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Abstract

We consider superposition states of various numbers of eigenstates in order to study vibrating quantum billiards
semiquantally. We discuss the relationship between Galérkin methods, inertial manifolds, and partial differential equations
such as nonlinear Schrédinger equations and Schrddinger equations with time-dependent boundary conditions. We then use
Galérkin approach to study vibrating quantum billiards. We consider one-term, two-term, threg-term, and infinite-term
superposition states. The number of terms under consideration corresponds to the level of electronic near-degeneracy in th
system of interest. We derive a generalized Bloch transformation that is valid for any finite-term superposition and numer-
ically simulate three-state superpositions of the radially vibrating spherical quantum billiard with null angular-momentum
eigenstates. We discuss the physical interpretation of our Galérkin approach and thereby justify its use for vibrating quantum
billiards. For exampled-term superposition states of one degree-of-vibration quantum billiards may be used to study nona-
diabatic behavior in polyatomic molecules with one excited nuclear mode drfdld electronic near-degeneracy. Finally,
we apply geometric methods to analyze the symmetries of vibrating quantum billiards.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantum billiards have been studied extensively in recent J&ar$3,20,21] They are important tools in the
study of quantum chaos. When their boundaries are time-dependent, they are also useful forsgroliogntum
chaod35], the primary concern of the present paper. This type of quantum chaos, whose phenomenology we discuss
in Appendix A pertains to chaos in semiquantum systems derived via a Born—Oppenheimer g&f7e®&5] In
conservative situations, such systems may be expressed as “effective classical Hamiltonians” and analyzed usin
technigues from Hamiltonian dynamif&2,29,32,35,46,50]
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Vibrating quantum billiards are semiquantum models for nonadiabatic coupling in polyatomic mol&c2&s
38-40] They may also be used as mathematical abstractions in the description of Jahn—Teller di§6808S,

46,50] nanomechanical vibratiorj84] and solvated electrorjd3,44]. Hence, the study of semiquantum chaos in
guantum billiards with time-dependent boundaries is important both because it expands the mathematical theory of
dynamical systems and because it can be applied to problems in atomic, molecular, and mesoscopic physics.

Blumel and Ess€li8] found semiquantum chaos in the one-dimensional vibrating quantum billiard. In previous
works[28,39], we extended these results to spherical quantum billiards with time-dependent surfaces and derived
necessary conditions for vibrating quantum billiards with one “degree-of-vibration” (dov) to exhibit chaotic behavior
[40]. The dov constitute the classical degrees-of-freedom (dof) in a vibrating quantum billiard and refer to the
number of distance dimensions of the boundary that vary in time. Bifurcations of one dov quantum billiards have
been analyzefB6], and we have recently performed some analysis of two dov quantum bil|z8Hs

Quantum systems with time-dependent potentials have been the subject of considerable attention in the quantum
chaos literature. Such systems include, for example, Anderson trangiti®d®], Landau level mixind42], the
two-particle Harper probleni3], and amplitude-modulated pendy3]. There are two important differences
between these descriptions and the “vibrating quantum billiards” that interest us. First, we use a semiquantum
description in order to examine systems with dof that evolve on multiple timescales. Studies like those cited above
are concerned with the quantum signatures of classical chaos rather than with semiquantum chaos. We seek to
connect the study of nonadiabatic phenomena (such as Jahn—Teller effects), which is of considerable interest in the
molecular physics literature, to abstract mathematical models such as vibrating quantum [6liaB535,46,50]

This abstraction leads to a second important distinction. In contrast to the works cited above, the time-dependence
in the vibrating quantum billiards we discuss has not been specified a priori. Instead, it must be determined in the

process of solving a boundary value problem (rather than in advance of attempting such a solution). The problem

under consideration is thus said to haviee® boundary18].

With this perspective, one may use vibrating quantum billiards to study nonadiabatic transitions in molecular sys-
tems[32,35] In particular, we are concerned with Jahn—Teller-like distortions in polyatomic moldgé,2=s530]
Associated with nonadiabatic behavior dréold near-degeneracies in the adiabatic sheets describing the eigenen-
ergies of a molecule’s electronic subsystgh46,50] To analyze such near-degeneracies, one may studgde
Galérkin projections (i.ed-term superposition states) of vibrating quantum billiards.

Our previous work on quantum billiards with time-dependent boundaries concentrated primarily on two-term
superposition statg8,9,28,36,38—40]In the present paper, we consideterm superpositionsi(> 1) in one dov
billiards. One derives d-dimensional Galérkin projection of the Schrédinger equation to obtagupled ordinary
differential equations of motion for the complex amplitudes in the normal mode expansion of the wavefunction.
One then uses a “generalized Bloch transformation” (GBT) to obtain equations of motion in the position, momen-
tum, and(d? — 1) “generalized Bloch variables” (GBVs). Using the radially vibrating spherical billiard with null
angular-momentum eigenstat@®] for numerical simulations, we review the = 2 case and also analyze the
d = 3 case explicitly. We discuss the geometric aspects of this problem and briefly mention how one can generalize
the present study to quantum billiards with more than one dov.

Quantum billiards describe the motion of a point particle of nagsindergoing perfectly elastic collisions in a
domain in a potentiaV with a boundary of mas&f > mg. With this condition on the mass ratio, we assume that
the boundary does not recoil from collisions with the confined particle. Point particles in quantum billiards possess
wavefunctions that satisfy the Schrodinger equation, whose time-independent part is the Helmholtz equation. One
uses homogeneous Dirichlet boundary conditions, as the wavefunctions are constrained to vanish on the boundary
[27]. Itis known that globally separable quantum billiards with “stationary” (i.e., zero dov) boundaries are not chaotic
but that quantum billiards with at least one dov may behave chaotically under certain cordifiprié quantum
billiard is globally separablevhen the geometry of the billiard is one for which the Helmholtz equation is globally
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separable.) In the case of the radially vibrating spherical billiard, at least one pair of a finite-term superposition
must have equal orbital)(and azimuthal{z) quantum numbers for the system to exhibit chaotic behd2®y.
This condition is satisfied automatically if one considers only null angular-momentum eigefi3®tes

2. Galérkin expansions

Galérkin expansions are used to study semilinear partial differential equations such as reaction—diffusion
equations. They can also be used, for example, to study nonlinear Schrédinger (NLS) equations. The presen
treatment of the linear Schrodinger equation with nonlinear boundary conditions parallels established methods for
nonlinear partial differential equations, because these analyses both rely on Galérkin methods. Additionally, many
finite element schemes are based on Galérkin approximdgéhs

Consider a (possibly nonlinear) partial differential equatiafh © 0. The operator O takes the form

O=L+N, 1)

where L is a linear differential operator and N a nonlinear one. (A good example to keep in mind is the NLS,
as L is the Schrddinger operator in that case.) One expressessan expansion using some orthonormal set of
eigenfunctiongy; (x) of L, i € I:

Y =) a@yi(x), xe€X, @)
1
where! is an indexing set and the coefficient$x) are unknown functions of some subset of varialilex the
original vector of variables. Itis important to realize that the coefficiemtglepend only on some of the independent
variables and not the entire vectoiof variables. In the present paper, for example, we consider coefficients that
depend only on time.
The eigenfunctiong; are associated with the linear differential equatioh & 0 along with a set of (linear
and time-independent) boundary conditions. This yields a countably infinite coupled system of nonlinear ordinary
differential equations for;(x),i € I [45]. (If the partial differential equation is linear with linear boundary
conditions so that N= 0, then taking an eigenfunction expansion yields constant coefficigRs= c;. Otherwise,
one obtains a system of nonlinear ordinary differential equations.) One then projects the exp2neito a
finite-dimensional subspace (by assuming that only a certain finite subset of(fheare nonzero) to obtain
a finite system of coupled nonlinear ordinary differential equations. (The differential equations so obtained are often
calledamplitude equationfb,25].) Thus, for example, a two-term superposition state corresponds to a two-mode
Galérkin projection. If all the dynamical behavior of a system lies on such a finite-dimensional projection, then
one has found amertial manifold(global center manifold) that necessarily contains any global attractor that the
system might havpl5]. Perhaps the most famous example of a Galérkin approximation is the Lorenz model, which
is a three-mode truncation of the Boussinesq equations for fluid convection in a two-dimensional layer heated from
below[47].
When applying Galérkin expansions to nonlinear partial differential equatigns=C0, one decomposes the

operator O into (nontrivial) linear and nonlinear parts

O=L+N )

and expands according to the eigenfunctions of the linear operator L and the relevant boundary conditions. Suct
methods are thus applicable to nonlinear operators that are nontrivially decomposable into linear and nonlinear
parts. The term “semilinear” is often applied to operators that can be decomposed in this manner. For the NLS and



M.A. Porter, R.L. Liboff/Physica D 167 (2002) 218-247 221

complex Ginzburg—Landau (CGL) equations, L corresponds to the linear Schrédinger operator. In this context, the
study of vibrating quantum billiards is related to the study of NLS and CGL equations.

