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Abstract

We investigate the networks of committee and subcommittee assignments in the United States House of Representatives

from the 101st–108th Congresses, with the committees connected by ‘‘interlocks’’ or common membership. We examine

the community structure in these networks using several methods, revealing strong links between certain committees as

well as an intrinsic hierarchical structure in the House as a whole. We identify structural changes, including additional

hierarchical levels and higher modularity, resulting from the 1994 election, in which the Republican party earned majority

status in the House for the first time in more than 40 years. We also combine our network approach with the analysis of

roll call votes using singular value decomposition to uncover correlations between the political and organizational

structure of House committees.

r 2007 Elsevier B.V. All rights reserved.

PACS: 89.75.Fb; 89.65.�s; 89.75.�k; 07.05.Kf
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1. Introduction

Much of the detailed work in making the United States law is performed by Congressional committees and
subcommittees. This contrasts with parliamentary democracies such as Great Britain and Canada, in which a
larger part of the legislative process is directly in the hands of political parties or is conducted in sessions of the
entire parliament. While the legislation drafted by committees in the US Congress is subject ultimately to roll
call votes by the full Senate and House of Representatives, the important role played by committees and
subcommittees makes the study of their formation and composition vital to understanding the work of the
American legislature.
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The presence of committees in the House endows it with obvious hierarchical levels: individual
Representatives, subcommittees, standing committees, and the entire House floor. However, it is desirable
to examine social networks in the House of Representatives quantitatively to determine whether it has any
additional structure that might relate to collaborative efforts among Representatives, such as correlations or
close associations between the members of different committees. The importance of such studies is not merely
academic. An understanding of the House as a collaboration network may shed considerable light on the law-
making process, as bills often spend time in several different committees and subcommittees while being
drafted in preparation for votes on the House floor. For instance, the House’s consideration of the No Child
Left Behind Act of 2001 involved the Committee on Education and the Workforce, the Subcommittee on
Education Reform, the Subcommittee on 21st Century Competitiveness, the Committee on the Judiciary, and
the Committee on Rules (setting the terms for the scrutiny of the bill) before being approved by the full House
[1]. After the Senate further amended the bill, a conference agreement eventually passed both houses of
Congress and the final bill was signed by the President to become public law No. 107–110.

Analyzing the structure of the committee system in the House of Representatives and studying its
correlation with the partisanship of its constituent Representatives help achieve a better understanding of
political party competition in Congress. Several contrasting theories of committee assignment have been
developed in the political science literature (mostly through qualitative studies, although there have been some
quantitative ones; see Refs. [2–7]), but there is no consensus explanation of how committee assignments are
initially determined or how they are modified from one two-year term of Congress to the next. A question of
particular interest is whether political parties assign committee memberships essentially at random or if, for
instance, one can show using objective analyses that influential Congressional committees are ‘‘stacked’’ with
partisan party members.

Our study of the organizational structure of Congress draws on network theory, which provides powerful
tools for representing and analyzing complex systems of connected agents. While the quantitative study of
real-world networks has a long history in the social sciences (see, for example, the discussions in Refs. [8,9]),
such investigations experienced a major expansion in popularity in the late 1990s, in part because of interest in
the Internet and online networks. This increased attention has been especially evident in studies of large social,
biological, and technological networks, which have relied on major advancements in computer hardware and
algorithms to generate novel results [8–12]. Among the myriad topics that have been studied are evolving
social groups [13], collaborations [14], community detection [15], and hierarchical organization [16,17]. It is the
modular and hierarchical community structure of networks that primarily concern us in our present study of
Congressional committee assignments.

The Congressional networks studied here are examples of collaboration networks, on which there is a
considerable body of previous literature. Networks constructed from collaborations between corporate boards
of directors [18–22] are especially germane to the present work, as such collaborations occupy a position in the
business world somewhat analogous to that of collaborations between Congressional committee members.
Previous studies have shown that board memberships play a major role in the spread of attitudes, ideas, and
practices through the corporate world, affecting investment strategies [23], political donations [22], and even
the stock market on which a company is listed [24]. Studies of the structure of corporate networks have shed
light on the mechanisms and pathways of information diffusion [25–27], and we believe that the structure of
congressional committees may turn out to be similarly revealing.

As we show here, network methods are particularly effective at uncovering structure among committee and
subcommittee assignments in Congress, without the need to incorporate any specific knowledge about
committee members or their political positions. In a recent article [28], the present authors formulated and
briefly examined a number of committee assignment networks, looking, for instance, at the partisanship of the
Select Committee on Homeland Security in the 107th House and its connections to other committees. An
alternative network perspective on the structure of Congress has been offered by Fowler [29,30], who
examined the network defined by the cosponsorship of legislation by Members of Congress. In the present
work, we compare our previous observations to those for the 108th House and explore the structural changes
in the networks that resulted from the 1994 Congressional elections in which the Republican party gained
majority control of the House. A detailed technical discussion of the methods used to obtain our results is
included in the appendices.
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This paper is organized as follows. First, we define the bipartite collaboration networks determined by the
assignments of Representatives to House committees and subcommittees. We then investigate the hierarchical
and modular structure of these networks using several different community detection methods. We also
incorporate singular value decomposition (SVD) analysis of House roll call votes into our study of the House’s
community structure. We provide additional details in two appendices: in Appendix A, we explain the
methods used in our SVD analysis of voting patterns; in Appendix B, we give a detailed comparison of several
methods for community detection in networks, including our generalization of a recently proposed local
detection algorithm [31] to weighted networks.

2. Committee assignment networks in the House

We represent each of the 101st–108th terms of the US House of Representatives as a separate bipartite
(two-mode) network based on assignments of Representatives to committees and subcommittees (henceforth
called just ‘‘committees’’ for simplicity). The two types of nodes in these networks correspond to
Representatives and committees, with edges connecting each Representative to the committees on which he
or she sits. The period we study (1989–2004) spans the political changes following the terrorist attacks of
September 11, 2001, as well as the 1994 elections in which the Republican party won majority control of the
House for the first time in more than 40 years. We construct one network for each two-year Congressional
term from data published by the Clerk’s Office of the House of Representatives [32], ignoring changes in
committee assignments that occur while a term is underway.

Each network includes roughly 440 Representatives (including non-voting Delegates and midterm
replacements), about 20 standing committees, and more than 100 subcommittees, with an average of about
six committee assignments per Representative. Because of the relatively high edge density (about 5% of
possible connections are present), some frequently studied network statistics, such as geodesic path lengths,
turn out to be unrevealing in this case. Therefore, we instead focus our attention on the community structure
of the networks and associated measures such as modularity and Horton–Strahler numbers. We discuss these
analyses in Section 3.

With data for eight consecutive Congresses, it is natural to ask how the committee assignment network
changes in time. One question of interest is whether the networks contain signs of the so-called ‘‘Republican
Revolution’’ of 1994 that ended 40 years of Democratic majorities in the House of Representatives, the longest
span of single-party rule in Congressional history [33]. That is, can one observe structural differences in the
committee assignment networks between the Democrat-majority Houses (101st–103rd) and the Republican-
majority ones (104th–108th)? As one means of addressing this question, we compute the degree of each node,
defined as the number of edges connected to it. Because the committee assignment networks are bipartite, we
construct two types of cumulative (integrated) degree distributions [34] and examine how they changed across
Congresses. One distribution (Fig. 1a) indicates the number of committees on which each Representative sits,
and the other (Fig. 1b) gives the number of Representatives on each committee. We do not observe a
significant trend in Democrat-majority Houses, although a slow increase in committee sizes is revealed in
Fig. 1b. However, the committee reorganization that accompanied the formation of the Republican-majority
104th House produced a sharp decline in the typical numbers of committee and subcommittee assignments per
Representative; the trend in subsequent Republican-majority Congresses has been a slow increase in both the
numbers of assignments and the committee sizes. These trends are visible in Fig. 1.

