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Solitary matter waves in combined linear and nonlinear potentials:
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We study statically homogeneous Bose-Einstein condensates with spatially inhomogeneous interactions and
outline an experimental realization of compensating linear and nonlinear potentials that can yield constant-density
solutions. We illustrate how the presence of a step in the nonlinearity coefficient can only be revealed dynamically
and examine how to reveal it by exploiting the inhomogeneity of the sound speed with a defect-dragging
experiment. We conduct computational experiments and observe the spontaneous emergence of dark solitary
waves. We use effective-potential theory to perform a detailed analytical investigation of the existence and
stability of solitary waves in this setting, and we corroborate these results computationally using a Bogoliubov–de
Gennes linear stability analysis. We find that dark solitary waves are unstable for all step widths, whereas bright
solitary waves can become stable through a symmetry-breaking bifurcation as one varies the step width. Using
phase-plane analysis, we illustrate the scenarios that permit this bifurcation and explore the dynamical outcomes
of the interaction between the solitary wave and the step.
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I. INTRODUCTION

For almost two decades, Bose-Einstein condensates (BECs)
have provided a fruitful experimental, computational, and
theoretical testbed for investigating nonlinear phenomena. In
the mean-field limit, a BEC is governed by the Gross-Pitaevskii
(GP) equation [1], which is a nonlinear Schrödinger (NLS)
equation with an external potential. The NLS equation is
important in many fields [2], and many ideas from disciplines
such as nonlinear optics have proven important for investi-
gations of BECs. Moreover, the ability to control various
parameters in the GP equation makes it possible to create
a wide range of nonlinear excitations, and phenomena such
as bright [3,4], dark [5–7], and gap [8] solitary waves (and
their multicomponent [9] and higher-dimensional [10,11]
generalizations) have been studied in great detail using a
variety of external potentials [10,11].

The GP equation’s cubic nonlinearity arises from a BEC’s
interatomic interactions, which are characterized by the s-
wave scattering length. The sign and magnitude of such
interactions can be controlled using Feshbach resonances
[12–14], and this has led to a wealth of interesting theo-
retical and experimental scenarios [3,4,15,16]. In a recent
example, Feshbach resonances were used to induce spatial
inhomogeneities in the scattering length in Yb BECs [17].
Such collisional inhomogeneities, which amount to placing
a BEC in a nonlinear potential in addition to the usual linear
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potential, can lead to effects that are absent in spatially uniform
condensates [18–21]. This includes adiabatic compression of
matter waves [22], enhancement of the transmission of matter
waves through barriers [23], dynamical trapping of solitary
waves [23], delocalization transitions of matter waves [24],
and many other phenomena. Nonlinear potentials have also
led to interesting insights in studies of photonic structures in
optics [25].

In the present paper, we study the situation that arises when
spatial inhomogeneities in nonlinear and linear potentials are
tailored in such a way that they compensate each other to
yield a constant-density solution of the GP equation. We
demonstrate how to engineer this scenario in experiments and
investigate it for a step-like configuration of the potentials. This
situation is particularly interesting because the inhomogeneity
is not mirrored in the BEC’s density profile. Consequently,
this situation is indistinguishable from one with homogeneous
linear and nonlinear potentials when using static density
measurements. We show that the step is, nevertheless, revealed
dynamically in an impurity-dragging experiment [26], and
we observe the emission of dark solitary waves when the
dragging speed is above a critical velocity (which is different
inside and outside of the step). This spontaneous emergence
of solitary waves motivates their study as a dynamical entity
in this setting. We use effective-potential theory to examine
the existence and potential dynamical robustness of dark and
bright quasi-one-dimensional (quasi-1D) solitary waves for
various step-potential parameters. We find that dark solitary
waves are always dynamically unstable as stationary states
inside of the step, although the type of their instability
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depends on the step parameters. In contrast, bright solitary
waves exhibit a symmetry-breaking bifurcation as the step
width is increased, so we analyze their dynamics using a
phase-plane description of their motion through the step.
Our effective-potential picture not only unveils interesting
bifurcation phenomena but also enables an understanding of
the potential dynamical outcomes of the interaction of solitary
waves with such steps.