2.1. Physical interpretation af-term Galérkin expansions

We discussed earlier thatd&aterm Galérkin projection corresponds talgerm superposition state. We now
consider the issue of when such a state occurs in physical systems relevant to vibrating quantum billiards. The
condition under which such an approximation is valid corresponds to the case in which the other states of the
system have negligible contribution to the dynamics. Because the present system cannot admit an exact iner-
tial manifold, we justify ignoring the other modes of the system on physical grounds. The primary examples to
keep in mind are polyatomic molecules witkfold degeneracies or near-degeneracies in their electronic energy
levels[46].

Molecular systems exhibit both electronic (fast) and nuclear (slow) dof. In the Born—Oppenheimer approximation
[4,6,7,35] one quantizes the electronic dof and treats the (much slower) motion of the nucleus as a perturbation of
electronic motion in a nucleus of constant size. One may consider molecular systems in whi¢lobtilg states
give an important contribution to the dynamics of the system—that is, the system is aptly descrilaed ly
guantum-mechanical dof. One may do this if thstates in question have energies that are the same or are at least
sufficiently close to each other so that when one considers the coupling of electronic and nuclear motion, the system
may be treated semiquantall$2]. As one increases the mass of the nucleus relative to that of the electron, the
electronic energy levels need not be as close together for a semiquantum description to be valid. The increased
nuclear mass causes the nuclear eigenenergies to lie closer together and be more accurately approximated as
continuum for a given electronic spectrum. This continuum approximation corresponds to treating the nuclear dof
classically.

The semiquantum regime aptly describes the dynamics of molecules when they undergo nonadiabatic transitions
[35,46,50] In this regime, the nuclear dof (in other words, the dov) are treated classically, whereas the electronic
dof are treated quantum-mechanicglly,46] One uses d-term Galérkin projection when the + 1)th term is far
enough away that it may be ignored. As the fitstectronic energy levels are either degenerate or nearly so, the use of
d-mode Galérkin expansions allows one to explore the nonadiabatic transitions involving their associated eigenstates
[7,35]. Ordinarily, one encounters near-degeneracies involving very few eigenstates. This, then, provides a rationale
for the analysis of few-mode Galérkin expansions and the resulting low-dimensional systems of ordinary differential
equations. Additionally, this provides a physical meaning to vibrating quantum billiartisnede superposition
state of arr dov quantum billiard describes nonadiabatic transitions in a polyatomic molecule extlited nuclear
modes and &-fold electronic near-degeneracy. These transitions resemble the Jahn-Tellef7e3feet6,50] A
common reason for degeneracy and near-degeneracy of electronic energy levels is molecular symmetry. Indeed, we
found in a previous study that vibrating quantum billiards require certain symmetries for different eigenstates to
couple with each othgr0].

As the semiquantum treatment of vibrating quantum billiards yields a conservative Hamiltonian system (as we
discuss in detail lateryy-mode Galérkin expansions cannot capture their exact mathematical behavior. As just
discussed, however, taking few-mode Galérkin expansions is justified on physical grounds. Additionally, the fact
that some dynamical behavior is ignored with this process also has a physical interpretation: the complexity of
nonadiabatic transitions increases markedly as the number of degenerate or nearly degenerate eigenstates increase
As we shall see, applying Galérkin projections to vibrating quantum billiards is an insightful and convenient
mathematical formalism for the study of nonadiabatic dynamics in semiquantum systems. Finally, note that Galérkin
expansions correspond to what researchers in quantum mechanics have done for years when they restrict themselve
to d electronic energy levels.
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3. One-term expansions

Consider a one dov quantum billiard on a Riemannian manif®lg;). Suppose we have isolated thi normal
mode of the present system. Insert the wavefunction

V(x, 1) = Yn(x, t;a(?)) 4)
into the time-dependent Schrodinger equation
d h?
in wg D Kyer) = —%Vzl//(x, ), xeX, (5)
where the electronic kinetic energy is given by
n?_,
K=——V 6
5 V2 (6)

wherea = a(t) represents the time-varying boundary component (e.g., the radius in the radially vibrating spherical
billiard). The total molecular Hamiltonian of the system is given by

2

H@.Py=K+ 24V %
=R oy T

where the walls of the quantum billiard are in a potentiahnd have momentur® with corresponding mas¥.
For the present configuration, we assume thaloes not depend explicitly on time. That is,

V =V(a) 8

depends only on the nuclear coordinate
Vibrating quantum billiards have time-dependent (nonlinear) boundary conditions:

Y(a(m) =0, 1ekR, 9)

which is why one may use Galérkin projections to study them. As discussed earlier, this corresponds to a procedure
that may be used to study nonlinear partial differential equations such as reaction—diffusion equations and NLS
equationg45]. As the time-dependence @fr) in Eq. (9)is unknown, the problem of interest is said to have a free
boundary[18]. To solve the Schrédinger equation with Dirichlet boundary conditions in this situation, one must
determine the form af(¢), which plays the role of a lengthscale in the vibrating quantum billiard’s eigenfunctions
(seeAppendix A). Applying a Galérkin method to this problem yields a set of ordinary differential equations that
determine the time-dependence:f), its conjugate momenturf(¢), and the quantum-mechanical varialjég].

Perhaps the simplest example to visualize is the radially vibrating spherical quantum billiard, in which the domain
X of the Schrédinger equation is

X ={r eR%r <a@)). (10)

The time-dependence in the definition of the domain of intfe®tleads to the use of Galérkin projections in the
study of vibrating quantum billiards. The fact that the potenitigB) does not depend explicitly on time, as it does
in the work of other researchers who study similar problns0,12,33,42]is also important for the application
of a Galérkin approach. A8 depends only oa, it may be treated as a constant when using a Galérkin expansion
to derive amplitude equations from Schrodingexgiation (5)
When considering a single eigenstate, there is only one probabiljt}? = 1, as we are projecting the system
onto a one-dimensional subspace. Physically, this corresponds to a situation in which electronic energies are fal
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enough away from each other so that different eigenstates do not mix (couple) with each other. In terms of billiards,
this corresponds to a situation in which the boundary is uncoupled from the enclosed particle, so one obtains a system
whose dynamics correspond to the classical (“Ehrenfest”) motion of the[3&H16] The quantum-mechanical
wavefunction) nevertheless depends on these classical dynamics, as the wave changes nontrivially with the nuclear
coordinatez. For example, the energy associated with the wave fluctuates with the displacer(ieme kinetic
energy of the particle becomes smaller whencreases and vice versa.) Put simply, even without mutual coupling
between quantum and classical components, the quantum dynamics depend nontrivially on the classical motion of
the boundary. There is thus a sort of “enslavement” of the quantum subsystem by the classical subsystem, as the
classical motion is unaffected by the dynamics of the confined particle.

The present system, in other words, is a Hamiltonian system whose equations of motion are given by

P oH . vV 2e, oH

=, — = 11
M P da + ad da (11)
whereg,, is the energy parameter corresponding totthecigenstat@40]. (The influence of the quantum subsystem
on the classical one is encompassed entirely by the size of the paramelbere is no feedback.) Equilibria of

this system satisfy = 0 and

aVv 2¢
(@) = —. (12)
a*

da

wherea, is an equilibrium displacement. In a previous st{@8], we analyzed the bifurcation structure(df ). One

inserts the dynamics ef(¢) into the wavey (x, ¢; a(t)), which may be termed monlinear normal modéecause

of its dependence an As the Hamiltonian systerfil) has one dof, it is necessarily integrable. Thus, the normal
mode we obtained is not chaotic. Nevertheless, even in this degenerate case, the quantum dynamics depend on thi
classical dynamics.

