
Euro. Jnl of Applied Mathematics: page 1 of 42 c© Cambridge University Press 2016

doi:10.1017/S095679251600022X
1

Detection of core–periphery structure in networks
using spectral methods and geodesic paths

MIHAI CUCURINGU1, PUCK ROMBACH1, SANG HOON LEE2,3 and

MASON A. PORTER2,4

1Department of Mathematics, UCLA, Los Angeles, CA, USA

emails: mihai@math.ucla.edu, rombach@math.ucla.edu
2Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute,

University of Oxford, Oxford, UK

email: porterm@maths.ox.ac.uk
3School of Physics, Korea Institute for Advanced Study, Seoul, Korea

email: lshlj82@kias.re.kr
4CABDyN Complexity Centre, University of Oxford, Oxford, UK

(Received 10 December 2015; revised 2 March 2016; accepted 3 May 2016)

We introduce several novel and computationally efficient methods for detecting “core–

periphery structure” in networks. Core–periphery structure is a type of mesoscale structure

that consists of densely connected core vertices and sparsely connected peripheral vertices.

Core vertices tend to be well-connected both among themselves and to peripheral ver-

tices, which tend not to be well-connected to other vertices. Our first method, which is

based on transportation in networks, aggregates information from many geodesic paths

in a network and yields a score for each vertex that reflects the likelihood that that

vertex is a core vertex. Our second method is based on a low-rank approximation of

a network’s adjacency matrix, which we express as a perturbation of a tensor-product

matrix. Our third approach uses the bottom eigenvector of the random-walk Laplacian

to infer a coreness score and a classification into core and peripheral vertices. We also

design an objective function to (1) help classify vertices into core or peripheral vertices

and (2) provide a goodness-of-fit criterion for classifications into core versus peripheral

vertices. To examine the performance of our methods, we apply our algorithms to both syn-

thetically generated networks and a variety of networks constructed from real-world data sets.

Key words: Networks, core–periphery structure, shortest-path algorithms, low-rank matrix

approximations, graph Laplacians

1 Introduction

Network science has grown explosively during the past two decades [65], and myriad new

journal articles on network science appear every year. One focal area in the networks

literature is the development and analysis of algorithms for detecting local, mesoscale, and

global structures in various types of networks [35,74]. Mesoscale features are particularly

interesting, as they arise neither at the local scale of vertices (i.e., nodes) and edges nor

at the global scale of summary statistics. In the present paper, we contribute to research

on mesoscale network structures by developing and analysing new (and computationally



2 M. Cucuringu et al.

efficient) algorithms for detecting a feature known as core–periphery structure, which

consists of densely connected core vertices and sparsely connected peripheral vertices.

The importance of investigating mesoscale network structures is acknowledged widely

[35, 74], but almost all of the research on this topic concerns a specific type of feature

known as community structure. In studying community structure, one typically employs

some algorithm to detect sets of vertices called communities that consist of vertices

that are densely connected to each other, such that the connection density between

vertices from different communities is comparatively sparse [35, 38, 67, 74]. A diverse

array of methods exist to detect community structure, and they have been applied to

numerous areas, such as committee networks in political science [73], friendship networks

[40, 86], protein interaction networks [19, 57], functional brain networks [8], and mobile

phone networks [68]. Popular methods include optimization of a quality function called

“modularity” [64, 66, 67], spectral partitioning [43, 84], dynamical approaches based on

random walkers or other dynamical systems [3,46,71,72,78], and more. Most community-

detection methods require a vertex to belong to a distinct community, but several methods

also allow the detection of overlapping communities (see, e.g., [1, 4, 46, 69]).

Core–periphery structure is a mesoscale feature that is rather different from community

structure. The main difference is that core vertices are well-connected to peripheral ver-

tices, whereas the standard perspective on community structure views communities as

nearly decomposable modules (which leads to trying to find the best block-diagonal fit to

a network’s adjacency matrix) [76,92]. Core–periphery structure and community structure

are thus represented by different types of block models [46, 70]. The quantitative invest-

igation of core–periphery structure has a reasonably long history [26], and qualitative

notions of core–periphery structure have long been considered in fields such as inter-

national relations [18, 82, 85, 90], sociology [30, 54], and economics [53] (and have been

examined more recently in applications such as neuroscience [9], transportation [56], and

faculty movements in academia [21]), but the study of core–periphery structure remains

poorly developed—especially in comparison to the study of community structure [35,74].

Most investigations of core–periphery structure tend to use the perspective that a net-

work’s adjacency matrix has an intrinsic block structure (which is different from the block

structure from community structure) [13, 25, 76]. Very recently, for example, Ref. [92]

identified core–periphery structure by fitting a stochastic block model (SBM) to empirical

network data using a maximum likelihood method, and the SBM approach in Ref. [70]

can also be used to study core–periphery structure. Importantly, it is possible to examine

core–periphery structure (and related structures) using a wealth of different perspectives,

such as overlapping communities [91], k-cores [44], network capacity [27], and random

walks [29]. It is also interesting to examine growth mechanisms to generate networks with

core–periphery structure [89]. The notion of “nestedness” [7] from ecology is also related

to core–periphery structure [55].

The main contribution of the present paper is the development of novel algorithms

for detecting core–periphery structure. Our aim is to develop algorithms that are both

computationally efficient and robust to high levels of noise in data, as such situations can

lead to a blurry separation between core vertices and peripheral vertices.

The rest of this paper is organized as follows. In Section 2, we give an introduction to

core–periphery structure and briefly survey a few of the existing methods to detect such



Detection of core–periphery structure 3

structure. In Section 3, we introduce the Path-Core method, which is based on computing

shortest paths between vertices of a network, for detecting core–periphery structure. In

Section 4, we introduce an objective function for detecting core–periphery structure that

exploits our proposed algorithms and helps in the classification of vertices into a core set

and a periphery set. In Section 5, we propose the spectral method LowRank-Core, which

detects core–periphery structure by considering the adjacency matrix of a network as a

low-rank perturbation matrix. In Section 6, we investigate two Laplacian-based methods

(Lap-Core and LapSgn-Core) for computing core–periphery structure in a network, and

we discuss related work in community detection that uses a similar approach. In Section 7,

we compare the results of applying the above algorithms using several synthetically

generated networks and real-world networks. Finally, we summarize and discuss our

results in Section 8, and we also discuss several open problems and potential applications.

In Appendix A, we detail the steps of our proposed Path-Core algorithm for computing

the Path-Core scores, and we include an analysis of its computational complexity. In

Appendix B, we discuss the spectrum of the random-walk Laplacian of a graph (and the

spectrum of the random-walk Laplacian of its complement). In Appendix C, we detail

an experiment with artificially planted high-degree peripheral vertices that illustrates the

sensitivity of a degree-based method (which we call Degree-Core and which uses vertex

degree as a proxy to measure coreness) to such outlier vertices. Finally, in Appendix D,

we calculate Spearman and Pearson correlation coefficients between the coreness scores

that we obtain from the different methods applied to several real-world networks.

2 Core–periphery structure in networks

The best-known quantitative approach to studying core–periphery structure was intro-

duced by Borgatti and Everett [13], who developed algorithms for detecting discrete and

continuous versions of core–periphery structure in weighted, undirected networks. (For

the rest of the present paper, note that we will use the terms “network” and “graph”

interchangeably.) Their discrete methods start by comparing a network to an ideal block

matrix in which the core is fully connected, the periphery has no internal edges, and the

periphery is well-connected to the core.

Borgatti and Everett’s main algorithm for finding a discrete core–periphery structure

assigns each vertex either to a single “core” set of vertices or to a single “periphery” set

of vertices. One seeks a vector C of length n whose entries are either 1 or 0, depending on

whether or not the associated vertex has been assigned to the core (1) or periphery (0).

We let Hij = 1 if Ci = 1 (i.e., vertex i is assigned to the core) or Cj = 1 (i.e., vertex j is

assigned to the core), and we otherwise let Hij = 0 (because neither i nor j are assigned

to the core). We define ρC =
∑

i,j AijHij , where A (with elements Aij) is the adjacency

matrix of the (possibly weighted) network G. Borgatti and Everett’s algorithm searches

for a value of ρC that is high compared to the expected value of ρ if C is shuffled such

that the number of 0 and 1 entries is preserved but their order is randomized. The final

output of the method is the vector C that gives the highest z-score for ρC . In a variant

algorithm for detecting discrete core–periphery structure, Borgatti and Everett still let

Hij = 1 if both Ci and Cj are equal to 1 and let Hij = 0 if neither i nor j are assigned to

the core, but they now let Hij = a ∈ [0, 1] if either Ci = 1 or Cj = 1 (but not both). To



4 M. Cucuringu et al.

detect a continuous core–periphery structure [13], Borgatti and Everett assigned a vertex

i a core value of Ci and let Hij = CiCj . A recent method that builds on the continuous

notion of core–periphery structure from Ref. [13] was proposed in Ref. [76]. It calculates

a core score for weighted, undirected networks; and it has been applied (and compared

to community structure) in the investigation of functional brain networks [9]. We use the

term Core-Score to describe one of the methods from Ref. [76].