While rich in their data content, the two-mode networks of committee assignments are difficult to visualize
and interpret. A common strategy in such cases is to examine instead a one-mode ‘‘projection’’ of the network
onto either the committees or the Representatives. In our studies, we have made considerable use of the
projection onto the committees, in which a network is created whose nodes represent the committees and
whose edges represent common membership or ‘‘interlocks’’ between committees. Figs. 2 and 3 show two
different visualizations of the network of committees for the 107th House of Representatives (2001–2002), an
example that we analyze in some depth below.

We quantify the strength of a connection between committees in this projected network with a normalized

interlock, defined as the number of common members two committees have divided by the expected number of
common members if membership of committees of the same size were randomly and independently chosen
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Fig. 1. (Color) Cumulative degree distributions of the 101st–108th US House of Representatives networks defined by committee and

subcommittee assignments. (a) Fraction of Representatives versus number of (sub)committee assignments. (b) Fraction of committees and

subcommittees versus number of assigned Representatives. In the 104th–108th Houses, all with Republican majorities, the cumulative

degree distribution in (a) shifts farther up in each House and that in (b) shows a similar but less pronounced shift. There is no noticeable

trend in the Democrat-majority 101st–103rd Houses in (a), but it seems to shift up a bit in (b) to reveal a drift covering all eight

Congressional terms we studied.
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from Congressmen in the House. Committees with as many common members as expected by chance have
normalized interlock 1, those with twice as many have interlock 2, those with none have interlock 0, and so
forth. We use this weighting in the visualization of the network of the 107th House in Fig. 2 by darkening the
links between nodes accordingly.1 As a comparison, we also show a visualization based on the raw
(unnormalized) interlock count of common members in Fig. 3. In Fig. 4, we depict the 108th House using
normalized interlock.

Some of the connections depicted in Figs. 2–4 are unsurprising. For instance, sets of subcommittees of the
same standing committee typically share many of the same members, thereby forming a group or clique in the
network. The four subcommittees of the 107th Permanent Select Committee on Intelligence, for example, each
include at least half of the full 20-member committee and at least one-third of each of the other
subcommittees. These tight connections result in normalized interlocks with values in the range of 14.4–23.6,
causing these five nodes to be drawn close together in the visualizations, forming the small pentagon in the
middle right of Fig. 2 and lower right of Fig. 3. The Intelligence Committee and its subcommittees are also
tightly connected in the 108th House, appearing again as a small pentagon in Fig. 4.

Some connections between committees, however, are less obvious. For instance, the 9-member Select
Committee on Homeland Security, formed in June 2002 during the 107th Congress in the aftermath of
the terrorist attacks of September 11, 2001 [36], has a strong connection to the 13-member Rules Committee
(with a normalized interlock of 7.4 from two common members), which is the committee charged
with deciding the rules and order of business under which legislation is considered by other committees and
the full House [1]. The Homeland Security Committee is also connected to the 7-member Legislative
and Budget Process Subcommittee of Rules by the same two common members (with normalized interlock
13.7). In the 108th Congress (see Fig. 4), the Homeland Security Committee swelled to 50 members
but maintained a close association with the Rules Committee (with a normalized interlock of 4.1 from six
common members).
1The Euclidean distances in these figures arise from a Kamada–Kawai force-directed network visualization algorithm [35]. While this

helps make the network topology easier to see in two-dimensional projections, these distances should not be taken too seriously.
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select committees labeled. (Subcommittees tend to be closely tied to their main committee and are therefore left unlabeled.) Each link

between two (sub)committees is assigned a strength (indicated by the link’s darkness) equal to the normalized interlock. (The ‘‘interlock’’

between two committees is equal to the number of their common members. The normalization takes committee sizes into account by

dividing the raw interlock by the expected number of common members if assignments were determined independently and uniformly at

random.) Thus, lines between pairs of circles or pairs of squares represent normalized degree of joint membership between

(sub)committees (it is because of this normalization that lines between squares are typically very light), and lines between squares and

circles represent the fraction of standing committee members on subcommittees. This figure is drawn using a variant of the

Kamada–Kawai spring-embedding visualization, which takes link strengths into account [35].
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3. The hierarchical structure of committees

We now turn to an examination of community structure in the networks of committees based on the one-
mode projection described above. We do this using several methods of hierarchical clustering, in which one
begins with a network and ends up (by construction) with a hierarchical (tree) structure. In this section, we
discuss the hierarchical clustering method known as single linkage clustering [37]. We find similar results using
several alternative community detection methods, which are discussed in detail in Appendix B. For each of
these methods, we quantify the organizational structures we find using Horton–Strahler numbers [38,39]
(to indicate the number of hierarchical levels) and modularity [40] (to indicate the compartmentalization into
different groups).
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To implement single linkage clustering, we start with the complete set of committees for a given Congress.
We then join committees sequentially starting with the pair with the greatest normalized interlock, followed by
the next greatest, and so forth. This process generates ‘‘clusters’’ of committees, which can be represented
using a tree or dendrogram, such as that shown in Fig. 5 for the 107th House. Closer examination of the
dendrograms in Fig. 5 and Fig. 6 (from the 108th Congress), each of which has a Horton–Strahler number of
5, conveys four reasonably expected and well-ordered hierarchical levels of clustering: subcommittees,
standing and select committees, groups of standing and select committees, and the entire House. These single-
linkage clustering dendrograms also give some suggestion of a weaker fifth level of organization corresponding
to groups of subcommittees inside larger standing committees.

In this paper, we are primarily interested in the organizational levels describing the connections between
standing and select committees (and groups thereof). For example, near the 8 o’clock position in Fig. 5 (from
the 107th Congress) is a tightly grouped cluster that includes the House Rules Committee, the House
Administration Committee, and the Select Committee on Homeland Security. A similar cluster appears in
Fig. 6 near the 3 o’clock position, including all five of the subcommittees of Homeland Security introduced in
the 108th Congress. Because assignments to select committees are ordinarily determined by drawing selectively

from committees and subcommittees with germane jurisdictions, one might naively expect a close connection
between the Select Committee on Homeland Security and, for example, the Terrorism and Homeland Security
Subcommittee of the Intelligence Select Committee, which was formed originally as a bipartisan ‘‘working
group’’ and was designated on September 13, 2001 by Speaker of the House Dennis Hastert [R-IL] as the lead
congressional entity assigned to investigate the 9/11 terrorist attacks [36]. However, the 107th Homeland
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Security Committee shares only one common member (normalized interlock 2.4) with the Intelligence Select
Committee (located near the 1 o’clock position in Fig. 5) and has no interlock at all with any of the four
Intelligence subcommittees.

