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We study the structure, stability, and dynamics of dark solitary waves in parabolically trapped, collisionally
inhomogeneous Bose-Einstein condensates (BECs) with spatially periodic variations of the scattering length.
This collisional inhomogeneity yields a nonlinear lattice, which we tune from a small-amplitude, approximately
sinusoidal structure to a periodic sequence of densely spaced spikes. We start by investigating time-independent
inhomogeneities, and we subsequently examine the dynamical response when one starts with a collisionally
homogeneous BEC and then switches on an inhomogeneity either adiabatically or nonadiabatically. Using
Bogoliubov-de Gennes linearization as well as direct numerical simulations of the Gross-Pitaevskii equation,
we observe dark solitary waves, which can become unstable through oscillatory or exponential instabilities. We
find a critical wavelength of the nonlinear lattice that is comparable to the healing length. Near this value, the
fundamental eigenmode responsible for the stability of the dark solitary wave changes its direction of movement
as a function of the strength of the nonlinearity. When it increases, it collides with other eigenmodes, leading
to oscillatory instabilities; when it decreases, it collides with the origin and becomes imaginary, illustrating that
the instability mechanism is fundamentally different in wide-well versus narrow-well lattices. When starting
from a collisionally homogeneous setup and switching on inhomogeneities, we find that dark solitary waves
are preserved generically for aligned lattices. We briefly examine the time scales for the onset of solitary-wave
oscillations in this scenario.
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I. INTRODUCTION

Because of advances in the field of Bose-Einstein conden-
sation, solitary waves have received considerable attention in
atomic physics during the past 15 years [1,2]. In particular,
many studies have examined a mean-field description of
atomic Bose-Einstein condensates (BECs) using the Gross-
Pitaevskii (GP) equation. The GP equation includes a cubic
nonlinearity, with a strength proportional to the s-wave scatter-
ing length, which arises from the interatomic interactions. This
mean-field description has been important for theoretical and
experiment investigations of phenomena such as bright solitary
waves [3–5], dark solitary waves [6–13], gap solitary waves
[14], multicomponent solitary waves [15–21], and Faraday
waves [22–24]. Solitary waves have been studied in great detail
in the presence of various external potentials, including linear
periodic lattices (so-called “optical lattices”) and harmonic
traps. This has yielded tremendous insights into a large variety
of phenomena, including Bloch oscillations, Landau-Zener
tunneling, modulational (“dynamical”) instabilities and gap
excitations, and more [20,21,25–28].

Numerous techniques have been developed that enable the
control and manipulation of coherent states in BECs. These
include static (homogeneous and inhomogeneous) electric
and magnetic fields [29], optical devices [30], and near-field
radio-frequency devices [31]. One can vary a BEC’s external
(trapping) potential while independently and simultaneously
changing the strength of the nonlinearity by tuning interatomic
interactions. The interaction among the atoms can be adjusted
experimentally over a very broad range by employing either
magnetic [32,33] or optical Feshbach resonances [34], and
the manipulation of BECs using Feshbach resonances has led
to numerous insights. Experimental achievements include the

formation of bright solitary waves and solitary-wave trains
for 7Li [3,4] and 85Rb [5] atoms by tuning the interatomic
interaction within a stable BEC from repulsive to attractive, the
formation of molecular condensates [35], and the probing of
the BEC-BCS crossover [36]. Theoretical studies include the
prediction that a time-dependent modulation of the scattering
length can be used to stabilize attractive two-dimensional (2D)
BECs against collapse [37] or to create robust matter-wave
breathers in one-dimensional (1D) BECs [38]. Temporal
modulation of the GP equation’s nonlinearity and its impact on
collapse properties and on other nonlinear phenomena (such as
modulational instabilities) have been examined systematically
in nonlinear optics [39]. Mathematical developments, based
on averaging techniques, are given in [40–42].

