [see Fig. 1c)], the technically hardest case to con- FiG. 4. (a) Spatial profile of the coherent structure corresponding to the
sider. Note that this paper doest explore the chaotic dy- locally chaotic trajectory in Fig. 3. The initial conditions ar(0),S(0))

namics of BECs, which is an important open is 84445 ~(—0.018 182 15;-5.232 683 58) (b) Spatial profile of the coherent struc-
_ ’ _ ture corresponding to the globally chaotic trajectory in Fig. 3. The initial
Let xo=—m/(2«) andV,(x)=0 so that conditions are R(0),S(0))~ (- 1.132 835 30,1.283 340 13).

R H(

V(X) =V, cog kX). (20 ] )
(Note that the perturbation parametsas not the same as the

Whenc=0, the equations of motiof2) and(5) for the am-  parametee employed earlie).The parameterg, V, «, and

plitude of the coherent structuf8) take the form a (and henceg) can all be adjusted experimentally. When
3 €=0, solutions of(21) can be written exactly in terms of
R”+ 6R+ aR°+ eR coq kx) =0, (21 elliptic functions31:32:44:47-49
where R=opcn(u,k), (23
5 2mu _2mg 2mV - where
TTh 0 YT T g TR e 22 U=u;x+uUy, Us=éd+ap?,
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ap? Here,K=K(k) denotes the complete elliptic integral of the
k2=m, (24 first kind, E=E(k) denotes the complete elliptic integral of
the second kind, and items with the subscript “2” denote the
u;=0, p=0, k’eR, oce{-1,1, analogous quantities in thev(k,) coordinate systerf46:48

andug is obtained from an initial conditiofand can be set to We rescalg21) using the coordinate transformation

0 without loss of generalily We considelu; € R in order to 5
study periodic solutions. One can use argument transforma- x= Jox, r= \/:,R, (29
tions to study solutions with complexi;. When k2
e (1,2), one makes sense of the cn function with a reciproto obtain
cal modulus transformatiof*’ Whenk?<0, one employs a , 3
reciprocal complementary modulus transformation, which rHr=r=0, (30)
we discuss below. when V(x)=0. (Note that in this analysis, the quantiy
Equation(21) can be integrated whesi=0 to yield the  does not represent the mean healing lendthterms of the
Hamiltonian original coordinates
12 1 2 1 4 __
1R'24+ 1 5R?+ 1 aR*=h, (25) R(x)=\/E,r(J5x)= /ﬁ_ﬂr /2m_,LX | -
with given energyh. With (24), one computes @ 9 h
1 52 K3k'2 The rescaling applied for other choices &8fand a differ
h= ZP2(25+ ap?®)= o (1=2Kk3)2° (26)  slightly from that in(29), so that the arguments of their as-
sociated square roots are positive.
wherek’2:=1—k2. Earlier in this paper, we enumerated the The Hamiltonian corresponding t80) is
different possibilities for the qualitative dynamics @f1) in
terms of the signs of andg (and hence in terms of the signs ~ Ho(r,s)= 38+ 3r®~ zr*=h, he[0,1/4], (32)
of sanda) where si=r'=dr/dy. Additionally, p?e[0,1], k3e[0,1]
A. Repulsive BECs with a positive chemical potential (corresponding tk?e (—,0] in the original coordinatgs
We first consider in detail the casg>0, w>0, for and
which §>0, «<0. For notational convenience, we some- p?
times utilizea’:= — «. This analysis involves a considerable kz:m- (33

amount of elliptic-function manipulation, but we are re-
warded in the end by a much more effective perturbatiorWith the initial conditionr (0)=p, s(0)=0, which implies
theory than can be obtained by employing trigonometricthat u,=0, solutions to(30) are given by

functions. -~ T
The center at0, 0) satisfiesh=p?=k?=0. The saddles rO0=penl1=p 1 x k),
at (= {d/a',0) and their adjoining separatrix satisfy s(x)=—p[1—p2*%sn[1-p?]*?x,k)
2
A A S R S 27 xdn([1-p?)"x k). (34
da |

