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Human learning is a complex phenomenon requiring flexibility to
adapt existing brain function and precision in selecting new neu-
rophysiological activities to drive desired behavior. These two
attributes—flexibility and selection—must operate over multiple
temporal scales as performance of a skill changes from being slow
and challenging to being fast and automatic. Such selective adapt-
ability is naturally provided by modular structure, which plays a
critical role in evolution, development, and optimal network func-
tion. Using functional connectivity measurements of brain activity
acquired from initial training through mastery of a simple motor
skill, we investigate the role of modularity in human learning by
identifying dynamic changes of modular organization spanning
multiple temporal scales. Our results indicate that flexibility, which
we measure by the allegiance of nodes to modules, in one experi-
mental session predicts the relative amount of learning in a future
session. We also develop a general statistical framework for the
identification of modular architectures in evolving systems, which
is broadly applicable to disciplines where network adaptability is
crucial to the understanding of system performance.

complex network ∣ time-dependent network ∣ fMRI ∣ motor learning ∣
community structure

The brain is a complex system, composed of many interacting
parts, which dynamically adapts to a continually changing

environment over multiple temporal scales. Over relatively short
temporal scales, rapid adaptation and continuous evolution of
those interactions or connections form the neurophysiological
basis for behavioral adaptation or learning. At small spatial
scales, stable neurophysiological signatures of learning have been
best demonstrated in animal systems at the level of individual
synapses between neurons (1–3). At a larger spatial scale, it is
also well-known that specific regional changes in brain activity
and effective connectivity accompany many forms of learning
in humans—including the acquisition of motor skills (4, 5).

Learning-associated adaptability is thought to stem from the
principle of cortical modularity (6). Modular, or nearly decom-
posable (7), structures are aggregates of small subsystems (mod-
ules) that can perform specific functions without perturbing the
remainder of the system. Such structure provides a combination
of compartmentalization and redundancy, which reduces the
interdependence of components, enhances robustness, and facil-
itates behavioral adaptation (8, 9). Modular organization also
confers evolvability on a system by reducing constraints on
change (8, 10–12). Indeed, a putative relationship between mod-
ularity and adaptability in the context of human neuroscience has
recently been posited (13, 14). To date, however, the existence of
modularity in large-scale cortical connectivity during learning has
not been tested directly.

Based on the aforementioned theoretical and empirical
grounds, we hypothesized that the principle of modularity would
characterize the fundamental organization of human brain func-
tional connectivity during learning. More specifically, based on
several studies relating the neural basis of modularity to the

development of skilled movements (15–17), we expected that
functional brain networks derived from acquisition of a simple
motor skill would display modular structure over the variety of
temporal scales associated with learning (18). We also hypothe-
sized that modular structure would change dynamically during
learning (4, 19), and that characteristics of such dynamics would
be associated with learning success.

We tested these predictions using fMRI, an indirect measure
of local neuronal activity (20), in healthy adult subjects during the
acquisition of a simple motor learning skill composed of visually
cued finger sequences. We derived low frequency (0.06–0.12 Hz)
functional networks from the fMRI data by computing the tem-
poral correlation between activity in each pair of brain regions to
construct weighted graphs or whole-brain functional networks
(21–23) (Fig. 1A and SI Appendix). This network framework
enabled us to estimate a mathematical representation of modular
or community organization, known as “network modularity,” for
each individual over a range of temporal scales. We evaluated the
evolution of network connectivity over time using the mathema-
tical framework described in ref. 25, and we tested its relationship
with learning. SeeMaterials andMethods for details of the sample,
experimental paradigm, and methods of analysis.

Results
Static Modular Structure. We investigated network organization
over multiple temporal scales—over days, hours, and minutes
—during motor learning (18, 19) (Fig. 1B). We used a diagnostic
measure of the amount of network modularity in the system—the
modularity index Q (See Materials and Methods for a mathema-
tical definition). At each scale, we found Q to be larger than ex-
pected in a random network, indicating a significant segregation
of the brain into distinct modules or communities (Fig. 2 A–C).
The cortex is organized into fewer modules than the random
network, indicating that the functional activity of the brain is sig-
nificantly integrated across cortical regions. Because these results
were consistent for all of the temporal scales that we examined,
we concluded that the brain shows temporal scaling of functional
organization, consistent with the scaling in frequency (26) and
spatial (27, 28) domains previously reported. Furthermore, the
temporal structure of this organization is graded in the sense
that fewer modules (about three) on longer timescales (Fig. 2 A
and B) are complemented by more modules (about four) on
shorter timescales (Fig. 2C). This graded structure is analogous
to that found in the nested modular networks of underlying brain
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anatomy where few modules uncovered at large spatial scales are
complemented by more modules at smaller spatial scales (27).

Dynamic Modular Structure.We next consider evolvability, which is
most readily detected when the organism is under stress (29) or
when acquiring new capacities such as during external training in
our experiment. We found that the community organization of
brain connectivity reconfigured adaptively over time. Using a re-
cently developed mathematical formalism to assess the presence
of dynamic network reconfigurations (25), we constructed multi-
layer networks in which we link the network for each time window
(Fig. 3A) to the network in the time windows before and after
(Fig. 3B) by connecting each node to itself in the neighboring win-
dows. We then measured modular organization (30–32) on this
linked multilayered network to find long-lasting modules (25).

To verify the reliability of our measurements of dynamic mod-
ular architecture, we introduced three null models based on per-
mutation testing (Fig. 3C). We found that cortical connectivity is
specifically patterned, which we concluded by comparison to a
“connectional” null model in which we scrambled links between
nodes in each time window (33). Furthermore, cortical regions
maintain these individual connectivity signatures that define
community organization, which we concluded by comparison to
a “nodal” null model in which we linked a node in one time win-
dow to a randomly chosen node in the previous and next time
windows. Finally, we found that functional communities exhibit
a smooth temporal evolution, which we identified by comparing
diagnostics computed using the true multilayer network structure
to those computed using a temporally permuted version (Fig. 3D).
We constructed this temporal null model by randomly reordering
the multilayer network layers in time.

By comparing the structure of the cortical network to those
of the null models, we found that the human brain exhibited a
heightened modular structure in which more modules of smaller
size were discriminable as a consequence of the emergence and
extinction of modules in cortical network evolution. The statio-
narity of communities, defined by the average correlation be-
tween partitions over consecutive time steps (34), was also higher
in the human brain than in the connectional or nodal null models,
indicating a smooth temporal evolution.

Learning. Given the dynamic architecture of brain connectivity, it
is interesting to ask whether the specific architecture changes

A

B 

Fig. 1. Structure of the investigation. (A) To characterize the network struc-
ture of low-frequency functional connectivity (24) at each temporal scale,
we partitioned the raw fMRI data (Upper Left) from each subject’s brain into
signals originating from N ¼ 112 cortical structures, which constitute the net-
work’s nodes (Upper Right). The functional connectivity, constituting the net-
work edges, between two cortical structures is given by a Pearson correlation
between the mean regional activity signals (Lower Right). We then statisti-
cally corrected the resulting N × N correlation matrix using a false discovery
rate correction (54) to construct a subject-specific weighted functional brain
network (Lower Left). (B) Schematic of the investigation that was performed
over the temporal scales of days, hours, and minutes. The complete experi-
ment, which defines the largest scale, took place over the course of three
days. At the intermediate scale, we conducted further investigations of
the experimental sessions that occurred on each of those three days. Finally,
to examine higher-frequency temporal structure, we cut each experimental
session into 25 nonoverlapping windows, each of which was a fewminutes in
duration.

A C

B

Fig. 2. Multiscale modular architecture. (A) Results for the modular decomposition of functional connectivity across temporal scales. (Left) The network plots
show the extracted modules; different colors indicate different modules and larger separation between modules is used to visualize weaker connections
between them. (A) and (B) correspond to the entire experiment and individual sessions, respectively. Boxplots show the modularity index Q (Left)
and the number of modules (Right) in the brain network compared to randomized networks. See Materials and Methods for a formal definition of Q.
(C) Modularity index Q and the number of modules for the cortical (blue) compared to randomized networks (red) over the 75 time windows. Error bars
indicate standard deviation in the mean over subjects.
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with learning—either at a gross scale through an adaptation in
the number or sizes of modules or at a finer scale through altera-
tions in the nodal composition of modules. Empirically, we found
no significant differences between experimental sessions in the
coarse diagnostics. To quantify finer-scale architectural fluctua-
tions, we introduced the notion of node flexibility using the
network properties determined in the multilayer framework.
“Flexibility” is the number of times that each node changes
module allegiance, normalized by the total possible number of
changes (SI Appendix). The flexibility of the network as a whole
is then defined as the mean flexibility over all nodes.

Network flexibility is a measure that captures changes in the
local properties of individual network elements. We found that
network flexibility changed during the learning process—first
increasing and then decreasing (Fig. 4A)—demonstrating a
meaningful biological process. In particular, the flexibility of a
participant in one session could be used as a predictor of the
amount of learning (as measured by improvement in the time
required to complete the sequence of motor responses) in the
following session (Fig. 4B). Regions of the brain that were most
responsible for this predictive power of individual differences in

learning were distributed throughout the cortex, with strong load-
ings in the frontal, presupplementary motor, posterior parietal,
and occipital cortices (Fig. 4 C and D). We could not predict
future learning capacity reliably using conventional task-related
fMRI activation, supporting our conclusion that flexibility pro-
vides a useful approach for modeling system evolvability.