Atomic matter waves also exhibit novel features under
the influence of a spatially varying scattering length, which
yields a spatially dependent nonlinearity coefficient in the
GP equation. Numerous works have considered matter-wave
dynamics in such “collisionally inhomogeneous” environ-
ments. Theoretical predictions include adiabatic compression
of matter waves [43,44], enhancement of the transmissivity
of matter waves through barriers [45,46], dynamical trapping
of solitary waves [45], and a delocalization transition of
matter waves [47]. Linear [43,45], parabolic [48], random [49],
periodic (i.e., nonlinear lattices) [47,50–52], and localized
(steplike) [53–55] inhomogeneities have all been considered.
There have also been several detailed mathematical studies
[56–58] as well as examinations of analogous situations in
optics [59]. Additionally, the interplay between linear and
nonlinear lattices has been examined in both continuum [60]
and discrete [61] settings. Two important recent develop-
ments on BECs in collisionally inhomogeneous environments
include a broad review of relevant theoretical activity [62]
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and the experimental creation of a spatially periodic effective
nonlinearity in a Yb BEC [63].

In this paper, which is motivated in part by the recent
experimental work of Ref. [63], we consider spatially periodic
scattering lengths that can be tuned using Feshbach resonances
from small-amplitude, approximately sinusoidal structures to
a periodic sequence of densely spaced spikes. We consider
“aligned” and “antialigned” periodic structures and compare
and contrast the solitary-wave dynamics for each case. We first
consider situations in which collisional inhomogeneities are
always present (i.e., in which the coefficient of the nonlinearity
is time independent) before moving on to ones in which they
are turned on either adiabatically or abruptly.

When considering time-independent inhomogeneities, we
employ both direct numerical simulations of the GP equation
and a Bogoliubov-de Gennes (BdG) analysis to examine the
linear stability of dark solitary waves. We thereby identify
two distinct mechanisms of instability for the dark solitary
waves—an exponential one and an oscillatory one—and we
examine when each of these arises. Importantly, we find and
quantify a change of instability mechanism as one switches
between wide-well and narrow-well lattices. When switching
on inhomogeneities in time, we find for aligned lattices
that the dark solitary waves are generically robust, but that
additional excitations in the form of gray solitary waves also
emerge (especially when the inhomogeneities are turned on
nonadiabatically). We briefly examine the time scales for the
onset of solitary-wave oscillations in this scenario.

The rest of our presentation is organized as follows. In
Sec. II, we present the GP equation and our setup of spatially
periodic scattering lengths. We consider time-independent
scattering lengths and discuss the dark solitary waves arising
in this situation in Sec. III. We then consider the dynamical
response of switching on the collisional inhomogeneities in
Sec. IV. Finally, we conclude in Sec. V and present some
directions for future work.

II. SETUP AND MODEL

The dynamics of a cigar-shaped BEC can be approximated
in the mean field by the quasi-1D GP equation [1,2,20],

i
∂

∂t
u(z,t)=

(
− ∂2

∂z2
+ V (z,t) + g(z,t)|u(z,t)|2 − μ

)
u(z,t),

(1)

where u(z,t) is the macroscopic wave function, μ is the
chemical potential,1 V (z,t) is an external potential, and g(z,t)
is a (suitably normalized) spatially and temporally modulated
coefficient. We suppose that the BEC is in a harmonic trap, so
V (z,t) = 1

4B2 z
2. In Eq. (1), we have rescaled the condensate

density in units of Bh̄ωz/|q|, length in units of az/
√

2B,
time in units of (Bωz)−1, and energy in units of h̄Bωz. The
parameter az = √

h̄/(mωz) is the axial oscillator length, h̄ is
Planck’s constant, m is the mass of an atom in the BEC, and

1Note that ũ(z,t) = e−iμtu(z,t) satisfies the quasi-1D GP equation
without the need to write the chemical potential μ explicitly in the
equation.

ωz is the axial trap frequency. Additionally, q = 2ah̄ω⊥ is the
dimensional nonlinearity coefficient, where a is the s-wave
scattering length and we have averaged over the transverse
directions (assuming a ground-state wave profile) [20,21].
We choose B = 10 for convenience. We consider a 87Rb BEC
as an example and consequently use the parameter values
a ≈ 5.5 × 10−9 m, ωz = 2π × 4 s−1, and ω⊥ = 80ωz.