The period of a given periodic orbit is
The signo=+1 is used for the right saddle, ad=—1 is

used for the left one. Within the separatrix, all orbits are 4K (k)
o - . T(k)= ¢ dy= : (35
periodic and the value of is immaterial. T 1=p2

where & (k) is the period irnu of cn(u,k).*® The frequency

1. Action-angle variable description and of this orbit is

transformations
For this choice of parameterk?e[—=,0], so elliptic k)= m1—p (36)
functions are defined through the reciprocal complementary 2K(k)

. ’47 . .
modulus transformatioff wh|_ch relates theL(,k) coordi Let T, denote the periodic orbit with energf
nate system to another coordinate system, which we denote

(w,k,). To tranform between these two coordinate systems, o(rS). T_he area of phase space enclosed by t.h's orbitis
¢tonstant with respect toy, so one may define the

one uses the following relations: actior246:47.49
cn(u,k) =cd(w,k,), 1 1 (M
— - 2
dn(u,k)=nd(w,ky), J=o— Fhsdr P fo [s()17dx, (37)
, (29
sn(u,k) =k;sdw,ky), which in this case can be evaluated exactly:
r_ 1 Lt Lt _ 1 4\/l—p
k “ig u=kaw, K=k;K;, E—k_éEz- JzT[E(k)—(l—pZ/Z)K(k)]. (38)
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The associated andf*>4%>%n the canonical transformation H(,j.x)=Ho(j)+eH(,j,x)
(r,s)—(J,d) is
— e L[R() K
(D_q)(O)'f'Q(k)X (39) =j—] +5JC|’]2 ( )¢k \/SX .
The frequency€Q (k) monotonically decreases &€ goes
from — to O[that is, as one goes from the separatrix to the (47)
center at (,s)=(0,0)]. With this transformation, Eq:34) Because we have used elliptic functions rather than
becomes trigonometric functions, all results are exact thus*far.
r(J,®)=p(J)en(2K(k) P/ k), 2. Perturbative analysis
S(x) = —p(J)mSI’(ZK )/ 77,K) A su?sequent?(e) apalyss at this stage allows one to
study 2n’:1 subharmonic resonances formll  Z. By con-
X dn(2K(k)®/ k), (40 trast, had we undertaken this procedure with trigpnometric
wherek=k(J). functions (which would have entailed a perturbative ap-
After rescaling, the equations of motion for the forced Proach from the be,glnnnjg an O(e™) analysis would be
system(21) take the form required to study &1':1 subharmonic resonances (@fl).

The Fourier expansion of cn is given by

r=0, (41)

Fr =13+ < co L)(
o\

with the corresponding Hamiltonian

__2m E
cn(u,k)= KKK 1) 2 b,(k)co (2n+1)2K(k) (48

where the Fourier coefficients,(k) are
H(r,s,x)=Hg(r,s)+eH(r,s,x)

by(k)= Lsechi(n+1/2) 7K' (K)/K(K)], (49)
=Es +Er —Er4+ ir cos( “ X)- (420 and K’ (k):=K({1—k?) denotes the complementary com-
2 2 26 NG plete elliptic integral of the first kind®*®°!In the present
In action-angle coordinates, this becomes situation
— ’R . o]
H(®,3,0)=h(3)+ehy(®.3,x) ( () M) _y Bn(j)co{(zﬁl) L } 50
1 1 () =0 J'(j)
=5p(3)%= 700" where
b= (3)2cr?(2K (k) ®/ k) s( “ B (])_Lb k()] (51)
Py c T,K)CO§ — x| - )= " "n .
26" Vel k()K(})