As shown in Fig. 5, we can enrich the analysis by color-coding each committee according to the mean
‘‘extremism’’ of its members. Extremism is determined using the results of an SVD analysis of Representatives’
voting records that places each Representative on a scale that runs, roughly speaking, from the most partisan
Republican members of the House to the most partisan Democrats (the SVD analysis is described in detail in
Appendix A). The extremism of a committee is then quantified as the average deviation of its members from
the mean on this scale. Committees composed of highly partisan members of either party appear in red in
Fig. 5 and those containing more moderate Representatives appear in blue. Taking again the examples of
Intelligence and Homeland Security, we can immediately identify the former as moderate and the latter as
more partisan. Indeed, the Select Committee on Homeland Security has a larger mean extremism than any of
the 19 standing Committees and has the fourth largest mean extremism among the 113 committees of the
107th House (see Table 1). This is perhaps not so surprising when we see that its members included the House
Majority Leader, Richard Armey [R-TX], and both the Majority and Minority Whips, Tom DeLay [R-TX]
and Nancy Pelosi [D-CA]. However, our characterization of the committee was made mathematically, using
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Fig. 5. (Color) Dendrogram representing the hierarchical clustering of the committees in the 107th US House of Representatives; it was

computed using single linkage clustering of normalized committee interlocks. Each committee is color-coded according to the mean

‘‘extremism’’ of its members (defined in the main text; see Appendix A), from less extreme (blue) to more extreme (red). The clusters at

each level are color-coded according to the average of their constituent committee extremism scores.
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no political knowledge beyond the roll call votes of the 107th House. As another example, the 107th House
Rules Committee is the second most extreme of the 19 standing committees (after Judiciary) and ranks 18 out
of 113 committees overall. In contrast, the Permanent Select Committee on Intelligence of the 107th House
has a smaller mean extremism than each of the 19 standing Committees, and Intelligence and its four
subcommittees all rank among the 10 least extreme of all 113 committees.

4. Modularity

To further investigate the observed hierarchies in the House committee assignment networks, we employ the
statistic known as modularity, modified to allow for the weighted nature of our networks. Consider first an
unweighted network, which is divided into some number of groups of vertices. The modularity m for this
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Fig. 6. (Color) Dendrogram of the 108th House, determined by single linkage clustering and color-coded according to the

Horton–Strahler values [38,39] of its leaves (discussed in the text), with lower values in blue and higher values in red. The ties between

Rules and Homeland Security persist (between the 3 o’clock and 4 o’clock positions), despite the swelling in size of the latter committee to

50 members. As discussed in Appendix B, these ties are robust with respect to the algorithm used to determine the community structure.
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division into groups is defined to be [40]

m ¼
X

i

ðeii � a2
i Þ, (1)

where eij denotes the fraction of ends of edges in group i for which the other end of the edge lies in group j

and ai ¼
P

jeij is the fraction of all ends of edges that lie in group i. Modularity measures the difference
between the total fraction of edges that fall within—rather than between—groups (the first term) and the
fraction one would expect if edges were placed at random (respecting vertex degrees). Thus, high values of the
modularity indicate partitions of the network in which more of the edges fall within groups than one would
expect by chance. This, in turn, has been found to be a good indicator of functional network divisions in many
cases [41].

The projected one-mode networks we consider here are weighted. In our calculations, we therefore employ
the weighted generalization of modularity described in Ref. [42], in which instead of counting numbers of
edges falling between particular groups, we count the sums of the weights of those edges, so that heavily
weighted edges contribute more than lightly weighted ones. Both eij and ai can be generalized in this fashion in
a straightforward manner, and then the modularity is again calculated from Eq. (1). The meaning of the
modularity remains essentially the same: it measures when a particular division of the network has more edge
weight within groups than one would expect on the basis of chance.

We use modularity to quantify the efficacy of the organizational divisions of the networks and to compare
the dendrograms to each other. In particular, the modularity values shown in Table 2 indicate that
the dendrograms produced via single linkage clustering have a better-defined community structure (higher
modularity) in the Republican-controlled Houses (104th–108th) than in the Democrat-controlled ones.
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Table 1

SVD rank ordering of the committees in the 107th House

Most extreme committees Most/least extreme committees and subcommittees

Select Committee on Homeland Security 1. Commercial and Administrative Law (Judiciary)

Judiciary 2. Forests and Forest Health (Resources)

Rules 3. Crime, Terrorism, and Homeland Security (Judiciary)

Standards of Official Conduct 4. Select Committee on Homeland Security

Resources 5. Africa (International Relations)

Budget 6. Workforce Protections (Education and the Workforce)

Education and the Workforce 7. Judiciary

Ways and Means 8. Social Security (Ways and Means)

International Relations 9. Labor, Health and Human Services and Education (Appropriations)

Small Business 10. The Constitution (Judiciary)

House Administration

Appropriations 113. District of Columbia (Government Reform)

Energy and Commerce 112. Human Intelligence, Analysis and Counterintelligence (Intelligence)

Financial Services 111. Intelligence Policy and National Security (Intelligence)

Government Reform 110. Economic Development, Public Buildings and Emergency

Armed Services Management (Transportation and Infrastructure)

Veterans’ Affairs 109. Technology and Procurement Policy (Government Reform)

Science 108. Technical and Tactical Intelligence (Intelligence)

Transportation and Infrastructure 107. Permanent Select Committee on Intelligence

Agriculture 106. General Farm Commodities and Risk Management (Agriculture)

Permanent Select Committee on Intelligence 105. Coast Guard and Maritime Transportation

(Transportation and Infrastructure)

104. Terrorism and Homeland Security (Intelligence)

In the first column, we list the standing and select committees from most extreme to least extreme. In the second column, we list the most

extreme and least extreme committees and subcommittees, with the parent committee shown in parentheses when appropriate. (The latter

set of committees is listed from less extreme to more extreme.)

Table 2

Maximum (Mi) and average ( ~Mi) modularities of community structure for committee assignment networks for the 101st–108th House of

Representatives, with dendrograms produced using single linkage clustering (SL), random-walk betweenness with sequential edge

(committee assignment) removal (EB), random-walk betweenness with sequential Representative node removal (NB), and a generalization

of the local community detection algorithm of Ref. [31] to weighted networks (WL)

Method SL EB NB WL

M1; ~M1 0:1666; 0:1037 0:1450; 0:0904 0:1775; 0:0964 0:3388; 0:1945

M2; ~M2 0:1831; 0:0923 0:1552; 0:0855 0:1693; 0:0979 0:3395; 0:1675

M3; ~M3 0:1824; 0:0975 0:2640; 0:1388 0:2385; 0:1308 0:3884; 0:2343

M4; ~M4 0:4221; 0:2077 0:2987; 0:1542 0:3312; 0:1909 0:4432; 0:2614

M5; ~M5 0:3331; 0:1681 0:2518; 0:1290 0:2439; 0:1600 0:3945; 0:2228

M6; ~M6 0:2982; 0:1709 0:2481; 0:1305 0:2420; 0:1581 0:3720; 0:1861

M7; ~M7 0:3350; 0:1755 0:2604; 0:1293 0:2386; 0:1465 0:3748; 0:2133

M8; ~M8 0:3324; 0:1736 0:2319; 0:1178 0:2294; 0:1417 0:3781; 0:2204

The last three algorithms are described in Appendix B. For the WL method, we use the value of the local clustering threshold parameter a
giving the greatest maximum modularity (see Appendix B).

