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We study the temporal co-variation of network co-evolution via the cross-link structure of
networks, for which we take advantage of the formalism of hypergraphs to map cross-link
structures back to network nodes. We investigate two sets of temporal network data in detail. In a
network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally
co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within
and between oscillator communities. In the human brain, networks that represent temporal changes
in brain activity during learning exhibit early co-evolution that then settles down with practice.
Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph
whose dynamics no longer depends on other parts of the network. Our results on real and synthetic
networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected
co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the
utility of analyzing cross-links for investigating the structure of temporal networks. VC 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4858457]

Networks provide a useful framework for gaining insights
into a wide variety of social, physical, technological, and
biological phenomena.1 As time-resolved data become
more widely available, it is increasingly important to
investigate not only static networks but also temporal net-
works.2,3 It is thus critical to develop methods to quantify
and characterize dynamic properties of nodes (which rep-
resent entities) and/or edges (which represent ties between
entities) that vary in time. In the present paper, we
describe methods for the identification of cross-link struc-
tures in temporal networks by isolating sets of edges with
similar temporal dynamics. We use the formalism of
hypergraphs to map these edge sets to network nodes,
thereby describing the complexity of interaction dynamics
in system components. We illustrate our methodology
using temporal networks that we extracted from synthetic
data generated from coupled nonlinear oscillators and em-
pirical data generated from human brain activity.

INTRODUCTION

Many complex systems can be represented as temporal
networks, which consist of components (i.e., nodes) that are

connected by time-dependent edges.2,3 The edges can appear,
disappear, and change in strength over time. To obtain a deep
understanding of real and model networked systems, it is criti-
cal to try to determine the underlying drivers of such edge dy-
namics. The formalism of temporal networks provides a means
to study dynamic phenomena in biological,4–6 financial,7,8

political,9–11 social,12–18 and other systems.
Capturing salient properties of temporal edge dynamics

is critical for characterizing, imitating, predicting, and
manipulating system function. Let us consider a system that
consists of the same N components for all time. One can par-
simoniously represent such a temporal network as a collec-
tion of edge-weight time series. For undirected networks, we
thus have a total of N(N–1)/2 time series, which are of length
T. The time series can either be inherently discrete or they
can be obtained from a discretization of continuous dynam-
ics (e.g., from the output of a continuous dynamical system).
In some cases, the edge weights that represent the connec-
tions are binary, but this is not true in general.

Several types of qualitative behavior can occur in time
series that represent edge dynamics.19,20 For example,
unvarying edge weights are indicative of a static system, and
independently varying edge weights indicate that a system
does not exhibit meaningfully correlated temporal dynamics.
A much more interesting case, however, occurs when there
are meaningful transient or long-memory dynamics. As we
illustrate in this article, one can obtain interesting insights in
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such situations by examining network cross-links, which are
defined via the temporal co-variation in edge weights.
Illuminating the structure of cross-links has the potential to
enable predictability.

To gain intuition about the importance of analyzing
cross-links, it is useful to draw an analogy from biology. The
cellular cytoskeleton21 is composed of actin filaments that
form bridges (edges) between different parts (nodes) of a
cell. Importantly, the bridges are themselves linked to one
another via actin-binding proteins. Because the network
edges in this system are not independent of each other, the
structure of cross-links has important implications for the
mechanical and transport properties of the cytoskeleton.
Similarly, one can think of time-dependent relationships
between edge weights as cross-links that might change the
temporal landscape for dynamic phenomena like information
processing, social adhesion, and systemic risk. Analyzing
cross-links allows one to directly investigate time-dependent
correlations in a system, and it thereby has the potential to
yield important insights on the (time-dependent) structural
integrity of a diverse variety of systems.

In this article, we develop a formalism for uncovering
the structure in time-dependent networks by extracting
groups of edges that share similar temporal dynamics. We
map these cross-linked groups of edges back to the nodes of
the original network using hypergraphs.22 We define a co-
evolution hypergraph via a set of hyperedges that captures
cross-links between network edges. (In this paper, we use the
term “co-evolution” to indicate temporal co-variation of
edge weights in time. The term co-evolution has also been
used in other contexts in network science.39,40) Each hyper-
edge is given by the set of edges that exhibit statistically sig-
nificant similarities to one another in the edge-weight time
series (see Fig. 1). A single temporal network can contain
multiple hyperedges, and each of these can capture a differ-
ent temporal pattern of edge-weight variation.

We illustrate our approach using ensembles of time-
dependent networks extracted from a nonlinear oscillator
model and empirical neuroscience data.