(43 Consequently,

One obtains a second action-angle pa;j() using the K(j) 2l ¢
canonical transformationd,J) — (¢,j) defined by the rela- cré Wd)'k Bo(J)+2 B, co{\] (J)) (52
tions
1 where the Fourier coefficient;(j) are obtained by convolv-
i(D==p(D)3% P(p,j)= ,i (44)  ing the previous Fourier coefficients1) with each othef?
2 J°(0) Before proceeding, it is important to discuss the compu-
where tation of the coefficients5/(j), which require some care.
_ Using the Elliptic Noméa!>2
J
2_ ,
k _2j——1’ q(k)s=e~ ™K (IK(K) (53)
2 the Fourier coefficien{49) is expressed as
(=3 V1-2J[E(j)—(1-]DK()], (45) 1
° ba(k)= (54)
) ) n q(k)n+l/2+q(k)f(n+1/2)'
K()=—K[k(D],  E()=_—E[k({)]. One then expands(j) in Taylor series abouj=0. In this
- computation, one finds that the coefficients of even powers
Add|t|onally, of j in B,(j) are the same as whep<0, >0 and that odd
powers have the opposite sign. This distinction lies at the
J'(j)==r=V1-2jK(j)= Q(]) (46) root of the qualitatively different dynamics in the two cases,

which we will discuss in Sec. V B. Recall that their underly-

Note thatJ~J for small-amplitude motion. Furthermorg, ing integrable dynamics are depicted in Fig. 1.

=0 at the origin, and =1/2 on the separatrix. After the Fourier expansion, the perturbative term in the
The Hamiltonian(43) becomes Hamiltonian(47) is
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Hi(¢.j.x)= 30(1)005{\/5
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S NITT RN
2l K
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There are infinitely many(subharmonig resonance

(59
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3. Resonance relations

Resonant frequencies arise when the denominators of the
terms inW; vanish®24344which yields the equation

K
—==2m' Q(P,),

V6

for the resonance of ordem®2 :1. As O<1 is a decreasing
function of Pe[0,1/2), the resonance band associated with
2m’:1 subharmonic spatial resonances is present when

(60

bands?4445each of which corresponds to a single harmonic

in the perturbation serie5). To isolate individual reso-
near-identity

nances, we apply a canonical,
transformatiof?*3~#%%to the HamiltonianH=H+ eH .
This transformation is given by

W,

b= Q—I—e +(9(e2)

, AW, ,

] = —GE‘FO(E) (56)

where the generating functioW, is
PBO(P) P

W, = +— B,(P

0B ) 2 P
(2'_9_ [2Q  «
nJ’(P) \/EX sin 7P) \/SX
K+ 21\5Q(P) k—2150(P)

(57)

To obtain (57), one uses the fadifrom (46)] that Q(P)
=(1-2P)/J'(P).
The resulting Hamiltonian is

K(Q,P,x)=Ko(P)+eK1(Q,P.x),

Ko(P)=P—P?=H(P), (58)

W,

Kl(leix):Hl(Q1P1X)+{H01W1 &X ’

where{A;,A,} denotes the Poisson bracket&f and A,.

For the present choice diV,;, one obtains the resonance

Hamiltonian

o , € 2m’'Q
K(Q,P,y;m")=P—-P +2—5P8m/(P)co 7P

X +O(62).

Jé

The choice of the generating functid®?) eliminates all
resonances from the Hamiltonidh except the 2n":1 reso-

(59

JF
nance. In focusing on a single resonance band in phase g_—(Q Y., x)=

space, one restrict8 to a neighborhood oP,, which de-
notes the location of the’th resonant torugsassociated with

periodic orbits in 2n’:1 spatial resonance with the periodic

lattice).

K

—=<2m’.

NB
For example, wher=2.5 ands=1, there are resonances of
order 4:1, 6:1, 8:1, etc., but there are no resonances or order
2:1. Whenk=5 andé=1, there are resonances of order 6:1,
8:1, 10:1, etc., but there are no resonances of order 2:1 or
4:1. In terms of the original parameters, the conditi6t)
describing the onset ofr@’:1 resonance bands takes the
form

/2m
k<2m’ TM

If the lattice V(x) has a smaller wave numbélarger
periodicity), then the chemical potentigh has a smaller
threshold for a given resonance to occur. Ass decreased
for a fixed u (i.e., 8) or asu is increased for a given lattice
size k, resonance bands of lower order emerge from the ori-
gin and propagate in phase space. Consequently, a suffi-
ciently high order resonance is always present2it), but a
given number of low-order ones may not be. Lower-order
resonances occupy larger regions of phase spad¢é1salso
indicates the volume of phase space affected by spatial reso-
nances. We will illustrate this in more detail in Sec. VI with
numerical simulations.