4. Two-term expansions
We now review previous analysis of two-term superposition s{2&89,40] The superposition of theth and
gth states is given by
Ung(x, 1) = Ap(OVYn(x, 1) + Ag () Yg(x, 1), (13)

which we substitute into the time-dependent Schrodiregeiation (5) Taking the expectation of both sides(6)
for the statg13) yields the following relations:

hz 2 2 2
1//nq _2 V qu =K(|Al‘l| alAq| , a1, ... 7a.§)a
_ 9 . .
|h<1/fnq I/’”q> = iB[An AL + Ag Al + vnnl An|? + vagl Ag 1 + vngAn A + vgnAg ALl (14)

If the billiard has one dov, then the electronic kinetic energy is given by
K = K(A:%, 14412, a). (15)

DefiningA; = A, andA; = A,, the quadratic forn14) yields the amplitude equations

2
iAp =) DyA,, (16)
j=1
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where
€n i a
—iftng—
2
D=pg=| " al. (17)
i 4 Ca
ana ha?
andung = —ugn # 0 is a coupling coefficient for the cross teuy A7. The coefficientunqg is defined by the
relation
a
Vng = ;an» (18)

and for the special case of null angular-momentum eigenstates of the radially vibrating spherical, is given by the

expression

o an
(n+4g)(g —n)

We remark that in this casgng > 0 provided thai < g.

If the coupling coefficient.ng, which describes the strength of the interaction betweentthandgth eigenstates,
vanishes in a one dov quantum billiard, then the two eigenstates under consideration do not couple with each other
We showed in a previous study that whether or not two states in vibrating quantum billiards couple with each
other depends only on their relative quantum numlij4@3. If they are not coupled, the situation corresponds
mathematically to that obtained with one-term superposition states. That is, the classical equations of motion for the
billiard boundary take the same form, except that the electronic kinetic energy is different. The quantum dynamics
of the particle enclosed by the boundary is enslaved to the classical motion of the walls but does not itself affect that
motion (aside from determining the values of the energy parameterd/e hence assume the interaction strength
is nonzero so that we have a new dynamical situation to discuss.

Transforming the amplitudequations (16ysing Bloch variables (s€eg. (B.6) yields the following equations
of motion:

MUng = n<4gq. (19)

P . _ wox 5 _ 2tngPX
a? Ma = 27 a2 “Ma
g P > A4 2[6+ + 67(2 - ,unqx)]
w7 : 20
N ba " @ (20)
In (20),
€ — €n
- ’ 21
e (21)
and
€+ = %(en +e,), 22)

wheree, ande, (n < g) are the coefficients in the kinetic energy.
The equilibria for the dynamical syste(®0) satisfyx = y = 0,z = £1,a = a,, and P = 0, where the
equilibrium radii{a,} are solutions of the equation

oV 2
(@) = e k), (23)
da az
so that
A% 2¢

@) =g, je(l2 (24)
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For the harmonic potential

\%
V(a) = —(a — ao)?, (25)
)
one obtains equilibrium radiiL that satisfy

ekag

a—aQg = ——-5
0 V0a3’

k € {n, q}, (26)
where the subscript corresponds tg = +£1. Whenz = +1, the system is entirely in thgth state, whereas when
z = —1,the systemis entirely in theth state. One may show that each of the present system’s equilibria are elliptic as
longasV (a)+K (a) has a single minimum with respecttorl hatis, every eigenvalue of the Jacobian of the linearized
system is purely imaginary. For the system at hand, one eigenvalue is identically zero—corresponding to the row in
the Jacobian matrix arising from the derivatives@f, P, x, y, z) = f3(a, P, x, y, z)—and the other four constitute
two pure imaginary complex conjugate pairs when this ellipticity condition is satisfied. When this condition is not
satisfied (such as with a double-well potentialvith a suitably large central mound), one observes generalizations
of saddle-center bifurcatio86]. Moreover, different potential® (a) may exhibit additional equilibria, although
each of them corresponds to the manifestation of a single normal mode. However, as the energy of the normal mode
varies with the displacement we may obtain several different pure state equilibria corresponding to the same
state (such as the ground state), but with a different frequency and energy because it is associated with a different
equilibrium value of the nuclear displacementThis occurs only when at least one of the equilibria violates the
ellipticity condition, so one cannot guarantee the stability of these new equilibria a priori.

The five-dimensional dynamicafjuations (20gxhibit quantum chaos for some initial conditions, as can be seen
in Poincaré sections in the, P)-plane Fig. 1) and the(x, y)-plane Fig. 2) as long as the fixed-boundary (fb)
gquantum numbers of the two superposition states are the gHhgThis occurs exactly whepng is nonzero.)
We used the harmonic potential for both plots. As discussed in prior Wa840], one has a classically chaotic
subsystem (described by the Hamiltonian variablesd P) coupled to a quantum chaotic subsystem (described
by the Bloch variables, y, andz). The present system is thus semiquantum ch@}id/Ve note that unlike with
one-term Galérkin projections, the normal moggsandy, are not only nonlinear but also chaotic (because the
radiusa(¢) behaves chaotically). Such wave chaos in a quantum system is a signature of semiquantum chaos.

Vibration Billiards
34.1647

342273 . .
-0.11546 4.62474

Fig. 1. Poinca section for the cut = 0 in the(a, P)-plane.
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Vlbratm‘g, Billiards

Fig. 2. Poincag section for the cuP = O projected into théx, y)-components of the Bloch sphere.
5. Three-term expansions

Let us now extend our analysis to three-term superposition states. Insert the wave
V@) (X, 1) = Ay (Vg (6, 1) + Ang (O Py (x, 1) + Apg (D) Png (x, 1), (27)

which is a superposition ofy, n2, andng eigenstates, into the Schrodingeuation (5) Taking the expectation of
both sides of5) for the statg27) of a one dov quantum billiard yields

hZ
<1/f<3) —%Vzw@ = K (A |2 |An, |, |Ang|?, @),
AV o . . .
|h<¢(3 RAAC/ . W[ Any AL, + Apy A, + Apy A Ay A%+ Apg A%+ Apg A% + Vpyny | Ay 12

2 2 * * %
+ Vnona | Ana ™ + Vngng | Ang|” + annzAnlAng + Vﬂ1n3An1An3 + VnznlAnzAnl

* * *
+ Viong Any Apy + Vngng Ang Ay, + "nsnzAnsAnz]

3
=ih Z A A, —i—Zvn nil AP+ D vnn An AL | (28)
i,j=li#j i,j=1i#j
DenotingA,; asAj, the quadratic forni28) gives
3
iAr =" DyjA;. (29)
j=1
where
€1 i a i a
a2 12— 113
. a €2 . a
D=Dyg=|ip- —> —ipsa— |- 30
ki p2— pas (30)

. a . a €3
In13— 23—
a a
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the parametet; = e, is the jth energy coefficient, andij = pn,n; = —pn;n; # 0 is a coupling coefficient for
the cross termi,, A* (which is defined as before). The interaction streryg}hs nonzero when the fb quantum
numbers of they; th andnjth states are the same. When coupling coefficients vanish, the situation reduces to ones
examined previously. If they all vanish, the present system is integrable. If two sets of them vanish (because one
of the eigenstates has a different set of fb quantum numbers than the other two), then the dynamics of the present
system corresponds to that for two-term superposition states. We thus assume without loss of generality that none
of the coupling coefficients vanish, so that we are considering a new physical situation.

We transform the amplituded 1|2, |A2|?, and|A3|? using a GBT (seéppendix B. This yields nine variables
and five constraints, which implies that the system has two independent quantum-mechanical dof. One can also
count these dof in a different manner. The present situation involves three complex amplituc@sesponding to
six real variables. The sum of their squares is unity (by conservation of probability) and the dynamics of the present
system are invariant under global phase shifts. Consequently, there are four independent real variables and hence
two dof.