Our results indicate that flexibility is sensitive to both intra-
individual and interindividual variability. Across participants,
we found that network flexibility was modulated by learning
(Fig. 4A). However, we also found that each participant displayed
a characteristic flexibility. The variation in flexibility over parti-
cipants was larger than the variation in flexibility across sessions,
as measured by the intraclass correlation coefficient: ICC ≈ 0.56,
F-statistic Fð17;34Þ ≈ 4.85, p ≈ 4 × 10−5.

Discussion
Modularity of Functional Connectivity. Modularity is an intuitively
important property for dynamic, adaptable systems. The accom-
panying system decomposability provides necessary structure for
complex reconfigurations. Modularity can be a property of mor-
phology, as has been widely described in the context of evolution
and development (11, 12, 29), as well as of the interconnection
patterns of social, biological, and technological systems (30, 31).
More pertinent to this paper, recent evidence suggests that mod-
ular organization over several spatial scales, or hierarchical mod-
ularity, also characterizes the large-scale anatomical connectivity
of the human brain (27, 28), as well as the spontaneous fluctua-
tions (35, 36) thought to stem from anatomical patterns (37).
However, the putative relationship between adaptability and
modular structure has not been previously explored in the context
of the brain connectome.

In the present study, we have shown that the functional con-
nectivity of the human brain during a simple learning paradigm
is inhomogeneous. Instead, it is segregated into communities that
can each perform unique functions. This segregation of connec-
tivity structure manifested consistently over the scale of days,
hours, and minutes, suggesting that community structure provides
a generalizable framework to study the evolution of temporally
distinct phenomena (12). However, it is also notable that connec-
tivity at the shortest temporal scale displayed higher variability,
perhaps reflecting the necessity for dynamic modulation of hu-
man brain function over relatively short intervals during learning
(19). In light of historically strict definitions of cognitive modules
as completely encapsulated structures (38), it is important to
emphasize that the modules that we have uncovered remain in-
tegrated with one another by a complex pattern of weak intercon-
nections.

Dynamic Network Evolution. Efforts to characterize both resting
state (39) and task-based large-scale connectivity of human brain
structure and function (21–23) have focused almost exclusively
on static representations of underlying connectivity patterns.
However, both scientific intuition and recent evidence suggest
that connectivity can be modulated both spontaneously (40) and
by exogenous stimulation (4). The exploration of temporally evol-
ving network architecture therefore forms a critical frontier in
neuroscience.

Our exploration of dynamic community structure in an experi-
mental paradigm that requires neurophysiological adaptability
provides insight into the organizational principles supporting suc-
cessful brain dynamics. Similar to social systems (34), we found
that community organization changed smoothly with time, dis-
playing coherent temporal dependence on what had gone before
and what came after, a characteristic compatible with complex
long-memory dynamical systems (41).

In addition to global adaptability, we found that diverse re-
gions of the brain performed different roles within communities:
Some maintain community allegiance throughout the experiment

Fig. 3. Temporal dynamics of modular architecture. (A) Schematic of a toy
network with four nodes and four edges in a single time window. (B) Multi-
layer network framework in which the networks from four time windows are
linked by connecting nodes in one time window to themselves in the adja-
cent time windows (colored curves). (C) Statistical framework composed of a
connectional null model (Top), a nodal null model (Middle), and a temporal
null model (Bottom) in which intranetwork links, internetwork links, and
time windows, respectively, in the real network are randomized in the per-
muted network. (We show all of the randomized links in red.) (D) Boxplots
showing differences in modular architecture between the real and permuted
networks for the connectional (Top), nodal (Middle), and temporal (Bottom)
null models. We measured the structure of the network using the modularity
index Q, the number of modules, the module size, and stationarity, which is
defined as the mean similarity in the nodal composition of modules over con-
secutive time steps. Below each plot, we indicate by asterisks the significance
of one-sample t-tests that assess whether the differences that we observed
were significantly different from zero (gray lines): A single asterisk indicates
p < :05, two asterisks indicate p < 1 × 10−6, and three asterisks indicate
p < 1 × 10−20.

Bassett et al. PNAS ∣ May 3, 2011 ∣ vol. 108 ∣ no. 18 ∣ 7643

SY
ST

EM
S
BI
O
LO

G
Y

A
PP

LI
ED

M
AT

HE
M
AT

IC
S



(low-flexibility nodes), and others constantly shift allegiance
(high-flexibility nodes). Biologically, this network flexibility might
be driven by physiological processes that facilitate the participa-
tion of cortical regions in multiple functional communities.
Learning a motor skill induces changes in both the structure and
connectivity of the cortex (42, 43), which is accompanied by in-
creased excitability and decreased inhibition of neural circuitry
(44–46). However, it is plausible that flexibility might also be
driven by task-dependent processes that require the capacity to
balance learning across subtasks. For example, the particular ex-
periment utilized in this study demanded that subjects master the
use of a response box, decoding of the stimulus, performance of
precise movements, balancing of attention between stimuli, and
switching between different sequences of movements.

Flexibility and Learning. Importantly, the inherent temporal varia-
bility in network structure measured by nodal flexibility was not a
stable signature of an individual’s functional organization but
was instead modulated by consecutive stages of learning—first
increasing and then decreasing as movement time stabilized in
the later stages of learning (19). The modulation of flexibility
by learning was evident not only at the group level but also in
individuals. The amount of flexibility in each participant could
be used to predict that participant’s learning in a following experi-
mental session. In addition to supporting the theoretical utility of
accessible but often ignored higher-order (bivariate, multivariate)
statistics of brain function, this result could potentially be used to
inform decisions on how and when to train individuals on new
tasks depending on the current flexibility of their brain. From this
work alone, however, we are unable to determine whether or not
learning is the only possible modulator of flexibility. Complemen-
tary experiments could be designed to test whether flexibility is
also modulated by fatigue or exogenous stimulants to increase

subsequent skilled learning. We also found that interindividual
variability in flexibility was larger than intraindividual variability,
indicating that flexibility might be a reliable indicator of a given
subject’s brain state. Consequently, our methodology could
potentially be of use in predicting a given individual’s response
to training or neurorehabilitation (47, 48).

Flexibility might be a network signature of a complex under-
lying cortical system characterized by noise (49). Such a hypo-
thesis is bolstered by recent complementary evidence suggesting
that variability in brain signals also supports mental effort in a
variety of cognitive operations (50), presumably by aiding the
brain in switching between different network configurations as
it masters a new task. Indeed, the theoretical utility of noise in
a nonlinear dynamical system like the brain (51) lies in its facil-
itation of transitions between network states or system functions
(52) and therefore helps to delineate the system’s dynamic reper-
toire (53). However, despite the plausibility that network flexibil-
ity and cortical noise are related, future studies are necessary to
directly test this hypothesis.

Methodological Considerations.The construction of brain networks
from continuous association matrices, such as those based on
pairwise correlation or coherence, has historically been per-
formed by applying a threshold to the data to construct a binary
graph in which an edge exists if the association between the nodes
it connects is above the threshold and does not exist otherwise
(21–23). However, the statistical validity of that method is ham-
pered by the need to choose an arbitrary threshold as well as by
the discretization of inherently continuous edge weights. In the
current work, we have instead used fully weighted networks in
which connections retain their original association value unless
that value was found to be insignificant (based on statistical
testing employing a false discovery rate correction for multiple

A B

C D

Fig. 4. Flexibility and learning. (A) Boxplots showing that the increase in flexibility from experimental session 1 to session 2 was significantly greater than zero
(a one-sample t-test gives the result t ≈ 6.00with p ≈ 2 × 10−8), and that the magnitude of the decrease in flexibility from session 2 to session 3 was significantly
greater than zero (t ≈ 7.46, p ≈ 2 × 10−11). (B) Significant predictive correlations between flexibility in session 1 and learning in session 2 (black curve, p ≈ 0.001)
and between flexibility in session 2 and learning in session 3 (red curve, p ≈ 0.009). Note that relationships between learning and network flexibility in the same
experimental sessions (1 and 2) were not significant; we obtained p > 0.13 using permutation tests. (C) Brain regions whose flexibility in session 1 predicted
learning in session 2 (p < 0.05, uncorrected for multiple comparisons). Regions that also passed false-positive correction were the left anterior fusiform cortex
and the right inferior frontal gyrus, thalamus, and nucleus accumbens. (D) Brain regions whose flexibility in session 2 predicted learning in session 3 (p < 0.05,
uncorrected for multiple comparisons). Regions that also passed false-positive correction for multiple comparisons were the left intracalcarine cortex, para-
cingulate gyrus, precuneus, and lingual gyrus and the right superior frontal gyrus and precuneus cortex. In (C) and (D), colors indicate the Spearman correlation
coefficient r between flexibility and learning.
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comparisons) (54). Future studies comparing multiple network
construction techniques will be important to statistically assess
the added value of weighted-edge retention in the assessment
of network correlates of cognition.

Second, partitioning a set of nodes into a set of communities is
nondeterministic polynomial-time hard (55) so that modularity-
optimization algorithms produce many near-optimal partitions
of the network (56). The number of near-optimal partitions tends
to be larger for large networks, and it also tends to be larger in
binary networks than in weighted ones (56). In the present paper,
we study small weighted networks in which the number of near-
optimal partitions is small. Nevertheless, we have systematically
explored the partition landscape in our optimization of the mod-
ularity index. Accordingly, we report mean modularity estimates
that our results suggest are representative (see SI Appendix).
However, further work is necessary to measure common commu-
nity assignments in the ensemble of partitions to identify consis-
tently segregated groups of brain regions. Such research will aid
in further exploration of the biological relevance of the detected
communities.