M.A. Porter et al. / Physica A 386 (2007) 414–438 423
Hence, with respect to the metric of normalized interlock, the committee reorganization following the
Republican Revolution (which we have already seen in Fig. 1a produced a sharp decline in the typical numbers
of committee assignments per Representative compared to the 101st–103rd Houses) seems also to have
tightened the compartmentalization of the House committee assignments.
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Fig. 7. (Color) Dendrogram of the committee assignment network for the 107th US House of Representatives, determined using the

weighted local community detection method (discussed in Appendix B) with local clustering threshold a � 0:1179. This value of a gives

the dendrogram with highest maximum modularity, as indicated by the dashed dividing ring. The dendrogram is color-coded according to

the number of hierarchical levels of each community in the tree; this is codified by Horton–Strahler numbers (discussed in the text). The

Strahler numbers of the communities are calculated as one moves from the outside to the center of the tree. When two nodes of Strahler

number 1 (dark blue) combine, they form a community with Strahler number 2 (light blue). We also find communities with Strahler

numbers of 3 (green), 4 (orange), and 5 (maroon), indicating the five hierarchical levels in the committee assignment network of the 107th

House.

M.A. Porter et al. / Physica A 386 (2007) 414–438424
5. Number of hierarchical levels

Another interesting feature of dendrograms is the depth of their hierarchical organization, which can be
quantified by computing Horton–Strahler numbers [38,39,43,44].2 As originally defined, Horton–Strahler
numbers give the number of levels in the minimum-depth branch of a tree. Here we consider two
generalizations. First, we examine the Strahler numbers of leaves (see, for example, Fig. 6), assigning a value
Sj that identifies the number of hierarchical levels associated with the jth subcommittee; this is the number of
levels in the particular branch of the tree with that specific subcommittee as the leaf. In Table 8 of Appendix B,
we compare S ¼ maxj Sj, the mean ~S ¼ hSji, and the standard deviation s ¼ hðSj � ~SÞ2i1=2 in the 101st–108th
Houses for single linkage clustering, two betweenness-based dendrograms, and a local community detection
2The dendrograms we produce are perfectly hierarchical by construction, and it is accordingly important to provide a precise

measurement of the depth of this organization. As discussed in the main text, the levels we observe have natural interpretations based on

the known hierarchical organization of the House of Representatives.
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method to quantify the statistics of the hierarchical levels revealed by each method. Second, we also define a
notion of Strahler numbers for communities (see Fig. 7), in which a given subtree (i.e., community) is assigned
a Strahler number as if it were itself a full dendrogram.

As indicated previously, single linkage clustering identifies the known hierarchical levels of organization
within the House of Representatives: subcommittees, committees, and the floor (the whole House). In all eight
Houses, we also identify a fourth hierarchical level, representing groups of closely connected committees.
In the 104th, 105th, 107th, and 108th Houses, single linkage clustering reveals a fifth level of organization.
See, for example, Fig. 6, which is color-coded according to the Sj values of the leaves/committees, and
Fig. 7, which is color-coded according to the Horton–Strahler S values computed as if each community
were itself an individual tree. Single linkage clustering appears to organize the House’s hierarchical
structure more sharply than betweenness-based dendrograms, as the trees produced by the former have
consistently higher values of S and ~S. Additionally, networks with high maximum and average Strahler
numbers tend also to have high modularity scores (compare Tables 2 and 8), signifying a strong organizational
structure.

Strahler numbers reveal additional information about the changes in the House committee assignment
networks after the Republican Revolution. The three lowest mean Strahler values occur in the
Democrat-majority Houses (101st–103rd), despite the fact that the number of committees and subcommittees
decreased after the Republicans gained control of the House (see Fig. 1). In a perfectly balanced
binary tree, one would instead expect an increase in the Strahler number when nodes are added. Furthermore,
all of the Republican-controlled Houses except the 106th have five levels of hierarchical structure
(based on the metric of Strahler numbers) rather than the four revealed in the 101st–103rd Houses, so it
seems that the change in majority party added an extra level of hierarchical structure to the committee
assignment network.

6. Conclusions

We have applied methods from network theory, coupled with an SVD analysis of roll call votes, to
investigate the organizational structure of the committees and subcommittees in the US House of
Representatives. Using the 101st–108th Congresses as examples, we have found evidence of several levels
of hierarchy within the network of committees and—without incorporating any knowledge of political events
or positions—identified some close connections between committees, such as that between the House Rules
Committee and the Select Committee on Homeland Security in the 107th and 108th Congresses. We have also
identified correlations between committee assignments and Representatives’ political positions and examined
changes in the network structure across different Congresses, emphasizing the effects that resulted from the
shift in majority control from Democrats to Republicans starting with the 104th House.
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Appendix A. Voting patterns

In this appendix, we analyze the voting records of Representatives. The results of this analysis were used in
the main text to investigate the relationship between the network of interlocks linking the Congressional
committees and the political positions of their constituent Representatives.

One way to characterize political positions is to tabulate individuals’ voting records on selected key issues
(via, for example, interest group ratings), but such a method is subjective by nature and a procedure that
involves less personal judgment is preferable. Here we apply the ‘‘multi-dimensional scaling’’ technique known
as singular value decomposition (SVD) [47,48] to the complete voting records of each session of the House
[49,50]. Each two-year term of Congress is treated in isolation from the others. Other methods of analysis
[51,52], such as the Bayesian approach of Ref. [53], also yield useful results. The advantages of multi-
dimensional scaling techniques versus factor analysis (which has a long tradition in political science) in
analyzing voting data are discussed in detail in Ref. [54].

We define an n�m voting matrix B with one row for each of the n Representatives in the House and one
column for each of the m votes taken during a two-year term. For instance, the 107th House had n ¼ 444
Representatives (including midterm replacements) and m ¼ 990 roll call votes. The element Bij is þ1 if
Representative i voted ‘‘yea’’ on measure j and �1 if he or she voted ‘‘nay.’’ If a Representative did not vote
because of absence or abstention, the corresponding element is 0. (We do not separately identify abstentions
from absences; additionally, a relatively low number of false zeroes are generated by resignations and midterm
replacements.)

The SVD identifies groups of Representatives who voted in a similar fashion on many measures. The
grouping that has the largest mean-square overlap with the actual groups voting for or against each measure is
given by the leading (normalized) eigenvector uð1Þ of the matrix BTB, the next largest by the second eigenvector
uð2Þ, and so on [47,48]. If we denote by s2k the corresponding eigenvalues (which are provably non-negative)
and by vðkÞ the normalized eigenvectors of BBT (which have the same eigenvalues), then it can be shown that

Bij ¼
Xn

k¼1

sku
ðkÞ
i v
ðkÞ
j , (A.1)

where skX0 for all k. The matrix BðrÞ, ron, with elements

B
ðrÞ
ij ¼

Xr

k¼1

sku
ðkÞ
i v
ðkÞ
j (A.2)

approximates the full voting matrix B. The sum of the squares of the errors in the elements is equal toPn
k¼rþ1s

2
k, which vanishes in the limit r! n. Assuming the quantities sk, called the singular values, are

ordered such that s1Xs2Xs3 . . ., this implies that BðrÞ is a good approximation to the original voting matrix
provided the singular values decay sufficiently rapidly with increasing k. Alternatively, one can say that the lth
term in the SVD (A.1) accounts for a fraction s2l =

Pn
k¼1s

2
k of the sum of the squares of the elements in the

voting matrix.
To an excellent approximation, we find that a Representative’s voting record can be characterized by just

two coordinates. That is, B
ð2Þ
ij is a good approximation to Bij . Observing that one of the two directions

correlates well with party affiliation for members of the two major parties, we call this the ‘‘partisan’’
coordinate. We call the other direction the ‘‘bipartisan’’ coordinate, as it correlates well with how often a
Representative votes with the majority. Because Senators are generally better known than Representatives, we
plot as an example the coordinates along these first two eigenvectors for the 107th Senate in Fig. 8a. As
expected, Democrats are grouped together and are almost completely separated from Republicans. For ease of
identification, we follow the sign convention that places Democrats on the left and Republicans on the right.
The few instances of apparent party misidentification by the partisan coordinate in Fig. 8 are unsurprising.
Conservative Democrats, such as Zell Miller [D-GA], appear farther to the right than some moderate
Republicans [2]. Additionally, Senator James Jeffords [I-VT], who left the Republican party to become an
Independent early in the 107th Congress, appears closer to the Democratic group than the Republican one
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Fig. 8. (Color) Singular value decomposition (SVD) of the Senate voting record from the 107th US Congress. (a) Two-dimensional

projection of the voting matrix. Each point represents a projection of a single Representative’s votes onto the leading two eigenvectors

(labeled ‘‘partisan’’ and ‘‘bipartisan,’’ as explained in the text). Democrats (blue) appear on the left and Republicans (red) are on the right.