In our calculations, the nondimensional numbers of atoms
N = ∫ +∞

−∞ |u|2dz is roughly 500. The number of atoms N =
(h̄3/2[Bωz/2m]1/2/|q|)N is thus roughly 7000, though the
phenomena that we observe are robust for a range of values
of N . The two criteria for the quasi-1D regime are satisfied
[65]: (1) the trap is highly anisotropic, as � ≡ ωz/ω⊥ =
0.0125 � 1; and (2) the parameter d ≡ N�a/a⊥ ≈ 0.8 < 1,
where a⊥ = √

h̄/(mω⊥) is the oscillator length in the radial
direction.

The normalized coefficient g ∝ a can be either positive
or negative. The sign of g depends on the atomic species;
repulsive interatomic interactions yield g > 0, and attractive
ones yield g < 0. The sign and magnitude of g can both be
changed using Feshbach resonances, which make it possible
(in principle) to manipulate the sign and strength of atomic
interactions [32,33]. It is also possible to vary the scattering
length and consequently the nonlinearity coefficient g in
space and time by tuning an external field in the vicinity
of a Feshbach resonance. As we noted previously, spatial
variation of the s-wave scattering length using Feshbach
resonances was recently demonstrated experimentally [63].
Temporal variations of BEC scattering lengths using Fes-
hbach resonances have been studied for more than 10
years.

In this paper, we consider repulsive BECs with a spatially
periodic nonlinearity coefficient g = g(z,t). We assume that
the nonlinearity does not change sign. We start by consid-
ering time-independent s-wave scattering lengths, for which
g(z,t) = g(z). We consider the experimentally realistic [63]
functional form,

g(z) = g0 + �g(z), �g(z) = gm

1 + gs sin(kz + φ)
, (2)

where the wave number k determines the wavelength of
the nonlinear lattice g(z), the parameter g0 = 1 (by nor-
malization), and �g(z) � 0. We let gm ∈ [0,1], and we use
gs ∈ [0,0.95] so that �g(z) is always finite. In our numerical
simulations, we consider wave numbers k ∈ [0,15].

The parameter gm determines the magnitude of the spatial
modulation of g(z), and the parameter gs determines the shape
of the lattice, which is approximately sinusoidal when gs � 1
and resembles a periodic train of thin spikes as gs → 1. We
avoid a singularity in g(z) by bounding gs away from 1. The
angle φ is a constant and determines a shift in alignment
between the nonlinear lattice and the harmonic potential V (z).
We consider two situations: (1) aligned nonlinear lattices, for
which φ = π

2 , so the minimum of the harmonic potential V (z)
(which is located at z = 0) coincides with a minimum of
g(z); and (2) antialigned lattices, for which φ = −π

2 , so the
minimum of the harmonic trap coincides with a maximum of
g(z). As we discuss later, the stability properties of solitary
waves differ in the two cases.

023621-2



DARK SOLITARY WAVES IN A CLASS OF . . . PHYSICAL REVIEW A 87, 023621 (2013)

In the sections below, we examine the existence, stability,
and dynamics of dark solitary waves as the strength and shape
of the nonlinear lattice g(z) is varied. We establish existence by
finding standing-wave solutions ū(z), for which the right-hand
side of Eq. (1) vanishes. We then examine the stability of
these solutions via linearization around ū. In other words, we
perform a BdG analysis: We consider an O(ε) correction to
the GP equation (1) by writing

u(z,t) = ū(z) + ε[a(z)e−iωt + b(z)∗eiω∗t ],

where the asterisk ∗ denotes complex conjugation. We examine
the dynamics of the standing wave by perturbing it and
computing its temporal evolution using Eq. (1). We then study
the response of solitary waves to both gradual (adiabatic)
and abrupt (nonadiabatic) changes of the atomic interactions.
Both types of changes can, in principle, be introduced
experimentally using a Feshbach resonance.

−20 −10 0 10 20
0

1

2

Δg
(z

)

z
−20 −10 0 10 20

0

5

|u
(z

)|
2

−20 −10 0 10 20
0

1

2

Δg
(z

)