(61)

(62

4. Analytical description of resonance bands

To further examine the resonance structurg2if), we
make (59) autonomous via another canonical change of
coordinates?* Toward this end, we define the generating
function

K
F(Q,Y,X,m ):QY_ 2m,\/5J(Y)X! (63)
which yields
F
P=25(Q Y=Y,
~ gy
Q om' 3 (Y)x
=Q- J'(P 64
=Q \/— (P)x. (64)
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(Note that in this analysis¢ does not represent stretched

space, as it did in our multiple scale expansidiith this
final transformation, the resonance HamiltoniésB) be-
comes

JF
Kmr(g,Y):K(Q,P,X;m/)JF E(Q’Y,X)

=Y-Y2-

J
mﬁs()

6YB Y 2m 65
+ﬁ m'( )CO ’ ( )

Ig)
I/

M. A. Porter and P. Cvitanovic

B

co STl (70)

UsingJ'(Y)=1—2YK(Y), Eq. (69) is written
1—2Y— [\/1 2YK(Y)= 5[Y8m,(v)]'=o

(7D
Wheng<0 andu>0, the+ case yields a saddle and the
— case yields a center. In the present situatign>0Q,u
>0), this holds for oddn’. Whenm' is even,— is a saddle
and + is a center.
At equilibria, the actionY takes the value

which is integrable in the Y,&) coordinate system. In Ye=Ym +eAY+O(€) =Y =0(e), (72
(R,S)-space, level curves ok, correspond to invariant with the signs as in(71). However, note thatY.>Y,,
curves of Poincareections of(21), which are defined by >Y,, just as forg<0. One insertg72) into (71) and ex-
strobing the system when the spatial variable takes the valuggnds the result in a power series. At ordgfe®)=O(1),

Xn=2n7/ k. this reproduces the resonance relat{66). At order O(e),
We now provide an analytical description of the reso-one obtains

nance bands under discussion. In particular, we compute the ,
locations and type of equilibria and width of resonance bands AY=T € Bine (Y ) + Y By (Yo )

as functions of the parametefs ¢, and x, and hence ofu, 26 QY )VL=2Y, K/ (Y ) — 1 ’

Vo, and k. Such bands emerge from the actibh=Y h ddley. het d ¥, he—
=Y, which designates the location of th&th resonance where saddle¥s use the+ sign and center¥, use the
rsAgn whenm’ is even, and the opposite is true when is

torus in phase space and is determined by the resonance 3. Whenm' is even AY=0, butAY<0 whenm’ is odd.

lation (60): Additionally, Y. is always larger tharY (for both signs of
€).
ﬁ Resonance bands occupy a finite region of phase space
bounded by a pendulum-like separatrix. When a perturbation
This resonance band is associated with periodic orbits ifis introduced, trajectories outside the separatrix behave al-
2m’:1 spatial resonance with the periodic lattice. The resoimost as they would in the absence of a perturbation, so it is
nance torus is filled with degenerate periodic orbits thaimportant to estimate the width of resonance bands, which
split***®into 2m’ saddles and®’ centers when a perturba- emerge at action values satisfying the resonance relation

(73

—2m' Q(Y,). (66)

tion is introduced.
From (65), one obtains Hamilton’s equations

(66). Because of the direction of the inequality(62), this is
more of a condition for nonexistence of given resonances
[see the discussion following E¢61)]. For a given set of