The method of core–periphery detection in the popular network-analysis software

UCINET [14] uses the so-called minimum residual (MINRES) method [25], which is a

technique for factor analysis. One uses factor analysis to describe observed correlations

between variables in terms of a smaller number of unobserved variables called the

“factors” [28]. MINRES aims to find a vector C that minimizes

S(A,C) =

n∑
i=1

∑
j �=i

(
Aij − CiCj

)2
,

where Ci � 0 for all vertices i. Note that one ignores the diagonal elements of the

network’s adjacency matrix. Additionally, because CCT is symmetric, this method works

best for undirected networks G. For directed networks, one can complement the results

of MINRES with a method based on a singular value decomposition (SVD) [15]. In

practice, UCINET reports C/

√∑
i C

2
i .

In Ref. [91], it was argued that core–periphery structure can arise as a consequence

of community structure with overlapping communities. The authors of [91] presented a

so-called “community-affiliation graph model” to capture dense overlaps between com-

munities. In the approach in Ref. [91], the likelihood that two vertices are adjacent to

each other is proportional to the number of communities in which they have shared

membership. Della Rossa et al. recently proposed a method for detecting a continuous

core–periphery profile of a (weighted) network by studying the behaviour of a random

walker on a network [29]. Approaches based on random walks and other Markov pro-

cesses have often been employed in the investigation of community structure [46,71,72,78],

and it seems reasonable to examine them for other mesocale structures as well. Very re-

cently, Ref. [92] identified core–periphery structure by fitting an SBM to empirical network

data using a maximum-likelihood method. The review article [26] discusses several other

methods to detect core–periphery structure in networks.

3 Path-Core: Transport-based core–periphery detection via shortest paths in a network

In transportation systems, some locations and routes are much more important than

others. This motivates the idea of developing notions of core–periphery structure that

are based on transportation. In this section, we restrict our attention to undirected and

unweighted networks, although we have also examined transport-based core–periphery

structure in empirical weighted and directed networks [56]. In Section 3.1, we explain the

intuition behind the proposed Path-Core algorithm, and we examine its performance on

several synthetic networks. We end this section by commenting on a randomized version

of the Path-Core algorithm that samples a subset of edges in a graph and computes

shortest paths only between the endpoints of the associated vertices.



Detection of core–periphery structure 5

3.1 Path-Core

The first transport-based algorithm that we propose for detecting core–periphery structure

is reminiscent of betweenness centrality (BC) in networks [2,36,63]. One seeks to measure

the extent to which a vertex controls information that flows through a network by counting

the number of shortest paths (i.e., geodesic paths) on which the vertex lies between pairs

of other vertices in the network. Geodesic vertex BC is defined as

BC (i) =
∑

j,k∈V (G)\i

σjk(i)

σjk
, (3.1)

where σjk is the number of different shortest paths (i.e., the path count) from vertex j to

vertex k, and σjk(i) is the number of such paths that include vertex i. Our approach also

develops a scoring methodology for vertices that is based on computing shortest paths in

a network. Such a score reflects the likelihood that a given vertex is part of a network’s

core. Instead of considering shortest paths between all pairs of vertices in a network, we

consider shortest paths between pairs of vertices that share an edge when that edge is

excluded from the network. Specifically, we calculate

Path-Core(i) =
∑

(j,k)∈E(V (G)\i)

σjk(i)|G\(j,k)
σjk|G\(j,k)

, (3.2)

where σjk(i)|G\(j,k) and σjk|G\(j,k) are defined, respectively, as the path counts σjk and σjk(i)

in the graph G \ (j, k), and E(X) denotes the edge set induced by the vertex set X. The

network G \ (j, k) denotes the subgraph of G that one obtains by removing the edge

(j, k) ∈ E. Alternatively, one can define the Path-Core score of a vertex i as the BC of

this vertex when considering paths only between pairs of adjacent vertices j and k, but

for which the edge ejk incident to the two vertices is discarded. Note that one can apply

Path-Core to weighted graphs by using generalizations of BC to weighted graphs.

A related approach was used in Ref. [88] to derive measures of “bridging” in networks

based on the observation that edges that reduce distances in a network are important

structural bridges. In the calculations in Ref. [88], which employed a modification of

closeness centrality, one deletes edges and measures the resulting changes in the lengths

of shortest paths (and hence the resulting changes in closeness centralities). We also note

the recent paper [33] about bridging centrality.

Let G(V , E) be a graph with a vertex set V of size n (i.e., there are |V | = n vertices) and

an edge set E of size m. The set of core vertices is VC (and its size is nc), and the set of

peripheral vertices is VP (and its size is np). We also sometimes use the notation C = |VC |
for the size of the core set. Suppose that a network (i.e., a graph) contains exactly one

core set and exactly one periphery set, and that these sets are disjoint: VC ∪ VP = V and

VC ∩ VP = ∅. The goal of the Path-Core algorithm is to compute a score for each vertex

in the graph G that reflects the likelihood that that vertex belongs to the core. In other

words, high-scoring vertices have a high probability of being in the core, and low-scoring

vertices have a high probability of being in the periphery. Throughout the paper, we use

the term “Path-Core scores” to indicate the scores that we associate with a network’s

vertices by using the Path-Core algorithm.



6 M. Cucuringu et al.

Table 1. Block model for the ensemble of graphs G(pcc, pcp, ppp, nc, np). Note that either

pcc � pcp > ppp or pcc > pcp � ppp.

A{CC} A{CP }

A{CP } A{PP }

We illustrate our methodology in the context of a generalized block model, such as

the one in Table 1, where the submatrices A{CC}, A{CP }, and A{PP }, respectively, represent

the interactions between a pair of core vertices, a core vertex and a peripheral vertex,

and a pair of peripheral vertices. Suppose that A{CC} and A{PP } are adjacency matrices

that we construct using the G(n, p) random-graph model1 by considering G(nc, pcc) and

G(np, ppp), respectively, and that A{CP } is the adjacency matrix of a random bipartite

graph G(nc, np, pcp) in which each edge that is incident to both a core and peripheral

vertex is present with independent probability pcp. As indicated by the above notation,

pcc denotes the probability that there is an edge between any given pair of core ver-

tices, and ppp denotes the probability that there is an edge between any given pair of

peripheral vertices. In the context of the block model in Table 1, core–periphery struc-

ture arises naturally when either pcc � pcp > ppp or pcc > pcp � ppp. The above family

of random networks, which we denote by G(pcc, pcp, ppp, nc, np), was also considered in

Ref. [76]. It contains exactly one set of core vertices, and the remaining vertices are

peripheral vertices. More complicated core–periphery structures can also occur [76], such

as a mix of (possibly hierarchical) community structures and core–periphery structures

[70].

We now present the intuition behind the Path-Core algorithm and the reason that the

resulting Path-Core score is a plausible indicator of the likelihood that a vertex is in

the core or in the periphery of a graph G. If i and j are adjacent core vertices, then we

expect that shortest paths in G \ (i, j) between i and j consist mostly or even entirely of

other core vertices. If i ∈ VC and j ∈ VP , then a shortest path in G \ (i, j) between i and j

should also mostly contain core vertices. Finally, even when i, j ∈ VP , it is still likely that

a shortest path in G \ (i, j) between i and j is composed of many core vertices and few

peripheral vertices. Intuitively, because pcc � pcp � ppp, once a shortest path reaches the

set VC , it has a high probability of staying within the core set VC until it returns to the

periphery set VP and reaches the terminal vertex j. To summarize, we expect core vertices

to be on many shortest paths in a graph, whereas peripheral vertices should rarely be on

such shortest paths. In other words, because shortest paths between a pair of core vertices

are the ones that should, on average, contain the largest fraction of vertices that are in

the core, we find that oversampling such paths is an effective way to extract core parts of

a graph. Importantly, it is not sufficient in general to simply use a quantity like weighted

BC. For example, for a stock-market correlation network that was examined in Ref. [56],

weighted BC cannot distinguish the importance of vertices at all, whereas coreness

measures (in particular, Core-Score and Path-Core) are able to successfully detect core

vertices.

1 In the random-graph model G(n, p) on n vertices, an edge is present between each pair of

vertices independently with probability p [32, 37]. It is common to abuse terminology and use the

name “Erdős–Rényi random graph” for G(n, p).



Detection of core–periphery structure 7

(a) (b) (c)

κ κ κ

Figure 1. Path-Core scores of all n = 100 vertices for graphs drawn from three different random-

graph ensembles in the family G(pcc, pcp, ppp, nc, np). The vector p = (pcc, pcp, ppp) gives the edge

probabilities between between a pair of core vertices (pcc), a core vertex and a peripheral vertex

(pcp), and a pair of peripheral vertices (ppp). These probabilities are pcc = κ2p, pcp = κp, and ppp = p,

and we use the fixed value p = 0.25. The scalar κ then parametrizes the ensemble. The values of κ

are (a) 1.3, (b) 1.5, and (c) 1.8. The first 50 vertices are planted core vertices, and the remaining 50

vertices are planted peripheral vertices.

To illustrate the effectiveness of the Path-Core algorithm, we consider (see Figure 1)

several instances of the random-graph ensemble (i.e., model) G(pcc, pcp, ppp, nc, np) with

pcc > pcp > ppp. Let β = np/n, where n = nc + np, denote the fraction of vertices in the

core. We assign the edges independently at random according to the following procedure.

The edge probabilities for the core–core, core–periphery, and periphery–periphery pairs

of vertices are given by the vector p = (pcc, pcp, ppp), where pcc = κ2p, pcp = κp, and

ppp = p. In our simulations, we fix n = 100, β = 0.5, and p = 0.25, and we compute

core–periphery structure for 10 instances of the above random-graph ensemble for each

of the parameter values κ = 1.1, 1.2, . . . , 1.9, 2. To illustrate the effectiveness of the Path-

Core algorithm, we show in Figure 1 the Path-Core for all vertices for three different

instances of the above block model. We use the parameter values κ = 1.3 (which yields

p = (0.4225, 0.325, 0.25)), κ = 1.5 (which yields p = (0.5625, 0.375, 0.25)), and κ = 1.8

(which yields p = (0.81, 0.45, 0.25)).