z
−20 −10 0 10 20

0

5

|u
(z

)|
2

−5 0 5
−0.04

−0.02

0

0.02

0.04

ω
r

ω
i

−5 0 5
−2

−1

0

1

2

ω
r

ω
i

t

z

1000 1200 1400

−50

0

50
2

4

6

t

z

0 500 1000

−50

0

50

0

1

2

3

4

5

FIG. 1. (Color online) Dark solitary-wave solutions of the sta-
tionary GP equation with an aligned nonlinear lattice (top panels),
their corresponding eigenfrequencies determined using the BdG
equations (middle panels), and the spatiotemporal evolution of the
solitary waves using simulations of the time-dependent GP equation
(bottom panels) in an aligned nonlinear lattice. The left column
shows an unstable dark solitary wave with a quartet of complex
eigenfrequencies; the parameter values are gm = 1, gs = 0.5, k = 1,
and μ = 10. The right column shows an unstable dark solitary wave
with a pair of purely imaginary eigenfrequencies; the parameter
values are gm = 1, gs = 0.5, k = 8, and μ = 10. In the top panels,
we also show the harmonic trap (black dashed curves) and the
inhomogeneity �g(z) (red dash-dotted curves). We illustrate the
spatiotemporal evolution of the BEC in the bottom panels; the color
map indicates the value of |u(z,t)|2.

III. DARK SOLITARY WAVES

As we will discuss in this section, the stability of the
observed dark solitary waves depends on the parameter values
of the nonlinear lattice. In Figs. 1 and 2, we show the dynamics
for several situations in aligned and antialigned lattices. We
show solitary-wave solutions of the stationary GP equation
(obtained via Newton iteration) in the top panels, where we
also display the nonlinear lattice and the harmonic trap. The
dip in the wave functions near z = 0 helps illustrate that these
are in fact dark solitary waves. We show their corresponding
eigenfrequencies (computed using the BdG equations) in
the middle panels, and we show the temporal evolution of
the solitary waves using direct numerical simulations of the
time-dependent GP equation (1) in the bottom panels.

We observed two qualitatively distinct situations for both
aligned and antialigned nonlinear lattices: unstable dark soli-
tary waves with one pair of purely imaginary eigenfrequencies
and unstable dark solitary waves with a quartet of complex
eigenfrequencies. As the value of the wave number k increases,
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FIG. 2. (Color online) Dark solitary-wave solutions of the station-
ary GP equation (top panels), their corresponding eigenfrequencies
determined using the BdG equations (middle panels), and the
spatiotemporal evolution of the solitary waves using simulations of
the time-dependent GP equation (bottom panels) in an antialigned
nonlinear lattice. The left column shows unstable solitary waves
with a pair of purely imaginary eigenfrequencies; the parameter
values are gm = 1, gs = 0.5, k = 1, and μ = 10. The right column
shows an unstable dark solitary wave with a quartet of complex
eigenfrequencies; the parameter values are gm = 1, gs = 0.5, k = 8,
and μ = 10. In the top panels, we also show the harmonic trap
(black dashed curves) and the inhomogeneity �g(z) (red dash-dotted
curves). We illustrate the spatiotemporal evolution of the BEC in the
bottom panels; the color map indicates the value of |u(z,t)|2.
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the solution in the aligned lattice undergoes a transition from
windows of mild oscillatory instabilities, which are indicated
by quartets of complex eigenfrequencies that result from
Hamiltonian-Hopf bifurcations, to strong instabilities, which
are indicated by purely imaginary frequencies that result from
crossing the origin of the spectral plane. Interestingly, we
observe the opposite dependence on k in the antialigned lattice.
We illustrate these small-k (left panels) and large-k (right
panels) results for aligned lattices in Fig. 1 and for antialigned
lattices in Fig. 2.

The dichotomy between the dynamics for aligned and
antialigned lattices indicates that, given a fixed set of parameter
values, one can in principle shift the nonlinear lattice (or,
equivalently, the magnetic trap) and control the strength of
the instability of a dark solitary wave. This makes it possible
to transition between a regime of strong instability and a
regime of alternating windows of weak instability. From the
spatiotemporal evolution of the dark solitary waves, which
we illustrate in the bottom panels, we observe in both cases
that the waves ultimately become displaced from the center
and oscillate between two turning points in the parabolically
trapped BEC. In the small-k regime, the strong interaction of
the propagating dark solitary-wave structures leads to their
eventual decay after only a few oscillations. When k is large,
however, the BEC appears to reach a “homogenized” limit that
is characterized by a reduced range of spatial variation (due to
the nonlinear lattice) within the trap. Ultimately, as k increases
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FIG. 3. (Color online) Variation of the eigenfrequency spectrum
as gm increases from 0 for aligned lattices with gs = 0.5, k = 1, and
μ = 10. The anomalous mode, which we plot using red circles, moves
to larger frequencies as gm increases. From top to bottom, the values
of gm are 0, 0.005, 0.008, and 0.015.
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FIG. 4. (Color online) Variation of the eigenfrequency spectrum
as gm increases from 0 for aligned lattices with gs = 0.5, k = 8,
and μ = 10. The anomalous mode, which we plot using red circles,
moves to lower frequencies (which eventually become imaginary)
as gm increases. From top to bottom, the values of gm are 0, 0.005,
0.008, and 0.015.