V. K €YBy (Y) (me) parameters, there will always be resonances of sufficiently
29 J'(Y) J'(Y) high order(i.e., for a sufficiently largen’). However, as we
illustrate numerically below, there are parameter regions in
&= &Km/ —1-2Y— (Y) which no 2:1 resonances exist, regions in which no 2:1 or 4:1
2 2m \/— resonances exist, etc. This behavior contrasts markedly with
, that observed wheg<0.*® In that situation, there exist pa-
2m’g rameter regions in which only 2:1 resonances exist, regions
(YB(Y))' co L :
"2 J(Y) in which only 2:1 and 4:1 resonances exist, etc.
3 , We now show that the width of a resonance band is
+2M'é— 3 I YB, (Y)sm( 2m g”
[T SIS @< . /M» 74
(67) _ _ ,
o ) ) _ for perturbations of size=—2mV,/#°.
Equilibria satisfy eithetr =0 or The separatrix of interest passes through the saddle point
[2m'¢ Y, and the maximum extent of the resonance band occurs at
sin| W) = (68)  the same phasgas the associated center, so
They also satisf K 2mé ) _ Y=Y
\ y m’| CO m = Y=Y
'=0=1-2Y-— I (V) =55 YBy(YV)]', (69 2m'’¢
¢ o [ (V)= 55[YBn (V)] (69 =Km,<cos{—J,(Y) —+1Y], (75

where the signt in (69) arises from

whenm’ is odd and
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2m’ & TABLE Il. Comparison of perturbation theory and numerics for 2:1 reso-
Koy ( CO{,— =4 1,Y:YS) nances k=1.5, §=1). In this table,Y, is the action value of the primary
J'(Ys) resonancey, is the location of its nearby saddleRy0) is its location in
, (R,S)-coordinates,Y is the location of the nearby centeR{0) is its
—K 2m'¢ ——1Y 76 location in (R,S)-space.Y i, is the minimum action value of the separatrix
co J'(Y) - N (76) determined from(81), Y 4 is the maximum determined froit82), R;, is
where the inner separatrix crosses Baxis, R, is where the outer sepa-

whenm' is even. This implies that ratrix crosses th&-axis, Y nin 2 and Y a2 @re the minimum and maximum
actions obtained by solving77) numerically, andR;, , and Ry, are their
2 K corresponding predictions of where the inner and outer separatrices cross the
(Y= Ys) — (Y- Ys) - ) (I(Y)— 'J(Ys)) R-axis. The symbol « means a calculation is not applicable and — means it
2m \/5 was not computed.
€ €=0.01 €=0.05
iz_g(YBm’(Y)""YsBm/(Ys)):Ov (77)
Quantity Perturbative ~ Numerical  Perturbative Numerical
. , .
where the+ sign holds for oddn’ and the— sign holds for Y, 0.28133 . 028133 .
evenm’. (Only the + case needs to be considered wigen Y, 0.279 49 . 0.27213 .
<0 andu>0.) Rs +0.7477 +0.66 +0.73775  +(0.56—0.66)
SolutionsY, of (77) are perturbations tor,, of the Ye 0.28317 . 0.29053 :
form Re +0.7526 +0.757 +0.762 27 +0.774
Y min 0.16175 . — .
Y=Y +We"+0O(??), (78) Y max 0.400 91 . — .
. . _ Rin +0.568 77 +0.66 — —
for an appropriate choice of, to be determined by a self- Rout +0.895 45 +0.85 — —
consistency argumenfWhen e<0, one writes(78) with Y min2 0.22203 . — .
(—€)” instead. Everything stated here is otherwise the same Ymax2 0.358 07 y - :
in that situation} In this analysis, one uses the fact that Rin2 +0.666 38 +=0.66

= Yo €(AY) +O(€?), where the+ sign is for oddm’ and ~ __ow2 084626 08 — —

the — sign is for everm’.
To find W and vy, we insertY, and Y into (77) and
expand the resulting expression in a power series about

=0. During this process, one obtains Fig. 1b). They did not consider the application of their
) ) - analysis to Bose—Einstein condensates, so we presently in-
Y=Y t2Yy We?+ W e, terpret their results in this new light and compare it to our

_ p 29 nj2 1 analysis of the repulsive case. Whér-0, >0, the phase
I) = I )+ €W (Vi )+ €W (Y i) space of the integrable problem contains no separatrix, and
+0(€%), (790  the entire space is foliated by periodic orbisee Table )l