In this paper, we highlight the fundamental difference
between linear and nonlinear potentials in the dynamics of
a quantum degenerate 1D Bose gas. In the static picture, one
type of potential can be adjusted to completely compensate the
other. However, the dynamical picture is different, as a flow
of the Bose gas across inhomogeneities exhibits interesting
dynamics. In the present investigation, we use step potentials
to illustrate this phenomenon.

The remainder of this paper is organized as follows. In
Sec. II, we present our model and its associated physical setup.
In Sec. III, we discuss a proposal for an experimental imple-
mentation of compensating linear and nonlinear potentials. In
Sec. IV, we discuss the problem of dragging a moving defect
through the step and the ensuing spontaneous emergence of
solitary waves. In Sec. V, we examine the existence, stability,
and dynamics of the solitary waves both theoretically and
computationally. Finally, we summarize our findings and
propose several directions for future study in Sec. VI.

II. MODEL AND SETUP

We start with the three-dimensional (3D) time-dependent
GP equation and consider a cigar-shaped condensate by
averaging over the transverse directions to obtain a quasi-
1D GP equation [1,10,11]. In performing the averaging,
we assume that the BEC is strongly confined in the two
transverse directions with a trapping frequency of ω⊥ [43].
The solution of the quasi-1D GP equation is a time-dependent
macroscopic wave function �(z,t). We use the standing-wave
ansatz �(z,t) = φ(z)e−iμt to obtain the time-independent GP
equation

− 1
2φzz − μφ + Vext(z)φ + g(z)|φ|2φ = 0, (1)

where φ is measured in units of (2|a0|)−1/2 and g(z) is a
spatially varying nonlinearity associated with the (rescaled)
scattering length a(z) via g(z) = a(z)/|a0|. We measure length
in units of a⊥ ≡ √

h̄/(mω⊥) and time in units of ω−1
⊥ , where

m is the mass of the atomic species in the condensate.
The constant a0 is the value of the scattering length in the
associated collisionally homogeneous system. Equation (1)
has two conserved quantities: the number of atoms N =
(a⊥/[2|a0|])

∫ +∞
−∞ |�|2dz and the Hamiltonian [11].

For a square-step linear potential, one can use the Thomas-
Fermi approximation (φzz = 0) for the ground state [11].
Equating the densities inside and outside of the step then gives
the constraint

γ = �V

�g
= V0 − μ

g0
, (2)

where V0 and g0 are the constant background linear and
nonlinear potentials, and �V and �g are the differences

between the step and the background values of V (z) and g(z).
The parameter γ thus measures (and balances) the relative
strengths of the steps in the linear and nonlinear potentials. To
preserve smoothness, we implement the steps using hyperbolic
tangent functions:

V (z) = V0 + �V (z) = V0 + �V

2
[tanh(z+) − tanh(z−)],

(3)
g(z) = g0 + �g(z) = g0 + �g

2
[tanh(z+) − tanh(z−)],

where z± = (z ± z0)/s, the step width is 2z0, and s controls
the sharpness of the step edges. From Eq. (2), it follows that
�V = γ�g. For the remainder of this article, we take V0 = 0
and |g0| = |μ| = 1. This yields γ = −1 and corresponds to
nonlinear and linear steps of equal and opposite depths and
heights. (The parameters μ and g0 always have the same sign:
μ < 0 and g0 < 0 for attractive BECs, and μ > 0 and g0 > 0
for repulsive BECs.)

