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We study the long memory of order °ow for each of three liquid currency pairs on a
large electronic trading platform in the foreign exchange (FX) spot market. Due to
the extremely high levels of market activity on the platform, and in contrast to
existing empirical studies of other markets, our data enables us to perform statisti-
cally stable estimation without needing to aggregate data from di®erent trading
days. We ¯nd strong evidence of long memory, with a Hurst exponent H � 0:7, for
each of the three currency pairs and on each trading day in our sample. We repeat
our calculations using data that spans di®erent trading days, and we ¯nd no
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signi¯cant di®erences in our results. We test and reject the hypothesis that the
apparent long memory of order °ow is an artifact caused by structural breaks, in
favor of the alternative hypothesis of true long memory. We therefore conclude that
the long memory of order °ow in the FX spot market is a robust empirical property
that persists across daily boundaries.

Keywords: Long memory; autocorrelation; foreign exchange market; order °ow;
market microstructure.

1. Introduction

The autocorrelation properties of ¯nancial time series have been the subject

of ¯erce debate for more than 50 years (Cont, 2005; Cont et al., 1997;

Gopikrishnan, 1999; Lo, 1991; Mandelbrot, 1963). Several important prop-

erties of ¯nancial markets have been reported to exhibit autocorrelations

that decay slowly, often over periods of days or even months (Booth and

Kaen, 1979; Booth et al., 1982; Chakraborti et al., 2011; Cont et al., 1997;

Greene and Fielitz, 1977; Mantegna and Stanley, 1999). Such observations

have prompted some authors to conjecture that some ¯nancial time series

exhibit a phenomenon known as long memory (Baillie, 1996; Beran, 1994;

Cont, 2005), which means that the decay of autocorrelation is su±ciently

slow that the sum of terms in their autocorrelation function (ACF) diverges

to in¯nity.

In recent decades, the widespread uptake of electronic limit order books

(LOBs; see Gould et al., 2013) in many ¯nancial markets has facilitated the

recording of order-°ow data, which provides a detailed description of traders'

actions and interactions at the microscopic scale. The availability of such

data has ignited interest in the possibility that ¯nancial markets exhibit long

memory at the level of individual order °ow, and several empirical studies

during the past decade have reported this to be the case in a wide variety of

di®erent markets (Bouchaud et al., 2004; Lillo and Farmer, 2004; Mike and

Farmer, 2008; T�oth et al., 2015).

In a recent publication, Axioglou and Skouras (Axioglou and Skouras,

2011) challenged this view. They noted that, in order to construct su±ciently

long time series to perform statistically stable estimation, existing studies of

long memory in order °ow have aggregated data from multiple trading days.

Axioglou and Skouras argued that the apparent long memory reported by

many studies is mostly an artifact caused by aggregating the data in this way.

Speci¯cally, they argued that the statistical properties of order °ow change

each day, and that concatenating order-°ow series from di®erent trading
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days creates non-stationarities at the boundaries between daily series.

Moreover, statistical tests are known to produce similar output for

non-stationary series as they do for stationary series with long memory

(Bhattacharya et al., 1983; Giraitis et al., 2001; Granger and Hyung, 2004).

Therefore, distinguishing between these alternatives is a di±cult task.

Assessing whether or not order °ow really is a long-memory process is

important for several reasons. From a practical perspective, the present

values of a long-memory process are correlated with values in the distant

future (Beran, 1994), so identifying and quantifying the strength of long

memory is useful for forecasting. From a theoretical perspective, several re-

cent publications suggest that long-range autocorrelations in order °ow may

hold the key to understanding the complex statistical properties of price

formation in ¯nancial markets (e.g., price impact, volatility, and the heavy-

tailed distribution of returns (Bouchaud et al., 2009; Farmer et al., 2006;

Gerig, 2007; T�oth et al., 2011; Wyart et al., 2008)). Moreover, if order °ow

really is a long-memory process, then identifying the sources of long-range

autocorrelations may provide insight into traders' strategic decision-making

processes (Cont and Bouchaud, 2000; T�oth et al., 2015).

In this paper, we perform an empirical study of a new, high-quality data

set from a large electronic trading platform in the foreign exchange (FX) spot

market to assess the long-memory properties of order °ow for three liquid

currency pairs. Due to the extremely high levels of market activity on the

platform, and in contrast to existing empirical studies of other markets, our

data enables us to perform statistically stable estimates of the long-memory

properties of intra-day order °ow without needing to aggregate data

from di®erent trading days. We are therefore able to exclude the possibility

that our results are in°uenced by non-stationarities at the boundaries be-

tween di®erent trading days, and we thereby avoid Axioglou and Skouras'

(Axioglou and Skouras, 2011) criticism of previous studies. For each of the

three currency pairs and on all trading days in our sample, we ¯nd strong,

statistically signi¯cant evidence for long memory in order °ow.

To investigate how aggregating data from di®erent trading days impacts

our results, we also concatenate pairs of adjacent intra-day order-°ow series

to create cross-day series, which cross daily boundaries. We repeat all of our

calculations on these cross-day series, and we ¯nd that our results are very

similar to those for the intra-day series. We test and reject the hypothesis

that the apparent long memory that we observe is an artifact caused by

structural breaks, in favor of the alternative hypothesis of true long memory.
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We therefore conclude that the long memory of order °ow in the FX spot

market is a robust empirical property that persists across daily boundaries.

Several important di®erences separate our work from previous studies of

long memory in order °ow. First, our data originates from the FX market,

whereas previous studies have analyzed data from equities markets (Axioglou

and Skouras, 2011; Bouchaud et al., 2004; Lillo and Farmer, 2004; Mike and

Farmer, 2008; T�oth et al., 2015). The FX market is the largest market in the

world, so understanding its statistical properties is an important task. Sec-

ond, the microstructural trade-matching rules in the FX market di®er from

those in equities markets. We provide a detailed comparison of these trading

mechanisms in Sec. 4. By examining how these di®erences impact traders'

actions, we are able to gain additional insight into the underlying causes of

the long memory that we observe. Third, because of the extremely high levels

of activity in our data, we are able to perform statistically stable estimation of

the long-memory properties of intra-day order °ow without needing to ag-

gregate data from multiple trading days. We are therefore able to test and

reject Axioglou and Skouras' conjecture that the apparent long memory of

order °ow is mostly an artifact caused by aggregating data in this way.

Fourth, we employ a wide range of estimators and statistical techniques to

ensure that our quantitative assessment of long memory is robust. By con-

trast, some previous empirical studies have based their conclusions on single

estimators, whose output can be misleading (as we demonstrate in Sec. 5.1).

Together, these di®erences enable us to perform a detailed analysis of the

strength, origins, and nature of long memory in order °ow in a highly liquid

but hitherto unexplored market.

The paper proceeds as follows. In Sec. 2, we provide a detailed discussion of

long memory in order °ow. In Sec. 3, we review the ¯ndings of several em-

pirical studies of long memory in order °ow. We describe our data in Sec. 4.

We present our main results in Sec. 5, and we discuss our ¯ndings in Sec. 6.

We conclude in Sec. 7. In Appendix A, we present a technical overview of long

memory. In Appendix B, we discuss the statistical techniques that we use to

assess the long-memory properties of order °ow. In Appendix C, we discuss

the statistical tools that we use to distinguish between a long-memory series

and a short-memory series with non-stationarities.

2. The Long Memory of Order Flow

In this paper, we perform an empirical analysis of the long-memory properties

of order °ow. First, we recall the formal de¯nition of long memory and
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provide a detailed discussion of the order-°ow series that form the basis of our

empirical study.

2.1. Long memory

Let

fWtg ¼ W1;W2; . . . ð1Þ
denote a real-valued, second-order stationary1 time series with mean

EðWtÞ ¼ �; ð2Þ
autocovariance function

�ðkÞ ¼ covðWt ;WtþjkjÞ; ð3Þ
and ACF

�ðkÞ ¼ �ðkÞ
�ð0Þ : ð4Þ

The time series fWtg is said to exhibit short memory if

lim
N!1

XN
k¼�N

j�ðkÞj < 1: ð5Þ

The time series fWtg is said to exhibit long memory if

lim
N!1

XN
k¼�N

j�ðkÞj ¼ 1: ð6Þ

For a technical introduction to long memory, see Appendix A and Beran

(1994).

