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during memory formation. This revealed an 

acute induction of KAEDA expression in 

DAL neurons but not in MBs during mem-

ory consolidation. Thus, protein synthesis 

occurs and is required in DAL neurons but 

is neither required nor detected in MBs. It is 

possible that low levels of protein synthesis in 

MBs escape the RICINCS effect and are below 

detection with KAEDA. However, Chen et al. 

further investigated this question by genetic 

manipulations of CREB function. They dem-

onstrated that CREB-mediated gene tran-

scription is required for LTM in DAL neurons 

but not MBs as previously thought ( 11,  12).

The role for CREB-dependent gene 

expression in DAL neurons but not MBs is 

at fi rst hard to understand for two reasons. 

Expression of the adenylyl cyclase rutabaga 

in MBs is suffi cient to support both STM ( 13, 

 14) and LTM ( 5,  15). Thus, CREB function 

in DAL neurons is not downstream in a sig-

naling sense from rutabaga action in MB. 

There is much evidence that olfactory stimuli 

are represented as a pattern of activity within 

MBs and that the associative memory forms 

there. In principle, olfactory memory could 

be initiated in one place and then transferred 

to another during consolidation. But it seems 

implausible that a few DAL neurons can rep-

resent the olfactory percept and also “store” 

LTM. Instead, a view emerges in which the 

consolidated memory is distributed within a 

neural circuit that includes MBs, DAL neu-

rons, and ellipsoid neurons ( 6). Indeed, Chen 

et al. report that DAL axons likely are pre-

synaptic to a subset of MB neurons called 

pioneer α/β neurons. Although this suggests 

that MBs are postsynaptic to DAL neurons, 

the role of gene transcription and protein syn-

thesis within DAL neurons that is driven by 

coincidence detection in MB neurons also 

suggests that MBs are upstream of DAL neu-

rons (presynaptic). Taken together, the sim-

plest interpretation is a MB-DAL-MB feed-

back loop, perhaps including ellipsoid body 

neurons ( 6). The next task will be to integrate 

the established biochemical and emerging 

systems views of consolidation.  
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Critical Truths About Power Laws

MATHEMATICS

Michael P. H. Stumpf 1 and Mason A. Porter 2  

Most reported power laws lack statistical 

support and mechanistic backing.

        T
he ability to summarize observations 

using explanatory and predictive theo-

ries is the greatest strength of modern 

science. A theoretical framework is perceived 

as particularly successful if  it can explain very 

disparate facts. The observation that some 

apparently complex phenomena can exhibit 

startling similarities to dynamics generated 

with simple mathematical models ( 1) has led 

to empirical searches for fundamental laws 

by inspecting data for qualitative agreement 

with the behavior of such models. A strik-

ing feature that has attracted considerable 

attention is the apparent ubiquity of power-

law relationships in empirical data. However, 

although power laws have been reported in 

areas ranging from finance and molecular 

biology to geophysics and the Internet, the 

data are typically insuffi cient and the mecha-

nistic insights are almost always too limited 

for the identifi cation of power-law behavior 

to be scientifically useful (see the figure). 

Indeed, even most statistically “successful” 

calculations of power laws offer little more 

than anecdotal value.

By power-law behavior, one typically 

means that some physical quantity or prob-

ability distribution y(x) satisfi es ( 2,  3)

y(x) ∝ x–λ for x > x0, 

where λ is called the “exponent” of the 

power law. In the equation, the power-law 

behavior occurs in the tail of the distribution 

(i.e., for x > x0). A power-law distribution has 

a so-called “heavy tail,” so extreme events 

are far more likely than they would be in, for 

example, a Gaussian distribution. Examples 

of such relationships have been reported 

in a wide range of situations, including the 

Gutenberg-Richter law in seismology ( 4), 

allometric scaling in animals ( 5), the dis-

tribution of hyperlinks on the World Wide 

Web ( 6), the sometimes vehemently refuted 

( 7) “scale-free” nature of the Internet ( 8), a 

purported unifi ed theory of urban living ( 9), 

patterns of insurgent and terrorist activity 

( 10), and (ironically) the paper publication 

rates of statistical physicists ( 11). A subtlety 

to note is that this list includes two differ-

ent types of reported power laws: bivari-

ate power laws like allometric scaling and 

power-law probability distributions like the 

paper publication rates.

Power laws in statistical physics emerge 

naturally from microscopic theories and 

can be related to observable macroscopic 

phenomena. A good example is magnetiza-

tion ( 3). The derivation of a power law sug-

gests that—in a certain (“critical”) regime—

phenomena do not possess a preferred scale 

in space, time, or something else: They are, 

in a sense, “scale free.” However, as Philip 

Anderson pointed out in 1972 ( 12), one 

must be cautious when claiming power-law 

behavior in fi nite systems, and it is not clear 

whether power laws are relevant or useful 

in so-called “complex systems” ( 13,  14). 

It is important to take a nuanced approach 

and consider not only whether or not one 

has or can derive a detailed mechanistic 

model of a system’s driving dynamics, but 

also the extent of statistical support for a 

reported power law. One additionally needs 

to consider empirical support, as theories for 

power-law behavior arise from infi nite sys-

tems, and real systems are fi nite.