CROSS-LINK STRUCTURE

To quantify network co-evolution, we extract sets of
edges whose weights co-vary in time. For a temporal net-
work At, where each t indexes a discrete sequence of N!N
adjacency matrices, we calculate the E!E adjacency matrix

K, where the matrix element Kab is given by the Pearson cor-
relation coefficient between the time series of weights for
edge a and that for edge b. Note that E¼N(N – 1)/2 is the
total number of possible (undirected) edges per layer in a
temporal network. The layers can come from several possi-
ble sources: data can be inherently discrete, so that each
layer represents connections at a single point in time; the
output of a continuous system can be discretized (e.g., via
constructing time windows), etc. We identify the statistically
significant elements of the edge-edge correlation matrix K
(see the supplementary material23), and we retain these edges
(with their original weights) in a new matrix K0. We set all
other elements of K0 to 0.

We examine the structure of the edge-edge co-variation
represented by the E!E matrix K0 by identifying sets of
edges that are connected to one another by significant tempo-
ral correlations (i.e., by identifying cross-links; see Fig. 1). If
K0 contains multiple connected components, then we study
each component as a separate edge set. If K0 contains a sin-
gle connected component, then we extract edge sets using
community detection. (See the supplementary material23 for
a description of the community-detection techniques that we
applied to the edge-edge association matrix.) We represent
each edge set as a hyperedge, and we thereby construct a co-
evolution hypergraph H. The nodes are the original N nodes
in the temporal network, and they are connected via a total
of g hyperedges that we identified from K0. The benefit of
treating edge communities as hyperedges is that one can then
map edge communities back to the original network nodes.
This, in turn, makes it possible to capture properties of edge-
weight dynamics by calculating network diagnostics on these
nodes.

Diagnostics

To evaluate the structure of co-evolution hypergraphs,
we compute several diagnostics. To quantify the extent of
co-evolution, we define the strength of co-variation as the
sum of all elements in the edge-edge correlation matrix:
!At ¼

P
a;bK

0
ab. To quantify the breadth of a single co-

variation profile, we define the size of a hyperedge as the
number of cross-links that comprise the hyperedge:
sðhÞ ¼ 1

2

P
a;b2k½K

0
ab > 0&k, where the square brackets denote

a binary indicator function (i.e., 1 if is true and 0 if it is false)
and k indicates the set of edges that are present in the hyper-
edge h of the matrix K0. To quantify the prevalence of hyper-
edges in a single node in the network, we define the
hypergraph degree of a node i to be equal to the number of
hyperedges gi associated with node i.

NETWORKS OF NONLINEAR OSCILLATORS

Synchronization provides an example of network
co-evolution, as the coherence (represented using edges)
between many pairs of system components (nodes) can
increase in magnitude over time.24,25 Pairs of edge-weight
time series exhibit temporal co-variation (i.e., they have non-
trivial cross-links) because they experience such a trend.
Perhaps less intuitively, nontrivial network co-evolution can
also occur even without synchronization. To illustrate this

FIG. 1. Co-evolution cross-links and hyperedges. A set of (a) node-node
edges with (b) similar edge-weight time series are (c) cross-linked to one
another, which yields (d) a hyperedge that connects them.
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phenomenon, we construct temporal networks from the time-
series output generated by interacting Kuramoto oscilla-
tors,26 which are well-known dynamical systems that
have been studied for their synchronization properties (both
with and without a nontrivial underlying network
structure).24,25,27–32 By coupling Kuramoto oscillators on a
network with community structure,31 we can probe the co-
evolution of edge weight time series both within and
between synchronizing communities.

In Fig. 2(a), we depict the block-matrix community
structure in a network of 128 Kuramoto oscillators with 8
equally sized communities. The phase hiðtÞ of the ith oscilla-
tor evolves in time according to

dhi

dt
¼ xi þ

X

j

jCij sinðhj ( hiÞ; i 2 1;…;Nf g ; (1)

where xi is the natural frequency of oscillator i, the matrix C
gives the binary-valued (0 or 1) coupling between each pair
of oscillators, and j (which we set to 0.2) is a positive real
constant that indicates the strength of the coupling. We draw
the frequencies xi from a Gaussian distribution with mean 0
and standard deviation 1. Each node is connected to 13 other
nodes (chosen uniformly at random) in its own community
and to one node outside of its community. This external
node is chosen uniformly at random from the set of all nodes
from other communities.

To quantify the temporal evolution of synchronization
patterns, we define a set of temporal networks from the time-

dependent correlations (which, following Ref. 31, we use to
measure synchrony) between pairs of oscillators:
AijðtÞ ¼ hjcos½hiðtÞ ( hjðtÞ&ji, where the angular brackets
indicate an average over 20 simulations. We perform simula-
tions, each of which uses a different realization of the cou-
pling matrix C (see the supplementary material23 for details
of the numerics). Importantly, edge weights not only vary
(see Fig. 2(b)) but they also co-vary with one another (see
Fig. 2(c)) in time: the strength of network co-evolution,
which we denote by !At , is greater than that expected in a
null-model network in which each edge-weight time series is
independently shuffled so that the time series are drawn uni-
formly at random.