For each of the plots in Figure 1, we place the core vertices in the first 50 positions

on the horizontal axis, and we place the peripheral vertices in the remaining 50 positions.

The vertical axis indicates the Path-Core score associated to each vertex. As expected,

vertices in the core set have larger Path-Core scores than vertices in the periphery set.

For κ = 1.3, the separation between core and peripheral vertices is not very clear. As we

increase κ, the separation becomes clearer, and κ = 1.8 has a clear separation between

core and peripheral vertices. As expected, larger differences between the edge probabilities

pcc � pcp � ppp in the random-graph ensemble result in clearer separations between core

and periphery sets.

For some networks, it is sufficient to have a coreness measure that reflects the probability

that a vertex is a core or peripheral vertex. In such a scenario, we view such scores as

akin to centrality values [76]. In other situations, however, it is desirable to obtain a

classification of a network’s vertices as part of a core set or a periphery set. With this

in mind, we let Path-Core(i) denote the Path-Core score of vertex i, and we assume



8 M. Cucuringu et al.

(a) (b) (c) (d)

κ κ κ κ

Figure 2. Path-Core scores, sorted in decreasing order, for the random-graph ensemble

G(pcc, pcp, ppp, nc, np) with pcc = κ2p, pcp = κp, ppp = p, where p = 0.25, with (a) κ = 1.5 and

(b) κ = 1.8. When the core–periphery structure is sufficiently prominent, it is possible to separate

the vertices by sorting the vector of Path-Core scores and inferring the threshold between core and

peripheral vertices by considering the largest increment that occurs between two consecutive entries

in the vector of sorted Path-Core scores. We show the result for κ = 1.5 in panel (c) and the result

for κ = 1.8 in panel (d). In panels (b) and (c) of Figure 1 and panels (a) and (b) of the present

figure, the largest Path-Core score of a peripheral vertex is approximately 20, whereas the lowest

Path-Core score of a core vertex is approximately 30 (the difference of 10 is revealed by the peak

in panel (d) of this figure), and we obtain a clear discrete classification into a set of core vertices

and a set of peripheral vertices.

without loss of generality that Path-Core(1) � Path-Core(2) � · · · � Path-Core(n−1) �
Path-Core(n). Because the Path-Core score gives our calculation for the likelihood that

a vertex is in the core set or periphery set (a high Path-Core suggests a core vertex), we

are left with inferring what constitutes a good “cut” of Path-Core values to separate core

vertices from peripheral ones. In other words, we seek to determine a threshold ξ such

that we classify i as a core vertex if Path-Core(i) � ξ and we classify i as a peripheral

vertex if Path-Core(i) < ξ.

If the size nc = βn of the core set is known, then the problem becomes significantly

easier, as we can select the top nc vertices with the largest Path-Core scores and classify

them as core vertices. That is, we set a = nc = βn. However, in most realistic scenarios, the

size of the core is not known in advance, and it should thus be inferred from the graph G

(or from the graph ensemble) and the distribution of the Path-Core scores. One possible

heuristic approach to obtain such a separation is to sort the vector of Path-Core scores

in decreasing order and to infer a by searching for a large jump in the sizes of the vector

elements. That is, one can seek a “natural” separation between high and low Path-Core

scores (if one exists). An alternative approach is to detect two clusters in the vector of

Path-Core scores using a clustering algorithm (such as k-means clustering). The examples

in Figure 2 (which we generate from the random-graph ensemble G(pcc, pcp, ppp, nc, np) with

pcc = κ2p, pcp = κp, and ppp = p for κ ∈ {1.3, 1.5, 1.8}) illustrate this heuristic very well, as

there exists a natural cut point that corresponds to a Path-Core score of approximatively

a = 20. This cut correctly assigns the first 50 vertices to the core set and the remaining 50

vertices to the periphery set. In our experiments, we fix p = 0.25 and use κ ∈ [1, 2], which

implies that pcc, pcp, ppp ∈ [0, 1].

Unfortunately, for “noisy” networks from this graph ensemble (and for many empirical

networks), for which the edge probabilities pcc, pcp, and ppp are not well-separated, the



Detection of core–periphery structure 9

aforementioned heuristic procedure can yield unsatisfactory results, so a more systematic

approach is desirable. In Section 4, we thus introduce the Find-Cut algorithm, which

maximizes an objective function for partitioning a network into a set of core vertices and

a set of peripheral vertices. Using the vector of Path-Core scores as an input—or, indeed,

using any other vector of scores that reflects the likelihood that each vertex belongs to

the core set—we consider a large number of possible values of the vector to attempt to

find an optimal separation of vertices into a core set and a periphery set that maximizes

the objective function in (4.4). See Section 4 for a discussion of this objective function

and how we maximize it.

We present an explicit algorithm for Path-Core in Algorithm 5 (see Appendix A) for

the case of unweighted and undirected graphs. This algorithm runs in O(m2) time, where

we recall that m = |E| is the number of edges in the graph. Intuitively, this is the best

that one can achieve (even when computing a Path-Core score for just a single vertex),

because one must separately consider each graph G \ e for all e ∈ E, and finding shortest

paths between two vertices has a complexity of Θ(m). In Appendix A, we prove the above

complexity results and provide pseudocode for the algorithm.

One potential way to drastically reduce the temporal complexity of the above approach

is to sample edges from G via some random process and compute shortest paths only for

pairs of adjacent vertices that use these sampled edges. An investigation of the trade-off

between accuracy and computational efficiency of this method is beyond the scope of our

paper, but it is an interesting direction for future research.

4 An objective function for detecting core–periphery structure

In this section, we introduce an objective function that is suitable for detecting core–

periphery structure when there is exactly one core set of vertices and one periphery set. Our

function bears some similarity to the rich-club coefficient [24], although a crucial difference

is that it takes the connectivity of the core, the periphery, and the inter-connectivity

between the two into account. (In contrast to rich clubs, our methodology allows low-

degree vertices to be core vertices [92].) Using this objective function, we propose the

Find-Cut algorithm for partitioning the vertex set V into core and periphery sets. As

an input, Find-Cut takes a vector of scores that reflect the likelihood that each vertex

belongs to a network’s core set (the probability of belonging to the core set is higher for

larger scores), and it attempts to find an optimal separation that maximizes the proposed

objective function. That is, instead of trying to find a global optimum of the objective

function, the algorithm Find-Cut optimizes the objective function over all partitions in

which the core vertices have higher likelihood scores than the periphery vertices. A fast

general optimization algorithm for this objective function is likely very difficult to achieve,

and it is beyond the scope of this paper. We believe that the construction of a suitable

objective function brings three advantages. First, the subject of network community

structure has benefited greatly from having objective functions to optimize [35, 74], and

we expect similar benefits for investigations of core–periphery structure. Second, it allows

a local-refinement search after the initial algorithm has been applied. (Such a local

refinement follows the spirit of Kernighan–Lin vertex-swapping steps for community

detection [64,75] and gradient-descent refinement steps in non-convex optimization [62].)



10 M. Cucuringu et al.

Finally, it allows one to compare distinct methods by comparing the corresponding value

of the objective function. Nevertheless, one has to proceed cautiously, as a value of an

objective function need not provide a definitive answer, and it can be misleading [41, 70].

Before introducing an objective function for studying core–periphery structure, we first

revisit a well-known graph-partitioning problem to highlight the similarity between the

two situations. Min-Cut, an instance of a graph-partitioning problem, is concerned with

dividing a graph into two (similarly sized) subgraphs while minimizing the number of

edges that are incident to vertices in both subgraphs. More generally, a large family of

graph-partitioning problems seek to decompose a graph into k disjoint subgraphs (i.e.,

clusters) while minimizing the number of cut edges (i.e., edges with endpoints in different

clusters). Given the number g of clusters, the g-way graph-partitioning problem searches

for a partition V1, . . . , Vg of the vertex set V that minimizes the number of cut edges,

Cut(V1, . . . , Vg) =

g∑
i=1

|E(Vi, Vi)| , (4.1)

where X = V \ X and the number of edges between X ⊂ V and Y ⊂ V is |E(X,Y )| =∑
i∈X,j∈Y Aij . However, it is well-known that trying to minimize Cut(V1, . . . , Vg) favours

cutting off weakly connected individual vertices from a graph and can thus lead to trivial

partitions. To penalize clusters Vi of small size, Shi and Malik [80] suggested minimizing

the normalized cut

NCut(V1, . . . , Vg) =

g∑
i=1

Cut(Vi, Vi)

SK(Vi)
, (4.2)

where SK(Vi) =
∑

i∈Vi
di and di denotes the degree of vertex i in the original graph G.