2.2. Limit order books

More than half of the world's ¯nancial markets use LOBs to facilitate trade

(Roşu, 2009). In contrast to quote-driven systems, in which prices are set by

designated market makers, trade in an LOB occurs via a continuous double-

auction mechanism in which institutions submit orders. An order x ¼
ðpx ; !x ; txÞ submitted at time tx with price px and size !x > 0 (respectively,

!x < 0) is a commitment by its owner to sell (respectively, buy) up to j!x j
units of the asset at a price no less than (respectively, no greater than) px .

1A time series fWtg is second-order stationary if its ¯rst and second moments are ¯nite and do
not vary with time (Chat¯eld, 2000; Taylor, 2008).
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Whenever an institution submits a buy (respectively, sell) order x, an

LOB's trade-matching algorithm checks whether it is possible for x to match

to an active sell (respectively, buy) order y such that py � px (respectively,

py � px). If so, the matching occurs immediately and the owners of the rel-

evant orders agree to trade the speci¯ed amount at the speci¯ed price. If not,

then x becomes active, and it remains active until either it matches to an

incoming sell (respectively, buy) order or it is cancelled.

Orders that result in an immediate matching upon arrival are called

market orders. Orders that do not ��� instead becoming active orders ��� are

called limit orders.2 The LOB LðtÞ is the set of all active orders for a given

asset on a given platform at a given time t. For a detailed introduction to

LOBs, see Gould et al. (2013).

Many LOBs record comprehensive digital transcriptions of order °ow on a

given platform. These transcriptions provide an event-by-event account of

the temporal evolution of LðtÞ, and they thereby enable detailed empirical

analysis of ¯nancial markets at the microscopic scale (Cont, 2011).

2.3. Order-sign series

Given a sequence of N consecutive arrivals of limit orders into LðtÞ, the
order-arrival series

!x1 ; !x2 ; . . . ; !xN ð7Þ
is the time series of the arriving limit orders' sizes. Similarly, given a sequence

of M consecutive departures of active orders from LðtÞ, the order-departure
series

!x 0
1
; !x 0

2
; . . . ; !x 0

M
ð8Þ

is the time series of the departing active orders' sizes. An entry in the order-

arrival series always corresponds to the arrival of a new limit order, but an

entry in the order-departure series can occur either because an active order is

cancelled or because an incoming market order triggers a matching and

thereby removes a limit order from the LOB.3 Together, the order-arrival and

order-departure series completely determine the temporal evolution of LðtÞ.
When studying the long-memory properties of order-°ow series, it is cus-

tomary to study the time series of order signs. For a given order xi of size !xi ,

2Some platforms allow other order types (such as ¯ll-or-kill, stop-loss, or peg orders (Knight
Capital Group, 2015a), but it is always possible to decompose the resulting order °ow into
limit and/or market orders. Therefore, we study LOBs in terms of these simple building blocks.
3 Incoming market orders are not reported in the order-arrival series.
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the order sign Li is given by

Li ¼
�1; if !xi < 0;

þ1; if !xi > 0:

�
ð9Þ

Recall from Sec. 2.2 that an order has negative size if and only if it is a buy

order. Therefore, an order-sign series is simply a time series of �1s, where �1

entries correspond to buy-order activity and þ1 entries correspond to sell-

order activity.

The reason for studying time series of order signs ��� instead of the cor-

responding time series of order sizes ��� is that empirical studies of a wide

variety of di®erent markets have reported that order sizes often vary over

several orders of magnitude (see Gould et al. (2013) for a recent survey of

empirical studies of LOBs). This brings into question the convergence

properties of higher-order moments of time series of order sizes. By contrast,

studying only the time series of order signs guarantees that all moments exist,

while still providing insight into the long-range autocorrelation properties of

buy and sell activity in order °ow.

3. Literature Review

Early studies of the autocorrelation properties of order °ow tended to focus

on short-range (i.e., small-lag) autocorrelations in order-sign series. Has-

brouck (1988) studied the order-sign series for trades on the New York Stock

Exchange (NYSE) during March–April 1985. He reported that lag-1 auto-

correlations were strongly positive and that the mean sample ACF (see

Appendix B.1) across all stocks in the sample was positive up to lags of at

least 200. Biais et al. (1995) studied order-sign series for market orders, limit

orders, and cancellations for 40 stocks traded on the Paris Bourse in 1991. For

each type of order °ow, they reported that any given event type (e.g., buy

market order) was likely to be followed by another event of the same type.

Ellul et al. (2003) and Yeo (2008) both reported similar ¯ndings for activity

on the NYSE during 2001.

More recent work has focused on the long-memory properties of order-sign

series. Lillo and Farmer (2004) studied order-sign series for limit order arri-

vals, market order arrivals, and cancellations for 20 stocks on the London

Stock Exchange (LSE) during 1999–2002. They used a wide variety of sta-

tistical techniques and estimators to test and reject the hypothesis that these

series were short-memory series, in favor of the alternative hypothesis of long

memory. They also estimated the Hurst exponent (see Appendix A.3) for
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each series and reported a mean value of H � 0:7. The cross-sectional vari-

ation in H across the stocks that they studied was small but signi¯cant.

Because their sample ACFs contained no signi¯cant peaks or breaks corre-

sponding to the length of a single trading day, Lillo and Farmer argued that

long memory in order °ow persists across daily boundaries. They also re-

peated their experiments on similar data from the NYSE and found similar

results.

Bouchaud et al. (2004) studied long-range autocorrelations in the order-

sign series for market orders on Euronext in 2001–2002. For all of the stocks

that they studied, they reported that the sample ACFs decayed approxi-

mately according to a power law. They estimated each stock's power-law

exponent directly from its sample ACF and reported values that correspond

to Hurst exponents (see Eq. (A.8)) ranging from H � 0:65 to H � 0:9.

Similarly to Lillo and Farmer, Bouchaud et al. argued that long-range

autocorrelations in order °ow persist across daily boundaries.

Mike and Farmer (2008) studied order-sign series for both market orders

and limit orders for 25 stocks traded on the LSE during 2000–2002. They used

detrended °uctuation analysis (DFA) (see Appendix B.4) to estimate the

Hurst exponent for each stock and reported values ranging from H � 0:75 to

H � 0:88, with a mean of H � 0:83 across all stocks.

To date, two mechanisms have been proposed to explain the slow decay of

autocorrelations in order-°ow series. The ¯rst is that traders display

\herding" behavior, either because they all respond similarly to common

information or because they monitor each other's actions and update their

strategies by imitating those of their most successful competitors (LeBaron

and Yamamoto, 2007). The second is that traders who wish to perform large

trades decompose them into smaller chunks, which they submit over several

days (or even months) to minimize their market impact (Bouchaud et al.,

2009, 2004; Lillo et al., 2005). This strategy is commonly known as order

splitting.

Gerig (2007) assessed the plausibility of these two explanations by

studying order-°ow series from the LSE. In contrast to most LOB data sets,

Gerig's data included information about the broker that submitted each

order. This enabled him to compare the autocorrelation properties of order

°ow generated by individual brokers to those of the aggregate order °ow

generated by all brokers. He reported that correlations across di®erent bro-

kers decayed quickly to 0, but that autocorrelations in order °ow from in-

dividual brokers exhibited long memory. He therefore argued that order

splitting is a much more plausible explanation for long memory in order °ow
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than is herding. T�oth et al. (2012, 2015) also studied data containing bro-

kerage identi¯ers from the LSE, and reached a similar conclusion.

Recently, however, Axioglou and Skouras (2011) challenged the notion

that order °ow exhibits long memory by arguing that this apparent e®ect was

mainly an artifact caused by non-stationarities in the underlying order-°ow

series. Speci¯cally, they noted that to construct su±ciently long time series to

perform statistically stable estimation of long-range autocorrelations, exist-

ing studies have aggregated order-°ow data from di®erent trading days. They

argued that such aggregation produces order-°ow series with structural

breaks at the daily boundaries. Because many statistical tests produce similar

output for non-stationary series as they do for stationary series with long

memory (see Appendix C), Axioglou and Skouras conjectured the apparent

long memory in order °ow is mainly an artifact caused by these structural

breaks.