Using GBVs, the kinetic energy may be expressed as

2 _ _ _ 2 _ _ _
K = @([212612 + 213613 + 223€03] + €4) = @([zlzelz + (212 + 223)€15 + 223€ 53] + €4), (31)
where
€ = %(61 — €k) (32)

as before and
= %(ek + e+ €n). (33)

The equations of motion describing this three-term superposition states are thus

. w12 2pn12Pz2 P
Y= ——g vz — o — glHesvis + pases).
a Ma
e 1B 2#13P(212+ 223) _[ Y
13= ——5 V13 Ma Vialh2sriz — H12v2a

. w23 21u23P23 P

== R e 4
X23 2 )23 va T malieiiz + iz, (34)
. wlZXlz . w13X13
V2= —o5— + —[M13y23 — j23y13], y13 = + —[M23y12 — j12y23],
. w23X23
Y23 = + —[M12y13 — pasy12l, (35)
. 2p12Pxa2 . 21u23Px3 P

_ 2mPxz P _ , _ S | 7 - , 36
212 Vo T gliistis — nesve] 223 Ve malistis — ke (36)

P oH . V. 9K oH
g= L 200 p_ 0V 0% _ 97 37)
M d da da da
where
0K 4et 4 _ _ _
90 33 @[212612 + (212 + z23)€13 + 723€53] + 5> 3a3 55€12(2012X12 + 1413X13 — U23X23)
2 2
—3€13(112x12 + 2113%13 + 1423%23) + S5 €0a(—M12X12 + 113X13 + 2U23X23) (38)

33 343
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since

dz12  0z120t  z12  2uizx12 1
f—=————+jmym—M%M,

da 3t da a a
0z23 0723 Ot 223 2ua3xzz 1
—_— = = —M + _[Ml3-xl3 - /“l’llez]' (39)
da Jdt da a a a
Additionally, recall that
€ — €k
— ] 40
oa=2 (40)

The equilibria of the present 10-dimensional dynamical syg8ifysatisfyP = 0, xjj = yjj =0, z§2+ 212223+
z2,=1,and
kA% 4 _ _ _
= @[EJF + 210615 + (212 + 223)€13 + 223€53]. (41)
Applying the constraintéB.11)with xjj = yjj = 0 shows that there are three possible sets of values ferhech
variables:

(z12, 213 = 212+ 223, 223) = (0, 1, 1), (1,0, —1), (-1, -1, 0). (42)

Each of these equilibria corresponds to one type of pure state, as expected from our physical intuition. Let us
consider each of these in turn.zif> = 0, then|A1|2 = |A2|2 = 0 and|A3|? = 1, so the only state present is the

third one. Ifz13 = 0, then only the state with complex amplitude gives a nonvanishing contribution. Finally, for

z23 = 0, only the first pure state is present. When only ttiestate is present at equilibrium, it has kinetic energy

=,
as

E;=

wherea, is the equilibrium radius. This, therefore, corresponds to the expected generalization from two-state
systems to three-state systems. The relgddnbecomes

_(a*) = _3'7 ] € {17 27 3}, (44)
a a

which is the exact equilibrium relation we derived for one-term and two-term superposition states. The total number
of equilibria depends on the form of the external poteniiéh) just as for two-term Galérkin projections. That
is, V (a) determines the number of equilibrium radii for each pure state equilibrium. Mixed-state equilibria cannot
occur.

When calculating the eigenvalues of the present system’s equilibria, the degree-10 characteristic polynomial
always has two zero roots that factor out. This follows from the equations of motion forBih@ch variables.
One then factors the remaining degree-8 polynomial to determine the nontrivial eigenvalues. The present system is
Hamiltonian, so the remaining polynomial is a degree-4 polynomied iiVioreover, as this system has three dof, its
equilibria have only three eigenvalues that give independent information. An equilibrium is elliptic whenever each
of its associated square eigenvaliéss negative. We may conclude by physical considerations (although we will
not prove this rigorously) that—just as for two-term superposition states—all the equilibria are elliptic provided the
guantity

E =V(a) + K (zjj, a) (45)

has a single minimum with respect to the displacemewWhen this happens, the time-derivative of the momentum
vanishes exactly once if one varieguasistatically by holding theBloch variables (and hence the probability am-
plitudesA ;) constant. Inthis event, there is exactly one configuration of the boundary corresponding to each pure state
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Billiards: 3-Term Superposition
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Fig. 3. Poincag section for the cut;2 = 0 in the(a, P)-plane for a three-term superposition state. This plot shows fully chaotic regions similar
to those often observed in two-term superpositions.

equilibrium. Ifthere were some sort of saddle structure (equivalently, if one or more of the equilibria were not elliptic),

then P would necessarily vanish at multiple displacementfor each of the normal modes in question. The tran-

sitions in question are generalizations of saddle-center bifurcations, as shown explicitly for two-term superposition

states in a previous wofB6]. (For one-term superposition states, one obtains canonical saddle-center bifurcations.)
We investigate the dynamics Bfy. (37)numerically when the billiard resides in the harmonic potential

Via) = K2(61 — ap)?, (46)
)
for which all equilibria are elliptic since the electronic kinetic enekgig positive definite. As expected, the behavior
of the present system is more intricate than that observed in two-term superposition states. For some choices of
parameters and initial conditions, however, one obtains plots whose dynamics are very similar to those for two-term
superpositionskigs. 3—15display plots exemplifying the dynamics of a three-term superposition consisting of
the ground state and the first two null angular-momentlm 0, m = 0) excited states of the radially vibrating

Billiards: 3-Term Superposition
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Fig. 4. Poinca section for the cuti» = 0 in the(a, P)-plane for a three-term superposition state.
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Billiards: 3-Term Superposition
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Fig. 5. A closer look at part of the Poinéasection for the cut;2 = 0 in the(a, P)-plane for a three-term superposition state.

spherical quantum billiard. We used the parameter vatues1, M = 10,m = 1, ¢; = n2/2m ~ 4.9348022,
€2 = 4n?/2m ~ 19.7392088¢3 = 972/2m ~ 44.4132198Vp/aZ = 5, andag = 1.25. The resultant coupling
coefficients areu12 = 4/3, u13 = 3/4, andu23z = 12/5. Fig. 3shows a Poincaré map (of the aup = 0) projected
into the(a, P)-plane. The initial conditions for this plot ag>(0) = sin(0.957) ~ 0.156434 x13(0) = x23(0) =
0, y12(0) = y13(0) = y23(0) = 0, z12(0) = c0s(0.957) ~ —0.987688,z23(0) = 0, a(0) ~ 3.3774834, and
P(0) ~ 7.2847682. In subsequent figures, we alter only the initial radius and conjugate momentum. The initial
values of the Bloch variables correspond to those used in a previous study of two-term superpositif#B8sd&lies
Fig. 4shows thex12 = 0 Poincaré map projected into te, P)-plane. The initial radius ig(0) ~ 2.2095438,
and the initial momentum i®(0) ~ 3.6672913. The dynamics in this figure are almost integrable, but a closer
look reveals chaotic characteristics ($ég. 5. There is evidence that this trajectory is near an orbit with period
6, although an additional plot reveals that another of its dof has departed quite a bit from a periodic or even

Billiards: 3-Term Superposition
9.652 T T

-9.65428 Tl L
0.75128 24

Fig. 6. Poincag section for the cutyz = 0 in the(a, P)-plane for a three-term superposition state. The initial conditions are the same as for
Fig. 4
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Billiards: 3-Term Superposition
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Fig. 7. Poincag section for the cuP = 0 in the(x12, y12)-plane for a three-term superposition state. The initial conditions are the same as for
Fig. 4

quasiperiodic configuratiorkig. 6 shows thexoz = 0 Poincaré cut for the same initial conditions. The chaotic
behavior in this plot is less ordered, which demonstrates a different level of “excitation” corresponding to different
coupling coefficients and hence to differénabhdamental coupling modes the system. (We use the term “mode”
loosely in the present context. We are not referring to the eigenmodes of the wavefunction.) The Poincaré maps
for yj = 0 show behavior similar to that of the correspondijg= 0 cut. Fig. 7 shows theP = 0 Poincaré

map projected into théxi,, y12)-plane of the Bloch ellipsoidrig. 8is the same configuration projected into the

(x13, y13)-plane. Notice that this latter figure appears to be have departed further from an integrable configuration
than the former one. Again, different coupling modes can experience different degrees of excitation or departure
from integrability. Thatis, @ dof system may exhibit different levels of chaotic structure inits different fundamental
coupling modes, each one of which represents the interaction of one pure eigenstate with another. Heaca, for

we have three modes in this sense, corresponding to the three possible twofold interactions between the eigenstate:
¥ ;. Itis possible that an action—angle analysis of the present system will illuminate these features.

Billiards: 3-Term Superposition
0.0923636
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x13 0.0779271

Fig. 8. Poincag section for the cuP = 0 in the(x13, y13)-plane for a three-term superposition state. The initial conditions are the same as for
Fig. 4
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4.96235
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Fig. 9. Poincag section for the cut;» = 0inthe(a, P)-plane for a three-term superposition state. The behavior in the plot appears quasiperiodic.