A natural choice for an objective function to detect core–periphery structure is to

maximize the number of edges between pairs of core vertices and also between core and

peripheral vertices, while allowing as few edges as possible between pairs of peripheral

vertices. In other words, our approach is complementary to that of the graph-cut objective

function (4.1). However, instead of minimizing the number of cut edges across the core

and periphery sets (i.e., across clusters), we maximize the connectivity between pairs of

core vertices and between core and peripheral vertices, while minimizing the connectivity

between pairs of peripheral vertices. We thus want to maximize

CP-connectivity(VC, VP ) = E(VC, VC ) + E(VC, VP )− E(VP , VP ) . (4.3)

Our aim is to find a partition {VC, VP } of the vertex set V that maximizes

CP-connectivity(VC, VP ), under the constraint that |VC |, |VP | � b, where b is the min-

imum number of core or peripheral vertices (hence, n − b is the maximum number of

core or peripheral vertices) to avoid a large imbalance between the sizes of the core

and periphery sets. In other words, we seek a balanced partition, and a higher value of

b indicates a smaller difference between the sizes of the core and periphery sets. This

constraint is required to avoid a trivial solution in which all of the vertices are placed

in the core set. Furthermore, note that the objective function (4.3) has only one variable

because of the constraint E(VC, VC ) + E(VC, VP ) + E(VP , VP ) = m. In practice, we have

found this approach to be rather unstable in the sense that (4.3) often attains its maximum



Detection of core–periphery structure 11

at |VC | = b or |VP | = b. It thereby leads to disproportionately-sized sets of core and peri-

pheral vertices compared to the “ground truth” in problems with planted core–periphery

structure. For example, one can use the block model G(pcc, pcp, ppp, nc, np), where we recall

(see Section 3) that nc (respectively, np) denotes the size of the core (respectively, periphery)

sets, pcc is the probability that there is an edge between a pair of core nodes, pcp is the

probability that there is an edge between a core node and a peripheral node, and ppp is

the probability that there is an edge between a pair of peripheral nodes. This situation

is analogous to the trivial solution that one obtains for unconstrained graph-partitioning

problems. We have been able to ameliorate this problem (though not remove it completely)

by incorporating a normalization term in the spirit of the normalized cut function (4.2).

Instead of maximizing the number of edges between core vertices and between core and

peripheral vertices while minimizing the number of edges between peripheral vertices, we

choose to maximize the edge density among core vertices and between core and peripheral

vertices while minimizing the edge density among peripheral vertices. Finally, we also add

a term to the objective function that penalizes imbalances between the sizes of the core

and periphery sets (or penalizes a deviation from the expected proportion of core vertices)

if such information is available. The maximization of our new objective function is over

the set of all possible partitions of the vertex set into two disjoint sets (the core set VC

and the periphery set VP ). The function is

CP-density(VC, VP ) =
|E(VC, VC )|
Vol(VC, VC )

+
|E(VC, VP )|
Vol(VC, VP )

− |E(VP , VP )|
Vol(VP , VP )

− γ

∣∣∣∣ |VC |
n
− β

∣∣∣∣ , (4.4)

where

Vol(X,Y ) =

{
|X||Y | , if X �= Y

1
2
|X|(|X| − 1) , if X = Y

, (4.5)

denotes the total possible number of edges between sets X and Y . In the penalty term, β

denotes the prescribed fraction of core vertices in the graph (if it is known in advance),

and γ tunes the sensitivity of the objective function to the size imbalance between the

core and periphery sets. Note that β can either be prescribed in advance or construed as

a parameter that guides the maximization towards a solution with a certain target size

for the core set. For simplicity, we limit ourselves to the case γ = 0. We thereby assume

no prior knowledge of the ratio between the numbers of core and peripheral vertices. In

practice, however, we do implicitly assume a lower bound on the sizes of the core and

periphery sets of vertices to ameliorate a “boundary effect” that yields solutions with a

very small number of vertices in the core set or periphery set. If one explicitly wants to

allow the possibility of a small set of core or peripheral vertices, then one can set b = 0

(see Algorithm 1). For some of our experiments on synthetic graphs in Section 7, we

compare the performance of our proposed algorithms both when β is known and when

it is unknown.

We summarize the Find-Cut approach in Algorithm 1, and we remark that one can

also add an iterative post-processing refinement step that is reminiscent of the gradient-

descent algorithm [62] or of Kernighan–Lin vertex swaps [64, 75]. At each iteration, one

can choose to move the vertex from the core set to the periphery set (or the other way

around) that leads to the largest increase in the objective function (4.4). Alternatively,



12 M. Cucuringu et al.

Algorithm 1 Find-Cut: Classifies the vertices of a graph G into a set VC of core vertices

and a set VP of peripheral vertices based on a score associated to each vertex that reflects

the likelihood that it is in the core.
Input: Vector of scores, s = (s1, . . . , sn) ∈ �n, associated to the n vertices of a graph.

1: Sort the entries of the vector s in decreasing order. Assume without loss of generality

that s1 � s2 � · · · � sn−1 � sn.

2: Let XC = {1, . . . , nc} and YC = {nc + 1, . . . , n} for any nc ∈ {1, . . . , n}. Find the value nc
that maximizes the objective function given by equation (4.4) with γ = 0. That is, we

find

Φ∗ =
1

n

[
max

nc∈{b,...,n−b}

(
|E(XC,XC )|
Vol(XC,XC )

+
|E(XC, YC )|
Vol(XC, YC )

− |E(YC, YC )|
Vol(YC, YC )

)]
, (4.6)

where b denotes a lower bound on the size of the core and periphery sets (which we

use to avoid solutions with either a very small core set or a very small periphery set).

3: Define the core set VC = {1, . . . , nc} and the periphery set VP = {nc + 1, . . . , n}.

if one wishes to maintain the current size of the core and periphery sets, then one can

choose to swap a pair of vertices from their assignments (of core or periphery) that leads

to the largest increase in the objective function.

5 LowRank-Core: Core–periphery detection via low-rank matrix approximation

Another approach for detecting core–periphery structure in an unweighted network2 is to

interpret its adjacency matrix as a perturbation of a low-rank matrix. Perturbations of

low-rank matrices were used recently in Ref. [5] for classifying networks and identifying

small-world structure—by capturing the dense connectivity of nodes within communities

and the sparse connectivity between communities—and this type of an approach should

also be useful for studying core–periphery structure.

Consider the block model

A0 =
1nc×nc 1nc×np

1np×nc 0np×np

, (5.1)

which assumes (1) that core vertices are fully connected among themselves and to all

vertices in the periphery set and (2) that no edges exist between any pair of peripheral

vertices. We use the notation 1n1×n2
to represent an n1 × n2 matrix in which every entry

is a 1, and we use the analogous notation 0n1×n2
for an n1 × n2 matrix in which every

entry is a 0. The block model in equation (5.1) corresponds to an idealized block model

that Borgatti and Everett [13] employed in a discrete notion of core–periphery structure.

The rank of the matrix A0 is 2, as any 3 × 3 submatrix has at least two identical rows

or columns. Consequently, det(A0) = 0. Alternatively, when the core and periphery sets

have the same size, nc = np with n = nc + np, one can write the matrix A0 as the following

2 We have not investigated this approach for weighted networks. It is an interesting direction to

pursue in future studies.



Detection of core–periphery structure 13

Figure 3. A block model with g = 4 diagonal blocks that are each of the form of the

block model in equation (5.1).

tensor product of matrices:

Ã0 =
1nc×nc 1nc×nc

1nc×nc 0nc×nc

= R ⊗ 1nc×nc , R =

[
1 1

1 0

]
. (5.2)

We obtain the eigenvalues of Ã0 by taking a direct product of the sets of eigenvalues of

R and 1nc×nc . These eigenvalues are

{
1−
√

5

2
,
1 +
√

5

2

}
⊗
{
nc, 0

(nc−1)
}

=

{(
nc

1±
√

5

2

)
, 0(nc−2)

}
,

where a superscript denotes the multiplicity of an eigenvalue.

The simplistic block models in equations (5.1) and (5.2) assume that a network has

exactly one core set and one periphery set. Consequently, the block-model matrix has a

rank of 2. The matrix rank is higher for more complicated core–periphery block models.

For example, the block model in Figure 3 has a global community structure—there are

g = 4 communities, which each correspond to a block in the block-diagonal matrix—and

a local core–periphery structure (because each community has a core–periphery structure).

As indicated in Ref. [76], one can also construe such a structure (by permuting the rows

and columns of the matrix) as having a global core–periphery structure and a local

community structure.

Let Bg(A0) denote a “hierarchical” ensemble of size n×n that is composed of g diagonal

blocks that are of each of size l × l (thus, n = lg), where each diagonal block is of the

form of the block model in equation (5.1). If we let λ1 and λ2 denote the two non-zero

eigenvalues of A0 and let Ig denote the identity matrix of size g, then we can also write

Bg(A0) as a tensor product of matrices

Bg(A0) = Ig ⊗ A0, with eigenvalues {Bg(A0)} = {1(g)} ⊗ {λ1, λ2, 0
(l−2)}

=
{
λ

(g)
1 , λ

(g)
2 , 0(n−2g)

}
. (5.3)

Therefore, in the simplistic scenario in which each diagonal block has one core set and

one periphery set (and thus has rank 2), the rank of Bg(A0) is 2g.



14 M. Cucuringu et al.

Motivated by the low-rank structure of the above block-model networks, it is useful

to consider the possibility of recovering a network’s unknown structure using a simple

low-rank projection of its adjacency matrix. For the remainder of this section, we focus on

the simple core–periphery structure whose rank-2 block model is given by equation (5.1)

(with one core set and one periphery set). In practice, we construe the adjacency matrix

A of an observed graph G as a low-rank perturbation of the block model A0. In other

words, we decompose A as

A = A0 + W , (5.4)

where W is a “noise matrix” whose entries {−1, 0, 1} are determined by a mixture

model [58] that involves block-model parameters. The entries of W are

Wij =

⎧⎪⎪⎨
⎪⎪⎩
−1 , with probability 1− pcc (i.e., if i, j ∈ VC ) ,

−1 , with probability 1− pcp (i.e., if i ∈ VC and j ∈ VP ) ,

1 , with probability ppp (i.e., if i, j ∈ VP ) ,

0 , otherwise .