In this example, the cross-links given by the non-zero
elements of K0 form a single connected component due to
the extensive co-variation. One can distinguish cross-links
according to their roles relative to the community structure
in Fig. 2(a):33 (i) pairs of within-community edges, (ii) pairs
of between-community edges, and (iii) pairs composed of
one within-community edge and one between-community
edge. Assortative pairings [i.e., cases (i) and (ii)] are signifi-
cantly more represented than disassortative pairings [i.e., case
(iii)] (see Fig. 2(d)). The assortative nature of cross-links
might be driven by the underlying block structure in Fig. 2(a):
within-community edges are directly connected to one another
via shared nodes, whereas between-community edges are
more distantly connected to one another via a common input
(e.g., sparse but frequently-updating representations of states
of other oscillators).

FIG. 2. Co-evolution properties of Kuramoto oscillator network dynamics. (a) Community structure in a network of Kuramoto oscillators. (b) A box plot of
the standard deviation in edge weights over time for a temporal network of Kuramoto oscillators. (c) Strength of network co-evolution !At of the real temporal
network and a box plot indicating the distribution of !At obtained from 1000 instantiations of a null-model network. (d) Fraction of significant edge-edge corre-
lations (i.e., cross-links) that connect a pair of within-community edges (“Within”), that connect a pair of between-community edges (“Between”), and that con-
nect a within-community edge to a between-community edge (“Across”). We calculated the statistical significance of differences in these fraction values
across the 3 cross-link types by permuting labels uniformly at random between each type of pair. (e) Fraction of (blue) within-community and (peach)
between-community edges in each of the 5 edge sets extracted from K0 using community detection. We give values on a logarithmic scale. Insets: Mean syn-
chronization ½SðtÞ ¼

P
ði;jÞ2hAijðtÞ& of these edges as a function of time for each hyperedge h.
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Using community detection, we identified 5 distinct edge
sets (i.e., hyperedges) in K0 with distinct temporal profiles
(see Fig. 2(e)). The first hyperedge tends to connect within-
community edges to each other. On average, they tend to
synchronize early in our simulations. The second and third
hyperedges tend to connect between-community edges to
each other. The second hyperedge connects edges that tend to
exhibit a late synchronization, and the third one connects
edges that tend to exhibit an initial synchronization followed
by a desynchronization. The fourth and fifth hyperedges are
smaller in size (i.e., contain fewer edges) than the first three,
and their constituent edges oscillate between regimes with
high and low synchrony. The edges that constitute the fifth
hyperedge oscillate at approximately one frequency, whereas
those in the fourth hyperedge have multiple frequency compo-
nents. See the supplementary material23 for a characterization
of the temporal profiles and final synchronization patterns of
hyperedges in the network of Kuramoto oscillators.

Together, our results demonstrate the presence of multi-
ple co-evolution profiles: early synchronization, late syn-
chronization, desynchronization, and oscillatory behavior.28

Moreover, the assortative pairing of cross-links indicates that
temporal information in this system is segregated not only
within separate synchronizing communities but also in
between-community edges.

NETWORKS OF HUMAN BRAIN AREAS

Our empirical data capture the changes in regional brain ac-
tivity over time as experimental subjects learn a complex motor-

sequencing task that is analogous to playing complicated key-
board arpeggios. Twenty individuals practiced on a daily basis
for 6 weeks, and we acquired MRI brain scans of blood oxygen-
ated-level-dependent (BOLD) signal at four times during this
period. We extracted time series of MRI signals from N¼ 112
parts of each individual’s brain.34 Co-variation in BOLD meas-
urements between brain areas can indicate shared information
processing, communication, or input; and changes in levels of
coherence over time can reflect the network structure of skill
learning. We summarize such functional connectivity35 patterns
using an N!N coherence matrix,4,5 which we calculate for
each experimental block. We extract temporal networks, which
each consist of 30 time points, for naive (experimental blocks
corresponding to 0–50 trials practiced), early (60–230), middle
(150–500), and late (690–2120) learning.34 We hypothesize that
learning should be reflected in changes of hypergraph properties
over the very long time scales (6 weeks) associated with this
experiment.