To test this hypothesis, Axioglou and Skouras studied the order-sign series

for market orders on the LSE during 2005–2006. They ¯rst aggregated data

from several di®erent trading days, and they noted that standard statistical

tests applied to this data concluded strongly in favor of long memory. They

then constructed shorter time series by aggregating data across pairs of

consecutive trading days. They applied the cumulative-sum change-point

estimator (see Eq. (C.2)) to these series, and they were able to detect the

daily boundaries with high accuracy. They then applied Berkes' change-point

test (see Appendix C) to test the hypothesis that the apparent long memory

in the cross-day series was actually due to a structural break. Working at the

5% signi¯cance level, they could not reject the null hypothesis of a piecewise

stationary series with a structural break in favor of the alternative hypothesis

of true long memory in about two thirds of the order-°ow series that they

studied. They concluded that although order °ow exhibited signi¯cant

autocorrelations within a single trading day, the strength of autocorrelations

that persisted across daily boundaries was very weak.

4. Data

We have been granted access to a recent, high-quality data set from Hotspot

FX (Knight Capital Group, 2015a,b), which is one of the largest multi-

institution trading platforms in the FX spot market. According to the 2010

Triennial Central Bank Survey (Bank for International Settlements, 2010),

the mean daily turnover of the global FX market was approximately 4:0

trillion US dollars. Approximately 37% of this volume was due to spot trades,
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of which approximately 40% was conducted electronically. In total, the mean

daily volume traded on all multi-institution electronic trading platforms was

approximately US 0:6 trillion USD (Bank for International Settlements,

2010). The mean daily volume traded on Hotspot FX during the same period

was approximately US 21:5 billion USD (Knight Capital Group, 2015c).

Therefore, trade on Hotspot FX accounted for approximately 4% of all vol-

ume traded electronically in the FX spot market during this period.

Hotspot FX o®ers trade for more than 60 di®erent currency pairs. A price

for the currency pair XXX/YYY denotes how many units of the counter

currency YYY are exchanged per unit of the base currency XXX. Trade for

each currency pair occurs in a separate LOB with price-time priority.

The Hotspot FX platform serves a broad range of trading professionals ���
including banks, ¯nancial institutions, hedge funds, high-frequency traders,

corporations, and commodity trading advisers (Knight Capital Group,

2015b). As is customary on multi-institution trading platforms in the FX spot

market, Hotspot FX enables institutions to specify counterparty credit limits

(CCLs) for their trading counterparties. Each institution can only access the

trading opportunities o®ered by counterparties with whom they possess

su±cient bilateral credit. We call this market organization a quasi-central-

ized limit order book (QCLOB), because di®erent institutions have access to

di®erent subsets of a centralized liquidity pool. For a detailed discussion of

QCLOBs, see Gould et al. (2016). Examples of platforms that utilize

QCLOBs include Reuters (Thomson–Reuters, 2011), EBS (2011), and Hot-

spot FX (Knight Capital Group, 2015b). For more details about trade on

Hotspot FX, see Knight Capital Group (2015a).

The data that we study describes the full order-arrival and order-depar-

ture series (see Sec. 2.3) for the EUR/USD (Euro/US dollar), GBP/USD

(Pounds sterling/US dollar), and EUR/GBP (Euro/Pounds sterling) cur-

rency pairs during the peak trading hours of 08:00:00–17:00:00 GMT on

30 trading days during May–June 2010. Although trade in the FX spot

market continues to operate outside of these hours, more than 70% of the

total traded volume for each of the three currency pairs occurs during these

9 hours each day.

For a given trading day Di, we use the Hotspot FX data (see Sec. 4) to

produce an ordered list of the limit order arrivals that occur during the peak

trading hours of 08:00:00–17:00:00 GMT. We then use Eq. (9) to deduce the

intra-day arrival sign series from this list. Similarly, we use the Hotspot FX

data to produce an ordered list of the active order departures that occur

during the same period, and we then use Eq. (9) to deduce the intra-day
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departure sign series from this list. We repeat this process for each of the 30

trading days D1;D2; . . . ;D30 in our sample.

In Table 1, we list the minimum, maximum, and mean number of limit

order arrivals and departures across these 30 trading days. The number of

arriving limit orders is largest for EUR/USD and smallest for EUR/GBP. For

each of the three currency pairs and on most trading days that we study, the

total number of limit order arrivals slightly exceeds the total number of

departures, which implies that active orders accumulate throughout the

trading day.

To quantify the imbalance between buying and selling activity, we also

calculate the percentage of sell orders (i.e., percentage of þ1 entries in the

order-sign series) among limit order arrivals and departures each day (see

Table 2). For each of the three currency pairs and for both arrivals and

departures, sell orders account for close to 50% of order °ow. Therefore, the

level of buying activity is approximately equal to the level of selling activity

on all trading days that we study.

Table 1. Minimum, maximum, and mean number of limit order (top panel)
arrivals and (bottom panel) departures for EUR/USD, GBP/USD, and EUR/
GBP, measured across the 30 trading days in our sample.

EUR/USD GBP/USD EUR/GBP

Number of Arrivals Minimum 3455561 2962688 2019826
Maximum 6003406 5296372 3623053

Mean 4533550:8 4340345:4 2932726:8

Number of Departures Minimum 3449793 2961217 2019672
Maximum 5992343 5293082 3622559

Mean 4524175:4 4337320:6 2932171:5

Table 2. Minimum, maximum, and mean percentages of sell orders among limit order (top
panel) arrivals and (bottom panel) departures for EUR/USD, GBP/USD, and EUR/GBP
across the 30 trading days in our sample.

EUR/USD
(%)

GBP/USD
(%)

EUR/GBP
(%)

Percentage of Arriving Sell Orders Minimum 48:664 49:389 48:817
Maximum 50:870 51:255 50:252
Mean 50:008 50:135 49:894

Percentage of Departing Sell Orders Minimum 48:667 49:389 48:815
Maximum 50:879 51:257 50:251
Mean 50:009 50:134 49:895
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5. Results

In this section, we present our empirical results for the arrival-sign series. The

corresponding results for the departure-sign series are qualitatively similar.

5.1. Results for intra-day series

In Fig. 1, we plot the sample ACFs (see Appendix B.1) for each of the three

currency pairs' intra-day arrival-sign series on 4th May 2010. The results for

all other intra-day series on each day in our sample are qualitatively similar.

Up to lags of about 25 events, the sample ACFs °uctuate between positive

and negative values, which indicates that the order-°ow series contain short-

range negative autocorrelations. Although these autocorrelations have a

magnitude below about 0:1 and are therefore relatively weak, this e®ect is

present on each day in our sample, and we therefore deem it to be a robust

statistical property of the data. We return to our discussion of these negative

autocorrelations in Sec. 6.

In Fig. 2, we plot the intra-day sample ACFs in doubly logarithmic

coordinates. To help reduce the noise at higher lags,4 we plot the mean

sample ACFs, which we obtain by averaging the daily sample ACFs across all

30 days in our sample. After the short-term negative autocorrelations subside

(which occurs before lag 50, the lower bound in our plots), the sample ACFs

remain positive for lags of several thousands of events. This suggests that

there are long-range, positive autocorrelations in the series.

In Fig. 3, we show rescaled-range plots (see Appendix B.2) for each of the

three currency pairs' intra-day arrival-sign series. For each of the three cur-

rency pairs, the slope of the rescaled-range plot for each intra-day order-°ow

series is close to 0:5 for values of k below about 10,000. For larger values of k,

the slope of each rescaled-range plot is above 0:5. This suggests that the intra-

day order-°ow sign series are long-memory processes.