III. PROPOSAL FOR EXPERIMENTAL
IMPLEMENTATION

Techniques for manipulating cold quantum gases have
become both advanced and accurate, and they allow ex-
perimentalists to form a variety of potentials with optical
and/or magnetic fields, especially near microstuctured atom
chips [28,29]. It was shown recently that spatially varying
nonlinear potentials, which have been of theoretical interest
for several years [18–20], can be used to address a novel
scenario that can also be implemented experimentally [17].
Straightforward implications of a spatial inhomogeneity in
the coefficient g include static density variations as a result
of the inhomogeneous mean field. To distinguish this type
of effect from more subtle dynamical and beyond-mean-field
phenomena, it is desirable to compensate linear and nonlinear
contributions of the potential in such a way that the static
density profile remains homogeneous (as would be the case if
all potentials were homogeneous). In this section, we discuss
how such a situation can be achieved experimentally. (In
Sec. IV, we will give an example of a purely dynamical
phenomenon that arises from it.)

A spatially varying magnetic field B(z) results in a
proportionally varying linear potential V (z) = mF gF μBB(z)
for magnetic spin states (where the magnetic quantum number
is mF , the Landé factor is gF , and the Bohr magneton is μB) at
sufficiently low magnetic fields within the regime of validity of
the linear Zeeman effect. For specific atomic species and spin
states, there is an additional resonant dependence (a Feshbach
resonance [30]) of g on the magnetic field,

g(B) = gbg

(
1 − �

B − B0

)
, (4)

where gbg is the background coupling constant, B0 is the
resonance field, and � is the resonance width. The condition of
compensating linear and nonlinear potentials is fulfilled within
the Thomas-Fermi approximation when

n
∂g

∂B
= −∂V

∂B
. (5)
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In theory, this implies for any given density n that there is
a field Bc near a resonance B0 at which Eq. (5) is satisfied.
Consequently, the density must remain constant for any static
profile B(z) as long as B(z) − Bc is sufficiently small [so that
g(B) is an approximately linear function of B].

In practice, however, large nonlinearities lead to fast three-
body recombination losses from traps and hence have to be
avoided [30]. An atomic species with appropriate properties
is cesium, for which the above conditions are fulfilled at
typical densities of 1013–1014 cm−3 for fields near the narrow
Feshbach resonances at 19.8 and 53.5 G [31].

Optical dipole traps near the surface of atom chips [32]
provide an environment in which magnetic fields can be accu-
rately tuned to and varied about the critical magnetic field Bc

at the above parameter values. One can bring the trap close to
independent microstructures on the surface of a chip by coating
the surface with a highly reflective layer so that a standing
light wave forms a 1D optical lattice whose near-surface wells
can be loaded with the atomic sample. Alternatively, one can
focus a single laser beam on a position near the surface at
a frequency that is slightly below that of the main atomic
transition (i.e., one can red-detune it). In this case, integrated
optics and microlenses might help to reduce the atom-surface
distance dsurf to the single-micron regime. Once the trap is
placed and populated with an atomic sample, currents that
pass through appropriately shaped surface-mounted conductor
patterns produce the necessary magnetic field profiles that we
described above. The field-tailoring resolution and hence the
width of a possible step are limited by dsurf . It is feasible to
reduce this length to roughly 1 μm in current experiments. In
particular, one can exploit the lattice approach [32], in which
the closest wells form at dsurf ≈ λ, where the wavelength λ is
in the optical range (i.e., λ � 1 μm).

IV. DRAGGING A DEFECT THROUGH THE STEP

Using the above techniques, the effect of a step on the static
denisty profile can be removed by construction. In this case,
it is interesting to investigate if and how the density profile is
modified when a step is moving relative to the gas. We show
by performing computational experiments that the presence
of steps in the linear and nonlinear potentials can be revealed
by dragging a defect through the BEC [26,33]. For the linear
and nonlinear steps that we described above, the condensate
density is constant within and outside of the step. However,
the speed of sound c is different in the two regions:

c =
√

g(z)n(z), (6)

where n(z) = |φ(z)|2 is the BEC density [34]. To perform
computations that parallel viable experiments, we simulate a
moving defect using a potential of the form

V (z,t) = Ae−[z−r(t)]2/w2
, (7)

where r(t) = r(0) + vt represents the center of a defect that
moves with speed v, and A and w are (respectively), amplitude-
and width-related constants. The dynamics of defects moving
in a BEC are sensitive to the speed of the defect relative to the
speed of sound: speeds in excess of the speed of sound (i.e.,
supercritical defects) lead to the formation of dark solitary