This choice of parameters also leads to the simplest applica-
tion of the perturbation technique described in Sec. VA. In
this caseke[0,1], so one need not apply a modulus trans-
formation in the elliptic function solution. One may also set

which shows that that the only suitable value wfs 1/2.
Equating terms of orde®©(1) yields no new information.
Equating terms of ordeP(e'?) yields the resonance relation
(66). Equating terms of orde®(e) shows that

o=1.
we| = Yo By (Y 12 80 We refer the reader to Zounes and R&nfbr details.
N K ' (80) Here, we highlight a few results that we wish to contrast
S| 1+ J'(Ym) directly. Wheng<0 and u>0, the resonance relation one
2m' s obtains is

where the+ sign occurs for odan’ and the— sign occurs

for evenm’. Therefore, the miminal action of the resonance K
band is %—Zm Qa(Pr), (83
Ymin=Ym — VEW+ , 81 .
me Ve . OFG) e where the frequencf),(P) has a similar form to that of)
and the maximal action is described above. In this situatio®),(P)=1, so subhar-
Y= Yot Jew+ O(e). 82) monic periodic orbits are present when
The width of the resonance band ¥ Ymin=2veW P
+0O(e). T>2m’, (84)

In Sec. VI, we compare these analytical results with nu-

merical simulations. which is the reverse inequality as that derived in the repul-

sive case. Hence, there exist regimes in whualy 2:1 reso-
nances are presergnly 2:1 and 4:1 resonances are present,

Zounes and Rarfd considered21) when §>0 and « etc. In terms of BEC parameters, the conditi84) describ-
>0 (in other words,u>0 andg<0), which is depicted in ing the onset of &h':1 resonance bands takes the form

B. Attractive BECs with a positive chemical potential
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TABLE Ill. Comparison of perturbation theory and numerics for 2:1 resonanges0(75, §=0.2). The
quantities computed are defined in the caption of Table II.

€=0.01 €=0.05
Quantity Perturbative Numerical Perturbative Numerical
Y1 0.194 43 . 0.194 43 .
Ys 0.184 99 . 0.147 18 .
Rs +27202 +(0.19-0.20) +0.242 64 —
Y. 0.203 89 . 0.241 69 .
R. +0.285 58 +0.2908 +0.31093 +0.335
Y min 0.074 85 . — .
Y max 0.314 02 . — .
in +0.17303 +0.19 — —
Rout +0.354 41 +0.37 — —
Y min.2 0.096 44 . — .
Ymax2 0.349 04 . — .
Rinz +0.196 40 +0.19 — —
Rout,2 +0.373 66 +0.37 — —

0.75

S ]
-0.75

-1.05 1.05 -1.05 1.05
(a) R

0.51 u

0.3

004 " e S T

e e 0.2

———— " A\

011 s = =
(c) 3 =2 4 o0 1 2 3 (d) 3 2 9 0 1 2 8

FIG. 5. Poincaresections(a) and(b) and resonance Hamiltoniaks (c) and(d) for k=1.5 andé=1. (a) Poincaresection fore=0.01. The 2:1 resonances
are displayed, as indicated by the numbered trajectofi®se=0.05. (c) Resonance Hamiltonian far=0.01 with vertical axis in units of actiol and
horizontal axis in units o&/J’(Y). (d) Resonance Hamiltonian far=0.05.
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TABLE IV. Comparison of perturbation theory and numerics for 4:1 resonance2(5, §=1). The action
value of the secondary resonance is dendtedSaddles that intersect tieaxis are denotedR;,0), and those
that intersect th&-axis are denoted (8;). Centers are denotedR(,S;). The other quantities computed are
defined in the caption of Table II.