Finally, the statistical validation of community structure in
social and biological systems is complicated by several factors.
For example, many investigations, especially in social systems,
are hindered by their small number of instantiations. In our work,
the relatively large number of subjects in conjunction with esti-
mations of multiple networks over various temporal scales facili-
tated a stringent statistical assessment of community structure
both in comparison to randomly connected graphs and, as we
have developed for dynamic networks, to graphs where nodal
identities or times were scrambled. An important future area
of research will focus on the development of alternative null mod-
els that are not perfectly random but which assume increasingly
biologically realistic network architectures.

Conclusion
Consistent with our hypotheses, we have identified significant
modular structure in human brain function during learning
over a range of temporal scales: days, hours, and minutes. Mod-
ular organization over short temporal scales changed smoothly,
suggesting system adaptability. The composition of functional
modules displayed temporal flexibility that was modulated by
early learning, varied over individuals, and was a significant
predictor of learning in subsequent experimental sessions.
Furthermore, we developed and reported a general framework
for the statistical validation of dynamic modular architectures
in arbitrary systems. Additionally, our evidence for adaptive mod-
ular organization in global brain activity during learning provides
critical insight into the dependence of system performance on
underlying architecture.

Materials and Methods
Twenty-five right-handed participants (16 female, 9 male; mean age 24.25
years) volunteered with informed consent in accordance with the University
of California, Santa Barbara Internal Review Board. After exclusions for task
accuracy, incomplete scans, and abnormal MRI, 18 participants were retained
for subsequent analysis. All participants had less than 4 years of experience
with any one musical instrument, had normal vision, and had no history of
neurological disease or psychiatric disorders. Participants were paid for their
participation.

The experimental framework consisted of a simple motor learning task
in which subjects responded to a visually cued sequence by generating
responses using the four fingers of their nondominant hand on a custom re-
sponse box. Participants were instructed to respond swiftly and accurately.
Visual cues were presented as a series of musical notes on a pseudo-musical
staff with four lines such that the top line of the staff mapped to the leftmost
key depressed with the pinkie finger. Each 12-note sequence contained three
notes per line, which were randomly ordered without repetition and free of
regularities such as trills and runs. The number and order of sequence trials
was identical for all participants. All participants completed three training

sessions in a five-day period, and each session was performed inside the
MRI scanner.

Recordings with fMRI were conducted using a 3.0 T Siemens Trio with a
12-channel phased-array head coil. For each functional run, a single-shot
echo planar imaging sequence that is sensitive to blood oxygen level depen-
dent (BOLD) contrast was used to acquire 33 slices (3 mm thickness) per
repetition time (TR), with a TR of 2,000 ms, an echo time of 30 ms, a flip angle
of 90 °, a field of view of 192 mm, and a 64 × 64 acquisition matrix. Image
preprocessing was performed using the Oxford Center for Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL),
and motion correction was performed using FMRIB’s linear image registra-
tion tool. Images were high-pass filtered with a 50 s cutoff period. Spatial
smoothing was performed using a kernel where full width at half maximum
was 8 mm. Signals were normalized globally to account for transient fluctua-
tions in intensity.

The whole brain is parcellated into a set of N regions of interest that
correspond to the 112 cortical and subcortical structures anatomically iden-
tified in FSL’s Harvard–Oxford atlas. For each individual fMRI dataset, we es-
timate regional mean BOLD time series by averaging voxel time series in each
of the N regions. These regional time series are then subjected to a wavelet
decomposition to reconstruct wavelet coefficients in the 0.06–0.12 Hz range
(scale two). We estimate the correlation or coherence Aij between the activ-
ity of all possible pairs of regions i and j to construct N × N functional
connectivity matrices A (Fig. 1A). Individual elements of Aij are subjected
to statistical testing, and the value of all elements that do not pass the false
discovery rate correction for multiple comparisons are set to zero; other-
wise, the values remain unchanged. The complete set of weighted network
nodes is partitioned into communities by maximizing the modularity index
Q (30, 31). In the simplest static case, supposing that node i is assigned to
community gi and node j is assigned to community gj, the modularity index
is defined as

Q ¼
∑

ij

½Aij − Pij%δðgi;gjÞ; [1]

where δðgi;gjÞ ¼ 1 if gi ¼ gj and it equals 0 otherwise, and Pij is the expected
weight of the edge connecting node i and node j under a specified null
model. (A more complex formula is used in the dynamic network case;
see SI Appendix.) The elements of the matrix Aij are weighted by the func-
tional association between regions, and we thoroughly sample the distribu-
tion of partitions that provide near-optimal Q values (56). The functional
connectivity is termed “modular” if the value of Q is larger than that
expected from random network null models that control for both the mean
and variability of connectivity.

We tested for static modular structure on the individual networks
and on dynamic network structure on a multilayer network created by link-
ing networks between time steps (25). In both cases, we assess modular
organization using the modularity Q and the number of modules n. In the
dynamic case, we also used two additional diagnostics to characterize mod-
ular structure: the mean module size s and the stationarity of modules ζ.
We defined s to be the mean number of nodes per community over all time
windows over which the community exists. We used the definition of module
stationarity from ref. 34. We started by calculating the autocorrelation
function Uðt;t þmÞ of two states of the same community GðtÞ atm time steps
apart using the formula

Uðt;tþmÞ≡ jGðtÞ ∩ GðtþmÞj
jGðtÞ∪GðtþmÞj

; [2]

where jGðtÞ ∩ Gðt þmÞj is the number of nodes that are members of both
GðtÞ and Gðt þmÞ, and jGðtÞ∪Gðt þmÞj is the total number of nodes in
GðtÞ∪Gðt þmÞ (34). We defined t0 to be the time at which a community is
born and t0 to be the final time step before a community is extinguished.
The stationarity of a community is then

ζ ≡∑

t0−1
t¼t0

Uðt;tþ 1Þ

t0 − t0 − 1
; [3]

which is the mean autocorrelation over consecutive time steps (34).
In principle, modular architecture might vary with learning by displaying

changes in global diagnostics such as the number of modules or the modu-
larity index Q, or by displaying more specific changes in the composition
of modules. To measure changes in the composition of modules, we defined
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the flexibility f i of a node to be the number of times that a node changed
modular assignment throughout the session, normalized by the total number
of changes that were possible (i.e., by the number of consecutive pairs of
layers in the multilayer framework). We then defined the flexibility F of
the entire network as the mean flexibility over all nodes in the net-
work: F ¼ 1

N∑
N
i¼1 f i .

See SI Appendix for further mathematical details and methodological
descriptions.
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Full Description of Methods

Sample

Twenty-five right-handed participants (16 female, 9 male) volunteered with informed consent in accor-

dance with the Institutional Review Board/Human Subjects Committee, University of California, Santa

Barbara. Handedness was determined by the Edinburgh Handedness Inventory. The mean age of the

participants was 24.25 years (range 18.5–30 years). Of these, 2 participants were removed because their

task accuracy was less than 60% correct, 1 was removed because of a cyst in presupplementary motor

area (preSMA), and 4 were removed for shortened scan sessions. This left 18 participants in total. All

participants had less than 4 years of experience with any one musical instrument, had normal vision, and

had no history of neurological disease or psychiatric disorders. Participants were paid for their partici-

pation. All participants completed 3 training sessions in a 5-day period, and each session was performed

inside the Magnetic Resonance Imaging (MRI) scanner.

Experimental Setup and Procedure

Participants were placed in a supine position in the MRI scanner. Padding was placed under the knees in

order to maximize comfort and provide an angled surface to position the stimulus response box. Padding

was placed under the left forearm to minimize muscle strain when participants typed sequences. Finally,

in order to minimize head motion, padded wedges were inserted between the participant and head coil of

the MRI scanner. For all sessions, participants performed a cued sequence production (CSP) task (see

Figure S1), responding to visually cued sequences by generating responses using their non-dominant (left)

hand on a custom fiber-optic response box. For some participants, a small board was placed between the

response box and the lap in order to help balance the box effectively. Responses were made using the 4

fingers of the left hand (the thumb was excluded). Visual cues were presented as a series of musical notes

on a 4-line music staff. The notes were reported in a manner that mapped the top line of the staff to the

leftmost key depressed with the pinkie finger and so on, so that notes found on the bottom line mapped

onto the rightmost key with the index finger (Figure S1B). Each 12-element note sequence contained 3

notes per line, which were randomly ordered without repetition and free of regularities such as trills (e.g.,

121) and runs (e.g., 123). The number and order of sequence trials was identical for all participants.

A trial began with the presentation of a fixation signal, which was displayed for 2 s. The complete
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12-element sequence was presented immediately following the removal of the fixation, and participants

were then instructed to respond as soon as possible. They were given a period of 8 s to type each

sequence correctly. Participants trained on a set of 16 unique sequences, and there were three different

levels of training exposure. Over the course of the three training sessions, three sequences—known as

skilled sequences—were presented frequently, with 189 trials for each sequence. A second set of three

sequences, termed familiar sequences, were presented for 30 trials each throughout training. A third set

composed of 10 different sequences, known as novice sequences, were also presented; each novice sequence

was presented 4–8 times during training.

Skilled and familiar sequences were practiced in blocks of 10 trials, so that 9 out of 10 trials were

composed of the same sequence and 1 of the trials contained a novice sequence. If a sequence was

reported correctly, then the notes were immediately removed from the screen and replaced with the

fixation signal, which remained on the screen until the trial duration (8 s) was reached. If there were any

incorrect movements, then the sequence was immediately replaced with the verbal cue INCORRECT and

participants subsequently waited for the start of the next trial. Trials were separated with an inter-trial

interval (ITI) lasting between 0 s and 20 s, not including any time remaining from the previous trial.