Temporal brain networks exhibit interesting dynamics:
all four temporal networks exhibit a non-zero variation in
edge weights over time (see Fig. 3(a)). Importantly, edge
weights not only vary but also co-vary in time: the strength
of network co-evolution !At is greater in the 4 real temporal
networks than expected in a random null-model network in
which each edge-weight time series is independently per-
muted uniformly at random (see Fig. 3(b)). The magnitude
of temporal co-variation between functional connections is
modulated by learning: it is smallest prior to learning and
largest during early learning (i.e., amidst most performance
gains). These results are consistent with the hypothesis that

FIG. 3. Co-evolution properties of brain network dynamics. (a) A histogram of the number of edges as a function of the standard deviation in edge weights
over time for the 4 temporal networks. (b) Strength of network co-evolution !At of 4 temporal networks and the respective null-model networks (gray). Error
bars indicate standard deviation of the mean over study participants. (c) Cumulative probability distribution Pr of the size s of hyperedges in the 4 learning
hypergraphs. (d) Anatomical distribution of early-learning hypergraph node degree (averaged over the 20 participants). We obtain qualitatively similar results
from the early, middle, late, and extended learning temporal networks. In panels (a)-(c), color and shape indicate the temporal network corresponding to (black
circles) naive, (orange stars) early, (green diamonds) middle, and (blue squares) late learning.
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the adjustment of synaptic weights during learning alters the
synchronization properties of neurophysiological signals,4

which could manifest as a steep gain in the co-evolution of
synchronized activity of large-scale brain areas.

To uncover groups of co-evolving edges, we study the
edge-edge correlation matrix K0, whose density across the 4
temporal networks and the 20 study participants ranged from
approximately 1% to approximately 95%. We found that the
significant edges were already associated with multiple con-
nected components, so we did not further partition the edge
sets into communities. The distribution of component sizes s
is heavy-tailed (see Fig. 3(c)), which perhaps reflects inher-
ent variation in the communication patterns that are neces-
sary to perform multiple functions that are required during
learning.4 With long-term training, hyperedges decrease in
size (see Fig. 3(c)), which might reflect an emerging
autonomy of sensorimotor regions that can support sequen-
tial motor behavior without relying on association cortex.

Hyperedges indicate temporal co-variation of putative
communication routes in the brain and can be distributed
across different anatomical locations. The hypergraph node
degree quantifies the number of hyperedges that are con-
nected to each brain region. We observe that nodes with high
hypergraph degree are located predominantly in brain
regions known to be recruited in motor sequence learning:36

the primary sensorimotor strip in superior cortex and the
early visual areas located in occipital cortex (see Fig. 3(d)).

METHODOLOGICAL CONSIDERATIONS AND FUTURE
DIRECTIONS

The approach that we have proposed in this paper raises
several interesting methodological questions that are worth
additional study.

First, there are several ways (e.g., using the edge-edge
correlation matrix K) to define the statistical significance of
a single element in a large matrix that is constructed from
correlations or other types of statistical similarities between
time series (see the supplementary material23). Naturally,
one should not expect that there is a single “best-choice” cor-
rection for false-positive (i.e., Type I) errors in these matri-
ces that is applicable to all systems, scales, and types of
association. In the future, rather than using a single threshold
for statistical significance to convert K to K0, it might be ad-
vantageous to use a range of thresholds—perhaps to differen-
tially probe strong and weak elements of a correlation
matrix, as has been done in the neuroimaging literature37—
to characterize the organization of the hypergraphs on differ-
ent geometrical scales (i.e., for different distributions of
edge-weight values).

Second, the dependence of the hypergraph structure
on the amount of time T that we consider is also a very
interesting and worthwhile question. Intuitively, the
hypergraph structure seems to capture transient dependen-
cies between edges for small T but to capture persistent
dependencies between edges for large T. A detailed prob-
ing of the T-dependence of the hypergraph structure could
be particularly useful for studying systems that exhibit (i)
temporally independent state transitions based on their

cross-linked structures and (ii) co-evolution dynamics that
occur over multiple temporal scales.

Finally, the approach that we have proposed in this pa-
per uses hypergraphs to connect dependencies between inter-
actions to the components that interact. Alternatively, one
can construe the interactions themselves as one network and
the components that interact as a second network. This yields
a so-called interconnected network (which is a type of multi-
layer network38), and the development of techniques to study
such networks is a burgeoning area of research. Using this
lens makes it clear that our approach can also be applied “in
the other direction” to connect sets of components that ex-
hibit similar dynamics (one network) to interactions between
those components (another network). This yields a simple
multilayer structure in which a single set of components is
connected by two sets of associations (similarities in dynam-
ics and via a second type of interaction). However, we
believe that the “forward” direction that we have pursued is
the more difficult of the two directions, as one needs to con-
nect a pair of networks whose edges are defined differently
and whose nodes are also defined differently. Hypergraphs
provide one solution to this difficulty because they make it
possible to bridge these two networks. Moreover, many dy-
namical systems include both types of networks: a network
that codifies dependencies between nodes and a network that
codifies dependencies between node-node interactions.