Fig. 9shows ar12 = 0 Poincaré cutin thé:, P)-plane corresponding to the initial condition®) ~ 1.8685499
and P(0) ~ 0.6140458. It appears to display quasiperiodic motion, but a portion of the same plot suggests that
it is not quite integrable (sefeig. 10. KAM theory also implies that this is the case, as any nonzero perturbation
from an integrable configuration will cause some chaos (although it may be so small as to be impossible to resolve
numerically)[19,48] Moreover, a close-up of the same plot in the, z23)-plane Fig. 11) reveals chaotic behavior
in the Bloch variables. Unlike the classical variables,#tgloch variables appear to have departed quite a bit from
integrability. Hence, we see that it is possible for the classical variables to behave in a nearly integrable fashion,
while the quantum variables behave quite chaotically. In principle, moreover, we expect that a parameter regime
can be found in which the quantum subsystem is very chaotic and the classical subsystem is almost completely
integrable. (In close-ups of most regiongag. 9, in fact, the behavior still appears to be integrable.) In such regimes,
the eigenstates (which depend on the nuclear varigblell appear integrable in simulations of trajectories and

Billiards: 3-Term Superposition
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Fig. 10. A close-up of a portion of the Poinéasection for the cut;, = 0 in the (a, P)-plane for a three-term superposition state that was
shown inFig. 9. This zoomed view reveals a small region which suggests that there may be some chaotic behavior.
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Billiards: 3-Term Superposition
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Fig. 11. Poincag section for the cut;2 = 0 in the(z12, z23)-plane for a three-term superposition state. The behavior in the plot displays chaos.

Poincaré sections, whereas their probabilities of expression exhibit chaotic structure. Thatfslfbelectronic
near-degeneracies with> 3, one may simultaneously observe a chaotic electronic structure and a nuclear structure
that cannot be distinguished in practice from being integrable. Further plots suggest that the present configuration
is almost integrable with respect to the coupling between the ground state and first excited states but chaotic with
respect to the other couplings. A Poincaré section in(&heP)-plane corresponding to the cutz = 0 (Fig. 12

reveals chaotic characteristics, lending further credence to this possibility. Time $egesl3—15% suggest the

same phenomenon. Time series for the correspongiBipch variables reveal similar features, whereas time
series for the radius and momentum reveal motion that is almost regular. Based on the observed behavior of the
classical and qguantum-mechanical dof, it seems that this configuration is one for which the only irregularities of the
dynamics of the radius and the momentum are ones that are extremely difficult to observe numerically. In turn, the
eigenfunctions are very regular. Nevertheless, there is some chaotic structure due to the coupling between the first
and second excited electronic states. The presence of a triple electronic near-degeneracy has given rise to a situatior
in which the ground state is almost integrable but the interaction of the two excited states is not.

Billiards: 3-Term Superposition
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Fig. 12. Poinca section for the cutz = 0 in the(a, P)-plane for a three-term superposition state. The behavior in the plot displays chaos.
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Billiards: 3-Term Superposition
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Fig. 13. Time series ir12(¢) from = 0 to 25 revealing near-integrable behavior.

Though we often observe plots that show similar features as those from two-term superposition, the dynamics of
the present case are far more complicated. We have already discussed, for example, the simultaneous occurren
of regular and chaotic behavior corresponding to different fundamental interactions (coupling modes). The present
system has three coupling coefficiefits 2, 113, 123} rather than only one. Each of these coefficients corresponds
to an interaction between two of the system’s normal modes. There are parameter values and initial conditions for
which some of these interactions are “excited” (chaotic) and others are not. Hence, the present system has thre
fundamental interactions rather than one. If one of them is “excited”, one observes chaotic behavior. (Only two of
these relative frequencies are independent.) This leads naturally to the notioncofriheensurabilityf normal
modes (eigenstates), which generalizes the use of this term in the context of oscillators. In general, two frequencies
are called “commensurate” when their ratio is rational. In the canonical example of geodesic (constant velocity)
motion on a torus (and hence also for constant velocity motion on a stationary rectangular billiard), the angle of
the motion with respect to the base of the rectangle is determined by the relative frequency (and hence speed

Billiards: 3-Term Superposition
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Fig. 14. Time series imy3(¢) fromr = 0 to 25 revealing chaotic behavior.
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Billiards: 3-Term Superposition
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Fig. 15. Time series im3(¢) from ¢t = 0 to 25 revealing chaotic behavior.

of the horizontal and vertical motions. In the commensurate case, one obtains periodic motion, whereas in the
incommensurate situation, the motion is quasiperifii¢48]. In terms of KAM theory, commensurate frequencies
correspond to resonant tori (which are destroyed by all perturbations from integrability), and incommensurate ones
correspond to nonresonant tori (some of which survive depending on the strength of the perturbation and how
poorly the irrational number in question is approximated by a rational number). In the present situation, there are
three fundamental interactions, of which two are independent (because the system has two quantum-mechanical
dof). In the present context, two eigenstates are said to be “commensurate” when their interaction is regular (up
to the precision of our numerical simulations) and “incommensurate” when it is chaotic. In the latter case, the
corresponding fundamental coupling mode of the two eigenstates has been excited and clearly displays chaotic
features.

In general, when all the frequencies are completely excited, one expects to observe plots without KAM islands
(or with very few islands), whereas if one or more of the frequencies is unexcited or partially excited, we observe
complicated KAM island structures. (That is, there are regions of both chaotic and integrable behavior.) To phrase
the above analysis more rigorously, we remark that a two-term superposition state approximates an infinite dof
Hamiltonian system (which describes the full dynamics of the vibrating billiard) with a two dof Hamiltonian
system. As discussed previously, a two-term superposition state may be used to describe the nonadiabatic dynamics
of twofold electronic near-degeneracies in molecular systems. From a mathematical perspective, one ignores the
other dof of the vibrating quantum billiard. Although these dof contribute non-negligibly to the dynamics of the
billiard from a mathematical perspective, they are justifiably ignored on physical grounds. Likewise, three-term
superposition states yieldtareedof Hamiltonian system to describe nonadiabatic dynamics in molecular systems
near triple electronic near-degeneracies. As a result one may observe more intricate behavior. In particular, this
implies that if a single nuclear dof of a molecular system is excited, it must have at least a triple electronic
near-degeneracy in order to exhibit Arnold diffusion, cross-resonance diffusion, and other forms of resonant chaos
[22,29] Arnold diffusion has been studied in a two-dimensional Fermi bouncing-ball (“accelerator”) [Ace|
Vibrating quantum billiards are a more general form of the Fermi accelerator model, so one expects to find Arnold
diffusion in vibrating quantum billiards with three or more dof. In the context of molecular vibrations, a molecule
with one excited nuclear mode, for example, must have at least a triple electronic near-degeneracy in order to
exhibit Hamiltonian diffusion. Such behavior may thus have important consequences to nonadiabatic dynamics in
polyatomic molecules, nanomechanical devices, and other mesoscopic sygte3hs16,50]
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6. d-Term expansions

We extend our analysis th-term superposition states. Insert the wavefunction

d
V(e t:a) =Y Ay (O, (x. 15 @), (47)
j=1
which is a superposition efst throughnsth eigenstates into the Schrédingeguation (5) Taking the expectation
of both sides of5) for the statg47) of a one dov quantum billiard yields a generalization of the formulas obtained
above(14) and (28)

[ 2 2
V() —EV Viay ) = K(Any | ... [An 1% a),
oy d d d
ih<1/f '¥> =in| D AwAL Y venlAnP 4 D v AnAL | (48)
i, j=Lli#]j i=1 i, j=1ij
DenotingA; = A,,, the quadratic forn48) leads to the following amplitude equations:
d
iAr =) DyA;. (49)
j=1
In (49), the diagonal terms of the Hermitian matiix= Dy; are
€ng
Dk = 50
k=75 (50)

and the off-diagonal terms are given by
: a
ij = _Ill’nknj;' (51)

The parametefj = Mngnj = —Mmen; 7 O is the coupling coefficient for the cross temgkA;’;j. If a coupling
coefficient vanishes, the present situation reduces to a lower-dimensional case, so the assumption that none of the:
coefficients vanishes does not remove any generality.