Following the completion of each block, feedback (lasting 12 s and serving as a rest) was presented that

detailed the number of correct trials and the mean time that was taken to complete a sequence. Training

epochs contained 40 trials (i.e., 4 blocks) and lasted a total of 345 scan repetition times (TRs), which

took a total of 690 s. There were 6 scan epochs per training session (2070 scan TRs). In total, each

skilled sequence was presented 189 times over the course of training (18 scan epochs; 6210 TRs).

In order to familiarize participants with the task, they were given a short series of warm-up trials

the day before the initial training session inside the scanner. Practice was also given in the scanner

during the acquisition of the structural scans and just prior to the start of the first training-session

epoch. Stimulus presentation was controlled with MATLAB R� version 7.1 (Mathworks, Natick, MA) in

conjunction with Cogent 2000 (Functional Imaging Laboratory, 2000). Key-press responses and response

times were collected using a fiber-optic custom button box transducer that was connected to a digital

response card (DAQCard-6024e; National Instruments, Austin, TX). We assessed learning using the slope

of the movement time (MT), which is the difference between the time of the first button press and the

time of the last button press in a single sequence (see Figure S1B) [1]. The negative slope of the movement

curve over trials indicates that learning is occurring [1].
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Acquisition and Preprocessing of fMRI Data

Functional MRI (fMRI) recordings were conducted using a 3.0 T Siemens Trio with a 12-channel phased-

array head coil. For each functional run, a single-shot echo planar imaging that is sensitive to blood

oxygen level dependant (BOLD) contrast was used to acquire 33 slices (3 mm thickness) per repetition

time (TR), with a TR of 2000 ms, an echo time (TE) of 30 ms, a flip angle of 90 degrees, and a field of

view (FOV) of 192 mm. The spatial resolution of the data was defined by a 64 × 64 acquisition matrix.

Before the collection of the first functional epoch, a high-resolution T1-weighted sagittal sequence image

of the entire brain was acquired (TR = 15.0 ms, TE = 4.2 ms, flip angle = 9 degrees, 3D acquisition,

FOV = 256 mm; slice thickness = 0.89 mm, and spatial acquisition matrix dimensions = 256 × 256).

All image preprocessing was performed using the FMRIB (Oxford Centre for Functional Magnetic

Resonance Imaging of the Brain) Software Library (FSL) [2]. Motion correction was performed using

the program MCFLIRT (Motion Correction using FMRIB’s Linear Image Registration Tool). Images

were high-pass filtered with a 50 s cutoff period. Spatial smoothing was performed using a kernel where

the full width at half maximum was 8 mm. No temporal smoothing was performed. The signals were

normalized globally to account for transient fluctuations in signal intensity.

Partitioning the Brain into Regions of Interest

Brain function is characterized by a spatial specificity: different portions of the cortex emit inherently

different activity patterns that depend on the experimental task at hand. In order to measure the

functional connectivity between these different portions, it is common to apply an atlas of the entire

brain to raw fMRI data in order to combine information from all 3 mm cubic voxels found in a given

functionally or anatomically defined region (for recent reviews, see [3–5]). Several atlases are currently

available, and each provides slightly different parcellations of the cortex into discrete volumes of interest.

Several recent studies have highlighted the difficulty of comparing results from network analyses derived

from different atlases [6–8]. In the present work, we have therefore used a single atlas that provides the

largest number of uniquely identifiable regions—this is the Harvard-Oxford (HO) atlas, which is available

through the FSL toolbox [2,9]. The HO atlas provides 112 functionally and anatomically defined cortical

and subcortical regions; for a list of the brain regions, see Supplementary Table 1. Therefore, for each

individual fMRI data set, we estimated regional mean BOLD time series by averaging voxel time series
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in each of the 112 regions. Each regional mean time series was composed of 2070 time points for each of

the 3 experimental sessions (for a total of 6210 time points for the complete experiment).

Wavelet Decomposition

Brain function is also characterized by a frequency specificity; different cognitive and physiological func-

tions are associated with different frequency bands, which can be investigated using wavelets. Wavelet

decompositions of fMRI time series have been applied extensively in both resting-state and task-based con-

ditions [10,11]. In both cases, they provide increased sensitivity for the detection of small signal changes

in non-stationary time series with noisy backgrounds [12]. In particular, the maximum-overlap discrete

wavelet transform (MODWT) has been extensively used in connectivity investigations of fMRI [13–18].

Accordingly, we used MODWT to decompose each regional time series into wavelet scales correspond-

ing to specific frequency bands [19]. We were interested in quantifying high-frequency components of

the fMRI signal, correlations between which might be indicative of cooperative temporal dynamics of

brain activity during a task. Because our sampling frequency was 2 s (1 TR = 2 s), wavelet scale one

provided information on the frequency band 0.125–0.25 Hz and wavelet scale two provided information

on the frequency band 0.06–0.125 Hz. Previous work has indicated that functional associations between

low-frequency components of the fMRI signal (0–0.15 Hz) can be attributed to task-related functional

connectivity, whereas associations between high-frequency components (0.2–0.4 Hz) cannot [20]. This

frequency specificity of task-relevant functional connectivity is likely to be due at least in part to the

hemodynamic response function, which might act as a noninvertible bandpass filter on underlying neural

activity [20]. In the present study, we therefore restricted our attention to wavelet scale two in order to

assess dynamic changes in task-related functional brain architecture over short time scales while retaining

sensitivity to task-perturbed endogenous activity [21], which is most salient at about 0.1 Hz [22–24].

Connectivity Over Multiple Temporal Scales

Multiscale Connectivity Estimation We measured functional connectivity over three temporal

scales: the large scale of the complete experiment (which lasted 3 hours and 27 minutes), the session

time scale of each fMRI recording session (3 sessions of 69 minutes each; each session corresponded to

2070 time points), and the shorter time scales of intra-session time windows (where each time window

was approximately 3.5 min long and lasted 80 time points).
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In the investigation of large-scale connectivity, we concatenated regional mean time series over all 3

sessions, as has been done previously [25]. We then constructed for each subject a functional association

matrix based on correlations between regional mean time series. At the mesoscopic scale, we extracted

regional mean time series from each experimental session separately to compute session-specific matrices.

At the small scale, we constructed intra-session time windows with a length of T = 80 time points,

giving a total of 25 time windows in each session (see the Results section of this supplementary document

for a detailed investigation across a range of T values). We constructed separate functional association

matrices for each subject in each time window (25) for each session (3) for a total of 75 matrices per

subject. We chose the length of the time window to be long enough to allow adequate estimation of

correlations over the frequencies that are present in the wavelet band of interest (0.06–0.12 Hz), yet short

enough to allow a fine-grained measurement of temporal evolution over the full experiment.

Construction of Brain Networks To construct a functional network, we must first define a measure

of functional association between regions. Measures of functional association range from simple linear

correlation to nonlinear measures such as mutual information. In the majority of network investigations in

fMRI studies to date, the measure of choice has been the Pearson correlation [13,15,18,26,27], perhaps due

to its simplicity and ease of interpretation. Therefore, in order to estimate static functional association,

we calculated the Pearson correlation between the regional mean time series of all possible pairs of regions

i and j. This yields an N × N correlation matrix with elements ri,j , where N = 112 is the number of

brain regions of interest in the full brain atlas (see earlier section on “Partitioning the Brain into Regions

of Interest” for further details).

However, as pointed out in other network studies of fMRI data [13], not all elements ri,j of the full

correlation matrix necessarily indicate significant functional relationships. Therefore, in addition to the

correlation matrix element ri,j , we computed the p-value matrix element pi,j , which give the probabilities

of obtaining a correlation as large as the observed value ri,j by random chance when the true correlation

is zero. We estimated p-values using approximations based on the t-statistic using the MATLAB R�

function corrcoef [28]. In the spirit of Ref. [29] and following Ref. [13], we then tested the p-values pi,j

for significance using a False Discovery Rate (FDR) of p < 0.05 to correct for multiple comparisons [30,31].

We retained matrix elements ri,j whose p-values pi,j passed the statistical FDR threshold. Elements of

ri,j whose p-values pi,j did not pass the FDR threshold were set to zero in order to create new correlation
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matrix elements r�i,j .

We applied the statistical threshold to all ri,j independent of the sign of the correlation. Therefore,

the resulting r�i,j could contain both positive and negative elements if there existed both positive and

negative elements of ri,j whose p-values pi,j passed the FDR threshold. Because this was a statistical

threshold, the network density of r�i,j (defined as the fraction of non-zero matrix elements) was determined

statistically rather than being set a priori. Network density varied over temporal resolutions; the mean

density and standard deviation for networks derived from correlation matrices at the largest time scale

(3 hr and 27 minutes) was 0.906 (0.019%), at the intermediate time scale (69 min) was 0.846 (0.029), and

at the short time scale (3.5 min) was 0.423 (0.110).

We performed the procedure described above for each subject separately to create subject-specific

corrected correlation matrices. These statistically corrected matrices gave adjacency matrices A (see the

discussion below) whose elements were Aij = r�i,j .

Network Modularity To characterize the large-scale functional organization of the subject-specific

weighted matrices A, we used tools from network science [32]. In a network framework, brain regions

constitute the nodes of the network, and inter-regional functional connections that remain in the connec-

tivity matrix constitute the edges of the network. One powerful concept in the study of networks is that

of community structure, which can be studied using algorithmic methods [33, 34]. Community detection

is an attempt to decompose a system into subsystems (called ‘modules’ or ‘communities’). Intuitively, a

module consists of a group of nodes (in our case, brain regions) that are more connected to one another

than they are to nodes in other modules. A popular way to investigate community structure is to optimize

the partitioning of nodes into modules such that the quality function Q is maximized (see [33, 34] for

recent reviews and [35] for a discussion of caveats), for which we give a formula below.