(5.5)

Note that W is a random block-structured matrix with independent entries, and its

expected value is the rank-2 matrix with entries

�(Wij) =

⎧⎨
⎩

pcc − 1 , if i, j ∈ VC ,

pcp − 1 , if i ∈ VC and j ∈ VP ,

ppp , if i, j ∈ VP .

(5.6)

To “denoise” the adjacency matrix A and recover the structure of the block model, we

consider its top two eigenvectors {v1, v2}, whose corresponding two largest (in magnitude)

eigenvalues are {λ1, λ2}, and we compute the rank-2 approximation

Â =
[

v1 v2

] [ λ1 0

0 λ2

] [
vT1
vT2

]
. (5.7)

As A more closely approximates the block model, which we can construe as a sort

of “null model”, the spectral gap between the top two largest eigenvalues and the

rest of the spectrum becomes larger (as illustrated by the plots in the second column

of Figure 4). In other words, as the amount of noise in (i.e., the perturbation of) the

network becomes smaller, the top two eigenvalues {λ1, λ2} become closer to the eigenvalues

{λ1 = nc(
1+
√

5
2

), λ2 = nc(
1−
√

5
2

)} of the block model.

To illustrate the effectiveness of our low-rank projection in computing a coreness

score, we consider two synthetically generated networks based on the SBM that we

introduced previously. We use the edge probabilities (pcc, pcp, ppp) = (0.7, 0.7, 0.2) and

(pcc, pcp, ppp) = (0.8, 0.6, 0.4). In the left column of Figure 4, we show their corresponding

adjacency matrices. The spectrum, which we show in the middle column, reveals the rank-2

structure of the networks. In the second example (which we show in the bottom row of

the figure), the large amount of noise causes the second-largest eigenvalue to merge with

the bulk of the spectrum.

We then use the denoised matrix Â to classify vertices as part of the core set or the

periphery set by considering the degree of each vertex (i.e., the row sums of Â ). We



Detection of core–periphery structure 15

binarize Â by setting its entries to 0 if they are less than or equal to 0.5 and setting them

to 1 if they are larger than 0.5, and we denote the resulting binarized matrix by Ât. We

remark that, following the rank-2 projection, we observe in practice that all entries of Â

lie in the interval [0, 1]. (We have not explored the use of other thresholds besides 0.5 for

binarizing Â .) In the right column of Figure 4, we show the recovered matrix Ât for our

two example networks. Note in both examples that the denoised matrix Ât resembles the

core–periphery block model G(pcc, pcp, ppp, nc, np) much better than the initial adjacency

matrix A. Finally, we compute the degree of each vertex in Ât, and we call these degrees

the LowRank-Core scores of the vertices. We use the LowRank-Core scores to classify

vertices as core vertices or peripheral vertices. If one knows the fraction β of core vertices

in a network, then we choose the top βn vertices with the largest LowRank-Core score

as the core vertices. Otherwise, we use the vector of LowRank-Core scores as an input to

the Find-Cut algorithm that we introduced in Section 4. Although a theoretical analysis

of the robustness to noise of our low-rank approximation for core–periphery detection is

beyond the scope of the present paper, we expect that results from the matrix-perturbation

literature, such as Weyl’s inequality and the Davis–Kahan sin(Θ)-theorem [12], as well

results on low-rank deformations of large random matrices [11] (analogous to the results

of Féral and Péché on the largest eigenvalue of rank-1 deformations of real, symmetric

random matrices [34]) could lead to theoretical results that characterize the sparsity and

noise regimes for which the rank-2 projection that we proposed above is successful at

separating core and peripheral vertices. A possible first step in this direction would be

to consider a simplified version of the graph ensemble G(pcc, pcp, ppp, np, nc) by setting

pcc = pcp = 1− ppp = 1− η, where η ∈ (0, 1).

Algorithm 2 LowRank-Core: Detects core–periphery structure in a graph based on a

rank-2 approximation.

Input: Adjacency matrix A of the simple graph G = (V , E) with n vertices and m edges.

1: Compute {λ1,λ2}, the top two largest (in magnitude) eigenvalues of A, together with

their corresponding eigenvectors {v1, v2}.
2: Compute Â , a rank-2 approximation of A, as indicated in equation (5.7).

3: Threshold the entries of Â at 0.5 (so that entries strictly above 0.5 are set to 1 and all

other entries are set to 0), and let Ât denote the resulting graph.

4: Compute the LowRank-Core scores as the degrees of Ât.

5: If the fraction β of core vertices is known, identify the set of core vertices as the top

βn vertices with the largest LowRank-Core scores.

6: If β is unknown, use the vector of LowRank-Core scores as an input to the Find-Cut

algorithm in Algorithm 1.

6 Laplacian-based core–periphery detection

In this section, we explore the utility of employing Laplacian eigenvectors for detect-

ing core–periphery structure. (As with Path-Core, this approach is applicable to either

unweighted or weighted graphs.) The combinatorial Laplacian matrix associated to the

adjacency matrix A of a graph G is F = D − A, where D is a diagonal matrix and

Dii denotes the degree of vertex i in the case of an unweighted graph. For a weighted



16 M. Cucuringu et al.

0 50 100

0

20

40

60

80

100
0 20 40

λ

0

1

2

3

4

5

6

f(
λ

)

0 50 100

0

20

40

60

80

100
21

top two eigenvalues

-20

0

20

40

60

80

λ

(a)

0 20 40 60 80 100

0

20

40

60

80

100
0 20 40 60

λ

0

1

2

3

4

5

6

f(
λ

)

0 50 100

0

20

40

60

80

100
21

top two eigenvalues

-20

0

20

40

60

80

λ

(b)

Figure 4. (Column 1) Original adjacency matrices A from the stochastic block model (SBM)

G(pcc, pcp, ppp, nc, np) with edge probabilities pcc for edges between two core vertices, pcp for edges

between core vertices and peripheral vertices, and ppp for edges between two peripheral vertices.

(Column 2) Histogram f(λ) of the eigenvalues of the original adjacency matrices A. (Column 3)

The matrices Ât that we obtain after the rank-2 projection and thresholding. (Column 4) Bar plot

of the top two eigenvalues
{
λ1 = nc

(
1+
√

5
2

)
, λ2 = nc

(
1−
√

5
2

)}
of the block model (5.2) (blue/dark)

versus the top two eigenvalues of the SBM G(pcc, pcp, ppp, nc, np) (pink/light), averaged over 100

instantiations. We use the probabilities (a) pcc = 0.7, pcp = 0.7, ppp = 0.2 and (b) pcc = 0.8, pcp =

0.6, ppp = 0.4.

graph, Dii denotes the sum of the weights associated to vertex i. The solutions of the

generalized eigenvalue problem Fx = λDx are related to the solutions of the eigenvalue

problem Lx = λx, where L = D−1A is often called the random-walk Laplacian of G. Using

L = I − D−1F , one can write the random-walk Laplacian in terms of the combinatorial

Laplacian. Because L is a row-stochastic matrix, one can interpret it as a transition prob-

ability matrix of a Markov chain whose states are the vertices of G. In this interpretation,

the matrix element Lij denotes the transition probability that a random walker jumps

from vertex i to vertex j in a single step. If the pair (λ, v) is an (eigenvalue, eigenvector)

solution to Lx = λx, then (1 − λ, v) is a solution to Fx = λDx. The top3 eigenvectors of

the random-walk Laplacian define the coarsest modes of variation (i.e., slowest modes of

mixing) in a graph, and they have a natural interpretation in terms of a random walk

on the graph (and thus as a toy model of a conservative diffusion process). There exists

a rich literature in the machine-learning, data-analysis, and image-processing communit-

ies [10, 22, 23, 59, 79, 83] on the use of such eigenvectors for tasks like clustering, ranking,

image segmentation, and data visualization.

3 The “top” eigenvectors of the random-walk Laplacian L are the eigenvectors that correspond

to the largest eigenvalues of L. That is, these are the eigenvalues closest to λ1 = 1, the largest

eigenvalue of L. The “bottom” eigenvectors of L correspond to the smallest eigenvalues of L. The

eigenvalues λ1 = 1 � λ2 � · · · � λn of L satisfy |λi| � 1 for all i ∈ {1, . . . , n}.



Detection of core–periphery structure 17

For core–periphery detection, it is useful to consider the bottom eigenvector of the

associated random-walk Laplacian. Considering the block model in equation (5.1) or

the generalized block model G(pcc, pcp, ppp, nc, np) (see the depiction in Table 1) with

pcc ≈ pcp < ppp, the task of finding core–periphery structure in a given graph G amounts

to trying to detect a dense connected component between the peripheral vertices in the

complement graph Ḡ (in which the 0 non-diagonal entries of A become 1, and the 1

entries become 0), as such vertices have many non-edges between them in the original

graph. If pcc ≈ pcp < ppp (i.e., the above scenario) and there exists a single densely

connected component in a given graph—such as in examples (a) and (b) in Figure 5—

the eigenvector that corresponds to the second-largest (in magnitude) eigenvalue of the

associated random-walk Laplacian provides an accurate separation of the vertices in the

dense component from the rest of the graph. The complement of the block-model graph

has a periphery component of size np that is fully connected (i.e., it is Knp , the complete

graph on np vertices), a core component without any edges between pairs of core vertices,

and no edges between core and peripheral vertices. In practice, Ḡ is a perturbed version of

the above complement block model; that is, the peripheral vertices are very well-connected

among themselves, and there are few core–core and core–periphery connections. Our task

then amounts to identifying a well-connected “community” of peripheral vertices. In other

words, we have replaced the problem of identifying a core set and periphery set in G with

the problem of finding the periphery set in Ḡ, for which we can use methods from the

large set of available techniques for community detection [35, 74].