CONCLUSION

Networked systems are ubiquitous in technology, biol-
ogy, physics, and culture. The development of conceptual
frameworks and mathematical tools to uncover meaningful
structure in network dynamics is critical for the determina-
tion and control of system function. We have demonstrated
that the cross-link structure of network co-evolution, which
can be represented parsimoniously using hypergraphs, can
be used to identify unexpected temporal attributes in both
real and simulated dynamical systems. This, in turn, illus-
trates the utility of analyzing cross-links for investigating the
structure of temporal networks.
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In this supplementary document, we include the following material to support the work

described in the main text.

1. A detailed description of statistical corrections for edge-edge association matrices.

2. A description of the community-detection techniques that we applied to the edge-edge

association matrix.

3. A characterization of the temporal profiles and final synchronization patterns of hy-

peredges in the network of Kuramoto oscillators.

4. A comparison to null models based on surrogate data.

5. A note on numerical implementation.

6. Figure S1: Hyperedge Identification in a Network of Kuramoto Oscillators.

7. Figure S2: Final Synchronization Patterns and Temporal Profiles of Hyperedges.
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STATISTICAL CORRECTIONS FOR EDGE-EDGE ASSOCIATION MATRICES

In the main text, we describe a method for extracting cross-links from temporal networks.

For a temporal network At, we calculate the E ⇥ E adjacency matrix ⇤, where the matrix

element ⇤ab gives the Pearson correlation coe�cient between the time series of weights for

edge a and the time series of weights for edge b. Note that E = N(N � 1)/2 is the total

number of possible (undirected) edges per layer in a temporal network. (Each layer can come

from a single point in time, aggregation over a given time window, etc.) For simplicity, we

employ a correlation coe�cient as a measure of statistical association to examine linear

relationships in ensembles of edge-weight time series [1]. Because we seek to determine sets

of edges that might have a common driver, we do not employ sparse network methods such

as the graphical lasso [2] or Bayesian network [3] methods that attempt to estimate pairwise

relationships between time series in a manner that is independent of other variables.

Given the very large number of statistical tests that the above procedure entails, we

threshold the edge-edge correlation matrix ⇤ to retain only statistically significant connec-

tions, which we determine by estimating the p-value associated with the Pearson coe�cient

r for each edge-edge correlation. Using a false-positive correction for multiple comparisons,

we threshold ⇤ by identifying significant matrix elements as those whose associated p-value

satisfies

p <
1

M
=

2

E(E � 1)
, (1)

where M is the number of tests that were performed. We retain the original weights of

significant matrix elements in a new matrix ⇤

0 and set nonsignificant matrix elements to 0.

The type of multiple comparisons correction that one uses to control for Type I errors

(i.e., false positives) in correlation matrices derived from (both real and simulated) dynamical

systems is itself interesting [4, 5]. The false-positive correction of p < 1/M that we applied

is an increasingly common choice in the study of correlation matrices in the neuroscience

literature [6–12]. It has been argued that alternative choices, such as the false-discovery

rate [13, 14] and Bonferroni-correction methods [15–17], are too stringent for situations like

correlation matrices in which variables are highly inter-dependent [5], and they can lead to

an overly large number of Type II errors (i.e., false negatives) [18].

After performing the statistical correction to obtain the weighted thresholded matrix ⇤

0,

we wish to extract cohesive sets of co-evolving edges. Two potential cases are apparent. The
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simpler case occurs when ⇤

0 is composed of disconnected components that each contain a

set of co-evolving edges. We illustrate this scenario in the main manuscript using networks

of brain regions. In a second case, ⇤

0 contains a single large connected component —

which can but need not include all of a network’s edges — from which one must further

extract sets of co-evolving edges. We illustrate this scenario, which arises from extensive

and broadly distributed temporal covariance, in the main manuscript using networks of

Kuramoto oscillators.

To study the second scenario, we need to use a method for extracting sets of strongly

cross-linked edges in ⇤

0. One possible approach is to choose a more stringent statistical

threshold for creating ⇤

0 in the first place. For example, one could tune the threshold

so that it fragments ⇤ into several disconnected components. However, such an approach

requires the choice of an arbitrarily stringent threshold on the p-value p and entails the

risk of Type II errors (i.e., false negatives) [5]. In this paper, we employ an alternative

approach: we extract sets of strongly cross-linked edges using community detection [19, 20].

An advantage of this approach is that we can exploit the complete information housed in ⇤

0

by using community-detection methods that account for cross-link weights and their signs

[21].