To test the hypothesis of long memory more formally, we perform Lo's

modi¯ed rescaled-range test (see Appendix B.3) on the intra-day arrival se-

ries (see Fig. 4). For each day in our sample, Lo's modi¯ed rescaled-range test

causes us to reject the null hypothesis of short memory at the 5% signi¯cance

level at all bandwidth choices that we study. Similarly, when using Andrews'

plug-in estimator (see Eq. (B.10)) to estimate a suitable choice of bandwidth

parameter from the data, Lo's test rejects the null hypothesis of short

4The statistical errors associated with estimating the sample ACF are approximately constant
at all lags, but the signal strength is smaller at larger lags because there are fewer independent
data points (Bouchaud et al., 2009).
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memory for each of the three currency pairs and on all 30 days in our sample.

Therefore, Lo's test provides strong evidence that the intra-day order-sign

series are long-memory processes.

Given the strong results of Lo's test, we now turn to assessing the strength

of the long memory in intra-day order °ow. To do so, we use two di®erent

methods to estimate the Hurst exponent H (see Appendix A.3): DFA
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Fig. 1. Sample ACFs (see Appendix B.1) for (top row) EUR/USD, (middle row) GBP/USD,
and (bottom row) EUR/GBP intra-day arrival-sign series, which we construct using Eq. (9).
Each plot shows the sample ACF for 4th May 2010. The corresponding results for all other
days in our sample and for the intra-day departure-sign series are qualitatively similar.
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(see Appendix B.4) and log-periodogram regression (see Appendix B.5). Due

to the negative short-range autocorrelations that we observe in the sample

ACFs (see Fig. 1), it is necessary to identify sensible choices of input para-

meters ��� namely, the minimal window length mmin of a DFA and the

number c of Fourier frequencies in a log-periodogram regression ��� when

performing these estimation techniques.
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Fig. 2. Doubly logarithmic plots of mean sample ACFs (see Appendix B.1) for (top row)
EUR/USD, (middle row) GBP/USD, and (bottom row) EUR/GBP intra-day arrival-sign
series.We obtain each plot by averaging the daily sample ACFs across all 30 days in our sample.
We omit lags smaller than 50 events because some values of the mean sample ACFs are negative
in this range. The results for the intra-day departure-sign series are qualitatively similar.
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To identify a suitable choice of mmin for our DFA estimates of H , we ¯rst

plot the length-m mean detrended standard deviation FðmÞ for several

choices of m (see Fig. 5). For window lengths m that are smaller than about

25, the negative autocorrelations dominate the mean detrended standard

deviations FðmÞ. These values of m are therefore unsuitable for calculating a

DFA estimate of H . For values of m larger than about 100, the log–log plots

of FðmÞ follow an approximately straight line. We therefore perform our

DFA estimates of H using mmin ¼ 100.

To identify a suitable choice of c for our log-periodogram regression esti-

mates of H , we plot the log-periodogram regression estimates of H for several

di®erent values of c (see Fig. 6). In all cases, the estimates of H tend to

decrease as c increases, and there is no clear plateau over which the estimates

of H are stable. In the absence of an obvious choice for c, we use the popular
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Fig. 3. Rescaled-range plots (see Appendix B.2) for (solid green curves) EUR/USD, (dashed
orange curves) GBP/USD, and (dotted-dashed purple curves) EUR/GBP arrival-sign series.
The pale curves indicate the rescaled-range statistics RðkÞ (see Eq. (B.5)) for a single intra-day
series, and the darker curves indicate the mean across all 30 intra-day series. The dotted black
line has a slope of 0:5. In these plots, we divide each intra-day series into B ¼ 100 blocks; we
also produced similar plots for several di®erent values of B 2 ½10; 1000� and obtained similar
results. The results for the intra-day departure-sign series are qualitatively similar.
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Fig. 4. Box plots of Lo's modi¯ed rescaled-range test statistic V ðqÞ (see Appendix B.3) for
the given choices of bandwidth parameter q for the (top) EUR/USD, (middle) GBP/USD, and
(bottom) EUR/GBP intra-day arrival-sign series. For each choice of q, the boxes indicate the
lower quartile, median, and upper quartile of V ðqÞ and the whiskers indicate the minimum and
maximum of V ðqÞ, across all 30 intra-day series. The light grey shading indicates the critical
region for Lo's modi¯ed rescaled-range test at the 5% signi¯cance level. The results for the
intra-day departure-sign series are qualitatively similar.
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Fig. 5. Length-m mean detrended standard deviation FðmÞ (see Appendix B.4) for the (solid
green curves) EUR/USD, (dashed orange curves) GBP/USD, and (dotted–dashed purple
curves) EUR/GBP arrival-sign series. Each curve corresponds to a single intra-day series. The
dotted black line indicates m ¼ 100. The results for the intra-day departure-sign series are
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Fig. 6. Log-periodogram regression (see Appendix B.5) estimates of H for given number c of
Fourier frequencies for the (solid green curves) EUR/USD, (dashed orange curves) GBP/USD,
and (dotted-dashed purple curves) EUR/GBP arrival-sign series. Each curve corresponds to a
single intra-day series. The results for the intra-day departure-sign series are qualitatively
similar.
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rule of thumb (Geweke and Porter-Hudak, 1983) c ¼ ffiffiffiffiffi
N

p
, where N is the

length of the given series. We stress, however, that the plots in Fig. 6 in-

dicate that our log-periodogram regression estimates of H depend heavily on

this choice, so using a di®erent choice for c would produce quantitatively

di®erent results. For example, another popular rule of thumb (Taqqu et al.,

1995) is c ¼ 0:1� ðN=2Þ. Due to the extremely large size of the intra-day

order-°ow series, this choice produces estimates of H � 0:5, which we do not

regard to be sensible given that the other statistical tests all suggest that the

intra-day order-°ow series exhibit long memory. The absence of a clear

choice for c highlights a weakness of log-periodogram regression for the

present application.

In Fig. 7, we plot the DFA and log-periodogram regression estimates of H

(using our choices of mmin ¼ 100 and c ¼ ffiffiffiffiffi
N

p
) for each intra-day arrival-sign

series. For each of the three currency pairs, the DFA estimates of H cluster in

the range from about 0:6 to about 0:8. The log-periodogram regression esti-

mates of H tend to be slightly larger (they cluster in the range of about 0:65

to about 0:85). However, the latter results depend heavily on the choice of c

(see Fig. 6), so we deem the DFA estimates to be more useful.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

DFA

Lo
g−

P
er

io
do

gr
am

 R
eg

re
ss

io
n

●
●

● ●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●●

●●●

●

EUR/USD
GBP/USD
EUR/GBP

Fig. 7. DFA and log-periodogram regression estimates of the Hurst exponent H for the intra-
day (green squares) EUR/USD, (orange circles) GBP/USD, and (purple triangles) EUR/GBP
arrival-sign series. Each point corresponds to the estimates for a single trading day. The dotted
black line indicates the diagonal. The results for the intra-day departure-sign series are
qualitatively similar.
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In Table 3, we list the means and standard deviations of our DFA and log-

periodogram regression estimates of H across all 30 days in our sample. As we

noted above, our results for arrival-sign series and departure-sign series are

very similar. In all cases, the mean estimates of H are many standard

deviations larger than 0:5, which strongly supports the hypothesis that these

series exhibit long memory. Based on our results in Figs. 5–7 and Table 3, we

regard H � 0:7 to be a good estimate for the Hurst exponent of the arrival-

sign series and departure-sign series for each of the three currency pairs.

5.2. Results for cross-day series

To assess how aggregating data from di®erent trading days impacts our

results, we now repeat all of our calculations using order-°ow series that span

daily boundaries. Speci¯cally, for a pair of consecutive trading days Di and

Diþ1, we construct the cross-day arrival-sign series by concatenating the

second half5 of the intra-day arrival-sign series from day Di and the ¯rst half

of the corresponding intra-day arrival-sign series from day Diþ1. We con-

struct the cross-day departure-sign series similarly using the corresponding

departure-sign series.