In many applications, the initial graph G is rather sparse, and the above approach thus

has the drawback that the complement graph Ḡ is very dense, which significantly increases

the time that is necessary for the computational task of identifying communities [17]

(though we note that we only seek to identify a single dense subgraph rather than a graph’s

entire community structure). As we discussed above, one way to find a dense subgraph of

an initial graph is to use the first non-trivial eigenvalue (i.e., the second-largest eigenvalue)

of the random-walk Laplacian. In Figure 5(a), we show an example of such a computation.

In this case, we start with a block-model graph from G(pcc = 0.8, pcp = 0.2, ppp = 0.2, nc, np),

for which the first non-trivial eigenvalue (see the second column) clearly separates the

planted dense subgraph from the rest of the network. In the eigenvector computation for

the random-walk Laplacian, note that every iteration of the power method is linear in the

number of edges in the graph, and the number of iterations is strictly greater than O(1)

because it depends on the spectral gap. For sparse graphs G, the complement Ḡ is a dense

graph, which significantly increases the computational effort needed to find eigenvectors.

Instead of working in the complement space, we turn our attention to the other end of

the spectrum and consider the smallest eigenvalue of the random-walk Laplacian. Recall

that all of the eigenvalues of the random-walk Laplacian are less than or equal to 1 in

magnitude [20].

We now focus on the combinatorial Laplacian F = D−A. Let F̄ denote the combinat-

orial Laplacian associated to the graph Ḡ. Note that Ā = Jn−A− In, where Jn denotes the

matrix of size n×n whose entries are all 1 and In is the n×n identity matrix. Additionally,

D̄ = (n− 1)In − D. A well-known relationship [20] between the combinatorial Laplacian

of a graph and that of its complement is given by

F̄ = D̄ − Ā = (n− 1)In − D − (Jn − A− In) = nIn − Jn − F . (6.1)



18 M. Cucuringu et al.

Figure 5. Our simulations illustrate the interplay between the top and bottom parts of the

spectrum of the random-walk Laplacian matrix L as a network transitions from a block model

with block-diagonal “community structure” to a block model with core–periphery structure. Each

row uses one network from the SBM G(pcc, pcp, ppp, nc, np) with n = 400 vertices (with 200 core and

200 peripheral vertices) with a fixed core–core interaction probability pcc = 0.8, a fixed periphery–

periphery interaction probability ppp = 0.3, and a varying core–periphery interaction probability

pcp ∈ [0.3, 0.7]. We vary pcp in increments of 0.1, so the top row has pcp = 0.3, the second row has

ppp = 0.4, and so on. The first and third columns give a colouring of a two-dimensional visualization

of the graph vertices; the core vertices are contained in a disc that is centred at the origin, and the

peripheral vertices lie on a ring around the core vertices. The second and fourth columns, respect-

ively, show histograms of the entries of the eigenvectors v2 and v400. These eigenvectors correspond,

respectively, to the largest (non-trivial) and smallest eigenvalues of the associated random-walk

Laplacian matrix. The red/light colour indicates core vertices, and the blue/dark colour indicates

peripheral vertices. In Figure 6, we plot the spectrum associated to each of the above six networks.

The probabilities are (a) pcc = 0.8, pcp = 0.3, ppp = 0.3; (b) pcc = 0.8, pcp = 0.4, ppp = 0.3; (c)

pcc = 0.8, pcp = 0.5, ppp = 0.3; (d) pcc = 0.8, pcp = 0.6, ppp = 0.3; and (e) pcc = 0.8, pcp = 0.7, ppp = 0.3.



Detection of core–periphery structure 19

If x is an eigenvector of F (other than the trivial eigenvector 1n) with x ⊥ 1n (which

implies that Jx = 0) and associated eigenvalue λ, then x is also an eigenvector of F̄

(with associated eigenvalue n − λ). A result due to Kelmans [48–50], that connects the

characteristic polynomial of the combinatorial Laplacian matrix of G to that of its

complement implies that

λj(F̄) = n− λn+2−j(F) for all j ∈ {2, . . . , n} . (6.2)

Equation (6.2) relates the eigenvalues of the combinatorial Laplacian of G to those of its

complement Ḡ. In other words, the spectrum exhibits a certain symmetry, and questions

regarding λn+2−j(F) of a graph are equivalent to questions about λj(F̄) of its complement.

Furthermore, keeping in mind the usefulness of the second-largest eigenvector of the

combinatorial Laplacian, we stress that questions involving λ2(F̄) (i.e., the case j = 2) are

equivalent to questions involving λn(F).

In practice, none of the eigenvectors of the combinatorial Laplacian are able to

distinguish a coherent core set and periphery set in a graph (or a single community in

the graph’s complement). We calculate the top and bottom eigenvectors (and intermediate

ones) of the combinatorial Laplacian and find that none of them captures the distinction

between core and periphery sets. Instead, we are able to effectively separate core and

periphery sets if we use the random-walk Laplacian L, with the goal of identifying a

dense subgraph in the complement graph Ḡ. To do this, one can calculate the second

eigenvector v̄2 of its associated Laplacian L̄. However, because graphs are sparse in most

applications, considering the complement tends to yield a dense graph, which could render

computations prohibitive for large n. Instead, we propose to use the following approach.

Motivated by the analogy in the beginning of this section and the interplay between the

bottom eigenvalues of a graph and the top eigenvalues (and their associated eigenvectors)

of the graph’s complement for the combinatorial Laplacians F and F̄ , we propose to

use the bottom eigenvalue (and its associated eigenvector) of the random-walk Laplacian

L associated with our initial graph G. The downside of working with the random-walk

Laplacian L is that (to the best of our knowledge) there does not exist a statement similar

to equation (6.2) that makes an explicit connection between the random-walk Laplacian

eigenvalues of a graph and those of its complement. In Appendix B, we explain that

such a symmetry exists for the random-walk Laplacian only under certain restrictive

conditions. When these conditions are not met, we still make an implicit analogy between

the random-walk Laplacian eigenvalues of a graph and those of its complement, but we

do not know how to characterize this relationship mathematically.

In Algorithms 3 and 4, we summarize the main steps of two viable algorithms for core–

periphery detection using the random-walk Laplacian of a graph. The only difference

between Algorithms 3 and 4 is as follows. The former uses the entries of vn (the bottom

eigenvector that corresponds to the smallest algebraic4 eigenvalue as an input to the

Find-Cut algorithm to infer an optimal separation of the vertices into core and periphery

sets by maximizing the objective function (4.4). By contrast, in Algorithm 4, the same

bottom eigenvector vn of the random-walk Laplacian provides an implicit threshold (i.e.,

4 Because all of the random-walk Laplacian eigenvalues are real and no larger than 1 in

magnitude, the smallest algebraic eigenvalue corresponds to the smallest real eigenvalue.



20 M. Cucuringu et al.

-0.1 0 0.1 0.2
λ

0

5

10

15

20

f(λ
)

Laplacian Spectrum

(a)

-0.1 -0.05 0 0.05 0.1
λ

0

2

4

6

8

10

12

14

f(λ
)

Laplacian Spectrum

(b)

-0.1 -0.05 0 0.05
λ

0

2

4

6

8

10

12

f(λ
)

Laplacian Spectrum

(c)

-0.1 -0.05 0 0.05
λ

0

2

4

6

8

10

12

14

f(λ
)

Laplacian Spectrum

(d)

-0.15 -0.1 -0.05 0 0.05
λ

0

5

10

15

f(λ
)

Laplacian Spectrum

(e)

Figure 6. Spectra f(λ) of random-walk Laplacian matrices’ eigenvalues λ for several instances of

the SBM G(pcc, pcp, ppp, nc, np). In Figure 5, we plotted histograms of the eigenvectors corresponding

to the smallest and second-largest eigenvalues for these matrices. We use the probabilities (a)

pcc = 0.8, pcp = 0.3, ppp = 0.3; (b) pcc = 0.8, pcp = 0.4, ppp = 0.3; (c) pcc = 0.8, pcp = 0.5, ppp = 0.3;

(d) pcc = 0.8, pcp = 0.6, ppp = 0.3; and (e) pcc = 0.8, pcp = 0.7, ppp = 0.3.

the value 0), and one is able to classify each vertex as part of a core set or a periphery

set by considering the sign of each entry. To choose a global sign, we multiple by −1

if necessary to maximize the objective function (4.4) and ensure that the positive entries

correspond to core vertices. (If vn is an eigenvector of L, then so is −vn.)



Detection of core–periphery structure 21

Algorithm 3 Lap-Core: Detects core–periphery structure in a graph using a core score

that is based on the eigenvector corresponding to the smallest non-zero eigenvalue of the

associated random-walk graph Laplacian.

Input: Adjacency matrix A of the simple graph G = (V , E) with n vertices and m edges.

1: Compute the random-walk Laplacian L = D−1A, where D is a diagonal matrix with

elements Dii =
∑n

j=1 Aij given by the strength (i.e., the sum of weights of the edges

incident to the vertex) of vertex i for each i.