We transform the complex amplitudds to real variables using a GBT

XK = Pkl + Pk Yk = (o — Pk, 2K = PIl — Pkks (52)
wherek < . Because; j+s = zii+1+ -+ + Zi+s—1.i+s, the GBVs are constrained to parameterize the surface of
a(d? — 2)-dimensional ellipsoid:

d

d
> [E(xi,? + ) + zﬂ =d -1 (53)

ij=Li<j

As discussed previously, there are additional constraints on the Bloch variables. They are derived with essentially
the same calculation as for three-term superposition states, although it is significantly more tedious. With the
transformation(52), the kinetic energy may be expressed as

K = % |:sz|6|5 +e+:| , (54)

k<l
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where
g = 3(e — &) (55)
and
14
et = > Z €. (56)

One obtaingd — 1)d/2 equations of motion for the-Bloch variables(d — 1)d /2 equations of motion for the
y-Bloch variables(d — 1) equations for the-Bloch variables, and Hamilton’s equations foand P. This gives a
total ofd?> —d +d — 1+ 2 = d? + 1 coupled nonlinear ordinary differential equations. The equatiosiftakes
the form

d
gj=——t =S Y e, (57)

2
a Ma Ma k=1 kg i)

wherewjj = (¢; — ¢;)/h as before and the terms in the sum are all negative in the equatianfofhe terms
in the otherx-Bloch variable equations are then determined from consistency requirements. More specifically, the
Bloch variables are constrained to be on a subset of an ellipsoid. One differentiates the expression describing this
constraint (seédppendix A to obtain the equation
d
Y [dCeiki + yijdip) + 2] = 0. (58)
ij=1li<j
In order to satisfy(58), the signs of the terms in the sumkig. (57)must cancel each other out appropriately. One
can thereby determine all the appropriate signs in the equations of motion feBioeh variables from the known
signs in the equation for o, as the terms in question (that are of the fasimy) all come from dynamical equations
for otherx-Bloch variables.
The equations of motion for the-Bloch variables take the form

d
Yij = ;2” T Va Z E(ikXkj — HjkYik), (59)
k=1k¢{i,j}

where all the terms are positive in the dynamical equatiopferand the signs of the terms in the other equations
are determined using this fact agd. (58) The equation fot; ;1 takes the form

d

‘ Mii+1PXit1 P

Zii+l = 2# + — Z [ikXik + Mk,i+1Xk,i+1], (60)
k=L ke(i,i+1)

because all terms withas the left subscript ofi + 1) as the right subscript are necessarily positive. To obtain
Eq. (60) we used the fact thatnqg = —qn. Hamilton’s equations,

P 9H . 3V 9K 9H
i=—=- p=_22_"2_ %7 (61)
M~ 9P

are derived as before using the kinetic and potential energies and the dynamical equationsBlothevariables
(60). In particular, one computes that
d d
0K 4 2
- we T + = - - . Sy
9 - da . Z .ZUGU +€ + da3 & 2 xij + Z ' [wikxik + 1kjxig] . (62)
i,j=1li<j k=1k¢{i,j}
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The equilibria of the preserit/? + 1)-dimensional dynamical syste(87) and(59)—(61)satisfy P = 0, xjj =
¥ =04 1, ;2 =d—1 and

d

oV 4

- + e

a_a_@ € + Z 'Z”Gij . (63)

i,j=li<j

The jth equilibrium corresponds to thigh complex amplitud¢A ;| having a value of unity and all others vanishing.

That is, every equilibrium corresponds to a pure eigenstate with energy
26j

Ej= a_f’ (64)

wherea, is the value of the displacement at equilibrium. EadBloch variable must have a value of either 1, 0,
or —1 at equilibrium. As a result, the conditi¢e3) may also be expressed as
A% 2¢;
—(a)=—5, jefl,....d}, (65)
da az
as shown previously faf = 2, 3. Depending on the form of the external potentidl), there may be more than
one equilibrium corresponding to thiéh normal mode. If all the equilibria are elliptic, however, there can only be a
single equilibrium corresponding to a given pure state. That is, if one wades holds the probability amplitudes

constant, the time-derivative of the momenténtan vanish precisely once. Thus, since

P=——7— —, 66
da da (66)
it follows for d-term superposition states of one dov billiards that if the energy
E = V(a) + K (zij, @) (67)

has exactly one minimum with respectdgthen all equilibria are elliptic. In particular, every equilibrium is elliptic
for any single-well potentiaV (a) (including the harmonic potential).

7. Infinite-term expansions

In order to discuss the infinite-term Galérkin expansions that corresponds to the exact dynamics of the system, we
treat things in a more abstract context. (We do not consider infinite-term projections in which a finite number of terms
are ignored.) A vibrating quantum billiard on ardimensional Riemannian manifold, g) has wavefunctions
defined on the Hilbert space

H = L3X||x;| <1.dx) (68)

of square-integrable wavefs with Lebesgue measurerd41]. In the above space, the parametet {1, ... , s}
represents thgth coordinate. Althoughx;| < a;(z), observe that each coordinate is normalized to unity. The
time-dependent boundary componenté) of the billiard appear only as scaling factors in the wavefunciidn

the Born—Oppenheimer approximation. That is, the wavefunatigmexpressible as

s » X
Iﬁ(xj(t),t;aj(t))=]l_[:10j(f) ]w(ajgt)’t) €H, (69)

wherec; is the power otz; needed for normalization. IBq. (69) the variable displacements appear as constant
normalization factors in front of the molecular wavefunctiband as scalings of the relevant displacement variable.
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One may therefore incorporate this scaling in the definition of the Hilbert Siécevhich the wavefunction resides.
A single normal mode),, has the normalization factor

Cj 1_[ a; (l‘)a-/ s (70)
j=1

wherec; are constants that may be different for each normal mode. On the other haag;dbpendence in the
normalization factor is the same for each eigenfunction.

Using this geometric description, we see that vibrating quantum billiards have an infinite-dimensional Hamiltonian
structure with Hamiltonian given by the energy

E[v, a,al :/

{lxjl<a;}

S
M; .
||v¢||2dx+271a12.+ Vi, ..., a). (71)
j=1

Usinga; = P;/M;, we obtains equations describing the mechanical motion of the billiard boundary:

My =B == [ yvulPdo - 5 (72)
{lxjl=a;} aj

where & (x) is a Lebesgue measure on the boundary of the billiard. Finally, note that this formulatior iddor

vibrating quantum billiards.

Now that we have discussed the Hilbert space setting of the present system, let us consider the Lie group structure
of the associated wavefunctign Since the wave is normalized, we immediately restrict ourselves to the unitary
group onC?, whered is the number of terms in the superposition state. Because of their scale-invariance—two
wavefunctions are equivalent if one is a multiple of the other—wavefunctions may be treated as elements of the
complex projective spac&P¢~1, which is the set of lines ift“, or equivalently the sef?/{change of scal@slf
one is not taking a Galérkin truncation, thén= oo and one has a basis of infinitely many normal modes with
coefficientsA; € C. In this case, we are dealing with the groGf° and henceCP*. The infinite-dimensional
projective spac€P is given by the union

cp> = | Jcp/. (73)

j=0

Itis well-defined because of the embeddi®y < CP/*+1, which is defined by appendira 0 to thdast coordinate
of any pointz/ € CP/.

By conservation of probability, the sum of the squared amplituuel(;':s2 is unity. This entails restrictions on the
density matrixojk = A ; A}, which we may write as a projection operator

p =P, (74)

whereP, v = (¥, @) for the{p}-basis. For a given basig ; }, a wave function is determined by its amplitude tuple
{Aj}={Amy. ..., Am,....}. Conservation ofprobabilit)E‘]?:1 |A ;1% = 1, follows from the fact thatr € U(C?).
Furthermore, as the global phase of wave-functias unimportanty is actually an element of the quotient group
u(c?)
= 75
(€1}’ (75)
where{€? 1}, the set of all global phase shifts, is the center of the gro(*ll (Recall that the center of a group
is the subgroup whose elements commute with every element of the @rojupn a q_uantum-mechanical setting,
this corresponds to the set of all global phase factorsl)idffinite, themy € U(d)/{€?1}. There is thus a natural
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action of the group ) /{€?1} : C? — C? which induces an action froP¢~* to CP¢~! by the invariance of
wavefunctions under scaling. The grougdJ/{€ 1} is the invariance group of the action described above. In the
infinite-term case, one similarly has an action

u(C?)

Pk CP® — CP® (76)

under the invariance group(Q¢)/{e?1}.

In the present abstract setting, one defitre® be an element of its invariant Lie group, as on the normalized
Hilbert spaceH (in which the time-dependence af:) makes no difference), it is completely determined by its
coefficientsA ; (and hence by its associated Bloch variables):

v =Y Ay (77)
J

This leads to another way for determining well-posedness of vibrating quantum billiards. One can do this with
Hilbert spaces (as we did above), or one can simply proceed by hand. Using the latter perspective, the vibrating
quantum billiard problem is well-posed by choosing a basis of eigenfundtiprisaccompanied by initial complex
amplitudesA ; (0).