FIG. 1. (Color online) Numerical computations of defect drag-
ging in the quasi-1D GP equation. Left: Emission of a dark solitary
wave as a defect is dragged through a step. Right: The same
computational experiment, but without a step (so there is no solitary-
wave emission). The defect speed is v = 0.6, and the other parameter
values are γ = −1 and �V = 0.5.

waves traveling behind the defect, whereas speeds below the
speed of sound (i.e., subcritical defects) do not [33].

There are three possible scenarios. First, when the speed is
subcritical, there is a density depression with essentially the
same functional form as the linear potential. This changes
shape slightly in the presence of the step; it deepens and
widens for a step with �g < 0, and it becomes shallower and
narrower when �g > 0 [44]. When the speed is higher but still
subcritical, the situation is similar—except that the depression
distorts slightly, giving rise to a density hump in front of the
defect. Second, when the defect speed is supercritical within
the step region but subcritical outside of it, we expect the
nucleation of dark solitary waves in the step region. Because
the defect’s speed is lower than the background sound speed,
the emission of solitary waves downstream of the defect
becomes a clear indication of the presence of a step. We
demonstrate this scenario in Fig. 1. The third possible scenario
involves a defect that is supercritical in both regions.

V. EXISTENCE, STABILITY, AND DYNAMICS
OF SOLITARY WAVES

A. Theoretical analysis

Our scheme for applying compensating steps to the linear
and nonlinear potentials and our ensuing observation that
solitary waves emerge from moving steps warrant a detailed
investigation of the dynamics in this scenario. In particular, we
examine the existence and stability of solitary-wave solutions
as a function of step parameters (especially step width).

1. Bogoliubov–de Gennes analysis

We apply the Bogoliubov–de Gennes (BdG) ansatz

�(z,t) = e−iμt

{
φ0(z) +

∑
j

[uj (z)e−iωj t + v∗
j (z)eiωj t ]

}
(8)

to the time-dependent quasi-1D GP equation. Equation (8)
defines the linear eigenfrequencies ωj for small perturbations,
which are characterized by eigenvectors uj (z) and vj (z). Lin-
earizing the time-dependent GP equation about the reference
state φ0(z) using Equation (8) yields the BdG eigenvalue
problem. The eigenfrequencies ωj come in real (marginally
stable) or imaginary (exponentially unstable) pairs or as
complex (oscillatorily unstable) quartets.

In our analytical approach, we examine perturbations of
the time-independent GP equation (1) with constant potentials
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V (z) ≡ V0 = 0 and g(z) ≡ g0 = ±1. The perturbations in
the linear and nonlinear steps are thus �g(z) and �V (z) =
γ�g(z). We introduce ε ≡ |�g| as a small parameter and
(to facilitate presentation) use the term “negative width”
to describe a step with �g < 0. When g0 = ±1, Eq. (1)
has two families of (stationary) soliton solutions, which are
characterized by center position ξ and chemical potential μ.
The case g0 = −1 yields bright solitons,

φbs(z − ξ ) = ηbs sech (ηbs(z − ξ )), (9)

where ηbs = √−2μ and μ < 0. The case g0 = 1 yields dark
solitons,

φds(z − ξ ) = ηds tanh (ηds(z − ξ )), (10)

where ηds = √
μ and μ > 0. Equations (9) and (10) represent,

respectively, the stationary forms of the bright and dark soliton
solutions.

2. Effective-potential theory

We use a Melnikov analysis to determine the persistence
of bright [36] and dark solitary waves [37]. Stable (respec-
tively, unstable) solitary waves exist at minima (respectively,
maxima) of an effective potential Mbs. We find that bright
solitary waves can, in principle, be stable within the step in
the potentials. However, in contrast to bright solitary waves,
stationary dark solitary waves are generically unstable within
the step.