From a mathematical perspective, the quality function Q is simple to define. One begins with a graph

composed of N nodes and some set of connections between those nodes. The adjacency matrix A is then

an N ×N matrix whose elements Aij detail a direct connection or ‘edge’ between nodes i and j, with a

weight indicating the strength of that connection. The quality of a hard partition of A into communities

(whereby each node is assigned to exactly one community) is then quantified using the quality function

Q. Suppose that node i is assigned to community gi and node j is assigned to community gj . The most
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popular form of the quality function takes the form [33,34]

Q =
�

ij

[Aij − Pij ]δ(gi, gj) , (1)

where δ(gi, gj) = 1 if gi = gj and it equals 0 otherwise, and Pij is the expected weight of the edge

connecting node i and node j under a specified null model. (The specific choice of Q in Equation 1 is

called the network modularity or modularity index [36].) A most common null model (by far) used for

static network community detection is given by [33,34,37]

Pij =
kikj

2m
, (2)

where ki is the strength of node i, kj is the strength of node j, and m = 1
2

�
ij Aij . The maximization

of the modularity index Q gives a partition of the network into modules such that the total edge weight

inside of modules is as large as possible (relative to the null model, subject to the limitations of the

employed computational heuristics, as optimizing Q is NP-hard [33,34,38]).

Network modularity has been used recently for investigations of resting-state functional brain networks

derived from fMRI [26,27] and of anatomical brain networks derived from morphometric analyzes [39]. In

these previous studies, brain networks were constructed as undirected binary graphs, so that each edge

had a weight of either 1 or 0. The characteristics of binary graphs derived from neuroimaging data are

sensitive to a wide variety of cognitive, neuropsychological, and neurophysiological factors [4,5]. However,

increased sensitivity is arguably more likely in the context of the weighted graphs that we consider, as

they preserve the information regarding the strength of functional associations (though, as discussed

previously, matrix elements ri,j that are statistically insignificant are still set to 0) [40]. An additional

contrast between previous studies and the present one is that (to our knowledge) investigation of network

modularity has not yet been applied to task-based fMRI experiments, in which modules might have a

direct relationship with goal-directed function.

We partitioned the networks represented by the weighted connectivity matrices into n communities by

using a Louvain greedy community detection method [41] to optimize the modularity index Q. Because

the edge weights in the correlation networks that we constructed contain both positive and negative

correlation coefficients, we used the signed null model proposed in Ref. [42] to account for communities of
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nodes associated with one another through both negative and positive edge weights. (Recall that we are

presently discussing aggregated correlation networks A, so we are detecting communities in single-layer

networks, as has been done in previous work. In order to investigate time-evolving communities, we will

later employ a new mathematical development that makes it possible to perform community detection in

multilayer networks [43].) We first defined w+
ij to be an N ×N matrix containing the positive elements

of Aij and w−
ij to be an N ×N matrix containing only the negative elements of Aij . The quality function

to be maximized is then given by

Q± =
1

2w+ + 2w−

�

i

�

j

�
Aij −

�
γ+

w+
i w+

j

2w+
− γ−

w−
i w−

j

2w−

��
δ(gigj) , (3)

where gi is the community to which node i is assigned, gj is the community to which node j is assigned,

γ+ and γ− are resolution parameters, and w+
i =

�
j w+

ij , w−
i =

�
j w−

ij [42]. For simplicity, we set the

resolution parameter values to unity.

In our investigation, we have focused on the mean properties of ensembles of partitions rather than

on detailed properties of individual partitions. This approach is consistent with recent work illustrating

the fact that the optimization of quality functions like Q and Q± is hampered by the complicated shape

of the optimization landscape. In particular, one expects to find a large number of partitions with near-

optimum values of the quality function [35], collectively forming a high-modularity plateau. Theoretical

work estimates that the number of “good” (in the sense of high values of Q and similar quality functions)

partitions scales as 2n̄−1, where n̄ is the mean number of modules in a given partition [35]. In both toy

networks and networks constructed from empirical data, many of the partitions found by maximizing

a quality function disagree with one another on the components of even the largest module, impeding

interpretations of particular partitions of a network [35]. Therefore, in the present work, we have focused

on quantifying mean qualities of the partitions after extensive sampling of the high-modularity plateau.

Importantly, the issue of extreme near-degeneracy of quality functions like Q is expected to be much less

severe in the networks that we consider than is usually the case, because we are examining small, weighted

networks rather than large, unweighted networks [35]. We further investigate the degenerate solutions in

terms of their mean, standard deviation, and maximum. We find that Q± values are tightly distributed,

with maximum values usually less than three standard deviations from the mean (see Supplementary

Results).
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Statistical Testing To determine whether the value of Q± or the number of modules was greater

or less than expected in a random system, we constructed randomized networks with the same degree

distribution as the true brain networks. As has been done previously [27,44], we began with a real brain

network and then iteratively rewired using the algorithm of Maslov and Sneppen [45]. The procedure we

used for accomplishing this rewiring was to choose at random two edges—one that connects node A to

node B and another that connects nodes C and D—and then to rewire them to connect A to C and B

to D. This allows us to preserve the degree, or number of edges, emanating from each node although it

does not retain a node’s strength [in such weighted networks]. To ensure a thorough randomization of the

underlying connectivity structure, we performed this procedure multiple times, such that the expected

number of times that each edge was ‘rewired’ was 20. This null model will be hereafter referred to as

the static random network null model. (This is distinct from the null models that we have developed for

statistical testing of community structure in multilayer networks, as discussed in the main manuscript

and in later sections of this Supplement.) The motivation for this process is to compare the brain with a

null model that resembles the configuration model [46], which is a random graph with prescribed degree

distribution.

We constructed 100 instantiations of the static random network null model for each real network that

we studied. We constructed representative values for diagnostics from the random networks by taking

the mean network modularity and mean number of modules over those 100 random networks. We then

computed the difference between the representative random values and the real values for each diagnostic,

and we performed a one-sample t-test over subjects to determine whether that difference was significantly

greater than or less than zero. For each case, we then reported p-values for these tests.

Sampling of the static random network null model distribution is important in light of the known

degeneracies of modularity (which we discuss further in the Supplementary Results section below) [35].

One factor that accounts for a significant amount of variation in Q± is the size (i.e., number of nodes)

of the network, so comparisons between networks of different sizes must be performed with caution.

Therefore, we note that all networks derived from the aforementioned null model retain both the same

number of nodes and the same number of edges as the real networks under study. This constrains

important factors in the estimation of Q±.

While the results reported in the main manuscript (see Figure 2) are based on the above mentioned

random network null model which preserves the degree distribution of the empirical networks (hereafter
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RD), we also report here results for a random network null model which separately preserves the degree

distribution of the matrix of positive elements w+
ij and that of the matrix of negative elements w−

ij

(hereafter RWW). To construct an ensemble of RWW networks, we use a slightly altered version of

the rewiring algorithm of Maslov and Sneppen described above. First, with equal probability we choose

either two positive edges or two negative edges (which connect nodes A to B and nodes C to D). We

then rewire these edges to link nodes A to C and nodes B to D if and only if no link (whether positive or

negative) exists between either A and C or B and D. We find that for the large temporal scale of the entire

experiment, the modularity of RWW networks was significantly lower than that of RD networks (two-

sample t-test over subjects: t ≈ 2.29, p ≈ 0.02), but the number of modules was unchanged (t ≈ 1.81,

p ≈ 0.07). Similarly for the intermediate temporal scale of the 3 experimental sessions, we found that the

modularity of RWW networks was significantly lower than that of RD networks (t ≈ 3.31, p ≈ 0.002),

but the number of modules was unchanged (t ≈ 1.20, p ≈ 0.23). For the smallest spatial scale of

individual time windows, we found no difference between the results generated by the two null models:

for modularity, t ≈ 0.64 and p ≈ 0.52, while for the number of modules, t ≈ 0.27 and p ≈ 0.77. These

results indicate that for the two larger temporal scales, the results of the RD null model reported in

the main manuscript allow us to make a conservative estimate of the modularity differences between the

cortical structure and a random structure. For the smallest temporal scale, the choice of null model does

not statistically alter our results.

Visualization of Networks We visualized networks using the software package MATLAB R� (2007a,

The MathWorks Inc., Natick, MA). Following Ref. [47], we used the Fruchtermann-Reingold algorithm [48]

to determine node placement for a given network with respect to the extracted communities and then

used the Kamada-Kawai algorithm [49] to place the nodes within each community.

Multilayer Network Modularity: Temporal Dynamics of Intra-Session Con-

nectivity

In order to investigate the temporal evolution of modular architecture in human functional connectivity,

we used a mutilayer network framework in which each layer consists of a network derived from a single

time window. Networks in consecutive layers therefore correspond to consecutive time windows. We

linked networks in consecutive time windows by connecting each node in one window to itself in the

12



previous and in the next windows (as shown in Figure 3A-B in the main text) [43]. We constructed a

multilayer network for each individual and in each of the three experimental sessions. We then performed

community detection by optimizing a multilayer modularity (see the discussion below) [43] using the

Louvain greedy algorithm (suitably adapted for this more general structure) on each multilayer network

in order to assess the modular architecture in the temporal domain.