further, the role of the nonlinear lattice is to yield an effective
averaged modulation of the s-wave scattering length.

Given a regime of the wave number k, we vary gm from 0
by a small amount and monitor the change of eigenfrequency
spectrum that we obtain using the BdG analysis. In particular,
we examine the four (pairs of) eigenfrequencies of smallest
magnitude. We illustrate typical trends of the eigenfrequency
spectrum variation in Figs. 3–6. In order, these figures show
results for the small-k regime for a BEC in an aligned nonlinear
lattice, the large-k regime for an aligned lattice, the small-k
regime for an antialigned lattice, and the large-k regime for an
antialigned lattice. In all eigenfrequency computations, we are
concerned predominantly with the so-called anomalous mode
(i.e., the only mode that has negative Krein signature [65]). The
anomalous mode is located at ω = ±1/(B

√
2) for gm = 0, and

we plot it using red circles in the figures. In the small-k regime
of the aligned lattice and the large-k regime of the antialigned
lattice, the anomalous mode moves upward along the real
axis as gm increases. In these cases, its collision with another
mode yields a Hamiltonian-Hopf bifurcation and an oscillatory
instability. In the large-k regime of the aligned lattice and the
small-k regime of the antialigned lattice, the anomalous mode
moves downward along the real axis as gm increases. When it
hits the origin of the spectral plane of eigenfrequencies, one
obtains an exponential instability associated with an imaginary
eigenfrequency.
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FIG. 5. (Color online) Variation of the eigenfrequency spectrum
as gm increases from 0 for antialigned lattices with gs = 0.5, k = 1,
and μ = 10. The anomalous mode, which we plot using red circles,
moves to lower frequencies (which eventually become imaginary)
as gm increases. From top to bottom, the values of gm are 0, 0.007,
0.008, and 0.01.

We sweep over the parameter values gm ∈ [0,1], gs ∈
[0,0.95], and k ∈ [0,15] and thereby confirm, for given gs and
gm, that there is a critical wave number kc for both aligned
and antialigned nonlinear lattices. For aligned lattices, the
anomalous mode increases as a function of gm away from
gm = 0 when k > kc, and it decreases as a function of gm

when k < kc. For antialigned lattices, however, the anomalous
mode decreases as a function of gm away from gm = 0 when
k > kc, and it increases as a function of gm when k < kc. We
also trace the critical value kc between the small-k regime
and the large-k regime. We plot the dependence of kc on gs

for fixed gm (top panels) and on gm for fixed gs (bottom
panels) in Fig. 7 for the aligned lattice and in Fig. 8 for
the antialigned lattice. As one can see from the figures, the
transition occurs in a narrow band near k = 6 for all values
of gs and gm. Recall that the healing length (which gives the
length scale of the dark solitary wave) is ξ = (8πN0a)−1/2,
where N0 is the maximum dimensional density of the three-
dimensional (3D) BEC. Specifically, N0 = n0(Bh̄ωz/|q̃|),
where q̃ = 4πh̄2a/m = 2πa2

⊥q and n0 denotes the maximum
density of the nondimensional solution. The wavelength of the
lattice is πaz

√
2/B/k, so the ratio of the lattice wavelength

to the healing length is r0 ≡ (πaz/k)(16πN0a/B)1/2. For
example, with k = 6, the parameter value n0 ≈ 4 yields r0 ≈ 2.
As we discuss below, this corresponds to the critical region of
parameter space, when the width of the dark solitary wave
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FIG. 6. (Color online) Variation of the eigenfrequency spectrum
as gm increases from 0 for antialigned lattices with gs = 0.5, k = 8,
and μ = 10. The anomalous mode, which we plot using red circles,
moves to higher frequencies as gm increases. From top to bottom, the
values of gm are 0, 0.002, 0.005, and 0.007.

is approximately two lattice wavelengths. Hence, when k is
small, the variation of the scattering length occurs on a much
larger scale than that of the solitary wave; when k is large,
however, the variation occurs at a scale that is smaller than
that of the solitary wave. Accordingly, a competition of length
scales between the scale of the solitary wave and the scale of
g(z) accounts for the existence of the two distinct regimes.