(Independents are shown in green). (b) ‘‘Predictability’’ of votes cast by Senators in the 107th Congress based on a two-dimensional

projection of the SVD. Individual Senators range from 74% predictable to 97% predictable.
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and to the left of several of the more conservative Democrats. (He appears twice in Fig. 8a, once each for votes
cast under his two different affiliations.)

One can use a truncation of the SVD to construct an approximation to the votes in the full roll call [48]. For
instance, with our two-dimensional approximation to the voting matrix, we assign ‘‘yea’’ or ‘‘nay’’ votes to
individuals based on the signs of the corresponding elements of the matrix. In Fig. 8b, we show the fraction of
actual votes correctly reconstructed by this approximation, which gives a measure of the ‘‘predictability’’ of
the Senators in the 107th Congress. For both parties, moderate Senators are less predictable than hard-liners.
The two-dimensional projection correctly reconstructs the votes of some hard-line Senators for as many as
97% of the votes they cast. Examining the apparent outliers in Fig. 8b, the votes Senator Jeffords cast as a
Republican appear here to make him the least ‘‘predictable’’ Senator. However, it is important to emphasize
that Jeffords cast relatively few votes as a member of the Republican party, so it is not surprising that this
behavior is less predictable because the voting record includes a large number of artificial absences. The other
Independent in Fig. 8b is Senator Dean Barkley [I-MN], who completed the remainder of the term for Senator
Paul Wellstone [D-MN] in the 107th Congress after Wellstone’s death. While one might be tempted to
interpret Barkley’s partisan coordinate as balanced, its value is strongly influenced by the large number of
effective absences in the SVD analysis because he was not appointed until very late in the term. Both his
partisanship and his bipartisanship coordinates consequently lie near zero. The other apparent outliers in
Fig. 8b—Senators Russ Feingold [D-WI] and John McCain [R-AZ]—are both known for their occasional
‘‘maverick’’ behavior.

Having demonstrated the application of SVD to the analysis of the voting records of the Senate, let us now
return to the House of Representatives. For the 107th House, we find that the leading eigenvector accounts for
about 45.3% of the variance of the voting matrix, the second eigenvector accounts for about 29.6%, and no
other eigenvector accounts for more than 1.6%. We obtain similar results for other recent Congresses, with
two eigenvectors giving a good approximation to the voting matrix in every case (see Table 3). In Fig. 9, we
plot these two coordinates for every member of the House of Representatives for each of the 102nd–107th
Congresses. It has been shown previously using other methods that Congressional voting positions are well
approximated by just two coordinates [45,49], but it is important to emphasize that different identification
methods treat the ‘‘bipartisan’’ direction differently. In particular, some methods eliminate it entirely and
associate the remaining leading dimension with partisanship and include an additional dimension often
identified as a North–South axis, which was historically important during periods of heightened concern about
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Table 3

Amount of information, measured as the percentage of the variance of the voting matrix, encoded by the six leading eigenvectors of the

101st–107th House voting matrices

Congress 1st 2nd 3rd 4th 5th 6th

101st 40.0 20.4 3.0 1.7 1.5 1.1

102nd 39.6 20.1 2.8 1.8 1.2 1.0

103rd 43.1 21.5 2.9 1.6 1.3 0.9

104th 47.1 19.1 2.7 1.6 1.3 0.7

105th 38.6 28.7 2.0 1.5 1.2 0.9

106th 40.0 29.5 1.9 1.6 1.2 0.9

107th 45.3 29.6 1.6 1.4 1.0 0.7

The first column indicates the Congress, and the next six columns give the percentage of information encoded by each of the six leading

eigenvectors.
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Fig. 9. (Color) SVD of the voting record for the House of Representatives for each of the 102nd–107th US Congresses. As with the

Senate, Democrats (blue) appear on the left and Republicans (red) are on the right (with Independents shown in green).
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civil rights [45,49]. The SVD analysis here keeps the ‘‘bipartisan’’ coordinate, making identifications in a
particularly simple fashion straight from the voting matrix containing the roll call data.

As with the Senate, we find that the leading eigenvector corresponds closely to the acknowledged political
party affiliation of the Representatives, with Democrats (blue) on the left and Republicans (red) on the right in
the plots.3 Representatives who score highly on this ‘‘partisan’’ coordinate—either positively or negatively—
tend often to vote with members of their own party. From this coordinate, we also compute a measure of
‘‘extremism’’ for each Representative as the absolute value of their partisan coordinate relative to the mean
3This holds for the 101st–105th Houses. The leading and second eigenvectors switch roles in the 106th and 107th Houses.
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partisan score of the full House. That is, we define the extremism ei of a Representative by ei ¼ jpi � mj, where
pi is the Representative’s partisanship score and m is the mean value (usually skewed slightly toward the
majority party) of that coordinate for the entire House. In Table 4, we list the most and least partisan
Representatives from each party (as computed from the roll call) for the 107th House.

By contrast, the second eigenvector groups essentially all Representatives together regardless of party
affiliation and thus appears to represent voting actions in which most members of the House either approve or
disapprove of a motion simultaneously. Representatives who score highly on this ‘‘bipartisan’’ coordinate tend
to often vote with the majority of the House.

The mean extremism for the Representatives in the 107th House is about 0:0458, and the standard deviation
is s ’ 0:0090. The extremism of committees as averages over their constituent members yields a distribution of
mean 0:0456 and standard deviation 0:0032. By contrast, one might crudely expect the standard deviation of
the committees’ extremism to be approximately s=

ffiffiffiffiffi
N
p

, where N is the average number of Representatives per
committee. For the 107th House, this gives 0:0090=

ffiffiffiffiffiffiffiffiffiffiffi
21:87
p

’ 0:0019. Hence, the distribution of committee
extremism is roughly 50% wider than what would be expected with independent committee assignments. Basic
statistics concerning committee extremism for the 101st–107th Houses are summarized in Table 5. Observe,
Table 4

SVD rank ordering of the most and least partisan Representatives in the 107th US House

Least partisan Farthest Left Farthest Right

K. Lucas [R] J.D. Schakowsky [D] T.G. Tancredo [R]

C.A. Morella [R] J.P. McGovern [D] J.B. Shadegg [R]

R.M. Hall [D] H.L. Solis [D] J. Ryun [R]

R. Shows [D] L.C. Woolsey [D] B. Schaffer [R]

G. Taylor [R] J.F. Tierney [D] P. Sessions [R]

C.W. Stenholm [D] S. Farr [D] S. Johnson [R]

R.E. Cramer [D] N. Pelosi [D] B.D. Kerns [R]

V.H. Goode [R] E.J. Markey [D] P.M. Crane [R]

C. John [D] J.W. Olver [D] W.T. Akin [R]

C.C. Peterson [D] L. Roybal-Allard [D] J.D. Hayworth [R]

The first column gives the least partisan Representatives, as determined by an SVD of the roll call votes. The second column gives the SVD

rank ordering of the most partisan Representatives. They are all Democrats (the mean partisanship is skewed slightly toward the

Republican party because it held the majority), so this also ranks the Representatives farthest to the Left. The third column gives the rank

ordering of the Representatives farthest to the Right.