In our examination of static network architecture, we used the wavelet correlation to assess func-

tional connectivity. Unfortunately, more sensitive measures of temporal association such as the spectral

coherence are not appropriate over the long time scales assessed in the static investigation due to the

nonstationarity of the fMRI time series [10–12], and it is exactly for this reason that we have used the

wavelet correlation for the investigation of aggregated (static) networks. However, over short temporal

scales such as those being used to construct the multilayer networks, fMRI signals in the context of the

motor learning task that we study can be assumed to be stationary [50], so spectral measures such as the

coherence are potential candidates for the measurement of functional association.

In the examination of the dynamic network architecture of brain function using multilayer community

detection, our goal was to measure temporal adaptivity of modular function over short temporal scales.

In order to estimate that temporal adaptivity with enhanced precision, we used the magnitude squared

spectral coherence (as estimated using the minimum-variance distortionless response method [51]) as a

measure of nonlinear functional association between any two time series. In using the coherence, which

has been demonstrated to be useful in the context of fMRI neuroimaging data [20], we were able to

measure frequency-specific linear relationships between time series.

As in the static network analysis described earlier, we tested the elements of each N ×N coherence

matrix (which constitutes a single layer) for significance using an FDR correction for multiple comparisons.

We used the original weighted (coherence values) of network links corresponding to the elements that

passed this statistical test, while those corresponding to elements that did not pass the test were set to

zero. In applying a community detection technique to the resulting coherence matrices, it is important to

note that the coherence is bounded between 0 and 1. We can therefore use a multilayer quality function

with an unsigned null model rather than the signed null model used in the static case described earlier.

The multilayer modularity Qml is given by [43]

Qml =
1
2µ

�

ijlr

��
Aijl − γl

kilkjl

2ml

�
δlr + δijCjlr

�
δ(gil, gjr) , (4)
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where the adjacency matrix of layer l (i.e., time window number l) has components Aijl, γl is the resolution

parameter of layer l, gil gives the community assignment of node i in layer l, gjr gives the community

assignment of node j in layer r, Cjlr is the connection strength between node j in layer r and node j in

layer l (see the discussion below), kil is the strength of node i in layer l, 2µ =
�

jr κjr, κjl = kjl +cjl, and

cjl =
�

r Cjlr. For simplicity, as in the static network case, we set the resolution parameter γl to unity

and we have set all non-zero Cjlr to a constant C, which we will term the ‘inter-layer coupling’. In the

main manuscript, we report results for C = 1. In the Supplementary Results section of this document,

we investigate the dependence of our results on alternative choices for the value of C.

Diagnostics We used several diagnostics to characterize dynamic modular structure. These include

the multilayer network modularity Qml, the number of modules n, the module size s, and the stationarity

of modules ζ. We defined the size of a module s to be the mean number of nodes per module over all time

windows over which the community exists. We used the definition of module stationarity from Ref. [52].

We started by calculating the autocorrelation function U(t, t + m) of two states of the same community

G(t) at m time steps apart using the formula

U(t, t + m) ≡ |G(t) ∩G(t + m)|
|G(t) ∪G(t + m)| , (5)

where |G(t) ∩ G(t + m)| is the number of nodes that are members of both G(t) and G(t + m), and

|G(t) ∪G(t + m)| is the total number of nodes in G(t) ∪G(t + m) [52]. We defined t0 to be the time at

which the community is born and t� to be the final time step before the community is extinguished. The

stationarity of a community is then

ζ ≡
�t�−1

t=t0
U(t, t + 1)

t� − t0 − 1
, (6)

which is the mean autocorrelation over consecutive time steps [52].

Statistical Framework The study of the “modular architecture” of a system is of little value if the

system is not modular. It is therefore imperative to statistically quantify the presence or absence of

modular architecture to justify the use of community detection in a given application. Appropriate

random null models have been developed and applied to the static network framework [27, 44], but no

such null models yet exist for the multilayer framework. We therefore developed several null models in
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order to statistically test the temporal evolution of modular structure. We constructed three independent

null models to test for (1) network structure dependent on the topological architecture of connectivity,

(2) network structure dependent on nodal identity, and (3) network structure dependent on the temporal

organization of layers in the multilayer framework.

In the connectional null model (1), we scrambled links between nodes in any given time window (the

entire experiment, 3.45 hr; the individual scanning session, 69 min; or intra-session time windows, 3.45

min) while maintaining the total number of connections emanating from each node in the system. To

be more precise, for each layer of the multilayer network, we sampled the static random network null

model (see the discussion above in the context of static connectivity architecture) for that particular

layer. That is, we reshuffled the connections within each layer separately while maintaining the original

degree distribution. We then linked these connectivity-randomized layers together by coupling a node in

one layer to itself in contiguous layers to create the connectional null model multilayer network, just as we

connected the real layers to create the real multilayer network. In the present time-dependent context,

we performed this procedure on each time window in the multilayer network, after which we applied

the multilayer community detection algorithm to determine the network modularity of the randomized

system.

In constructing a nodal null model (2), we focused on the links that connected a single node in one

layer of the multilayer framework to itself in the next and previous layers. In the null model, the links

between layers connect a node in one layer to randomly-chosen nodes in contiguous layers instead of

connecting the node to itself in those layers. Specifically, in each time window τi (except for the final

one), we randomly connected the nodes in the corresponding layer to other nodes in the next time window

(τi+1) such that no node in τi was connected to more than one node in τi+1. We then connected nodes

in τi+1 to randomly-chosen nodes in τi+2, and so on until links between all time windows had been fully

randomized.

We also considered randomization of the order in which time windows were placed in the multilayer

network to construct a temporal null model (3). In the real multilayer construction, we (of course)

always placed the network from time window τi just before the network from time window τi+1. In

the temporal null model, we randomly permuted the temporal location of the individual layer in the

multilayer framework such that the probability of any time window τi following any other time window

τ, (j �= i) was uniform.
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Statistical Testing In both the real network and the networks derived from null models (1)–(3), it is

important to adequately sample the distributions of partitions meant to optimize the modularity index

Qml. This step in our investigation was particularly important in light of the extreme degeneracy of the

network modularity function Qml [35] (see the Supplementary Results section on the Degeneracies of Q

for a quantitative characterization of such degeneracies).

Because the multilayer community detection algorithm can find different maxima each time it is run,

we computed the community structure of each individual real multilayer network a total of 100 times.

We then averaged the values of all diagnostics (modularity index Qml, number of modules, module size,

and stationarity) over those 100 partitions to create a representative real value. To perform our sampling

for the null models, we considered 100 multilayer network instantiations for each of the three different

null models. We also performed community detection on these null models using our multilayer network

adaptation of the Louvain modularity-optimization algorithm [41] to create a distribution of values for

each diagnostic. We then used the mean value of each diagnostic in our subsequent investigation as the

representative value of the null model.

We used one-sample t-tests to test statistically whether the differences between representative values

from the real networks and null model networks over the subject population was significantly different

from zero. The results, which we reported in the main manuscript, indicated that in contrast to what we

observed using each of the three null models, the human brain displayed a heightened modular structure.

That is, it is composed of more modules, which have smaller sizes. Considering the three null models in

order, this suggests that cortical connectivity has a precise topological organization, that cortical regions

consistently maintain individual connectivity signatures necessary for cohesive community organization,

and that functional communities evolve cohesively in time (see Figure 2 in the main manuscript). Im-

portantly, the stationarity of modular organization ζ was also higher in the human brain than in the

connectional or nodal null models, indicating a cohesive temporal evolution of functional communities.

Temporal Dynamics of Brain Architecture and Learning

In the present study, we have attempted to determine whether changes in the dynamic modular architec-

ture of functional connectivity is shaped by learning. We assessed the learning in each session using the

slope of the movement times (MT) of that session. Movement time is defined as the difference between

the time of the first button press and the time of the last button press in a single sequence (see Figure
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S1B). During successful learning, movement time is known to fall logarithmically with time [1]. However,

two subjects from session 1 and one subject from session 2 showed an increasing movement time as the

session progressed. We therefore excluded these three data points in subsequent comparisons due to the

decreased likelihood that successful learning was taking place. This process of screening participants

based on movement time slope is consistent with previous work suggesting that fMRI activation patterns

during successful performance might be inherently different when performance is unsuccessful [53].

In principle, modular architecture might vary with learning by displaying changes in global diagnostics

such as the number of modules or the modularity index Q or by displaying more specific changes in the

composition of modules. To measure changes in the composition of modules, we defined the flexibility

of a node fi to be the number of times that node changed modular assignment throughout the session,

normalized by the total number of changes that were possible (i.e., by the number of consecutive pairs

of layers in the multilayer framework). We then defined the flexibility of the entire network as the mean

flexibility over all nodes in the network: F = 1
N

�N
i=1 fi.

Statistics and Software

We implemented all computational and simple statistical operations using the software packages MATLAB R�

(2007a, The MathWorks Inc., Natick, MA) and Statistica R� (version 9, StatSoft Inc.). We performed the

network calculations using a combination of in-house software (including multilayer community detection

code [43]) and the Brain Connectivity Toolbox [40].
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Supplementary Results

Degeneracies of Q

As discussed earlier in the Methods section, we focused in this investigation on the mean properties of

ensembles of partitions rather than on detailed properties of individual partitions. Our approach was

motivated by recent work indicating that the optimization of modularity and similar quality functions

is hampered by the complicated shape of the optimization landscape, which includes a large number of

partitions with near-optimum values that collectively form a high modularity plateau [35]. To quantify

and address this degeneracy of Q± and Qml, we now provide supplementary results on the mean, standard

deviation, and maximum values of Q± and Qml over the 100 samples of the plateau computed for all real

networks in both the static and dynamic frameworks.