For both aligned and antialigned lattices, the critical
wavenumber kc exhibits a stronger dependence on gs than
it does on gm, which is consistent with the fact that the depth
of the wells depends increasingly sensitively on gs as gs → 1.
In an aligned lattice with fixed gs , the critical wave number kc

decreases with gm, and this decrease becomes more dramatic
as gs becomes smaller. By contrast, when gm is fixed, kc first
decreases and then increases with gs ; this decrease becomes
more dramatic as gm becomes smaller. This variation can be
understood intuitively on the basis of length-scale competition.
Suppose that r0 ≈ 2 for k = kc. An increase of gm then leads
to a (maximal) density decrease and hence to a decrease of kc

(because kc ∝ n
1/2
0 for r0 ≈ 2), and the opposite trend emerges

from the increase of gs . In an antialigned lattice, these trends
are reversed (as discussed above): With fixed gm, the critical
wave number kc decreases with gs , and this decrease becomes
more dramatic as gm becomes smaller. When gs is fixed, the
BEC dynamics depends on whether gs is small (i.e., near 0) or
large (i.e., near 1). When gs is small, kc stays almost constant
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FIG. 7. (Color online) Dependence of the critical wave number
kc on lattice parameter values for aligned nonlinear lattices. The top
panel shows kc versus gs for multiple fixed values of gm, and the
bottom panel shows kc versus gm for multiple fixed values of gs . The
panels labeled “exponential instability” and “oscillatory instability”
indicate regimes that exhibit those instabilities for the parameter
values examined.

when gm changes. When gs is large, however, kc increases
with gm.

IV. DYNAMICAL RESPONSE

In Sec. III, we examined the stability of dark solitary
waves in BECs with a spatially periodic but time-independent
nonlinearity coefficient g(z). We now consider BECs in which
g is initially constant but then a Feshbach resonance is
subsequently turned on to implement a spatial dependence.
This allows us to consider experimental situations in which
the spatial dependence is turned on slowly (i.e., adiabatically)
as well as ones in which it is turned on abruptly (i.e.,
nonadiabatically).

We study the time-dependent GP equation (1) with g =
g(z,t) and an initial wave function given by a stationary
solution to a GP equation with constant nonlinearity coefficient
g = g0. The time-dependent and space-dependent nonlinearity
coefficient is given by

g(z,t) = g0 + �g(z)T (t), T (t) = 1

2

[
1 + tanh

(
t − t0

τ

)]
,

(3)

where t0 denotes the time at which the function T (t) reaches
the value 1/2. The function T (t) controlling the transition

FIG. 8. (Color online) Dependence of the critical wave number
kc on lattice parameter values for antialigned nonlinear lattices. The
top panel shows kc versus gs for multiple fixed values of gm, and the
bottom panel shows kc versus gm for multiple fixed values of gs .

satisfies T (t) → 0 as t → 0 and T (t) → +1 as t → ∞. For
each transition time scale τ , we choose t0 > 20τ , which
ensures that |T (t)| is smaller than machine precision (and
hence approximately 0) at t = 0 for our computations. This
allows us to model the effect of the nonlinearity coefficient
change from an initial value of g0 to a final value of g0 + �g(z),
where �g(z) [see Eq. (2)] represents the spatial dependence
introduced by the Feshbach resonance. A small value of the
parameter τ corresponds to a situation in which the variation
of the scattering length is abrupt, whereas a large value of τ

corresponds to a situation in which the Feshbach resonance is
turned on gradually (i.e., adiabatically).