Table 5

Committee extremism statistics for the 101st–107th Houses

House mR, VarR mC , VarC mS , VarS hCi D(VarC) hSi D(VarS)

101st 0:0252; 0:000167 0:0248; 1:458� 10�5 0:0251; 1:454� 10�5 16.755 0.984 27.091 1.357

102nd 0:0335; 0:000210 0:0335; 1:540� 10�5 0:0343; 9:818� 10�6 17.632 0.856 37.773 1.403

103rd 0:0423; 0:000194 0:0425; 1:544� 10�5 0:0429; 9:014� 10�6 18.206 0.959 39.091 1.410

104th 0:0431; 0:000171 0:0430; 1:262� 10�5 0:0435; 7:830� 10�6 19.774 1.080 40.842 1.397

105th 0:0340; 0:000108 0:0339; 8:927� 10�6 0:0345; 6:059� 10�6 20.056 1.169 41.526 1.651

106th 0:0455; 0:000128 0:0455; 1:298� 10�5 0:0462; 5:686� 10�6 20.944 1.472 42.474 1.330

107th 0:0458; 8:080� 10�5 0:0456; 1:008� 10�5 0:0461; 4:358� 10�6 21.867 1.927 43.368 1.625

The first column indicates the Congress. The second gives the mean and variance of the extremism of the Representatives in that Congress.

The third and fourth columns give the mean and variance of committee extremism under the independence assumption of, respectively, all

the committees and only the standing committees (without select committees). The fifth column gives the average committee size, and the

sixth gives how much larger the variance of committee extremism is than would be expected under an independence assumption (as

reported in column three). That is, the variance of the committees’ extremism is this factor multiplied by the variance expected if

Representatives were assigned to committees independently at random. The seventh and eighth columns repeat these numbers for standing

committees (see column four).
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Fig. 10. (Color) SVD of the roll call of the 107th House projected onto the voting coordinates. Points represent projections of the votes

cast on a measure onto eigenvectors associated with the leading two singular values. There is a clear separation between measures that

passed (green) and those that did not (red). The four corners of the plot are interpreted as follows: measures with broad bipartisan support

(north) all passed; those supported mostly by the Right (east) passed because the Republicans constituted the majority party of the 107th

House; measures supported by the Left (west) failed because of the Democratic minority; and the (obviously) very few measures supported

by almost nobody (south) also failed.
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for example, that the relative variance versus that expected from random committee and subcommittee
assignments increases with every Congress after the 102nd (with the largest increase occurring between the
106th and 107th Houses).

Using the SVD results, we can also calculate the positions of the votes (as opposed to the voters) along the
same two leading dimensions to quantify the nature of the issues being decided. We show the projection onto
the voting coordinates for the 107th House in Fig. 10. One application of this analysis is a measurement of the
reproducibility of individual votes and outcomes. Reconstituting the voting matrix as before using only
the information contained in the two leading singular values and the corresponding eigenvectors and summing
the resulting approximated votes over all Representatives, we derive a single score for each vote. Making a
simple assignment of ‘‘pass’’ to those votes that have a positive score and ‘‘fail’’ to all others successfully
reconstructs the outcome of 984 of the 990 total votes (i.e., about 99.4% of them). Overall, 735 (about 74.2%)
of the votes passed, so simply guessing that every vote passed would be considerably less effective. Ignoring
values from known absences and abstentions (i.e., zeroes in the original voting matrix), the analysis still
identifies 975 of the 990 results correctly. Even with the most conservative measure of the reconstruction
success rate—in which we ignore values associated with abstentions and absences, assign individual yeas or
nays according to the signs of the matrix elements, and then observe which outcome has a majority in the
resulting roll call—the two-dimensional reconstruction still identifies 939 (about 94.8%) of the outcomes
correctly. We repeated these calculations for the 101st–106th Houses and found similar results in each case
(see Table 6). The remarkable accuracy of SVDs in reconstructing votes was previously observed for US
Supreme Court cases in Ref. [48]. The optimal classification (OC) technique of Ref. [50] (see also Ref. [45]) also
generates a rank ordering of the Representatives in the 107th House and correctly classifies 92.8% of the
individual Representatives’ votes.

In making the connection between the voting record and committee assignment networks, we remark that
we constructed the committee assignment networks representing the 101st–107th Houses from documents
obtained from the web site of the US House of Representatives Office of the Clerk [32], which were based on
the committee assignments at the end of each Congress. The roll calls, by contrast, include votes from
Representatives who subsequently died or resigned and hence were not present at the end of the session. Our
networks also include Representatives (such as non-voting Delegates) who do not appear in the voting record.
To combine the network structures with the political spectra (as determined using the SVD analysis), it was
thus necessary to reconcile the two data sets by removing a few Representatives in each of these categories
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Table 6

Roll call outcome reconstruction in the 101st–107th House of Representatives using two-coordinate projections of SVDs

Congress Number of votes Outcomes correctly reconstructed % Individual votes reconstructed

101st 879 867; 864; 848 87.6%

102nd 901 892; 888; 850 87.6%

103rd 1094 1075; 1072; 1021 88.9%

104th 1321 1307; 1312; 1225 89.3%

105th 1166 1157; 1164; 1079 89.7%

106th 1209 1200; 1198; 1121 90.6%

107th 990 984; 975; 939 92.7%

The first column gives the Congress, and the second indicates the total number of measures in its roll call. In the third column, we show

consecutively the number of outcomes correctly identified from the unmodified reconstruction, the number correctly identified throwing

out known absences and abstentions, and the number correctly identified throwing out absences and abstentions and then reconstructing

individual Representatives’ yeas/nays and taking a majority vote. In the fourth column, we show the percentage of individual votes

correctly reconstructed (which we note increases slightly from one Congress to the next during this time period).
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(about 5–10 from each roll call and 5–10 from each network). In situations where we have incorporated
political spectra into our network analysis, it is always with this slightly abridged set of Representatives. The
subsequent SVD computations show little change as a result of these adjustments.

Appendix B. Community detection algorithms

The results in the main text of this paper use single linkage clustering to determine the community structure
of the network of committees, but several other methods can also be used (see, for example, Refs. [15,55] and
references therein). It is of interest to ask whether our results are robust with respect to changes in the method
employed. To address this question, we have explored three other methods: two based on ‘‘betweenness’’
measures calculated on the full bipartite networks of Representatives and committees and a local community
detection algorithm for weighted networks, generalized from the method for unweighted networks introduced
in Ref. [31]. As we now describe, we obtain similar groupings with these different algorithms, although with
some differences, suggesting that the large-scale features (but perhaps not the details) observed in our single-
linkage clustering calculations are fundamental properties of the networks and not a result of our choice of
methodology.