The mean number of modules in a given partition in the static framework was n̄ ≈ 3.08 for the entire

experiment, n̄ ≈ 3.07 for individual experimental sessions, and n̄ ≈ 3.55 for the small intra-session time

windows. The mean number of modules in a given partition in the multilayer framework was n̄ ≈ 6.00.

We have therefore chosen to sample the quality functions Q± and Qml a total of 100 times (which is more

than 2n̄−1 in each case, and therefore adequately samples the degenerate near-optimum values of Q± and

Qml [35]). In order to characterize the distribution of solutions found in these 100 samplings, we have

computed the mean, standard deviation, and maximum of Q± (static cases) and Qml (dynamic cases);

see Figure S2. We found that the values of Q± and Qml are tightly distributed, and that the maximum

values of Q± or Qml are between 0 and 3 standard deviations higher than the mean. Although we

remain cautious because we have not explored all possible computational heuristics, we are nevertheless

encouraged by these results that the mean values of Q± and Qml that we have reported are representative

of the true maximization of the two quality functions.

Reproducibility We calculated the intra-class correlation coefficient (ICC), to determine whether

values of Q± and Qml derived from a single individual over the 100 samples were more similar than

values of Q± or Qml derived from different individuals. The ICC is a measure of the total variance for

which between-subject variation accounts [54,55], and it is defined as

ICC =
σ2

bs

σ2
bs + σ2

ws

, (7)
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where σbs is the between-subject variance and σws is the pooled within-subject variance (‘pooled’ indicates

that variance was estimated for each subject and then averaged over subjects). The ICC is normalized

to have a maximum value of 1; values above 0.5 indicate that there is more variability between Q± and

Qml values from different subjects than between Q± and Qml values from the same subject. In the static

framework, the ICC was 0.9884 at the large scale (the entire experiment), an average of 0.9863 at the

intermediate scale (three experimental sessions), and an average of 0.9847 at the small scale (individual

time windows). In the multilayer framework, we calculated that ICC ≈ 0.9983. These results collectively

indicate that the Q± and Qml values that we reported in this work were significantly reproducible over

the 100 samples of the respective quality function landscape. That is, the Q± or Qml values drawn from

the 100 samples of a single subject’s network modularity landscape were more similar than Q± or Qml

values drawn from different subjects.

Effect of the Inter-Layer Coupling Parameter

The multilayer network framework requires one to define a coupling parameter C that indicates the

strength of the connections from a node in one time window to itself in the two neighboring time windows

[43]. In order to be sensitive to both temporal dynamics and intra-layer network architecture, the coupling

parameter should be on the same scale of values as the edge weights. For example, if edge weights are

coherence values lying between 0 and 1, then the coupling parameter also ought to lie between 0 and 1.

In the results that we presented in the main manuscript, we set the coupling parameter to be C = 1,

which is the highest value consistent with the intra-layer edge weights given by the normalized coherence.

However, if we were to alter the coupling value, one might expect the number of communities to be

altered in kind. As the strength of the coupling is increased, one might expect fewer communities to be

uncovered due to the increased temporal dependence between layers [43]. Similarly, as the inter-layer

coupling is weakened, one might expect more communities to be detected.

To probe the effect of the inter-layer coupling strength, we thus varied C from well below to well above

the maximum intra-layer edge weight (0.2 ≤ C ≤ 2). In Figure S3 (cortical network results are shown

in blue), we illustrate the effects of sweeping over this coupling parameter on our four diagnostics. The

modularity index Qml increases with increasing inter-layer coupling, whereas the other three diagnostics—

number of modules, module size, and stationarity—increase initially and then plateau approximately at

about C = 1 and above. The change in behavior near C = 1 can be rationalized as follows: For C < 1,
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intra-layer edge weights dominate the modularity optimization, whereas inter-layer edge weights dominate

for C > 1. The proposed choice of C = 1 therefore balances the impact of known coherence in brain

activity (as given by the intra-layer edge weights) on measured architectural adaptations and is therefore

a natural choice with which to investigate biologically meaningful organization.

We also computed 100 temporal, nodal, and connectional null model networks for each of the additional

coupling parameter values (see Figure S3; null model network results shown in green, orange, and red).

The results indicate that the relationship between diagnostics in the cortical networks and null model

networks is dependent on the diagnostic. For example, modularity values of null model networks are

consistently lower than modularity values of cortical networks. However, stationarity in the null model

networks is lower than that in cortical networks for small values of C but higher than that of cortical

networks for high values of C. This nontrivial behavior suggests an added sensitivity of the proposed

null model networks to the multilayer network construction, which might be useful in other experimental

contexts and therefore warrants further investigation.

Effect of the Time Window Length

In the construction of networks at the smallest time scale, it is necessary to choose a length of the time

window T . In choosing this time window length, two considerations are important: (1) the time window

must be short enough to adequately measure temporal evolution of network structure, and (2) the time

window must be long enough to adequately estimate the functional association between two time series

using (for example) the correlation or coherence [56]. In the main text, we reported results for time

windows of 80 data points in length. This gives 25 time windows in each experimental session, for a

total of 75 time windows over the 3 sessions. In addition to this extensive coverage of the underlying

temporal dynamics, the choice of a time window of 80 data points in length also ensures that 20 data

points can be used for the estimation of the functional association between time series in the frequency

band of interest—i.e., at wavelet scale two (0.06–0.12 Hz). If one were to increase the time window

length, one would expect a decreased ability to measure temporal variations due to the presence of fewer

time windows per session. If one were to decrease the time window length, one would expect increased

variance in the estimation of the functional association between time series due to the use of fewer data

points in the estimation of either the coherence or the correlation [16].

To probe the effect of the time window length, we varied T from T = 80 to T = 110 (see Figure
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S4; cortical network results are shown in blue). We find that the stationarity of the modules increases

with increasing time window length. As T is increased, the functional association between any two nodes

is averaged over a longer time series, so small adaptations over shorter time scales can no longer be

measured. This smoothing is likely the cause of the increased stationarity that we find at high values of

T . It suggests that functional association measured over long time windows is less dependent on the time

window being used than functional association measured over short time windows. This finding supports

our choice of short time windows in order to measure dynamic adaptations in network architecture.

We also computed 100 temporal, nodal, and connectional null model networks for each of the additional

time window lengths (see Figure S4; null model network results are shown in green, orange, and red).

The results indicate that the relationships between diagnostics in the cortical networks and null model

networks are largely conserved across time window lengths.

Learning and Flexibility

In the main text, we reported a significant correlation between the flexibility of dynamic modular archi-

tecture in a given experimental session, as measured by the (normalized) number of times a node changes

module allegiance, and learning in the subsequent experimental sessions, as measured by the slope of

the movement time (see Methods). We found that the mean value of flexibility was approximately 0.30,

that it fluctuated over the three experimental sessions, and that the values were highest in the second

experimental session (see Table 2 in this Supplement). We followed this large-scale calculation with an

investigation into the relationship between nodal flexibility (in particular brain regions) and learning. We

found, as shown Figure 4 of the main manuscript, that the flexibility of a large number of brain regions

could be used to predict learning in the following session. Here we also note that these regions were not

those with highest flexibility or lowest flexibility in the brain. In fact, the flexibility of those regions that

predicted learning was not significantly different from the flexibility of those regions that did not predict

learning: t ≈ 0.01 p ≈ 0.98 (Session 1) and t ≈ 0.87, p ≈ 0.38 (Session 2).

In addition to those results reported in the main manuscript, we tested whether the flexibility of

the cortical networks was significantly different from the flexibility expected in the (connectional, nodel,

and temporal) random network null models. As we show in Table 3 in this Supplement, the flexibility

of the connectional and nodal null model networks was significantly higher than that of the cortical

networks, and we found no discernible differences between the cortical networks and the temporal null
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model networks. We found the greatest degree of flexibility in the nodal null model, in which individual

nodes in any given time window were coupled to randomly selected nodes in the following time window.

It is thus plausible that the subsequent disruption of nodal identity caused nodes to change computed

module allegiances in this null model.

Robustness to Alternative Definitions It is important to assess the robustness of our findings

to different definitions of flexibility. We therefore defined an alternative flexibility measure f �i to be

the number of communities (modules) to which a node belongs at some point in a given experimental

session. The mean alternative flexibility F � is then given by averaging f �i over all nodes in the network:

F � = 1
N

�N
i=1 f �i . Using this alternative definition of flexibility, we again tested for differences between the

cortical network and the three random network null models. As shown in Tables 2 and 3, the F � values

of cortical networks were also significantly different from those in the null model networks. Interestingly,

for this alternative definition, the temporal network null model exhibits significantly lower flexibility

than the cortical networks, suggesting that this measure of flexibility might be sensitive to biologically

relevant temporal evolution of modular architecture. Finally, we tested whether this alternative definition

of flexibility also displayed a relationship to learning. Flexibility and learning were not significantly

correlated in Session 1 (r ≈ 0.02, p ≈ 0.90) or in Session 2 (r ≈ 0.18, p ≈ 0.48), but flexibility in Session 1

was predictive of learning in Session 2 (r ≈ 0.64, p ≈ 0.002), and flexibility in Session 2 was predictive of

learning in Session 3 (r ≈ 0.51, p ≈ 0.019). These results for the alternative flexibility F � are consistent

with those of the original definition F , suggesting that our findings are robust.
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Supplementary Discussion

Resolution Limit of Modularity

When detecting communities by optimizing modularity and similar quality functions, it is important to

note that modularity suffers from a resolution limit [33–35, 57]. As a result, the maximum-modularity

partition can be biased towards a particular module size and can have difficulty resolving modules smaller

than that size. Consequently, small modules of potential interest have the potential to be hidden within

larger groups of nodes that have been detected. Modularity’s resolution limit is particularly prevalent in

sparse networks, binary networks, and large networks, and its effects tend to be much less significant in

networks of the type (dense, weighted, and small) that we have studied [35].