In the action of the invariant group, one generally has@nl1 map. However, if one restricts one’s attention to
thefinite-dimensionasubgroup Wd)/{€? 1} c U(C>)/{€?I}, one instead obtainsa: 1 map. This procedure is
equivalent to taking d-term Galérkin projection. In general, fér> n (includingd = co), one obtains an : 1 map
by restricting the wave-functiotr € U(n)/{€?1}.) In other words, the act of takingdaterm Galérkin projection
corresponds to restricting the Lie group in which the wave-function resides. (The fact that thedandpimplies,
for instance, that one takesroots of unity in the inverse map.) This, in turn, is accomplished by restricting the
coefficient tuple{A ;} to be an element of“ (and retaining the invariance properties of the coefficients that are
consequences of the invariance propertieg pf

By consideringd-term superposition states, we thus see that the Lie algelyd (e’ J} of the Lie group
U(d)/{eiel} isisomorphic to the Lie algebga(d) of su(d). However, their associated Lie groups are not themselves
isomorphic. Wherd is odd, for example, (H)/{eigl} has a trivial center, whereas! is in the center of S().
Moreover, wheni = 2, the group W2)/{€’1} is isomorphic to the rotation group $8), which is not isomorphic
to SU(2), as the latter group is simply connected and the former is not. Nevertheless, because their Lie algebras are
isomorphic, there necessarily exists a map from the neighborhood of the identity of one group onto a neighborhood
of the identity of the other group which is a homomorphism where it is defined. In other wotdy/{6? 1} and
SU(d) are “locally isomorphicT15].

As briefly mentioned above, the analysis in the present section shows that the vibrating quantum billiard problem
is well-posed whether or not one approximates the system with a finite-term superposition (Galérkin projection).
This follows from the well-definedness of the Hilbert space structure. We note that we did not need to form a basis
of eigenstates in order to demonstrate this. Nevertheless, the well-posedness of the present problem may also k
demonstrated using such an explicit basis.

In addition to discussing the symmetries of vibrating quantum billiards, one may utilize infinite-term Galérkin
expansions to write such systems as infinite sets of coupled nonlinear ordinary differential equations. The dynamical
equations for the complex amplitudes are given by

o0
iAk = Z DyjAj, (78)
j=1
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where the matrix elementBy; are defined as before. Although the dynamics of the quantum dof of vibrating
quantum billiards can be written usitgy. (78) it is not convenient to analyze these systems in this manner. Using
an action—angle formulation would simplify the resulting equations, but for now we stop at the present geometric
treatment. With such analysis, the techniques of geometric mecHatijaniay eventually prove quite fruitful for
vibrating quantum billiards and related molecular systems.

8. d-Term expansions in quantum billiards with two or more dov

The ideas discussed in the present paper may also be applied to quantum billiards with more than one dov. Recall
that the dov of a quantum billiard refer to the classical dof describing the dynamics of the billiard boundary. Thus,
a two-mode Galérkin expansion of a two dov quantum billiard has three total dof (as there is also one quantal dof).
Such a configuration could therefore exhibit Hamiltonian diffusion. An important difference between such systems
and those discussed previously are the relative numbers of fast and slow dof. That is, a two-term superposition state
of a two dov quantum billiard is very different from a three-term superposition state of a one dov quantum billiard,
even though both problems are three dof Hamiltonian systems. The former system has two slow dof and one fast
one, whereas the latter one has one fast dof and two slow ones.

9. Conclusions

We considered superpaosition states of various numbers of terms in order to analyze vibrating quantum billiards
from a semiquantum perspective. We discussed the relationship between Galérkin methods, inertial manifolds, and
other differential equations such as NLS equations. We then studied vibrating quantum billiards by considering
one-term, two-term, three-terni;term, and infinite-term superposition states. We derived a GBT that is valid for
any finite-term superposition and numerically simulated three-mode Galérkin expansions of the radially vibrat-
ing spherical quantum billiard with null angular-momentum eigenstates. We discussed the physical interpretation
of d-term superposition states in termsdfold electronic near-degeneracies and thereby justified the use of a
Galérkin approach to the study of vibrating quantum billiards. Finally, we applied geometric methods to analyze
the symmetries of infinite-term superpositions.
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Appendix A. Semiquantum chaos

Semiquantum chaos refers to chaos in systems with both classical and quantum comf@néidtisough
typically studied in the context of conservative systems (so that one is considering Hamiltonian chaos in the
semiquantum regime), semiquantum chaos can occur in dissipative systems[a$86|87]

Semiquantum descriptions typically arise from the dynamic Born—Oppenheimer approximation, which is applied
constantly in molecular physi¢4,7,8,35,46]Part of the value of semiquantum physics is that one may observe chaos
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even in low-energy systems, such as nuclei that have been coupled to two-level electronic systems consisting of the
ground state and the first excited state of appropriate symi&sr$5,39] In the setting of quantum chaology (i.e.,
guantized chaos), which s the type of guantum chaos ordinarily considered, one typically focuses on highly energetic
states][9,20,21] Thus, the semiquantum regime is important for capturing the chaotic dynamics of low-energy
states. As this phenomenon has been observed experimentally in molecular $¢6{esesniquantum chaos is an
important type of quantum chaotic behavior.

Both the classical and quantal components of semiquantum systems can behave chaotically. Chaos in the quantul
subsystem manifests in the quantum probabilities. Even the chaotic dynamics of the classical subsystem has quantui
consequences, however, as the quantum normal modes and eigenenergies of a semiquantum system depend on
classical dof. Hence, the wavefunctions of semiquantum chaotic systems exhibit quantum-meuolzar@cdiaos
[8,39]. Additionally, as the lengthscales of the wavefunctions are determined by the classical dof, semiquantum
chaos leads to a chaotic superposition of chaotic normal modes.

To consider the wavefunction lengthscales of vibrating quantum billiards in more detail, note that the displacement
a(t) considered in this work represents a characteristic length of the eigenstates because the argument of each ¢
the normal modes of one dov quantum billiards (before normalization) is proportionafttd=or example, the
one-dimensional vibrating quantum billiaj8,9] contains modes of the following form:

cos (k:ij> , sin <l%> . (A.1)

The inverse displacementr)~! thus plays the role of a wavenumber and) plays the role of a wavelength.
Consequently, chaotic behaviordir) represents chaotic evolution in normal mode wavelengths. The momentum
P(t) measures the change in the wavefunction’s lengthscale, as the dynamics of the wavelengths of each of the
eigenfunctions are described by the motiomofEach of these wavelengths is a constant multiple(of.) This
interpretation also holds for multiple dov quantum billiards—there is a characteristic lengthscale corresponding to
each dov.

The signature of semiquantum chaos in real space is the sequence of intersections with a fixed displacemen
that nodal surfaces make at any instant subsequent to a number of transversfi28ima&s: = 1, the normal
modesy; = v (x, y, z, t; a(t)) each vanish for a countably infinite set of value$xfy, z) (which are determined
by a(t1)). At t = 12 > 11, ¥; vanishes for another countably infinite set of valuegxofy, z), etc. (The notation
¥; is used to denote thgth eigenfunction in a-mode Galérkin expansion.) The number of transversal times in
the sequencér, ... , i} refers to the numbek, which describes how many times the system of interest has been
strobed (i.e., the number of dots in a Poincaré section).

In the language of Blimel and Reinhai®] as well as our previous worR8,38—40] vibrating quantum
billiards can exhibit semiquantum chaos. One has a classical system (the walls of the billiard) coupled to a
guantum-mechanical one (the particle enclosed by the billiard boundary). Considered individually, each of these
subsystems is integrable provided there is a single classical dof. When a vibrating billiard’s classical and quantum
components interact, however, one observes chaotic behavior in each of them. Note finally that quantizing the
motion of the billiard walls leads to a higher-dimensional, fully quantized system that exhibits so-called quantized
chaod9].

Appendix B. Generalized Bloch representations

In this appendix, we derive a canonical “generalized Bloch representation” (GBR) correspondiftgrio
superposition§l5,49] We begin with a discussion of the geometry underlying this representation, which yields a
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“generalized Bloch sphere” (GBS). We then discuss the cése2 and 3 and briefly generalize the analysis to
higher-term superposition states. kbt 2, we utilize the standard Bloch sphere, whereagifer 3, we make a
transformation by hand to obtain variables that are more convenient for our analysis than the canonical GBR.