COMMUNITY DETECTION ON EDGE-EDGE ASSOCIATION MATRICES

Methods for detecting communities in networks make it possible to algorithmically extract

groups of nodes that are highly and mutually interconnected [19, 20, 22]. In this paper, we

seek sets of edges that are strongly and densely cross-linked to one another[23]. We identify

such “communities” (or “modules”) of edges by optimizing a modularity quality function

that is suitable for signed matrices [21]:

Q =
X

ab

⇥
⇤0

ab � �+P+
ab + ��P�

ab

⇤
�(ga, gb) , (2)

where⇤0 = (⇤0
ab) is the E⇥E thresholded and weighted correlation matrix, edge a is assigned

to community ga, edge b is assigned to community gb, the Kronecker delta �(ga, gb) = 1 if

ga = gb and it equals 0 otherwise, �+ and �� are resolution parameters, and P+
ab and P�

ab are

the respective expected weights of the positive and negative cross-links that connect edge a

and edge b via a specified null model. We employ a signed null model [21] with �+ = ��
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(also see [24], who study the case �+ = �� = 1), so that

P+
ab =

k+
a k

+
bP

ab k
+
, P�

ab =
k�
a k

�
bP

ab k
� , (3)

where k±
a =

P
b ⇤

0±
ab is the strength of cross-link a in the matrix ⇤

0±. The matrix ⇤

0+ retains

all positively weighted elements of ⇤0
ab and sets all negatively weighted elements of ⇤0

ab to

0. The matrix ⇤

0� retains all negatively weighted elements of ⇤0
ab and sets all positively

weighted elements of ⇤0
ab to 0.

Maximization of Q yields a hard partition of the edge-edge network into communities

such that the total cross-link weight inside of communities is as large as possible (relative

to the null model and subject to the limitations of the employed computational heuristics,

as optimizing Q is NP-hard [19, 20, 25]). Given the near-degeneracy of the landscape of the

modularity function Q [26], we perform 100 optimizations of Eq. 2 and obtain consensus

partitions over these optimizations via a comparison to an appropriate null model. (See

Ref. [27] for a detailed description of the method.)

The structural resolution parameter � = �+ = �� is a tunable scalar that sets the size of

the communities in the (near) optimal partition [27, 28]. Small values of � produce a few

large communities, whereas large values of � produce many small communities. By tuning

�, one can therefore examine the community structure at di↵erent scales [29–34] of both real

[35–39] and simulated [40, 41] dynamical systems.

For simplicity, we focus on a single resolution-parameter value for detailed investigation.

We choose a value that provides insight into the relationship between the community struc-

ture of edges and the community structure of nodes, and later we discuss at length the

procedure that we used to select this value. In Fig. 1A, we show a template block structure

that summarizes the community structure of nodes in a network of Kuramoto oscillators.

Each block contains edges that are located either (i) within communities (template blocks

1–8) or (ii) between communities (template blocks 9–36). We characterize the similarity

between this template (which yields a network partition that we label by ↵) and the com-

munity structure of edges at a given value of the structural resolution parameter � (which

yields a partition that we label by �) using the z-score of the Rand coe�cient [42]. We use

w11 to denote the count of edge pairs that are classified together in both partitions (e.g., ↵

and �). We use w10 to denote the count of edge pairs that are classified together in the first

partition but classified separately in the second partition, and we define w01 analogously
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as the count of edge pairs that are classified separately in the first partition but classified

together in the second partition. We use w00 to denote the count of edge pairs that are

classified separately in both partitions. The total number R of node pairs is then given by

the sum of these quantities: R = w11 + w10 + w01 + w00. We calculate the Rand z-score in

terms of the network’s total number of node pairs R, the number of pairs R↵ classified the

same way in partition ↵, the number of pairs R� classified the same way in partition �, and

the number of node pairs w↵� that are assigned to the same community both in partition ↵

and in partition �. The z-score of the Rand coe�cient comparing these two partitions is

z↵� =
1

�w↵�

✓
w↵� �

R↵R�

R

◆
, (4)

where �w↵�
is the standard deviation of w↵� (as in [42]).

In the resolution parameter range � 2 [0.2, 4], the z-score of the Rand coe�cient between

the template and partitions into communities of edges appears to have two regimes (see

Fig. 1B). For � / 1.8, the z-score exhibits are large variability over multiple optimizations

of the modularity quality function in Eq. 2, which suggests that the optimization landscape

of Q is replete with local maxima [26]. However, for � ' 1.8, the z-score has a much smaller

variability over the multiple optimizations, which suggests that the partitions in this regime

are relatively robust [27]. In this second regime, (� ' 1.8), the mean z-score also decreases

with increasing �, which indicates that partitions with a large number of small communities

(i.e., for � values closer to 4) exhibit less similarity to the template than partitions with a

small number of large communities (i.e., � values closer to 1.8).