To determine the persistence of a bright solitary wave,
we calculate when its center position induces its associated
Melnikov function (i.e., its perturbed energy gradient) [36] to
vanish. This yields the equation

M ′
bs(ξ0) =

∫ ∞

−∞

[
d[�V (z)]

dz
φ2

bs(z − ξ0)

+ 1

2

d[�g(z)]

dz
φ4

bs(z − ξ0)

]
dz = 0 (11)

for the first derivative of the potential at the solitary-wave
center ξ = ξ0.

The GP equation without a potential is spatially ho-
mogeneous, and it possesses translational and U(1)-gauge
symmetries. These symmetries are associated with a quartet
of eigenfrequencies at the origin. When the translational
symmetry is broken [e.g., by the steps in V (z) and g(z)], a pair
of eigenfrequencies leaves the origin. Tracking their evolution
makes it possible to examine the stability of solitary waves
of the perturbed system. We follow these eigenfrequencies by
computing the function

M ′′
bs(ξ0) =

∫ ∞

−∞

[
d2[�V (z)]

dz2
φ2

bs(z − ξ0)

+ 1

2

d2[�g(z)]

dz2
φ4

bs(z − ξ0)

]
dz, (12)

which determines the concavity of the perturbed energy
landscape and is directly associated with the eigenfrequencies
of the linearization through [36]

ω2 = 1

2
√−2μ

M ′′
bs(ξ0) + O(ε2), (13)

where we note that M ′′
bs(ξ0) = O(ε). Stable (respectively, un-

stable) solitary waves exist at minima (respectively, maxima)
of the effective potential Mbs. Hence, bright solitary waves
can, in principle, be stable within the step.

We compute analogous expressions for dark solitary waves,
but the Melnikov function now needs to be renormalized due
to the presence of a nonzero background density [37]. The first
and second derivatives of the effective potential Mds evaluated
at the solitary-wave center ξ = ξ0 are

M ′
ds(ξ0) =

∫ ∞

−∞

[
d[�V (z)]

dz

[
η2

ds − φ2
ds(z − ξ0)

]

+ 1

2

d[�g(z)]

dz

[
η4

ds − φ4
ds(z − ξ0)

]]
dz = 0 (14)

and

M ′′
ds(ξ0) =

∫ ∞

−∞

[
d2[�V (z)]

dz2

[
η2

ds − φ2
ds(z − ξ0)

]

+ 1

2

d2[�g(z)]

dz2

[
η4

ds − φ4
ds(z − ξ0)

]]
dz 	= 0. (15)

The expression for the associated eigenfrequencies in this case
is [37]

ω2 = 1

4
M ′′

ds(ξ0)

(
1 − iω

2

)
+ O(ε2), (16)

where we choose the root that satisfies Re(iω) > 0 and we
note that M ′′

ds(ξ0) = O(ε).
The main difference in the spectra for dark versus bright

solitary waves is that the continuous spectrum associated with
the former (due to the background state) lacks a gap about
the origin. Consequently, exiting along the imaginary axis is
not the only way for eigenfrequencies to become unstable.
Even when eigenfrequencies exit toward the real axis, they
immediately leave it as a result of their collision with the
continuous spectrum; this leads to an eigenfrequency quartet.
Thus, stationary dark solitary waves are generically unstable
within the step.

3. Computational results

We identify solitary-wave solutions using a fixed-point
iteration scheme, solve the BdG equations numerically to
determine their corresponding eigenfrequencies, and employ
parameter continuation to follow the solution branches as we
vary the step width.

We start with the ξ0 = 0 branch, which exists for all
step widths. In Fig. 2, we show the development of the
eigenfrequencies of this branch of solutions as a function
of step width for both dark (left) and bright (right) solitary
waves. We obtain good quantitative agreement between our
results from effective-potential theory and those from BdG
computations for the nonzero eigenfrequency associated with
the intrinsic (translational) dynamics of the solitary wave.