2: Compute λn, which denotes the smallest non-zero eigenvalue of L, and its corres-

ponding eigenvector vn. The eigenvector components give the Lap-Core scores of the

vertices.

3: If β is known, identify the set of core vertices as the top βn vertices with the largest

Lap-Core scores.

4: If β is unknown, use the vector of Lap-Core scores as an input to the Find-Cut

algorithm.

Algorithm 4 LapSgn-Core: Detects core–periphery structure in a graph using the signs

of the components of the eigenvector corresponding to the smallest non-zero eigenvalue

of the associated random-walk graph Laplacian.

Input: Adjacency matrix A of the simple graph G = (V , E) with n vertices and m edges.

1: Compute the random-walk Laplacian L = D−1A.

2: Compute λn, which is the smallest non-zero eigenvalue of L, and its corresponding

eigenvector vn. The eigenvector components give the Lap-Core scores of the vertices.

3: Set zi = sign(vn(i)) for i ∈ {1, . . . , n}. Because the eigenvector vn is determined up to a

global sign change, do the following:

4: Let vertex ui ∈ VC if zi � 0, and otherwise let ui ∈ VP . Let η1 denote the resulting

value of the objective function (4.4).

5: Let vertex ui ∈ VC if zi � 0, and otherwise let ui ∈ VP . Let η2 denote the resulting

value of the objective function (4.4).

6: If η1 > η2, let the final solution be ui ∈ VC if zi � 0; otherwise, let ui ∈ VP .

7: If η2 > η1, let the final solution be ui ∈ VC if zi � 0; otherwise, let ui ∈ VP .

8: If η1 = η2, there is no clear separation of the network vertices into core and periphery

sets.

To illustrate the above interplay between the top and bottom parts of the spectrum of

the random-walk Laplacian matrix, we consider the SBM G(pcc, pcp, ppp, nc, np), where we

fix the core–core interaction probability pcc = 0.8 and the periphery–periphery interaction

probability ppp = 0.3, but we vary the core–periphery interaction probability pcp ∈ [0.3, 0.7]

in increments of 0.1. The goal of these numerical experiments, whose results we show

in Figure 5, is to demonstrate the ability of the bottom eigenvector vn of L to reveal a

core–periphery separation when one exists. To help visualize our results, we also employ

a two-dimensional representation of the network vertices in which the core vertices (i.e.,

the vertices in the set VC ) are concentrated within a disc centred at the origin and the

peripheral vertices (i.e., the vertices in the set VP ) lie on a circular ring around the core

vertices. In Figure 6, we plot the spectrum of the random-walk Laplacian associated



22 M. Cucuringu et al.

to each of the pcp values in the above experiment. Note that we disregard the trivial

eigenvector v1 = 1n that corresponds to the trivial eigenvalue λ1 = 1 of L.

For small values of pcp (e.g., pcp = 0.3 or pcp = 0.4), the network does not exhibit

core–periphery structure. Instead, it has a single community that is represented by the

densely connected graph of vertices in the set VC . As expected, the eigenvector v2 is able

to highlight the separation between the VC and VP vertices very well, whereas the bottom

eigenvector vn is not particularly helpful. For pcp = 0.5, neither of the two eigenvectors

above are able to capture the separation between VC and VP . However, as pcp increases to

pcp = 0.6 and pcp = 0.7, such that we are closer to the idealized block model in (5.1), there

now exists a densely connected subgraph of VP in the complement graph Ḡ. Instead of

using the top non-trivial eigenvector v̄2 of L̄, we use the eigenvector vn that corresponds

to the smallest eigenvalue λn of G, as this eigenvector is able to highlight core–periphery

structure in G. In Figure 6(a), we show that there is a clear separation between λ2 and

the bulk of the spectrum. Similarly, Figure 6(e) illustrates a clear separation between

λn and the bulk of the spectrum. For intermediate values of pcp, such a spectral gap is

significantly smaller or even non-existent.

In conclusion, for this approach to core–periphery detection, one should consider the

eigenvector vn as in Algorithm 4, whereas one should use the eigenvector v2 when trying

to detect a single dense community. (As illustrated in Figure 6, one can also use the

spectrum of the random-walk Laplacian for guidance.) The former scenario is hinted by

the presence of a spectral gap to the left of the bulk of the distribution, and the latter

scenario is hinted by a spectral gap to the right of the bulk of the distribution.

7 Numerical experiments

In this section, we conduct a series of numerical experiments to compare different methods

for detecting core–periphery structure and to assess the robustness of our methods to

perturbations of a network. In Section 7.1, we examine synthetic networks with a global

community structure and local core–periphery structure. In Section 7.2, we apply our

various methods for detecting core–periphery structure to several empirical data sets. In

Appendix C, we examine networks with “planted” high-degree vertices in the periphery.

We are motivated by Ref. [92], which pointed out that it is often necessary to use more

sophisticated ideas than a degree-based classification to assign nodes to core and periphery

sets, although there are some situations (e.g., sometimes when there is very strong core–

periphery structure) when it is sufficient to simply use node degree. Throughout this

section, we use the term Degree-Core to refer to the method of detecting core–periphery

structure by simply computing the vertex degrees and then applying the FIND-CUT

method. In doing so, we assume that we have knowledge of the “boundary” sizes and

thereby assume that there is a lower bound on the sizes of the core and periphery sets.

As we illustrate in Figure 7, the LapSgn-Core method (see Algorithm 4) yields the same

results whether or not we impose lower bounds on the sizes of the core and periphery

sets, as it does not rely on information about the size of the core set. As we discussed

in Section 6, it depends only on the sign of the entries of the top eigenvector of L. All

of the other methods that we examine suffer from a “boundary effect,” as the Find-Cut

algorithm finds a global optimum at (or very close to) the boundary of the search interval.



Detection of core–periphery structure 23

Figure 7. Comparison of methods for detecting core–periphery structure for a graph from the

ensemble G(pcc, pcp, ppp, nc, np) with n = 100 vertices (and, in particular, nc = 50 core vertices and

np = 50 peripheral vertices) and edge probabilities (pcc, pcp, ppp) = (0.5, 0.5, 0.27) for the objective

function in equation (4.6). We assume a minimum size for the core and periphery sets of at least

(left) 10 vertices and (right) 25 vertices. We mark the cut points on the curves with a large asterisk

for LapSgn-Core and using symbols whose colours match the colours of the corresponding curves

for the other methods. The cut point refers to the number of core vertices. In the legends, C denotes

the size of the core set, and E = (y1, y2) denotes the corresponding 2-vector of errors. The first

component of E indicates the number of core vertices that we label as peripheral vertices, and the

second indicates the number of peripheral vertices that we label as core vertices.

When β is known, we are planting core and periphery sets of known sizes, so we can

examine the number of false-positive errors (i.e., vertices incorrectly assigned to the core

set) and false-negative errors (i.e., vertices incorrectly assigned to the periphery set) for

the various methods for detecting core–periphery structure. If we enforce a minimum size

of 20 for the core and periphery sets, we find that LapSgn-Core is the only method

that yields satisfactory results from this perspective, because all other methods find a

maximum of the objective function that lies close to the boundary. When we increase

the lower bound of the core and periphery sets from 10 each to 25 each, the Degree-

Core and Path-Core methods yield very good results (in terms of the numbers of false

positives and false negatives), followed by LapSgn-Core, Lap-Core, LowRank-Core,

and Core-Score.5 When the fraction of vertices that belong to the core is known, then

Degree-Core, Path-Core, and LowRank-Core again yield the best results, followed by

LapSgn-Core, Lap-Core, and Core-Score.

We again evaluate the methods in terms of the number of false positives and false

negatives. One can increase the accuracy of the methods to detect core–periphery structure

by considering other local maxima of the objective function (4.4), especially if one is

searching further away from the boundary. However, for these examples, the LapSgn-

Core and Core-Score methods still yield unsatisfactorily results even when considering

additional local maxima. Interestingly, their objective functions are monotonic (increasing

for the former and decreasing for the latter) with respect to the vector of sorted scores.

After assigning vertices to a core set or peripheral set using any of the methods above, one

5 Several versions of CoreScore were introduced in Ref. [76]. In our comparisons in the present

paper, we use the same version that we employed in Ref. [56].



24 M. Cucuringu et al.

can also add a post-processing step in the spirit of either the gradient-descent refinement

step in non-convex optimization [62] or Kernighan–Lin vertex swaps in community

detection [64, 75].

The critical eye may object that a separation based on vertex degree yields results that

are as good as the other best-performing methods. However, Zhang et al. [92] pointed out

and discussed why relying on vertex degree tends to be suboptimal for separating core

and periphery sets, although Degree-Core may not actually perform worse than more

sophisticated methods when there is a weak core–periphery structure and can perform

reasonably well when a network’s core and periphery are separated very strongly. For

pronounced core–periphery structure that is neither too weak nor too strong (i.e., in the

most relevant situation for applications [92]), one needs to use methods that are more

sophisticated than simply considering vertex degrees. Ref. [76] also includes a salient

discussion of examining a network’s core–periphery structure simply by computing vertex

degrees. To illustrate the sensitivity of the Degree-Core method to the presence of

high-degree peripheral vertices, we perform a pair of numerical experiments in which

we purposely plant high-degree vertices in the periphery set (see Appendix C). In these

experiments, the LapSgn-Core method yields the smallest number of errors, whereas

Degree-Core is one of the worst performers. In addition, one can see from Table

D1, which gives the Pearson and Spearman correlation coefficients for various coreness

measures, that the results of our proposed methods are often only moderately correlated

with Degree-Core, and they can thus return solutions that differ significantly from naive

separation based on vertex degree. From the perspective of applications, we note the

work of Kitsak et al. [51] on the identification of influential spreaders in networks. Kitsak

et al. argued that the position of a vertex relative to the organization of a network

determines its spreading influence to a larger extent than any local property (e.g., degree)

of a vertex. Their findings also suggest that a network’s core vertices (as measured by

being in the k-core of a network with high k) are much better spreaders of information

than vertices with merely high degree. Recent followup work has also suggested that

many core spreaders need not have high degrees [60], further highlighting the substantive

difference between core vertices and high-degree vertices.