The power law reported for allometric 

scaling stands out as genuinely good (see the 

fi gure) ( 5): Not only is there a sound theory 

underlying why there should be a power-law 
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relationship between body size x and meta-

bolic performance y, but this relationship has 

been supported empirically over many orders 

of magnitude (from bacteria to whales). The 

clear dependence of various biological char-

acteristics on body size is, of course, insuf-

fi cient by itself to infer a causal relationship, 

but few people would dispute the reality of 

such a relationship.

Purported power laws fall loosely into 

two categories: those with statistical sup-

port—by itself a nontrivial task ( 15)—and 

those without it. Numerous scholars have 

neglected to apply careful statistical tests 

to data that were reported to exhibit power-

law relationships; so-called “scale-free” net-

works are perhaps the best known and most 

widely discussed examples ( 2,  6,  13). How-

ever, when formal statistical tools have been 

applied to network data, evidence favoring 

power-law relationships has almost always 

been negligible ( 7,  15,  16).

As a rule of thumb, a candidate power 

law should exhibit an approximately linear 

relationship on a log-log plot over at least 

two orders of magnitude in both the x and y 

axes. This criterion rules out many data sets, 

including just about all biological networks. 

Examination ( 15) of the statistical support for 

numerous reported power laws has revealed 

that the overwhelming majority of them failed 

statistical testing (sometimes rather epically). 

For example, a recent study found ( 17) that 

the number of interacting partners (i.e., the 

degree) of proteins in yeast is power-law dis-

tributed, but careful statistical analysis refutes 

this claim ( 18). Noise or incomplete data can 

further distort the picture ( 19). Trying to dis-

cern a power-law relationship by eyeballing 

straight lines (or even trying to find them 

using, for example, least-squares fi tting) on 

log-log plots of data can be appealing, but the 

human ability to detect patterns from even the 

fl imsiest of evidence might lead researchers 

to conclude the existence of a bona fi de power 

law based on purely qualitative criteria.

Even if a reported power law surmounts 

the statistical hurdle, it often lacks a genera-

tive mechanism. Indeed, the same power law 

(that is, with the same value of λ) can arise 

from many different mechanisms ( 3). In the 

absence of a mechanism, purely empirical 

fitting does have the potential to be inter-

esting, but one should simply report such 

results in a neutral fashion rather than pro-

vide unsubstantiated suggestions of univer-

sality. The fact that heavy-tailed distributions 

occur in complex systems is certainly impor-

tant (because it implies that extreme events 

occur more frequently than would otherwise 

be the case), and statistically sound empiri-

cal fi ts of event data, when used with caution, 

can help in data interpretation (as it is cer-

tainly useful to estimate how often extreme 

events occur in a given system). However, a 

statistically sound power law is no evidence 

of universality without a concrete underlying 

theory to support it. Moreover, knowledge of 

whether or not a distribution is heavy-tailed is 

far more important than whether it can be fi t 

using a power law.

Suppose that one generates a large num-

ber of independent random variables xi drawn 

from heavy-tailed distributions, which need 

not be power laws. Then, by a version of the 

central limit theorem (CLT), the sum of these 

random variables is generically power-law 

distributed ( 20). Few people today would 

express amazement at fi nding that the CLT 

holds in a given context (when one adds up 

random variables drawn from distributions 

with fi nite moments), and the CLT is a vital 

tool in statistics, providing the basis for many 

rigorous scientific analyses. It also holds 

ubiquitously, including in situations in which 

random variables are drawn from heavy-

tailed distributions; in such cases, however, 

power laws replace the Gaussian distribution 

as the limiting situation. One thus expects 

power laws to emerge naturally for rather 

unspecifi c reasons, simply as a by-product of 

mixing multiple (potentially rather disparate) 

heavy-tailed distributions. For example, it is 

possible to decompose a supposedly “power-

law” degree distribution of a metabolic net-

work into separate distributions of metabo-

lites of different types ( 16). The degree dis-

tribution for each of these metabolite classes 

is different, refl ecting the different roles that 

they play in the organism.

Finally, and perhaps most importantly, 

even if the statistics of a purported power 

law have been done correctly, there is a the-

ory that underlies its generative process, and 

there is ample and uncontroversial empiri-

cal support for it, a critical question remains: 

What genuinely new insights have been 

gained by having found a robust, mecha-

nistically supported, and in-all-other-ways 

superb power law? We believe that such 

insights are very rare.

Power laws do have an interesting and 

possibly even important role to play, but one 

needs to be very cautious when interpreting 

them. The most productive use of power laws 

in the real world will therefore, we believe, 

come from recognizing their ubiquity (and 

perhaps exploiting them to simplify or even 

motivate subsequent analysis) rather than 

from imbuing them with a vague and mistak-

enly mystical sense of universality. 
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Allometric scaling

Zipf‘s Law

C. elegans nervous system

S. cerevisiae protein interaction network

How good is your power law? The chart refl ects 
the level of statistical support—as measured in ( 16, 
 21)—and our opinion about the mechanistic sophis-
tication underlying hypothetical generative models 
for various reported power laws. Some relation-
ships are identifi ed by name; the others refl ect the 
general characteristics of a wide range of reported 
power laws. Allometric scaling stands out from the 
other power laws reported for complex systems. 10.1126/science.1216142
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