B.1. Betweenness-based community detection

Communities can be detected in many cases using ‘‘betweenness’’ measures that iteratively pick out and
remove high-traffic edges (or other network components) that lie on a large number of paths between vertices.
Repeated application of such a procedure eventually fragments a network into components, with the entire
process represented by dendrograms similar to those generated by standard hierarchical clustering [55–57].

We have performed a corresponding calculation modified slightly to respect the bipartite nature of the
committee assignment networks, for which betweenness can be computed by counting the number of shortest
paths between pairs of committees that traverse each edge in the network. Additionally, we compute
betweenness from densities of random walks between committees rather than from geodesics (see Ref. [58]), in
part because the small diameter of the network often leads to many non-unique geodesics. We use this
betweenness measure in two different algorithms. In one, we sequentially remove those edges (i.e., committee
assignments) with highest betweenness. In the other, we sequentially remove the nodes (i.e., Representatives)
lying on the largest number of paths. Applying these two methods to the full (unweighted) bipartite committee
assignment graphs avoids altogether the projection onto a one-mode network and the definition of the
normalized interlock used in single linkage clustering.

Comparing the different community detection schemes, we see that the dendrogram for the 107th House
determined from random-walk betweenness and edge removal (see Fig. 11) shows four levels of hierarchical
organization and again reveals the tight connections between the Rules Committee (and its subcommittees)
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Fig. 11. (Color) Dendrogram of the committees of the 107th US House of Representatives constructed by sequentially removing

individual committee assignments with highest random-walk betweenness (and subsequently recomputing betweenness). Committees are

listed counterclockwise around the outside of the figure in the order in which the algorithm separates them from the largest network

component. Committees and groups of committees are again color-coded according to their mean extremisms. The first group of separated

committees (just to the left of the 12 o’clock position) includes the Rules Committee and Select Committee on Homeland Security; this

algorithm again indicates their close connection.
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and the Select Committee on Homeland Security. We also again observe the close ties between the Intelligence
Committee and its subcommittees. However, other connections seemingly apparent in the single-linkage
clustering dendrogram are not uncovered by this betweenness-based method. Some subcommittees are not
even grouped with their parent committee; for example, near the 6 o’clock and 7 o’clock positions, we see a
weakly grouped cluster of committees that includes (consecutively) the Forests and Forest Health
Subcommittee of the Resources Committee, the Select Education Subcommittee of the Education and
the Workforce Committee, and the Western Hemisphere Subcommittee of the International Relations
Committee.
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Strahler numbers provide a way to quantify the robustness of some of these different groupings. The
dendrogram representing the community structure of the 107th House determined by random-walk edge
removal has a Strahler number S ¼ 4. Its average Strahler number of ~S ’ 2:7788 quantifies the fact that many
committees break off as singletons. However, the portion with the Rules Committee and Select Committee on
Homeland Security has a value of 3. This grouping therefore gives meaningful organizational information
(in that it refers to an actual clique in the network), even though the tree as a whole does not show a
tremendous amount of hierarchical structure.

B.2. Weighted local community detection

We have also constructed dendrograms from the one-mode committee networks using a local community-
detection algorithm generalized from a method for unweighted networks developed by Bagrow and Bollt [31].
The goal of this algorithm is to find a highly connected set of nodes (a ‘‘local community’’) near each node and
to combine these individual (potentially overlapping) communities for each node into a hierarchical
community structure. We again use the network of committees weighted by normalized interlocks that we
considered for single linkage clustering.

To detect communities, we start with a given House’s (one-mode) adjacency matrix A, whose element Aij

gives the normalized interlock between the ith and jth committees. For convenience, we further normalize
these elements by the maximum normalized interlock, so that 0pAijp1. We use these weights as inverse
distances to compute a distance matrix D, where the element Dij designates the shortest distance along any
path from the ith node to the jth node. We then define a clustering coefficient k of a selected group of n nodes
as the sum of all weights within that group divided by 1

2
nðn� 1Þ. In our generalization of the algorithm in

Ref. [31], we define the d-shell of node i to be all nodes within distance d of i according to the distance matrix.
We identify the local community of the ith node to be the largest d-shell of node i with kXa for some
threshold a. As a is increased, the definition of a local community becomes more stringent and smaller cliques
are obtained.

Using a ‘‘membership matrix’’ that encodes this combined information (see Fig. 12), we manipulate the
resulting collection of local communities to produce dendrograms (this procedure is described in Ref. [31]). An
unsorted membership matrix N collects the ensemble of information about the local communities of each node
as originally ordered in the data. Because each subcommittee is listed with its parent committee in the data
ordering, this unsorted membership matrix (Fig. 12a) is already nearly block partitioned. The jth element of
the ith row has the value 1 if node j is part of i’s community and the value 0 if not. We compare the values in
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Fig. 12. (Color) Visualization of the (a) unsorted and (b) sorted membership matrices for the 107th House. The colors indicate the nearly

full blocks of value 1 along the diagonal and the mostly zero-valued entries that are near the diagonal but outside of these blocks.
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two rows (i and k) and define a distance D between them according to the number of times they differ:

Dði; lÞ ¼ n�
Xn

l¼1

dðNil ;NklÞ, (B.1)

where d is 1 if Nil ¼ Nkl and 0 if not. As discussed in Ref. [31], we then compute a sorted membership matrix ~N
as follows: (1) compute the distance Dði; lÞ for all rows l4i; (2) swap the row i þ 1 with the row iD that has the
smallest distance to row i (this is equivalent to interchanging vertex labels, so columns i and iD must also be
swapped); (3) repeat steps 1 and 2 for row i þ 1 and continue until there are no remaining rows to consider.
Well-separated communities in ~N appear as blocks along the diagonal, and their imperfections indicate
possible substructure [compare panels (a) and (b) of Fig. 12].

We obtain well-structured dendrograms over a wide range of values of the local clustering threshold
parameter a and again observe the close connections between the Rules and Homeland Security committees in
the 107th House (see, for example, the 7 o’clock position in Fig. 7). These ties between the Rules and
Homeland Security committees are evident even for values of a for which some of the other groupings in the
dendrogram have disappeared, again indicating the strength of their connection.

One can depict the network’s communities (and how strongly they are connected to each other) at a given
level of organization in a dendrogram using pie charts (which provide a coarse-graining of the network
reminiscent of the ‘‘cartographic’’ visualization of networks discussed in Ref. [59]). For example, Fig. 13
shows such a pie chart for the 107th House, with each pie representing a community and the color of each
wedge indicating the parent standing or select committee of the (sub)committees therein. More generally, it is
desirable to study not only separate communities in networks but also the overlap between such communities
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Fig. 13. (Color) Pie chart of the 107th House at the modularity-maximizing organizational level indicated by the dashed dividing ring in

Fig. 7. Each pie represents a community and has wedges colored by the parent standing and select committees of the (sub)committees

present in that community. The size of a wedge is determined by the number of (sub)committees it contains. Only connections between

different communities are depicted (with thicker lines indicating stronger connections); the intra-community edges are not visible.
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Table 7