Measuring Differences in Brain States

In the present work, we have characterized differences in brain states during learning by examining the

global network architecture and measuring differences between that architecture over three experimental

sessions. An alternative line of investigation would be to seek network motifs (i.e., small patterns of nodes

and edges) that have the potential to distinguish between brain states. This could be done using statistical

methods [58], machine-learning techniques [59], or a combination of the two [60]. Our approach, however,

has the advantage of assessing alterations in large-scale achitectural properties rather than differences

in small parts of that architecture. Additionally, the approach that we have chosen provides a direct

characterization of the underlying functional connectivity architecture irrespective of differences between

brain states. Using this approach, we have therefore been able to demonstrate, for example, that there

is significant non-random modular organization across multiple temporal scales.

A Note on Computational Time

The investigations that we reported in the present work involved about 10, 000 CPU-days, and our

study was therefore made possible by the use of two computing clusters available at the Institute for

Collaborative Biotechnologies at UC Santa Barbara. Cluster 1 was composed of 42 Dell SC1425s (dual

single-core Xeon 2.8GHz, 4GB memory), 5 Dell PE1950s (dual quad-core Xeon E5335 2.0GHz, 8GB

memory), 1 Dell 2850 (RAID storage includes 500GB for the home directory), and MATLAB R� MDCE

with 128 worker licenses (cluster currently has 124 compute cores), Gigabit Ethernet, Software RAID
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backup node (converted compute node) with 673GB software RAID backup. Cluster 2 was composed of

20 HP Proliant DL160 G6s (dual quad-core E5540 “Nehalem” 2.53GHz, 24GB memory), 1 HP DL180

G6 (RAID storage includes 2.1TB for the home directory), MATLAB R� MDCE with 160 worker licenses

(cluster currently has 160 compute cores), Gigabit Ethernet, and a storage node with 4.6TB of RAID

storage (for backup).

We performed maximization of the quality functions (Qpm, Qml) a total of 100 times for every

connectivity matrix under study. In the static connectivity investigation, we constructed connectivity

matrices for 20 subjects, 3 temporal scales (encompassing 1 experiment, 3 experimental sessions, and

25 time windows), and 1 random network null model. In the dynamic connectivity investigation, we

constructed connectivity matrices for 20 subjects, 18–34 time windows, 3 different null models, 10 values

of the inter-layer coupling C, and 4 values of time window length (80, 90, 100, and 110 TRs). In light

of the computational extent of this work, we note that we did not employ Kernighan-Lin (KL) node-

swapping steps [61] in our optimization of Qpm or Qml, as they would be computationally prohibitive and

are not necessary in the present context. KL steps move individual nodes between communities in order

to further optimize a single sample of Qpm or Qml [33, 62, 63]. As we focus on the mean properties of

ensembles of partitions (and use them to report reliable measurements of architectural properties) rather

than on the values of diagnostics for any individual partitions, KL steps that provide a marginal increase

in the value of Qpm or Qml would not be helpful for our study.
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Frontal pole Cingulate gyrus, anterior
Insular cortex Cingulate gyrus, posterior
Superior frontal gyrus Precuneus cortex
Middle frontal gyrus Cuneus cortex
Inferior frontal gyrus, pars triangularis Orbital frontal cortex
Inferior frontal gyrus, pars opercularis Parahippocampal gyrus, anterior
Precentral gyrus Parahippocampal gyrus, posterior
Temporal pole Lingual gyrus
Superior temporal gyrus, anterior Temporal fusiform cortex, anterior
Superior temporal gyrus, posterior Temporal fusiform cortex, posterior
Middle temporal gyrus, anterior Temporal occipital fusiform cortex
Middle temporal gyrus, posterior Occipital fusiform gyrus
Middle temporal gyrus, temporooccipital Frontal operculum cortex
Inferior temporal gyrus, anterior Central opercular cortex
Inferior temporal gyrus, posterior Parietal operculum cortex
Inferior temporal gyrus, temporooccipital Planum polare
Postcentral gyrus Heschl’s gyrus
Superior parietal lobule Planum temporale
Supramarginal gyrus, anterior Supercalcarine cortex
Supramarginal gyrus, posterior Occipital pole
Angular gyrus Caudate
Lateral occipital cortex, superior Putamen
Lateral occipital cortex, inferior Globus pallidus
Intracalcarine cortex Thalamus
Frontal medial cortex Nucleus Accumbens
Supplemental motor area Parahippocampal gyrus (superior to ROIs 34,35)
Subcallosal cortex Hippocampus
Paracingulate gyrus Brainstem

Table 1: Brain regions present in the Harvard-Oxford Cortical and Subcortical Parcellation Scheme pro-
vided by FSL [2,9].

Type of Flexibility Session Cortical Connectional Nodal Temporal
F

1 0.027±0.009 0.041±0.008 0.070±0.001 0.027±0.010
2 0.030±0.009 0.042±0.007 0.067±0.001 0.030±0.009
3 0.027±0.008 0.039±0.008 0.064±0.001 0.026±0.009

F �

1 1.93±0.30 2.58±0.25 3.19±0.01 1.90±0.31
2 1.95±0.27 2.53±0.23 3.01±0.01 1.94±0.28
3 1.86±0.25 2.43±0.23 2.92±0.01 1.85±0.26

Table 2: Flexibility in cortical network and random network null models for two different definitions of flexibility.

One definition is F =
1
N

PN
i=1 fi, where fi is the number of times node i changes module allegiance in a given experimental

session divided by the total number of possible changes (i.e., by the number of consecutive pairs of layers in the multilayer

framework). The second definition is F � =
1
N

PN
i=1 f �

i , where f �
i is defined as the total number of modules of which node i

is a member at some point in the experiment session. We also indicate mean values and standard deviations.
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Type of Flexibility Session Null Model t-statistic p-value
F 1 Connectional −10.62 1.2× 10−18

Nodal −47.56 1.1× 10−75

Temporal −0.64 0.51
2 Connectional −9.47 5.5× 10−16

Nodal −43.41 1.7× 10−71

Temporal −0.16 0.86
3 Connectional −9.86 1.1× 10−16

Nodal −46.95 4.5× 10−75

Temporal 0.77 0.43
F � 1 Connectional −14.54 1.8× 10−27

Nodal −43.44 1.6× 10−71

Temporal 4.67 8.4× 10−6

2 Connectional −14.04 2.3× 10−26

Nodal −39.67 2.1× 10−67

Temporal 3.95 1.3× 10−4

3 Connectional −14.87 3.5× 10−28

Nodal −43.80 6.9× 10−72

Temporal 2.79 0.0061

Table 3: Results for one-sample t-tests on flexibility in cortical networks versus random network null models
for two different definitions of flexibility (F and F �). We report these results for the connectional, nodal, and temporal

null models. Negative t-statistics indicate that the flexibility of the null model network is greater than that of the cortical

network, and positive t-statistics indicate that the flexibility of the cortical network is greater than that of the null model

network.
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Figure 1: Experimental Setup and Learning (A) Schematic of the cued sequence production (CSP)
task. The response or “button” box (left) had four response buttons that were color-coded to match the
notes on the “musical staff” (right) presented to the subject in the visual stimulus. This visual stimulus
was composed of 12 notes in sequence. Here we show one example of a single sequence. (B) Movement
time as a function of practiced trials, whose decreasing slope indicates that learning is occuring. (We
have aggregated trials into 10 trial bins per session.)
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Figure 2: Properties of the static and dynamic modularity indices Q± and Qml. The mean
(column 1), standard deviation (column 2), and maximum (column 3) of the static modularity index
Q± is shown for (A) the large scale (entire experiment), (B) the mesoscopic scale (three experimental
sessions), and (C) the small scale (individual time windows) over the 100 samplings. Row (D) shows the
mean (column 1), standard deviation (column 2), and maximum (column 3) of the dynamic modularity
index Qml over the 100 samplings. In the figure, the standard deviation is abbreviated as STD. Boxplots
indicate 95% confidence intervals over subjects.
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Figure 3: Effects of the coupling parameter C on the four diagnostics in this study: modularity
index Qml, number of modules n, module size (i.e., number of nodes) s, and module stationarity ζ. We
first averaged values over 100 ‘optimal’ partitions (see the discussion in the text), so this figure gives
mean values of all diagnostics. The error bars indicate standard deviations over subjects and sessions.
Colors indicate network type: cortical network (blue), temporal null model network (green), nodal null
model network (orange), and connectional null model network (red). Error bars for different network
types at a given value of C (0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2) are offset from each other for better
visualization.
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Figure 4: Effect of the time window length T on the four diagnostics in this study: modularity index
Qml, number of modules n, module size (i.e., number of nodes) s, and module stationarity ζ. We first
averaged values over 100 ‘optimal’ partitions (see the discussion in the text), so this figure gives mean
values of all diagnostics. The error bars indicate standard deviations over subjects and sessions. In the
figure, we give time windows in terms of the number of data points in the time series (i.e., the number
of TRs). Colors indicate network type: cortical network (blue), temporal null model network (green),
nodal null model network (orange), and connectional null model network (red). Error bars for different
network types at a given value of T (80, 90, 100, 110) are offset from each other for better visualization.
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