For the case of repulsive BECs (g > 0), the branch of
solutions at ξ = 0 has a real instability for �g < 0 (i.e.,
�V > 0) and an oscillatory instability for �g > 0. We capture
both types of instabilities accurately using effective-potential
theory. An interesting but unphysical feature of the dark
solitary waves is the presence of small “jumps” in the
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FIG. 2. (Color online) Top: Maximum imaginary eigenfrequencies versus step width (where a negative step width means that �g < 0) for
(left) dark solitary waves and (right) bright solitary waves. We show results for the perturbation strengths ε = |�g| = 0.1 and ε = 0.2. Dotted
curves represent results of analytical calculations from effective-potential (EP) theory, and solid curves represent numerical calculations using
the BdG equations. The inset in the left panel shows finite-size effects (see the text). Bottom: Examples of the corresponding eigenfrequency
spectra for ε = 0.1. For both bright and dark solitary waves, we show the spectrum for a step width of 2z0 = 0.25 in the left panels and for a
step width of 2z0 = −0.25 in the right panels.

eigenfrequencies. These jumps are finite-size effects that arise
from the discrete numerical approximation to the model’s
continuous spectrum [38].

The case of attractive BECs (g < 0) is especially interest-
ing. A pitchfork (symmetry-breaking) bifurcation occurs as the
step widens; it is supercritical for �g < 0 and subcritical for
�g > 0. In this case, oscillatory instabilities are not possible
when translational invariance is broken [36]. A direct and
experimentally observable consequence of our analysis is
that (for �g > 0) bright solitary waves remain stable for
sufficiently large step widths, whereas narrowing the step
should eventually lead to unstable dynamics. For dark solitary
waves, by contrast, we expect the dynamics to be unstable in
experiments for all step widths. However, as illustrated in the
top left panel of Fig. 2, the instability growth rates are rather
different for �g > 0 and �g < 0.

To further probe the bifurcation, we study the Newtonian
dynamics [39] of the bright solitary wave,

meff
d2ξ

dt2
= −∇U (ξ ) = 2M ′

bs(ξ )/N, (17)

where the effective mass is meff = 1/2. We examine phase
portraits of Eq. (17) by plotting the center-of-mass position
zcm ≈ ξ versus the center-of-mass velocity vcm ≈ dξ

dt
. As we

illustrate in Fig. 3, this is convenient for examining changes
in the dynamics as we alter the step width. For narrow steps
(e.g., a width of 2z0 = −1), there is a center at zcm = 0 that
straddles two saddle points (stars) just outside of the step
(whose edges we indicate using dash-dotted lines). When
�g < 0 (i.e., �V > 0), a supercritical pitchfork bifurcation
occurs at 2z0 ≈ −1.2, as the center at the origin transitions
to a pair of centers separated by a saddle at the origin

FIG. 3. (Color online) Phase planes for Newtonian dynamics that describe bright solitary waves in an attractive BEC for four different step
widths. The thick dash-dotted lines represent the edges of the step. We highlight the equilibria with dots, triangles, and stars. The light (orange)
curves correspond to trajectories that originate at equilibria, and we show other example trajectories as dark (black) curves. The step widths
are (upper left) 2z0 = −1, (upper right) 2z0 = −1.4, (lower left) 2z0 = −1.8, and (lower right) 2z0 = −6.
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FIG. 4. (Color online) (Left) Effect of the step on the movement
of a bright solitary wave for three different step widths for the GP
equation (solid curves) and for numerical solutions of the Newtonian
dynamics of the effective-potential (EP) equations (dashed curves).
(Right) Contour plots of |ψ(z,t)|2 obtained by solving the GP
equation numerically for step widths of (top) −1 and (bottom) −1.8.

(see the top-right panel). As the step widens further (bottom-
left panel), the heteroclinic orbit that previously enclosed the
central three equilibria is no longer present, and the centers are
now surrounded by homoclinic orbits that emanate from the
outer saddle points. Eventually (in particular, asymptotically),
each outer saddle and its associated center annihilate one
another (bottom-right panel). When �g > 0, the types of
equilibria are interchanged (saddles become centers, and vice
versa). The main difference that occurs in this case is that
solitary waves can no longer be reflected by the step. As one
increases the magnitude of the step width from 0, there is a
saddle flanked by two centers. At the bifurcation point, the
central saddle splits into two saddles with a center between
them.