€=0.01 €=0.05
Quantity Perturbative Numerical Perturbative Numerical
Y, 0.37358 . 0.37358 .
Y 0.37294 . 0.370 36 .
R, +0.863 64 +0.88 +0.860 65 +0.88
Ss +0.683 89 +0.687 +0.682 93 +0.68
Ye 0.374 22 . 0.376 80 .
(Re,S0) See text (-0.691:-0.332) See text 1£0.697:-0.330)
Y min 0.348 14 . 0.316 70 .
Y max 0.399 02 . 0.430 46 .
Y min.2 0.35571 . 0.329 89 .
Y max 2 0.412 37 . 0.462 40 .
2mpu and7z=1. To lowest order ine, the change of variable¥
k=2m’ 5 (85  —P—j is a near-identity transformation, $6=j+ O(e).

Recall from(32) that
Because the inequalities {62) and (85) are oppositely di-

rected, adjustments te and u have the opposite effect in j=%p?
these two cases. (86)
Additionally, in this case there is no alternating of signs ~ Hy=h(j)=j—j?=%s?+ 3r?— %r4,

in the location of saddles and centers in resonance bands, as _ _

there is wheng>0 and x>0. Because the attractive case Wheres=dr/dy. For this comparison, we let’=1 and
with a positive chemical potential is simpler than the one wevary , = u, ande=—2mV,/A“. Recall additionally from
studied, Zounes and Rétfdvere able to obtain better pre- (29) that

dictions describing the location of saddles and centers and - Ja

the width of resonance bands from a perturbation analysis ,_ /.9 n_ /% = i 9 o Ne o,

. . i r R R, s R R’.
like that discussed in Sec. V A. hip o mo ¥ 2m 6 -

C. Attractive BECs with a negative chemical potential

e . . . A. Methodology
The most difficult case to consider is that of attractive

BECs with a negative chemical potential. (1), >0 and Bef(_)re discussing our results, we briefly overview our
5<0 (i.e., #<0), so the integrable dynamics exhibit two comparison procedure.
homoclinic orbits[see Fig. 1c)]. The perturbative approach The “exact” locations of saddles and centers and sizes
used in this paper must be applied separately inside and ou®f resonance bands were determined using direct numerical
side the separatrix. Orbits inside the separatrix satisfp, ~ Simulations of Poincarsections of(21). The surface of sec-
those on the separatrix satisfy=0, and those outside the tion we employed satisfies,=2nw/« (neZ), which con-
separatrix satisfjp>0. sists of integer multiples of the periodicity of the sinusoidal
Inside the separatrixe (1), so one must apply the forcing in (21). In our simulations, the variablex is peri-
reciprocal modulus transformation to the arguments of th@dic, so the surface of section is defined by the condition
e|||pt|c functions (23) and (24) The Sign ofo determines kXx=0. We used this framework to find saddles, centers, and
whether one is considering perturbations of periodic orbits if€sonance band sizéise., separatrix widthsempirically.
the right half or left half of the phase plane. To utilize our ~ To obtain our predictions, we employed the resonance
perturbative analysis outside the separatrix, one must exparig@miltonian(65), whose level curves correspond to invariant
elliptic functions and elliptic integrals in power series aboutcurves of Poincarsections. As each trajectory yields a level
infinity, where k=0. This requires delicate numerical com- Set of this Hamiltonian, we solveid;, = constant numerically
putations of Laurent series coefficients. at appropriate energy values to obtain predictions for the
In principle, one can overcome the increased technicdocations of saddles and centers and the size of resonance
challenges present in this third casehich is also of interest bands; these latter quantities are determined from the widths
and apply the same analysis as in Sec. VA, but the length@f separatrices i65). For these computations, we expanded

calculations involved would entail a separate publication. elliptic functions and elliptic integrals in Taylor series and
subsequently transformed these results RySj-space to

compare these calculations with our empirical ones. We also
predicted the locations of saddles and cent&& and(73)

To compare the analytical results in Sec. V with numeri-and the size of resonances ba88)—(82) using the predic-
cal simulations, we utilize R,S) coordinates withm=1/2  tions obtained from further perturbation expansions. We

VI. NUMERICAL SIMULATIONS
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FIG. 6. Resonance Hamiltonidfy, for k=2.5, §=1, ande=0.05.

again tranformed back toR(S) space to compare this sec-
ond set of predictions with our empirical results.