In all cases, we ¯nd that the sample ACFs, rescaled-range plots, and

results from Lo's modi¯ed rescaled-range test are qualitatively similar to

those for the intra-day series (see Figs. 1–4). This provides strong evidence

that the cross-day order-°ow series exhibit long memory. To quantify the

strength of this long memory, we calculate DFA and log-periodogram re-

gression estimates of the Hurst exponent H using the same choices of input

Table 3. DFA and log-periodogram regression estimates of the Hurst
exponent H for the EUR/USD, GBP/USD, and EUR/GBP intra-day
arrival-sign and departure-sign series. Each entry indicates the mean of
the estimates across all intra-day series. The numbers in parentheses
indicate 1 standard deviation of the estimates across all intra-day series.

DFA Log-periodogram regression

EUR/USD Arrivals 0:70 ð0:04Þ 0:74 ð0:03Þ
Departures 0:70 ð0:04Þ 0:74 ð0:03Þ

GBP/USD Arrivals 0:72 ð0:04Þ 0:74 ð0:03Þ
Departures 0:72 ð0:03Þ 0:74 ð0:03Þ

EUR/GBP Arrivals 0:72 ð0:02Þ 0:79 ð0:04Þ
Departures 0:71 ð0:02Þ 0:78 ð0:04Þ

5If an intra-day series has odd length, we round down to the previous integer.
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parameters (mmin ¼ 100 and c ¼ ffiffiffiffiffi
N

p
) as we used for our corresponding

estimates of H for the intra-day series. We plot our results in Fig. 8 and list

the means and standard deviations of our estimates across all 29 cross-day

periods in Table 4.

Our estimates of H for the cross-day series are very similar to the corre-

sponding estimates for the intra-day series (see Fig. 8 and Table 3). As with
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Fig. 8. DFA and log-periodogram regression estimates of the Hurst exponent H for the cross-
day (green squares) EUR/USD, (orange circles) GBP/USD, and (purple triangles) EUR/GBP
arrival-sign series. Each point corresponds to the estimates for a consecutive pair of trading
days. The dotted black line indicates the diagonal. The results for the cross-day departure-sign
series are qualitatively similar.

Table 4. DFA and log-periodogram regression estimates of the Hurst
exponent H for the EUR/USD, GBP/USD, and EUR/GBP cross-day
arrival-sign and departure-sign series. Each entry indicates the mean of
the estimates across all cross-day series. The numbers in parentheses
indicate 1 standard deviation of the estimates across all cross-day series.

DFA Log-periodogram regression

EUR/USD Arrivals 0:71 ð0:03Þ 0:74 ð0:03Þ
Departures 0:70 ð0:03Þ 0:74 ð0:03Þ

GBP/USD Arrivals 0:73 ð0:03Þ 0:74 ð0:03Þ
Departures 0:73 ð0:03Þ 0:74 ð0:03Þ

EUR/GBP Arrivals 0:72 ð0:03Þ 0:79 ð0:04Þ
Departures 0:72 ð0:03Þ 0:78 ð0:04Þ
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the intra-day series, the DFA estimates of H cluster in the range of about 0:6

to about 0:8 and the log-periodogram regression estimates of H cluster in the

range of about 0:65 to about 0:85. We therefore regard H � 0:7 to be a good

estimate for the Hurst exponent of the cross-day order-sign series for each of

the three currency pairs.

5.3. Long memory versus non-stationarity

In this section, we address the conjecture by Axioglou and Skouras (2011)

that the apparent long memory in the cross-day series is mostly an artifact

caused by structural breaks at the boundaries between di®erent trading days

(see Sec. 3).

To assess whether the estimator is able to identify the boundary between

di®erent trading days, we calculate the normalized cumulative-sum change-

point estimate (see Eq. (C.2)) for each cross-day order °ow series. Because

the lengths of the intra-day series vary with the number of arrivals and

departures each day, the locations of the boundaries between di®erent

trading days vary across di®erent cross-day series. Consequently, the

boundary between trading days Di and Diþ1 does not necessarily lie at the

mid point in the relevant cross-day series. We therefore introduce a nor-

malization to enable comparisons between di®erent cross-day series. Given a

cross-day series of length N with daily boundary r � 2 f2; 3; . . . ;N � 1g, and
given a change-point estimator r̂ � for r �, the normalized change-point

estimator is

~r ¼ ðr̂ � � r �Þ=r �; if r̂ � � r �;
ðr̂ � � r �Þ=ðr � r �Þ; otherwise:

�
ð10Þ

Observe that ~r 2 ½�1; 1�, and ~r ¼ 0 if and only if r̂ � ¼ r �.
In Fig. 9, we plot the empirical cumulative density functions (ECDFs) of ~r

for each of the three currency pairs' cross-day arrival-sign series. The results

for the cross-day departure-sign series are qualitatively similar. For the EUR/

GBP cross-day series, there is no visible jump in the ECDF near ~r ¼ 0.

Therefore, the cumulative-sum change-point estimator performs very poorly

at detecting the true locations of the daily boundaries in the cross-day series

for this currency pair. For EUR/USD and GBP/USD, there is a small but

discernible spike in the ECDFs near to ~r ¼ 0, which indicates that the esti-

mator performs somewhat better for these currency pairs. However, the

distribution of the estimator's output across di®erent trading days is still

very broad, which suggests that its performance is still rather weak.
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Together, these results suggest that the apparent long-memory properties of

the cross-day series are not strongly in°uenced by non-stationarities at the

daily boundaries.

To test the hypothesis of non-stationarity more formally, we also perform

Berkes' change-point test (see Appendix C) on both the intra-day and cross-

day order-°ow series. We repeat the test for each of 0, 1, and 2 change points.

We show box plots of our results in Fig. 10.

For each of the three currency pairs and for each of 0, 1, and 2 change-

points, the test rejects the null hypothesis at the 1% signi¯cance level in all

intra-day and cross-day arrival-sign and departure-sign series. The results for

the intra-day series are again very similar to those for the cross-day series.

This result provides strong evidence against the hypothesis that the apparent

long-memory properties of the series are actually artifacts caused by non-

stationarities. We therefore strongly reject Axioglou and Skouras' (2011)

hypothesis that the apparent long memory in the cross-day series is mostly an
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Fig. 9. ECDFs of the normalized cumulative-sum change-point estimator ~r (see Eq. (10) for
the (solid green curve) EUR/USD, (dashed orange curve) GBP/USD, and (dotted–dashed
purple curve) EUR/GBP cross-day arrival-sign series. The results for the cross-day departure-
sign series are qualitatively similar. The dotted black curve illustrates the estimator's null
distribution for a second-order stationary series with no structural breaks, which we estimate
by calculating the ECDF of the normalized cumulative-sum change-point estimates from
100,000 independent series that each consist of 1,000,000 random variables drawn indepen-
dently and at random from the standard normal distribution.
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artifact caused by structural breaks at the daily boundaries, in favor of the

alternative hypothesis of true long memory that persists across daily

boundaries. We return to this discussion in Sec. 6.

6. Discussion

The results of our statistical tests strongly support the hypothesis that both

the arrival-sign and departure-sign series on Hotspot FX exhibit long mem-

ory that persists over several thousands of events. For each of the three

currency pairs, our calculations suggest that this long memory in order °ow
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Fig. 10. Box plots of Berkes' change-point test statisticM (see Appendix C) with (top row) 0
change points, (middle row) 1 change point, and (bottom row) 2 change points, for EUR/USD,
GBP/USD, and EUR/GBP arrival-sign series. The left plots show the results for the intra-day
series, and the right plots show the results for the cross-day series. The boxes indicate the lower
quartile, median, and upper quartile of M , and the whiskers indicate the minimum and
maximum of M , across all intra-day or cross-day series. In each case, we use Andrews' (1991)
data-driven plug-in estimator q̂ from Eq. (B.10) to calculate M . The light grey shading indi-
cates the critical region for Berkes' change-point test at the 1% signi¯cance level. The results
for the cross-day departure-sign series are qualitatively similar.
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can be characterized by a Hurst exponent of H � 0:7. The variation in this

result ��� both across the di®erent currency pairs and across the di®erent

days in our sample ��� is small.