The trajectories in phase space at different parameter values
suggest a viable way to investigate the bifurcation experimen-
tally (and hence to distinguish between narrow and wide steps).
The presence of a step alters the path of a moving solitary wave,
as is particularly evident by examining the wave speed. As we
illustrate in Fig. 4, the solitary-wave dynamics depend on the
number and type of phase-plane equilibria (and hence on the
step width). The left panel shows how one can use variations
in vcm of a transmitted bright solitary wave to identify which
equilibria are present (because each local extremum in the
associated temporal evolution arises from the presence of an
equilibrium point). The center-of-mass motion of the solitary
wave is a particularly useful quantity, as it is directly accessible
to experimental measurement through time-resolved detection
of spatial density profiles. The technique outlined above for
shaping the nonlinear potential—i.e., engineering the spatial
profile g(x) while automatically compensating it using the
linear potential V (x)—gives a straightforward method for
adjusting the step width in the laboratory.

We examine trajectories starting from the same initial
conditions, (zcm(0),vcm(0)) = (4, − 0.22), for step widths of
−1, − 1.4, and −1.8. The simplest trajectory occurs for the
narrowest width (2z0 = −1): as the solitary wave traverses the
step, its speed first drops before rising again in the center of
the step and then dropping again as it leaves the step (due to
its encounter with the two saddles and the center in the phase
plane; see Fig. 3). For wider steps, the dynamics illustrate the
effects of the bifurcation: instead of a single peak in the speed,
there are now two peaks separated by a well. As the step widens
further, the two peaks move outward and follow the centers to

the edge of the step. The maximum and minimum in each pair
move closer together in both vcm and t as one approaches the
edge of the step. The solitary wave can be either transmitted
(as illustrated in Fig. 4) or reflected by the step.

VI. CONCLUSIONS

We have introduced an experimentally realizable setup to
study statically homogeneous BECs in mutually compen-
sating inhomogeneous linear and nonlinear potentials. We
have shown that—in contrast to the straightforward static
scenario—a flowing gas will encounter sound-speed differ-
ences, which can induce interesting dynamics such as solitary-
wave formation and motion. As a simple demonstration,
we have examined a step defect, whose width affects the
system’s dynamics. We conducted a thorough examination of
solitary-wave stability and dynamics in this collisionally in-
homogeneous setting. We also showed how to experimentally
produce balancing linear and nonlinear potentials that yield
constant-density solutions in the static case.

We found that effective-potential theory gives a good
quantitative description of the existence and eigenfrequencies
of both bright and dark solitary waves, and we used it to
quantitatively track the evolution of the translational eigen-
frequencies as a function of the step width. We identified a
symmetry-breaking bifurcation in the case of attractive BECs
and illustrated how the presence of the bifurcation is revealed
by the motion of solitary waves through the step region. We
also found that stationary dark solitary waves are generically
unstable through either exponential or oscillatory instabilities.

The system that we have studied provides a promising
setup for future investigations, as it allows the experimentally
realizable possibility of solitary-wave control via accurate,
independent tailoring of linear and nonlinear potentials. It
would also be interesting to explore the phase-coherence
properties of a collisionally inhomogeneous 1D quasicon-
densate, for which phase correlations (at zero temperature)
decay algebraically with an interaction-dependent exponent
[40]. Quasicondensates have comparatively small density
fluctuations [41]. In contrast to the scenario on which we have
focused in the present paper, even a static quasicondensate
gas would reveal a step in the nonlinearity in an interference
experiment [42] when the density profile is homogeneous. The
study of such quasicondensates and their phase fluctuations is a
topic of considerable current interest [41], and it is desirable to
enhance our understanding of the properties of solitary waves
in such systems.
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