Sizes of local communities, encoded in the membership matrices, for the same local clustering threshold values a that give the highest

maximum modularity in the dendrograms produced from these matrices

House Mean Standard deviation Local clustering threshold

101st 8.9325 3.9785 0.1595

102nd 20.3558 5.1660 0.08095

103rd 17.0567 6.0884 0.09895

104th 10.8962 4.2537 0.1131

105th 7.4259 2.9425 0.1640

106th 46.5888 6.6118 0.04582

107th 11.7788 3.3746 0.1179

108th 8.8136 2.6212 0.1490

For each Congress, we list the mean number of nodes in a local community, the standard deviation, and the value of a.
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and what role that can play in the transfer of information and ideas. Such considerations have the potential to
be very interesting, as committees with strong ties to multiple communities may have a substantial level of
influence with otherwise disparate groups. While practically every study of community structure in networks
ignores community overlap a priori, a few researchers have begun to scrutinize this feature (see, for example,
Ref. [60]). The methods that have been employed in such studies are different from those discussed here, but
one can compute basic statistics from the membership matrices to get some indication of community overlap.
For example, the mean size of these local (possibly overlapping) communities (for the value of the parameter a
giving the highest maximum modularity in the d-shell dendrogram) in the 107th House is 11.78 nodes and the
standard deviation is 3.37 nodes. (The results from other Congresses are summarized in Table 7.) By
comparison, the set of communities at the organizational level of highest maximum modularity (see Fig. 13)
has eight non-overlapping groups of committees, giving an average community size of 113=8 � 14:1
committees per community. The average parent committee contains 113=21 � 5:4 subcommittees (counting
the committee itself). Community sizes vary roughly with the threshold parameter a (which is selected to give
the highest maximum modularity), with smaller values of a yielding larger local communities by construction.
Using the 107th House as an example, we can see from Table 7 and the combination of Figs. 7, 12, and 13 that
this weighted local community detection seemingly indicates a relatively small amount of overlap between the
locally defined communities.

B.3. Direct comparison of dendrograms

In Table 2, we list for each of our methods the maximum modularity obtained for a single ‘‘cut’’ through the
dendrogram and the average modularity over all possible cuts. A cut signifies an organizational level of a
dendrogram; we depict a cut graphically using a concentric circular ring of the appropriate radius that divides
inter-community links (those outside the ring) from intra-community ones. See, for example, the dendrogram
in Fig. 7 and the resulting community-composition pie chart in Fig. 13. For the weighted local community
detection method, we used the values of the local clustering threshold a (denoted a1; :::; a8 for the 101st–108th
Houses) giving the dendrograms with highest maximum modularity. These values are given in Table 7. Similar
modularity values are obtained over a relatively broad range of a. To see the number of organizational levels
revealed by each algorithm, we list in Table 8 the maximum, mean, and standard deviation of the local
Strahler numbers for the dendrograms produced for each House. Observe, for example, that the weighted
local community detection method finds the largest number of organizational levels.

We compare dendrograms at the cuts (organizational levels) corresponding to their respective maximum
modularities. Table 9 collects these comparisons across the different clustering algorithms considered for each
of the 101st–108th Houses. We compare the algorithms in pairs, with each tabulated entry indicating the
fraction of committee pairs classified in the same manner by both methods (that is, both methods identify the
committee pair as belonging to the same community or both methods identify the pair as belonging to
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Table 8

Horton–Strahler numbers (Si), mean local Horton–Strahler numbers ( ~Si), and the standard deviation (Ssi
) of the local Horton–Strahler

numbers for the 101st–108th Houses (i ¼ 1 denotes the 101st House of Representatives, etc.), with dendrograms produced using single

linkage clustering (SL), random-walk betweenness with sequential edge (committee assignment) removal (EB), random-walk betweenness

with sequential Representative node removal (NB), and a weighted generalization (WL) of the local community detection method of Ref.

[31] with the a values that give the highest maximum modularity

Strahler numbers SL EB NB WL

S1; ~S1;Ss1
4; 3:289; 0:758 3; 2:516; 0:501 4; 2:786; 0:799 5; 4:638; 0:552

S2; ~S2;Ss2
4; 3:203; 0:686 4; 2:620; 0:669 3; 2:350; 0:478 5; 4:522; 0:695

S3; ~S3;Ss3
4; 3:362; 0:679 4; 3:064; 0:872 3; 2:582; 0:495 5; 4:567; 0:645

S4; ~S4;Ss4
5; 4:547; 0:770 3; 2:613; 0:489 3; 2:604; 0:491 5; 4:368; 0:588

S5; ~S5;Ss5
5; 3:880; 0:924 3; 2:546; 0:500 3; 2:500; 0:502 5; 4:639; 0:585

S6; ~S6;Ss6
4; 3:626; 0:575 4; 3:393; 0:491 3; 2:486; 0:502 5; 4:243; 0:609

S7; ~S7;Ss7
5; 4:089; 0:819 4; 2:779; 0:799 3; 2:575; 0:497 5; 4:699; 0:459

S8; ~S8;Ss8
5; 4:509; 0:767 3; 2:466; 0:499 3; 2:492; 0:500 5; 4:254; 0:666

Table 9

Comparison of House community structure, as identified using different algorithms, for the 101st–108th Congresses

House WL vs SL WL vs EB WL vs NB SL vs EB SL vs NB EB vs NB

101st 0.8056 0.9123 0.7813 0.7630 0.6077 0.7613

102nd 0.8349 0.4876 0.5837 0.3988 0.5000 0.8306

103rd 0.7896 0.5463 0.7046 0.4751 0.6301 0.7289

104th 0.8794 0.6961 0.7191 0.6453 0.6855 0.8767

105th 0.8927 0.6433 0.4962 0.6274 0.4886 0.8221

106th 0.7907 0.6762 0.6662 0.6708 0.5860 0.7988

107th 0.8685 0.6775 0.5397 0.6841 0.5653 0.8274

108th 0.8893 0.6975 0.5950 0.6407 0.5196 0.7876

The numbers indicate the fraction of leaf pairs identified in the same manner in pairwise comparisons of single-linkage clustering (SL),

edge betweenness (EB), node betweenness (NB), and the weighted local community detection method with maximum modularity (WL).

Leaf pairs are identified in the same manner in two dendrograms if, at a given organizational level, both dendrograms place them in the

same subtree or both place them in different subtrees. For each House, we use the organizational level identified as having the highest

maximum modularity. We obtain similar comparison values over broad ranges of cuts in the dendrograms.
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separate communities). Although we list the results from specific maximum-modularity cuts in Table 9, we
obtained similar values over broad ranges of cuts in the dendrograms.

To illustrate these results, we compare the similarity scores in Table 9 to the dendrograms for the 107th
House produced using single linkage clustering (Fig. 5), betweenness-based edge removal (Fig. 11), and our
local community detection method (Fig. 7), as well as the single-linkage clustering dendrogram for the 108th
House (Fig. 6). The maximum-modularity cuts in these dendrograms have 28, 5, 8, and 25 communities,
respectively. Several observations are evident from Table 9. For example, the betweenness-based algorithms
produce results that are quantitatively similar to each other but in general less similar to the other two
methods. The weighted local clustering method and single linkage clustering likewise produce similar
community structures.

Even when the quantitative measure of community similarity at the preferred cuts is low, many committees
of interest nevertheless get grouped similarly in dendrograms produced from multiple methods, suggesting
that the observed close ties between these committees are properties of the networks themselves rather than of
the algorithms used. For example, the Select Committee on Homeland Security of the 107th House is grouped
with the Rules Committee and its subcommittees using single linkage clustering (Fig. 5), the weighted local
community determination method (Fig. 7), and the edge-betweenness-based method (Fig. 11). One can also
see that the Permanent Select Committee on Intelligence and its subcommittees are grouped together by all
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three algorithms. The recurrence of such groupings in the dendrograms, and in the visualizations of Figs. 2–4,
further supports the claim that these connections are inherent properties of the networks themselves.
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