In Fig. 9, we consider the transition time scales τ = 0.1,
τ = 1, and τ = 10 to illustrate fast, medium, and slow imple-
mentation of the spatial inhomogeneity in an aligned nonlinear
lattice. Dark solitary waves appear to persist generically in our
dynamical simulations. Nevertheless, unless the onset of the
lattice is sufficiently adiabatic (i.e., for τ = 10), additional
excitations also arise. In particular, when the nonlinear lattice
is turned on sufficiently fast (see the panels corresponding to
τ = 0.1 and τ = 1), we observe the emission of localized yet
mobile gray solitary waves. Furthermore, for all three values
of τ , we observe oscillations of the dark solitary wave when we
simulate long enough. For τ = 1 and τ = 10, the oscillations
start at t ≈ 580 and t ≈ 1.4 × 105, respectively. The nonlinear
lattice settles to its final form at approximately tset = t0 + 20τ .
This ensures that g(t) = g0 + �g(z), within machine precision,
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FIG. 9. (Color online) Dynamical response of dark solitary waves in BECs from introducing spatial heterogeneity into the nonlinearity
coefficient by turning on a Feshbach resonance. From left to right, the columns correspond to simulations with transition time scales of τ = 0.1
(nonadiabatic), τ = 1 (medium), and τ = 10 (adiabatic). The parameter values describing the shape of the nonlinear lattice are gm = 0.6,
gs = 0.5, k = 0.5, and μ ≈ 7.16. In the left panel of the first row, one can observe the emission of traveling gray solitary waves. We track one
such wave: It reaches one of its left turning points (i.e., a point at which the wave’s dip is at a value of z < 0 such that |z| is a local maximum) at
t1 ≈ 495, it then crosses z = 0 at t2 ≈ 518, and it reaches its next right turning point at t3 ≈ 541. In the second row, we plot the corresponding
spatial profiles of the solitary-wave solution of the GP equation at times t1 (left panel), t2 (center), and t3 (right). In the bottom panels, we circle
the gray solitary that we track using a red dashed curve. The local minimum it represents is visible near z = −50 in the left column and near
z = 50 in the right column. (It is contained within the dark solitary wave in the center column.)

for t > tset. We measure the time that it takes for the dark
solitary wave to mobilize starting from tset.

The eventual mobility of the central solitary wave can be
explained by its interaction with sound waves that are emitted
during wave propagation [66]. The strength of the sound waves
depends on the value of τ . As τ becomes larger, the system
becomes more adiabatic, so the sound excitations become
weaker and it takes longer for the above mechanism to mobilize
the solitary wave. Given our collisionally inhomogeneous
setup, eventual mobilization is inevitable. We plot the onset
time of oscillations Tc = Tc(τ ) in Fig. 10. By monitoring
whether the oscillation has started before a given observation
time Tc, we can estimate a corresponding threshold time scale
τc between nonadiabatic transitions and adiabatic transitions.
If the transition time is slower than τc, then no substantial os-

0 5 10
10

2

10
4

10
6

τ

T
c

FIG. 10. (Color online) Onset time Tc for oscillations of a dark
solitary wave versus the lattice transition time scale τc.

cillations occur before time t = Tc. For Tc = 500, Tc = 1000,
and Tc = 5000, we obtain respective threshold time scales of
τc ≈ 0.6, τc ≈ 2.8, and τc ≈ 7.4. We test a series values of τ

and plot the associated Tc values in Fig. 10.

V. CONCLUSIONS

In this paper, we have studied the structure, stability, and dy-
namics of dark solitary waves in collisionally inhomogeneous
Bose-Einstein condensates. We considered spatially periodic
scattering lengths (i.e., nonlinear lattices) in a functional form
suggested by recent experiments. Importantly, this family
of nonlinear lattices can be tuned from a small-amplitude,
approximately sinusoidal structure to a periodic sequence of
densely spaced spikes. We demonstrated several interesting
phenomena—including, for example, that dark solitary waves
in aligned lattices and antialigned lattices exhibit different
instability properties. These instability properties depend
significantly on the modulation wave number of the nonlinear
lattice, and the BEC dynamics exhibit considerable variation
when the lattice wavelength is comparable to the size of the
dark solitary waves.