B. Primary resonances

Our comparison between theory and numerics for pri-
mary resonances is summarized in Tables Il and IIl.
Consider first«=1.5 and§=1. Poincaresections and
level sets of the resonance Hamiltoni&h [in units of
£13'(Y)] are depicted in Fig. 5. The results of our compari- oL 1 - .
son between perturbation theory and numerical simulations
are summarized in Table I. 0 1.05
We do relatively well in locating saddles and extremely
well in locating centers. This is especially significant in light (b) R
of the fact that many canonical transformations were re-
quired to obtain our analytical predictions. Although the "®9°C16. 7. (@) Poincaresection fork=2.5, 5=1, ande=0.05. Note that there
uisite calculations are complicated, we are rewarded by €Xg o 2:1 resonance band for this (;hoice7(&f . The 4:1 resonance is
cellent qualitative agreement and goddnd sometimes depicted.(b) Upper right corner ofa).
excellen} quantitative agreement. Fer=0.05, the numeri-
cal resolution of the location of the saddles was problematic,
so a direct comparison is necessarily less accurate. As a re-
sult, a range_of values IS sometimes Indicated _fqr th? NUMETlons by including higher-order contributions in the perturba-
cally determined location of saddles. Such difficulties Wlthtion expansions.
direct numerical simulation emphasize the importance of us-
ing qualitative analytical methods to study the features of
resonance bands.
Our comparisons between perturbation theory and nu(-:' Secondary resonances
merical simulations fotk=0.75, §=0.2 are summarized in Our comparison between theory and numerics for sec-
Table Il ondary resonances is summarized in Table IV.

If desired, one can improve these quantitative predic-
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TABLE V. Comparison of perturbation theory and numerics for 6:1 reso-
nances k=3.8, 6=1, e=0.01). The action value of the tertiary resonance
is denotedY;. The other quantities computed are defined in the caption of
Table I1.

Quantity Perturbative Numerical
Y; 0.368 57 .
Ys 0.368 51 .
R +0.858 50 +(0.859-0.860)
Y. 0.368 63 .
R, +0.858 64 +0.870
Y min 0.362 14 .
Y max 0.37500 .
Y min.2 0.366 14 .
0.386 53 .

We study 4:1 resonances fa=2.5 ands=1. No 2:1
resonances exist for this choice of parameters. The resonanc
Hamiltonian is depicted foe=0.05 in Fig. 6. The corre-
sponding Poincarsection is shown in Fig. 7.

When e=0.01, we observe numerically that centers are
located at approximatelyR,S)=(=*0.691+0.332). With
R=+*0.691, we predict a value dd==*=0.32384. WithS
=+0.332, we predict a value &= =0.683 62. These pre-
dictions are remarkably good, as we have used leading-orde
perturbation theory to derive analytical predictions for 4:1
(secondary resonances. However, they are not as good as
those obtained for the location of saddles in this case or the
location of centers for 2:{primary) resonances.

When e=0.05, numerical simulations suggest that cen-
ters are located at abouR(S)=(*+0.6977+0.330). Using
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Resonance Hamiltonidfy for «k=3.8, =1, ande=0.01.

FIG. 9. (a) Poincaresection for=3.8, =1, ande=0.01. (b) Close-up of
the resonances if@). Both 6:1(1) and 8:1(2) resonances are displayed. A
higher-order resonand@) is also depicted. Although not shown, 4:1 reso-
nances are also present for this choice of parameter values.

R=*+0.697 leads to a prediction &=+0.31912. Using
S=+0.330 leads to a prediction &= +0.687 21.

D. Tertiary resonances

Our comparison between theory and numerics for ter-
tiary resonances is summarized in Table V.

We consider 6:1 resonances fer=3.8, 6=1, and e
=0.01. No 2:1 resonances exist for this choice of param-
eters, but 4:1 resonances do exist. The resonance Hamil-
tonian is depicted foe=0.01 in Fig. 8. The corresponding
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