Our results raise several interesting points for discussion. As we noted in

Sec. 3, several authors have argued that order splitting provides a more

plausible explanation for long memory in order °ow than does herding. Our

results provide further evidence to support this argument. Other empirical

studies of long memory in order °ow have studied LOBs in which all insti-

tutions observe all order °ow from all others. On Hotspot FX, by contrast,

institutions can only see the order °ow that originates from institutions with

whom they possess bilateral credit (see Sec. 4). It is therefore reasonable to

assume that herding e®ects are much weaker on Hotspot FX than they are on

other platforms. Despite this important di®erence, our estimates of H on

Hotspot FX are very similar to those reported for other platforms (see Sec. 3).

We therefore argue that herding plays a minor role in the long-memory

properties of order °ow and that long-range autocorrelations are instead

caused by order-splitting strategies (which are una®ected by the quasi-

centralized nature of trade on Hotspot FX).

We turn next to the low-order negative autocorrelation that we observe in

the sample ACFs (see Fig. 1). Although this negative autocorrelation is rel-

atively weak, the e®ect is present for each day in our sample, and we therefore

deem it to be a robust statistical property of the data. Interestingly, several

other studies of long memory in order °ow have not reported this behavior

and have instead reported positive autocorrelations at small lags. This raises

the question of why our results di®er. We believe that the answer to this

question lies in the extremely high activity levels in the FX spot market. In a

study of order °ow on the LSE, T�oth et al. (2012) used broker identi¯er codes

to trace which order °ow originated from which brokerage. For limit order

arrivals, they reported that orders originating from the same broker were

positively correlated with each other, but that orders originating from dif-

ferent brokers were negatively correlated with each other. Because of the

extremely large number of participants in the FX spot market, an arriving

limit order is likely to be followed by many other arriving limit orders from

other participants. According to T�oth et al.'s ¯ndings, this should generate

short-range, negative autocorrelations in order °ow. At larger lags, however,

the strength of this e®ect diminishes and the long-range autocorrelation

e®ects become more apparent. We conjecture that the short-range negative

autocorrelations were not reported in some other studies because this e®ect is

weaker (and, therefore, not observable) in markets with lower activity levels.
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It is also interesting to consider why the cumulative-sum change-point

estimator (see Eq. C.2) performs much worse at detecting the daily bound-

aries between intra-day order-sign series in the FX spot market than was

reported by Axioglou and Skouras for the LSE (Axioglou and Skouras, 2011).

We conjecture that the answer lies in the structural di®erences between the

trading days in these two markets. Trading on the LSE commences at

08:00:00 and ceases at 16:30:00 each day (The London Stock Exchange,

2015). By contrast, trading in the FX spot market occurs 24 h a day.

Although we restrict our attention to the peak trading hours of 08:00:00–

17:00:00 GMT, the absence of a market-wide closing time has several

important consequences for the way that traders act.

First, many ¯nancial institutions require that traders unwind their posi-

tions (i.e., rebalance their net daily holdings to 0) before the end of each

trading day (Lyons, 1995). The LSE market closure at 16:30:00 constitutes a

hard deadline by which any traders who seek to unwind their positions must

ful¯ll this goal, even if doing so requires them to trade at unfavorable prices.

This may cause the statistical properties of order °ow late in the trading day

to di®er substantially from those early in the trading day, and may therefore

result in a structural break at the daily boundaries when concatenating data

from di®erent days. In the FX spot market, by contrast, there is no market-

wide closing time.

Second, the absence of market opening and closing times in the FX spot

market enables traders in di®erent time zones to begin and end their trading

days at di®erent times. Hsieh and Kleidon (1996) noted that many traders

spend the early part of their trading day assessing the state of the market, the

middle part of their trading day performing the majority of their trades, and

the late part of their trading day resetting their net inventory to 0. In markets

with speci¯ed opening and closing times (such as the LSE), all traders

progress through this cycle simultaneously. In the FX spot market, by con-

trast, traders in di®erent time zones can choose the length and timing of their

trading days as they wish. The °ux of traders from di®erent time zones into

and out of the FX spot market may cause the statistical properties of order

°ow to di®er from those in markets where all traders' trading days are aligned

by the market opening and closing times.

Third, Axioglou and Skouras (2011) conjectured that most traders on the

LSE reassess their trading strategy once per day, while markets are closed,

then implement their chosen strategy throughout the next trading day. This

is not a plausible description of the actions of traders in the FX spot market,

which is always open.
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Finally, we return to the question of whether the apparent long memory

that we observe is actually an artifact caused by structural breaks. Although

we test and strongly reject this hypothesis for zero, one, and two structural

breaks, our results do not rule out the possibility of larger numbers of

structural breaks. Indeed, it is plausible that intra-day order-sign series

contain very large numbers of structural breaks, for reasons such as the

arrivals or departures of institutions in the market or the release of macro-

economic news. From a modelling perspective, however, models that rely on

large numbers of structural breaks that occur at unknown points in time have

several important drawbacks, such as being di±cult to estimate and of little

use for forecasting (see Appendix C). Moreover, due to their extremely large

numbers of parameters, such models su®er a considerable risk of over¯tting.

By contrast, long-memory models are parsimonious, easy to simulate, and

useful for forecasting. We therefore regard long-memory approaches to be

more useful than alternative approaches that rely on ¯tting large numbers of

structural breaks to explain the observed autocorrelation properties of the

order-sign series.

It is important to note that our results do not rule out the possibility that

order-sign series contain both long memory and structural breaks. Indeed, the

co-existence of these e®ects could help to explain the di®erences between the

behavior observed in di®erent markets. According to our ¯ndings, intra-day

order °ow in the FX spot market exhibits long memory. Any possible

structural breaks appear to have little impact. In equities markets, by con-

trast, the relatively low number of order arrivals each day makes precise

empirical assessment of long memory much more di±cult, and structural

breaks appear to have a greater impact on the apparent long-memory

properties of order °ow. It is plausible that both structural breaks and true

long memory could coexist in all ¯nancial markets and that the relative

importance of these e®ects is di®erent for di®erent assets.

7. Conclusions

In this paper, we have investigated the long memory of order °ow in the FX

spot market. Due to the extremely high levels of activity on the platform

that we study, and in contrast to other empirical studies on this topic, we

were able to investigate the long-memory properties of intra-day series

without needing to aggregate data from di®erent trading days. For each of

the three currency pairs and on each of the trading days that we studied, we

found that both arrival-sign and departure-series exhibit long memory, with
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a Hurst exponent of H � 0:7. We also uncovered a negative autocorrelation

at shorter lags, which we conjectured was caused by the large number of

participants in the FX spot market.

All of our results for data that crosses daily boundaries were similar to

those for intra-day data, and we strongly rejected the hypothesis that the

apparent long memory of order °ow is an artifact caused by structural

breaks. We therefore concluded that long memory is a robust statistical

property of order °ow on Hotspot FX that persists across daily boundaries.

We also proposed several possible reasons why our ¯ndings di®er from those

reported by Axioglou and Skouras for the LSE (Axioglou and Skouras,

2011). Further empirical study of data from other markets will help to

illuminate these issues further, and is therefore an important topic for future

research.

Finally, we note that the existence of long memory in order °ow raises an

interesting question called the \e±ciency paradox" (Farmer et al., 2006): how

can return series remain unpredictable given that order °ow exhibits long

memory? To date, there are two main hypotheses. Some authors (Bouchaud

et al., 2004, 2006) have argued that markets reside at a \self-organized

critical point" in which liquidity takers cause long-range autocorrelations in

order °ow that exactly balance the long-range negative autocorrelations

caused by liquidity providers. Others (Farmer et al., 2006; Lillo and Farmer,

2004) have argued that predictability in order °ow is o®set by a negative

correlation with available liquidity. At present, there is no clear consensus as

to which approach best describes the temporal evolution of real markets, and

further empirical and theoretical study of this question remains an important

and exciting avenue for future research.

Appendix A. Long Memory

In this appendix, we provide a detailed description of long-memory processes.

For further discussion of these topics, see Beran (1994).