In the case of aligned lattices, we also examined the
dynamical response of solitary waves to adiabatic and nona-
diabatic implementation of collisional inhomogeneities via a
Feshbach resonance. When a Feshbach resonance is turned on
nonadiabatically, nonlinear excitations can be emitted. Sound
waves are emitted when a Feshbach resonance is turned on
(regardless of the transition speed), and these excitations
eventually destabilize the solitary wave. If the resonance
is turned on sufficiently adiabatically, such that the sound
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waves are weak, then the BEC settles to an excited state
(bearing a dark solitary wave) of the stationary nonlinear lattice
initially before eventually starting to oscillate after a very long
time.

It would be interesting to generalize our considerations to
higher-dimensional lattices and to examine the effects that
such lattices have on higher-dimensional excitations, such as
vortices in quasi-2D BECs and vortex rings in 3D condensates.
Although some initial efforts have been made in that direction
[64], a systematic theory has yet to be developed, and thorough
numerical investigations would also be beneficial.
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V. M. Pérez-Garcı́a, and P. J. Torres, Physica D 191, 193 (2004).

[38] P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and B. A.
Malomed, Phys. Rev. Lett. 90, 230401 (2003); Z. X. Liang, Z. D.
Zhang, and W. M. Liu, ibid. 94, 050402 (2005); M. Matuszewski,
E. Infeld, B. A. Malomed, and M. Trippenbach, ibid. 95, 050403
(2005).

[39] M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis,
Phys. Rev. Lett. 97, 033903 (2006); M. Centurion, M. A. Porter,
Y. Pu, P. G. Kevrekidis, D. J. Frantzeskakis, and D. Psaltis,
ibid. 97, 234101 (2006); Phys. Rev. A 75, 063804 (2007);
S. Beheshti, K. J. H. Law, P. G. Kevrekidis, and M. A. Porter,
ibid. 78, 025805 (2008).

[40] V. Zharnitsky and D. E. Pelinovsky, Chaos 15, 037105 (2005).
[41] D. E. Pelinovsky, P. G. Kevrekidis, and D. J. Frantzeskakis,

Phys. Rev. Lett. 91, 240201 (2003); D. E. Pelinovsky, P. G.
Kevrekidis, D. J. Frantzeskakis, and V. Zharnitsky, Phys. Rev. E
70, 047604 (2004).

[42] P. G. Kevrekidis, D. E. Pelinovsky, and A. Stefanov, J. Phys. A
39, 479 (2006).

[43] G. Theocharis, P. Schmelcher, P. G. Kevrekidis, and D. J.
Frantzeskakis, Phys. Rev. A 72, 033614 (2005).

[44] F. Kh. Abdullaev and M. Salerno, J. Phys. B 36, 2851 (2003).
[45] G. Theocharis, P. Schmelcher, P. G. Kevrekidis, and D. J.

Frantzeskakis, Phys. Rev. A 74, 053614 (2006).

[46] J. Garnier and F. Kh. Abdullaev, Phys. Rev. A 74, 013604 (2006).
[47] Yu. V. Bludov, V. A. Brazhnyi, and V. V. Konotop, Phys. Rev. A

76, 023603 (2007).
[48] P. Niarchou, G. Theocharis, P. G. Kevrekidis, P. Schmelcher, and

D. J. Frantzeskakis, Phys. Rev. A 76, 023615 (2007).
[49] F. Kh. Abdullaev and J. Garnier, Phys. Rev. A 72, 061605(R)

(2005).
[50] H. Sakaguchi and B. A. Malomed, Phys. Rev. E 72, 046610

(2005); M. A. Porter, P. G. Kevrekidis, B. A. Malomed, and D. J.
Frantzeskakis, Physica D 229, 104 (2007); F. Kh. Abdullaev,
A. Abdumalikov and R. Galimzyanov, Phys. Lett. A 367, 149
(2007).

[51] Y. V. Bludov and V. V. Konotop, Phys. Rev. A 74, 043616
(2006).

[52] A. S. Rodrigues, P. G. Kevrekidis, M. A. Porter, D. J.
Frantzeskakis, P. Schmelcher, and A. R. Bishop, Phys. Rev.
A 78, 013611 (2008).

[53] M. I. Rodas-Verde, H. Michinel, and V. M. Pérez-Garcı́a, Phys.
Rev. Lett. 95, 153903 (2005); A. V. Carpentier, H. Michinel,
M. I. Rodas-Verde, and V. M. Pérez-Garcı́a, Phys. Rev. A 74,
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