We choose to examine the community structure in the edge-edge correlation matrix at

the resolution parameter � = 1.8 for two reasons: (i) at this resolution-parameter value,

partitions are more robust (i.e., less variable) over multiple optimizations than they are

at lower values of �; and (ii) this approximately maximizes the similarity, as measured by

the Rand z-score, between the community structure of edges and the community structure

of nodes. To visualize the cross-linked edge communities that are present at � = 1.8, we

construct a consensus partition [43] over the 100 optimizations using a method that corrects

for statistical noise in sets of partitions defined in comparison to a null model [27]. The

consensus partition assigns each edge to one of 5 communities of varying sizes (see Fig. 1C).

Each community yields a hyperedge, and we note that the pattern of hyperedges in the

network has an inherently di↵erent structure than the final synchronization pattern of the
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network of Kuramoto oscillators (compare Figs. 1C and D) [44]. In the next section, we

characterize the di↵erences between these two structures in greater detail.

TEMPORAL PROFILES AND FINAL SYNCHRONIZATION PATTERNS OF HY-

PEREDGES IN THE NETWORK OF KURAMOTO OSCILLATORS

Each hyperedge that we identified in the network of Kuramoto oscillators consists of a set

of edges with a di↵erent temporal weight profile (see Fig. 2A). Edges are cross-linked based

on the similarity in their temporal weight profile, and community detection makes it possible

to extract cohesive groups of edges with similar profiles. The first two hyperedges, whose

dynamics we show in the left two panels of Fig. 2, tend to consist of between-community edges

(see Fig. 2B) and exhibit either late increases in weight (which yields late synchronizaton)

or decreases in weight (desynchronization) over time (see Fig. 2A). The hyperedge whose

dynamics we show in the center panel of Fig. 2 includes the majority of the within-community

edges and exhibits a strong increase in weight (and hence oscillator synchronization) early in

the simulation. The final two hyperedges, whose dynamics we show in the right two panels

of Fig. 2, consist of edges that exhibit high-frequency oscillatory behavior in their weights.

Our investigation of cross-links and subsequent hyperedge extraction identifies similarities

between edges that are based on their temporal profiles and can therefore be di↵erent from

their final synchronization values. For example, hyperedges 1–3 in Fig. 2 each include edges

with a wide range of final synchronization values that range from very strong (Aij
.
= 0.9)

to very weak (Aij
.
= �0.2). Each hyperedge instead captures a property of edge dynamics:

the trajectory that that edge followed to attain a given final synchronization value.

COMPARISON TO NULL MODELS BASED ON SURROGATE DATA

When examining networks that are extracted from real data, it is important to determine

when observed structures di↵erent significantly from those in a relevant null-model system

[27]. Specifically, for networks constructed from statistical similarities between time series

(such as the brain networks that we examine in this paper), one can construct null models

based on surrogate time series. By comparing cross-link structure in the real and null-model

systems, one can probe potentially meaningful features of co-evolution in the real network.
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We employ a surrogate-data generation method that has been used previously to construct

covariance matrices [45] and to characterize static [46] and temporal [27] networks. The

Fourier transform (FT) surrogate scrambles the phase of time series in Fourier space [47]

and thereby preserves the mean, variance, and autocorrelation function of the original time

series. We assume that the linear properties of the time series are specified by the squared

amplitudes of the discrete Fourier transform

|S(u)|2 =

�����
1p
V

V�1X

v=0

sve
i2⇡uv/V

�����

2

, (5)

where sv denotes an element in a time series of length V . (That is, V is the number of

elements in the time-series vector.) We construct surrogate data by multiplying the Fourier

transform by phases chosen uniformly at random and then transforming back to the time

domain:

s̄v =
1p
V

V�1X

v=0

eiau |Su|ei2⇡kv/V , (6)

where au 2 [0, 2⇡) are chosen independently and uniformly at random [48]

We construct FT surrogate time series from the original time series that we extracted from

each brain region of each subject during each scanning session. Using identical procedures

to those that we employed to study the real time series, we cut each surrogate time series

into time windows that correspond to trial blocks, compute the coherence between pairs

of surrogate time series, calculate the thresholded edge-by-edge correlation matrix ⇤

0, and

extracted hyperedges defined as the connected components ⇤

0. In contrast to the heavy-

tailed hyperedge-size distributions that we observe in the real data (see Fig. 3C of the main

manuscript), we find that the size distributions extracted from the surrogate data are narrow

and peaked: s ⇡ 2.09±0.29 (mean ± standard deviation) for naive learning, s ⇡ 2.09±0.29

for early learning, s ⇡ 2.13± 0.34 for middle learning, and s ⇡ 2.20± 0.40 for late learning.