A.1. Autocorrelation and long memory

Recall from Sec. 2.1 that a second-order stationary time series fWtg ¼
W1;W2; . . . with ACF �ðkÞ (see Eq. (4)) is said to exhibit long memory if

lim
N!1

XN
k¼�N

j�ðkÞj ¼ 1: ðA:1Þ
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One way in which a time series can exhibit long memory is if there exists some

constant � 2 ð0; 1Þ such that �ðkÞ decays asymptotically as a power of k:

�ðkÞ 	 k��LðkÞ; k ! 1; ðA:2Þ
where L is a slowly varying function6 (Cont, 2005; Lillo and Farmer, 2004;

Lillo et al., 2005). Smaller values of � correspond to slower decay of the long-

range autocorrelations in fWtg (Bouchaud et al., 2009; Lillo and Farmer,

2004).

A.2. The rescaled-range statistic

Let

Wk ¼
1

k

Xtþk

j¼tþ1

Wj : ðA:3Þ

The rescaled-range statistic (Mandelbrot and Wallis, 1969b) is the ratio

Qðt; kÞ ¼ Rðt; kÞ
Sðt; kÞ ; ðA:4Þ

where, for t; k 2 Z>0 and for i 2 f1; 2; . . . ; kg,

Rðt; kÞ ¼ max
1�i�k

Xtþi

j¼tþ1

ðWj �WkÞ
" #

� min
1�i�k

Xtþi

j¼tþ1

ðWj �WkÞ
" #

ðA:5Þ

and

S 2ðt; kÞ ¼ 1

k

Xtþk

j¼tþ1

ðWj �WkÞ2: ðA:6Þ

The rescaled-range statistic Q measures the range of partial sums of devia-

tions of the time series fW1;W2; . . .g from its mean, rescaled by an estimate of

its standard deviation (Lo, 1991).

A.3. The Hurst exponent

The following theorem by Mandelbrot (1975) provides a relationship between

a time series' long-range autocorrelations and its rescaled-range statistic.

6A function L is slowly varying if limk!1LðzkÞ=LðkÞ ¼ 1 for all z > 0.
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Theorem 1. If fWtg is a second-order stationary process such that W 2
t is

ergodic and t�H
P t

i¼1 Wi converges weakly to a fractional Brownian motion7

with parameter H as t ! 1, then

k�HQðt; kÞ!d � as k ! 1; ðA:7Þ
where � is a non-degenerate random variable and !d denotes convergence in

distribution.

The constant H is called the Hurst exponent of fWtg (Beran, 1994; Hurst,

1951; Mandelbrot and Wallis, 1968, 1969a,b,c). A time series with a Hurst

exponent of H ¼ 1=2 is a short-memory process. For a long-memory process

that satis¯es the conditions of this theorem, H is related to � in Eq. (A.2) by

H ¼ 1� �

2
; ðA:8Þ

and to � in Eq. (B.16) by

H ¼ � þ 1

2
: ðA:9Þ

Appendix B. Empirical Assessment of Long Memory

In many empirical situations, it is common to observe only a single, ¯nite-

length realization fw1;w2; . . . ;wNg of fWtg. If the statistical properties of

fWtg are unknown, then estimating the long-memory properties of fWtg from
fw1;w2; . . . ;wNg entails considerable challenges (Beran, 1992, 1994; Man-

delbrot and Wallis, 1969d). Most empirical studies employ heuristic methods

for this task. The performance of such techniques on empirically observed

series varies considerably, so it is common for empirical studies to evaluate

the output of several heuristic methods rather than relying on a single esti-

mator. In this appendix, we provide a detailed description of the techniques

that we use throughout the paper. For further discussion and comparisons of

these techniques, see Taqqu et al. (1995).

B.1. Sample ACF

For an empirically observed time series fw1;w2; . . . ;wNg, let

w ¼ 1

N

XN
i¼1

wi ðB:1Þ

7A fractional Brownian motion (Mandelbrot et al., 1968) is a Gaussian process BH ðtÞ with 0
drift that satis¯es BH ð0Þ ¼ 0 and E½BH ðtÞBH ðsÞ� ¼ 1

2 ðjtj2H þ jsj2H � jt � sj2H Þ for some
H 2 ð0; 1Þ.
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denote the sample mean, let

�̂ðkÞ ¼ 1

N

XN�jkj

i¼1

ðwiþjkj � wÞðwi � wÞ ðB:2Þ

denote the sample autocovariance function, and let

�̂ðkÞ ¼ �̂ðkÞ
�̂ð0Þ ðB:3Þ

denote the sample ACF. It is very di±cult to estimate the large-k decay of

�ðkÞ from �̂, so direct estimation of the long-memory properties of fWtg from

�̂ often produces very poor results (Lillo and Farmer, 2004).

B.2. Rescaled-range plots

For a given block number B 2 N, let

GðkÞ ¼ t ¼ Nði � 1Þ
B

þ 1ji ¼ 1; . . . ;B; t þ k � N

� �
: ðB:4Þ

A rescaled-range plot (also known as a pox plot) (Mandelbrot and Wallis,

1968, 1969b; Teverovsky et al., 1999) is a plot of

RðkÞ ¼ 1

jGðkÞj
X

t2GðkÞ
Qðt; kÞ ðB:5Þ

versus k on doubly logarithmic axes, where jGðkÞj denotes the number of

elements in GðkÞ. The slope of a rescaled-range plot for large values of k

provides a rough estimate for the Hurst exponent H (Mandelbrot and Wallis,

1969b).

B.3. Lo's modi¯ed rescaled-range statistic

Lo (1991) noted that if a time series fWtg is subject to short-range auto-

correlations, then the denominator Sðt; kÞ of the rescaled-range statistic

Qðt; kÞ is not a consistent estimator for the standard deviation of fWtg.
Therefore, an important di±culty in using the rescaled-range statistic to

assess the long-memory properties of an empirically observed time series

fw1;w2; . . . ;wNg is that the ¯nite-sample properties of Q are not invariant to

short-range dependence. To address this problem, Lo proposed replacing the

denominator of Q with the Newey–West8 estimator (Newey andWest, 1987),

8For a suitable choice of q, Newey and West (1987) showed that �̂ðqÞ is a consistent estimator
for the standard deviation of fWtg, even if fWtg is subject to short-range autocorrelations.
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which discounts short-range dependence in fWtg up to a speci¯ed lag q < N .

The parameter q is called the bandwidth parameter. Lo's modi¯ed rescaled-

range statistic (Lo, 1991) is

~QðqÞ ¼ Rð1;NÞ
�̂ðqÞ ; ðB:6Þ

where

�̂ 2ðqÞ ¼
S 2ð1;NÞ; if q ¼ 0;

S 2ð1;NÞ þ 2
Xq
i¼1

1� i

q þ 1

� �
�̂ðiÞ; otherwise:

8><
>: ðB:7Þ

Given ~QðqÞ, the statistic

V ðqÞ ¼
~QðqÞffiffiffiffiffi
N

p ðB:8Þ

can be used as a test statistic for the hypothesis test

H0 : fWtg is a short-memory process;

H1 : fWtg is a long-memory process:

This hypothesis test is called Lo's modi¯ed rescaled-range test (Lo, 1991). In

the limit N ! 1, the asymptotic critical region for the test at the 5% sig-

ni¯cance level is approximately ½0:809; 1:862�.
Teverovsky et al. (1999) remarked that although Lo's modi¯ed rescaled-

range statistic is a signi¯cant improvement over the original rescaled-range

statistic, Lo's test can fail to reject H0 for some time series with long memory.

Moreover, they noted that both the size and the power of the test depend on

q. The optimal choice of q for ~QðqÞ and V ðqÞ depends on the behavior of the

spectral density f of fWtg (Andrews, 1991). If f is unknown (as is usually the

case for empirically observed series), then there is no universal rule via which

to choose q. In empirical applications, it is therefore customary to calculate
~QðqÞ and V ðqÞ using several di®erent choices of q and/or to calculate a so-

called plug-in estimator q̂ (Andrews, 1991; Axioglou and Skouras, 2011; Lo,

1991) by assuming that f is equal to the spectral density of a speci¯ed

parametric process. Andrews (1991) derived plug-in estimators for several

di®erent parametric processes (including autoregressive, moving-average,

and ARMA models).