The appropriate function space ofleerm Galérkin projection is d-dimensional Hilbert spac#. The group
End(X) of linear operators (“endomorphisms”) oviéiis metrizeable in several manngt3]. In the present context,
we use the metric

d(A,B)z\/%(A—B,AT—BT) (B.1)

induced by the Hilbert—Schmidt inner prodyet, B). The Lie algebra of Hermitiasd x d traceless matrices:(d)
is a D-dimensional p = d? — 1) real subspace of ErHl{) [15]. We choose a basi{s:j}?:l of su(d) so that

(tj, ) = 26jk. The setB; of Hermitian operators with unit trace isi2-dimensional hyperplane of Erdj. Any
elementp € B1 may be written in the form

1 1L
p(x)=31+ézlxjrj, (B.2)
/:

where the vectok = (11, ..., Ap) € RP is the GBR ofp. Eq. (B.2)defines a map: : By — RP that associates
with any p its GBR vector, sp = p[m(p)] [49].

Suppos®? is endowed with the canonical Euclidean inner product st ¢ R? be the(D — 1)-dimensional
hypersphere with radius

Ri= |2 (1_ 3) (8.3)

and letBp be the ball bounded by”~1. If d = 2, one finds thak, = 1, which recovers the Bloch sphesé. In
the context of the present paper, one transforms the complex ampliudesl A, to (real) Bloch variables via the
transformation

X = p12 + P21, (B.4)
y =i(p21 — p12), (B.5)

wherepgn = A, A’ is the density matrif27]. BecauseA1|? + |A2|? = 1, it follows thatx? + y2 4 z2 = 1.

Ford > 3, itis more convenient for our purpose to use a slightly different transformation. We therefore generalize
the explicit form of the two-dimensional Bloch transformation rather than the geometric aspect highlighted above.
We construct these transformations ébe= 3 and 4. One should note several facts regarding GBRs. The radii of
“Bloch ellipsoids” (which are described by one of our constraints) depend on the normalizatiorfo§treerators
of su(0). The geometric description above reduces to the standard representatioa: far(Pauli spin matrices)
andd = 3 (Gell-Mann matrices).

Ageneric Hermitian matrix is described By independent parameters. In the present case, however, the constraint

d
tr(p) =Y |4;°=1 (B.7)
j=1

coupled with the fact that the physical manifestation of wavefunctions is invariant under changeslisdhde
phaseof the system reduces the number of Bloch variables by2%e- 2). (The second statement says that one can
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shift everynormal mode by the same phase without altering the physics. However, the relative phases of the normal
modes are very important. The operation of ignoring the system’s absolute phase corresponds mathematically tc
modding out by the grouf®” 1}, where is an arbitrary phase.) This number of Bloch variables does not correspond
to the number of quantum dof of the present system, whieh-isl. (In ad-term Galérkin projection, one has
complex amplitudes and hencé e2al variables. Because of the normalization constraint and invariance under global
phase shifts, one obtain&/ — 2) independent real variables and hef¢e- 1) quantal dof.) Consequently, the nine
Bloch variables for three-term superpositions are accompanied by five constraints, and the 18 Bloch variables for
four-term superpositions require 10 constraints. Thus, this naive construction becomes cumbersome rather quickly
Nevertheless, it can be insightful to derive it for small valueg.of

Whend = 3, there are three complex amplitudés A2 andAs. Fork < [, define

Xkl = Pkl + Pk Yk = (P — Pk, 2K = Pl — Pkk- (B.8)

The transformations (B.8) yields nine variables, so there must be two associated constants of motion, since we see
to describe a seven-“ellipsoid”. (There are then three additional constants of motion, so one is actually considering
subsets of this ellipsoid.) It is apparent thgd = z12 + z23, and one can compute that

Y I3GA + v8) + k] = 2014117 + A2l + 143 =2 1=2 (B.9)
k<l

Definingz1 = z12 andzz = zp3 yields a Bloch seven-ellipsoid with eight generatprs, x13, x23, y12, ¥13, ¥23,
21, z2} and the constraint
3
> (Z i+ Z Yﬁ) +2(2 + o+ 23) =2 (B.10)
k<l k<l
We now derive the other constraints. From the standard Bloch variable constiidtiobserve that
Xy + Yip + 25 = [1 — |43, X3+ i3+ s = [1 — |42/,
x5y + ¥53+ by = [1 — 141712, (B.11)

Taking the square root @qgs. (B.11)produces two constraints:

712 = .x§3 + y§3 + Zgg - \/-sz_g + y%3 + (le + Z23)27

223 = ng + y;|2_3 + (212 + 223)% — \/sz + yfz + z%z. (B.12)
We obtain a final constraint by summing the theegiations (B.11)

2= " \Jxh+ 4+ (B.13)
k<l

Let us briefly consider the case of genefaFork < [, define
Xk = Pkl + Pk Y = 1(pik — o), 2K = Pl — Pkks (B.14)

as before. This yields®/[2 - (d — 2)!] variables, which needs to be reduced®@ — 1) variables. We also
need to find several constraints for the reduced set of variables in order to olgtain 3] independent variables
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(corresponding the system(gd — 1) dof). To find the constraint associated with the Bloch ellipsoid, one needs to
find constants andg such that

d

Yl 4D +28] =8 (B.15)
ij=li<j

The above equation is satisfied if and onlywif= d/2 andg = d — 1. Ford = 2, one obtains the constraint
x2 + y2 4+ 72 = 1. The casel = 3 also reproduces our previous result. Hoe= 4, we find thate = 2 and
B = 3. The relative contributions afj andyjj increase faster than thosezgt so using this explicit GBR generates
ellipsoids rather than spheres fdr> 2. The constraints fo# = 3 are tractable, but things become ridiculously
messy ford = 4. We illustrate this construction in the present paper, but we restrict our numerical simulations to
d <3.

One reduces the number of variables by considering gpbuch thatj — i = 1. Thus, ford = 4, we use the
variablesz12, z23, andzz4 to obtain 15 Bloch variables with a normalization constraint that gives us a 14-ellipsoid.
It follows from Eq. (B.8)that

Zik = pkk — Pi = (pkk — Pjj) + (pjj — Pil) = Zij + Zjk- (B.16)
Applying (B.16) recursively then implies that

Zijits = Ziji+1+ 0+ Zigs—Lits- (B.17)
For examplezi4 = z12 + z23 + z34. The other six constraints for tlile= 4 case are derived from the six equations

X438+ 2 =11 — 1 Al® = A2 (B.18)

wherei, j, k, and/ are distinct indices i1, 2, 3, 4}. Three of these equations take the form

\/qu”LyuZ”ﬁJr Mg+ ya g =1 (B.19)

where all the indices are again distinct. (One then inserts the appropriate relations betweBfotttevariables.)
The other three equations are

— X%+ 2, + 22, + X35, 4 v3, + 25, = z14 + 223 = 212+ 2223 + 234,

2 2 2 2 2 2
- x13+y13+Z13+ x24+y24+Z24= 112+Z347

— X2+ Y2, + 22, \ X5+ v3s + 255 = 712 — 234, (B.20)

where we have utilized the previously derived conditions for#tgloch variables. This analysis, then, gives a
prescription for explicit GBVs to complement the equivalent Lie group formulation presented earlier (for which the
number of dof of the system was not directly evident).

A different transformation to obtain real variables related to the complex amplitidesto use action—angle
coordinate$35,46] In this construction, one defines thih actionn; andkth angled; with the relation

Ap = Jnp ek (B.21)

This produced — 1 dof because of conservation of probability and invariance of wavefunctions under global phase
shifts. In this new notation, conservation of probability implies that the actions satisfy the condition

d

Y me=1 (B.22)
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Analysis of vibrating quantum billiards in this action—angle formulation should be a fruitful endeavor. This formula-
tion, in fact, arises frequently in the chemical physics literature, so there is precedent for this per§fizeit;&80]
Action—angle coordinates have the advantage that the number of quantum dof become more transparent. On th
other hand, the GBR has the advantage that the geometric structure of vibrating quantum billiards (and Galérkin
truncations thereof) is more easily seen. (Moreover, the use of Bloch variables circumvents the need for the so-callec
“Langer modification’[23].) Although we take the latter approach in the present paper, we note that an action—angle
approach will allow more analytical discussions of semiquantum chaos and diffusion. This will thus be the subject
of future work.
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