The maximum hyperedge size is 3 and the minimum is 2. These results demonstrate that the

learning-related human brain co-evolution structure that we report in the main manuscript

cannot be attributed to the mean, variance, or autocorrelation function of the original time

series.
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A NOTE ON NUMERICAL SIMULATION

To simulate the dynamics of the network of Kuramoto oscillators, we solve the discrete-

time equation

✓t = ✓t�1 + ⌧!i +
X

j

Cijsin(✓j � ✓i) , (7)

where !i is the natural frequency of oscillator i, the matrix C gives the binary-valued (0

or 1) coupling between each pair of oscillators, ⌧ (which we set to 0.1) is a positive real

constant that indicates the time step, and  (which we set to 0.2) is a positive real constant

that indicates the strength of the coupling. We solve equation (7) for t 2 {1, . . . , T} for a

maximum of T = 101 time points. We base our simulation method on the implementation

in Ref [49]. Each matrix in the temporal network At gives the time-dependent correlations,

measured at time point t, between pairs of oscillators.
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FIG. 1. Hyperedge Identification in a Network of Kuramoto Oscillators. (A) Template

indicating the block structure of the community structure of nodes in a network of 128 Kuramoto os-

cillators. Blocks 1–8 contain within-community edges, and blocks 9–36 contain between-community

edges. Color indicates the block number. (B) The z-score of the Rand coe�cient between the up-

per triangle of the template in (A) and the partition of the thresholded and weighted edge-edge

correlation matrix ⇤0 into communities of edges. Box plots indicate quartiles and 95% confidence

intervals over the 100 optimizations of the signed modularity quality function in Eq. 2. (C) Con-

sensus over partitions obtained from 100 optimizations at � = 1.8. Each community of edges

constitutes a hyperedge, and color indicates hyperedge number. (D) The final synchronization

pattern of the network of Kuramoto oscillators at the final time (T = 100), which is reminiscent

of the community structure of the network (which we show in Fig.2A in the main manuscript).

Color indicates time-dependent correlation between pairs of oscillators (which we use to indicate

their level of synchrony, following [40]): Aij(t) = h| cos[✓i(t)� ✓j(t)]|i, where the angular brackets

indicate an average over 20 simulations.
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FIG. 2. Temporal Profiles and Final Synchronization Patterns of Hyperedges. (A) The

mean synchronization of edges as a function of time [S(t) =
P

(i,j)2hAij(t)] and (B) the final

synchronization weights of each edge. From left to right, we plot these for hyperedge 1 (in the left

panel) to hyperedge 5 (right panel). Color indicates time-dependent correlation between pairs of

oscillators: Aij(t) = h| cos[✓i(t)� ✓j(t)]|i, where the angular brackets indicate an average over 20

simulations. Matrix elements highlighted in gray indicate edges that are members of a hyperedge

other than their own.
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[30] J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész, in SPIE Fourth International Sym-

posium on Fluctuations and Noise (International Society for Optics and Photonics, 2007) pp.

660116–660116.

[31] R. Lambiotte, J.-C. Delvenne, and M. Barahona, arXiv preprint arXiv:0812.1770 (2009).

[32] J. C. Delvenne, S. N. Yaliraki, and M. Barahona, Proc Natl Acad Sci U S A 107, 12755

(2010).

[33] M. T. Schaub, J. C. Delvenne, S. N. Yaliraki, and M. Barahona, PLoS One 7, e32210 (2012).

[34] M. T. Schaub, R. Lambiotte, and M. Barahona, Phys Rev E 86, 026112 (2012).

[35] D. Meunier, R. Lambiotte, A. Fornito, K. D. Ersche, and E. T. Bullmore, Front Neuroinf. 3,

37 (2009).

[36] D. Meunier, R. Lambiotte, and E. T. Bullmore, Front Neurosci 4 (2010).

[37] D. S. Bassett, D. L. Greenfield, A. Meyer-Lindenberg, D. R. Weinberger, S. Moore, and

E. Bullmore, PLoS Comput Biol 6, e1000748 (2010).

[38] D. S. Bassett, J. A. Brown, V. Deshpande, J. M. Carlson, and S. T. Grafton, NeuroImage

54, 1262 (2011).

[39] D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, J. M. Carlson, and S. T. Grafton,

Proc Natl Acad Sci USA 108, 7641 (2011).

[40] A. Arenas, A. Dı́az-Guilera, and C. J. Pérez-Vicente, Phys Rev Lett 96, 114102 (2006).
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