The Long Memory of Order Flow in the FX Spot Market

1650001-31



For our calculations, we use the plug-in estimator for an AR(1) process

Wt ¼ �Wt�1 þ "t; ðB:9Þ
where � 2 R is the autocorrelation parameter and "t is uncorrelated Gaussian

noise. This estimator is given by (Andrews, 1991; Lo, 1991)

q̂ ¼ 3N

2

� �
1=3 2�̂

1� �̂ 2

 !
2=3

$ %
; ðB:10Þ

where �̂ is the maximum-likelihood estimate of � given fw1;w2; . . . ;wNg and

bxc denotes the greatest integer less than or equal to x.

B.4. Detrended °uctuation analysis (DFA)

DFA (Peng et al., 1994) is a technique for estimating the Hurst exponent

from an empirically observed series fw1;w2; . . . ;wNg. Let

w �
i ¼

Xi
j¼1

wi; i ¼ 1; 2; . . . ;N : ðB:11Þ

For a given window length m 2 N such that m � N , divide fw �
1 ;w

�
2 ; . . . ;w

�
Ng

into non-overlapping windows of length m. For each j 2 f1; 2; . . . ; bN=mcg,
label the data points in window j as y1;j ; y2;j ; . . . ; ym;j , perform an ordinary

least-squares regression to ¯t a straight line to the m data points in the

window, and let ŷi;j denote the value of the regression line at the point yi;j for

each i 2 f1; 2; . . . ;mg. For each window, calculate the detrended standard

deviation

FjðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i¼1

ðyi;j � ŷi;jÞ2
s

; ðB:12Þ

and then calculate the length-m mean detrended standard deviation

FðmÞ ¼ 1

bN=mc
XbN=mc

j¼1

FjðmÞ: ðB:13Þ

Repeat this process for several logarithmically spaced choices of window

lengthm, and plot FðmÞ versusm using doubly logarithmic axes. Identify the

smallest value mmin such that the plot is approximately straight for all

m � mmin. The DFA estimate of H is given by the slope of the best-¯t line for

m � mmin.
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B.5. Log-periodogram regression

The long-memory properties of fWtg can also be characterized by the be-

havior of its spectral density (Beran, 1994)

f ð	Þ ¼ 1

2


X1
k¼�1

�ðkÞe�ik	 ðB:14Þ

in the limit 	 ! 0. If there exists a constant l 2 R such that

f ð	Þ ! l as 	 ! 0; ðB:15Þ
then fWtg is a short-memory process. If, by contrast, there exists a constant

� 2 ð0; 1Þ such that

f ð	Þ 	 	�� as 	 ! 0; ðB:16Þ
then fWtg is a long-memory process. Larger values of � correspond to slower

decay of the long-range autocorrelations in fWtg (Beran, 1994).

Estimating the behavior of f ð	Þ close to 0 provides an alternative

approach to estimating the Hurst exponent H . Let

	j;N ¼ 2
j

N
; j 2 1; 2; . . . ;

N � 1

2

� �� �
ðB:17Þ

denote the Fourier frequencies of fw1;w2; . . . ;wNg, and let

I ð	j;N Þ ¼
1

2
N

XN
t¼1

ðwt � wÞe�it	j;N

�����
�����
2

ðB:18Þ

denote the corresponding periodogram. The slope of an ordinary least-squares

regression of logðI ð	j;N ÞÞ onto logð	j;N Þ for small 	j;N is an estimator for ��,

and it is therefore an estimator for H (Beran, 1994; Lillo and Farmer, 2004;

Taqqu et al., 1995).

Despite the attractiveness of its computational simplicity, log-period-

ogram regression su®ers from a substantial practical drawback (Beran, 1994):

there is no universal rule for choosing the number c of Fourier frequencies

with which to perform the regression. The scaling in Eqs. (B.15) and (B.16)

only holds for 	 ! 0, so choosing an overly large c leads to large bias, but

choosing an overly small c leads to high variance. Robinson (1994) derived an

expression for the optimal choice of c to minimize the mean squared error of

the estimated cumulative spectral distribution function, but the optimal

choice turns out to depend on the unknown value of H . Therefore, Robinson's

expression does not provide a method for choosing c for an empirically
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observed time series. Instead, most empirical studies use one of two rules of

thumb: c ¼ ffiffiffiffiffi
N

p
(Geweke and Porter-Hudak, 1983) or c ¼ 0:1� ðN=2Þ

(Taqqu et al., 1995). Despite their widespread use, neither of these rules are

based on rigorous derivation or optimization.

Appendix C. Long Memory Versus Non-Stationarity

A key di±culty with assessing the long-memory properties of empirically

observed time series is that many estimation techniques can produce similar

output for a non-stationary series (e.g., a series with a monotonic trend

(Bhattacharya et al., 1983) or change in mean (Giraitis et al., 2001; Granger

and Hyung, 2004)) as they do for a stationary series with long memory (Rea

et al., 2009; Taqqu et al., 1995; Xu et al., 2005). Several authors have thus

argued that the apparent long memory reported by empirical studies of ¯-

nancial time series is an artifact caused by non-stationarities (Axioglou and

Skouras, 2011; Berkes et al., 2006; Liu, 2000; Mikosch and Stărică, 2002).
Disentangling the statistical properties of a time series with long memory

and a time series with non-stationarities is a di±cult task, and the choice of

whether to model such time series using a long-memory model or a non-

stationary model often depends on the desired application. Long-memory

models are parsimonious, straightforward to simulate, and there exist many

techniques that require only mild assumptions to estimate their parameters

from data (Beran, 1994). Non-stationary models can illuminate important

features of an underlying series (such as the locations and frequency of

structural breaks) that are not addressed by long-memory models, but they

typically require the inclusion of either a large number of parameters (which

can lead to over-¯tting) or latent parameters (which can be di±cult to esti-

mate from data).

Many standard tests for non-stationarities in an empirically observed

series have low power in the presence of long memory (Diebold and Rude-

busch, 1991; Hassler and Wolters, 1994), and there is no universal test that is

able to determine whether the apparent long-memory properties of an em-

pirically observed time series are an artifact caused by some unknown form

of non-stationarity (Granger and Hyung, 2004). However, Berkes et al.

(2006) developed a hypothesis test that can help to distinguish between long

memory and a speci¯c type of non-stationarity that they called structural

breaks.

De¯nition. The time series fZtg is a short-range dependent series with a

structural break at time r � if there exists a real-valued, second-order
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stationary, short-memory process f�tg and a constant �� 6¼ 0 such that

Zt ¼
�t; t � r �;
�� þ �t; t > r �:

�
ðC:1Þ

Given a ¯nite-length empirical observation fz1; z2; . . . ; zNg of a time series

fZtg, Berkes' change-point test is the hypothesis test

H0 : fZtg is a short-memory process with one structural break;9

H1 : fZtg is a long-memory process:

Berkes' test uses the so-called cumulative-sum change-point estimator

(Berkes et al., 2006)

r̂ � ¼ min r : max
1�j�N

Xj
i¼1

zi �
j

N

XN
i¼1

zi

�����
����� ¼

Xr
i¼1

zi �
r

N

XN
i¼1

zi

�����
�����

( )
: ðC:2Þ

For a given q < N , let

T ð1Þ ¼ 1

�̂ 2
ð1ÞðqÞ

ffiffiffiffiffi
r̂ �

p max
1�i�r̂ �

Xi
j¼1

zj �
i

r̂ �

X̂r �

j¼1

zj

�����
�����;

T ð2Þ ¼ 1

�̂ 2
ð2ÞðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � r̂ �

p max
r̂ ��i�N

XN
j¼r̂ �

zj �
i � r̂ �
N � r̂ �

XN
j¼r̂ �

zj

�����
�����;

where �̂ð1ÞðqÞ and �̂ð2ÞðqÞ are the values of �̂ðqÞ from Eq. (B.7) for the fz1;
z2; . . . ; zr̂ �g and fzr̂ �þ1; zr̂ �þ2; . . . ; zNg series, respectively. The test statistic for
Berkes' test is

M ¼ max T ð1Þ;T ð2Þ	 

: ðC:3Þ

In the limit N ! 1, the asymptotic critical value ofM at the 1% signi¯cance

level is about 1:72 (Berkes et al., 2006).
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