7.1 A family of synthetic networks

In this section, we detail our numerical results when applying our methods to a family

of synthetic networks with a planted core–periphery structure. We again examine the

performance of the methods with respect to how many core and peripheral vertices they

classify correctly.

We use variants of the random-graph ensemble that was introduced in Ref. [76]. Let

C1(n, β, p, κ) denote a family of networks with the following properties: n is the number of

vertices, β is the fraction of vertices in the core, and the edge probabilities for core–core,

core–periphery, and periphery–periphery connections are given by p = (pcc, pcp, ppp) with

pcc = κ2p, pcp = κp, and ppp = p. Let C2(n, β, p, κ) denote a family of networks, from a

slight modification of the above model, in which the edge probabilities are now given

by p = (pcc, pcp, ppp) with pcc = κ2p, pcp = κp, and ppp = κp. In our simulations, we fix

n = 100, β = 0.5, and p = 0.25, and we examine core–periphery structure using each of



Detection of core–periphery structure 25

1 1.2 1.4 1.6 1.8 2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

κ

ac
cu

ra
cy

 

 

(a)

1 1.2 1.4 1.6 1.8 2
0.5

0.6

0.7

0.8

0.9

1

κ

ac
cu

ra
cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE
CORE−SCORE

(b)

1 1.2 1.4 1.6 1.8 2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

κ

m
ea

n 
ac

cu
ra

cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE
LAPSGN−CORE

(c)

1 1.2 1.4 1.6 1.8 2
0.5

0.6

0.7

0.8

0.9

1

κ

m
ea

n 
ac

cu
ra

cy

 

 

(d)

Figure 8. Comparison of methods for core–periphery detection using the graph ensemble

C1(n, β, p, κ) with n = 100, β = 0.5, p = 0.25, and edge probabilities p = (pcc, pcp, ppp), where

pcc = κ2p, pcp = κp, and ppp = p. We vary κ ∈ [1, 2] in increments of 0.1. The top plots illustrate

our results for all methods on a single graph from C1(n, β, p, κ), and the bottom plots give results

averaged over 100 different graphs from the ensemble for all methods except Core-Score. The

left plots do not use information about the size (β) of the core, as they rely only on the objective

function that one maximizes; the right plots explicitly use knowledge of β. The colours and symbols

in the legend in (c) also apply to (a), and the colours and symbols in the legend in (b) also apply

to (d). In summary, we show comparisons for the following situations: (a) without knowledge of β,

single experiment; (b) with knowledge of β, single experiment; (c) without knowledge of β, averaged

over 100 experiments; and (d) with knowledge of β, averaged over 100 experiments.

the proposed methods. We average our results over 100 different instantiations of the

above graph ensembles for each of the parameter values κ = 1, 1.1, . . . , 2. We also compare

our results with (one version of) the Core-Score algorithm introduced in Ref. [76], and

we remark that the results of Core-Score are for single networks drawn from the above

ensembles. The inefficient running time of the Core-Score algorithm renders it infeasible

to average over 100 different instantiations of a graph ensemble.

In Figure 8, we examine the ensemble C1(n, β, p, κ). When β is unknown, we find that

Degree-Core, Path-Core, LowRank-Core, and Core-Score yield similar results to each

other. However, when β is known (i.e., when we assume a lower bound on the sizes

of the core and periphery sets), we find that Degree-Core and LowRank-Core tend



26 M. Cucuringu et al.

1 1.2 1.4 1.6 1.8 2

0.45

0.5

0.55

0.6

0.65

0.7

κ

ac
cu

ra
cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE
LAPSGN−CORE
CORE−SCORE

(a)

1 1.2 1.4 1.6 1.8 2

0.5

0.6

0.7

0.8

0.9

1

κ

ac
cu

ra
cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE
CORE−SCORE

(b)

1 1.2 1.4 1.6 1.8 2
0.5

0.55

0.6

0.65

0.7

κ

m
ea

n 
ac

cu
ra

cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE
LAPSGN−CORE

(c)

1 1.2 1.4 1.6 1.8 2
0.5

0.6

0.7

0.8

0.9

κ

m
ea

n 
ac

cu
ra

cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE

(d)

Figure 9. Comparison of methods for detecting core–periphery structure for the graph ensemble

C2(n, β, p, κ) with n = 100, β = 0.5, p = 0.25, and edge probabilities p = (pcc, pcp, ppp), where pcc = κ2p,

pcp = κp, and ppp = κp. We vary κ ∈ [1, 2] in increments of 0.1. We show comparisons for the

following situations: (a) without knowledge of β, single experiment; (b) with knowledge of β, single

experiment; (c) without knowledge of β, averaged over 100 experiments; and (d) with knowledge

of β, averaged over 100 experiments.

to perform slightly better than Core-Score and Path-Core. As expected, the aggregate

performance of the various algorithms improves significantly when we assume knowledge

of β. Unfortunately, in both scenarios, the two Laplacian-based methods yield very poor

results. Recall that LapSgn-Core yields exactly the same results both with and without

knowledge of β, so we only show it in the plots without knowledge of β.

In Figure 9, we plot our numerical results for the ensemble C2(n, β, p, κ). When

β is unknown, Degree-Core, Path-Core, LowRank-Core, and Core-Score again

yield similar results. When we assume that β is known, we find that Core-Score,

LowRank-Core, and Degree-Core still perform similarly to each other, and they all

do slightly better than Path-Core. The Laplacian-based methods again perform very

poorly, though Lap-Core does slightly better than LapSgn-Core when β is unknown.



Detection of core–periphery structure 27

0.6 0.7 0.8 0.9

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

κ

ac
cu

ra
cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE
LAPSGN−CORE
CORE−SCORE

(a)

0.6 0.7 0.8 0.9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

κ

ac
cu

ra
cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE
CORE−SCORE

(b)

0.6 0.7 0.8 0.9

0.6

0.7

0.8

0.9

1

κ

m
ea

n 
ac

cu
ra

cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE
LAPSGN−CORE

(c)

0.6 0.7 0.8 0.9

0.6

0.7

0.8

0.9

1

κ

m
ea

n 
ac

cu
ra

cy

 

 

DEGREE−CORE
PATH−CORE
LOWRANK−CORE
LAP−CORE

(d)

Figure 10. Comparison of the methods for graphs with n = 100 vertices generated by

a core–periphery block model with edge probabilities p = (pcc, pcp, ppp) = (κ, κ, 1 − κ) for

κ ∈ {0.55, 0.60, . . . , 0.95}. We show comparisons for the following situations: (a) without know-

ledge of β, single experiment; (b) with knowledge of β, single experiment; (c) without knowledge

of β, averaged over 100 experiments; and (d) with knowledge of β, averaged over 100 experiments.

In Figure 10, we consider graphs with a core–periphery structure from a random-graph

ensemble G(pcc, pcp, ppp) (see Table 1) with edge probabilities p = (pcc, pcp, ppp) = (κ, κ, 1−κ)

for different values of κ. The common feature of this set of experiments—both when the

boundary size β is known and when it is unknown—is that Degree-Core, LowRank-

Core, and Path-Core give the best results, whereas Core-Score consistently comes in last

place (except for doing somewhat better than the Laplacian-based methods for values of

κ in the range [0.5, 0.6] when β is known) in terms of accuracy. In Figure 11, we consider

the values of the objective function (4.6), averaged over 100 runs, that we obtain using the

different partitions of a network’s vertices into core and periphery sets as we sweep along

the sorted scores that we compute using each of the methods (except Core-Score, which

we omit because of its slow computation time). In Figure 12, we compare the actual

values of the objective function for a single experiment across all methods (including

Core-Score) as we vary the parameter κ. For each method, we also show the evolution

of the value of the objective function as we sweep through the vector of scores.



28 M. Cucuringu et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Comparison of the values of the objective function (4.6) of the partition of networks

into a core set and a periphery set. We calculate these values from the sorted scores from the

various methods for detecting core–periphery structure as we vary the parameter κ in the ensemble

G(pcc, pcp, ppp) from Table 1 with n = 100. The probability vector in the block model is p =

(pcc, pcp, ppp) = (κ, κ, 1 − κ). The “cut point” refers to the number of vertices in the core set. In the

legends, C denotes the size of the core set, and E = (y1, y2) denotes the corresponding 2-vector of

errors. The first component of E indicates the number of core vertices that we label as peripheral

vertices, and the second indicates the number of peripheral vertices that we label as core vertices.

We examine the following parameter values: (a) κ = 0.55, (b) κ = 0.60, (c) κ = 0.65, (d) κ = 0.70,

(e) κ = 0.75, (f) κ = 0.80, (g) κ = 0.85, (h) κ = 0.90, and (i) κ = 0.95.

In Figure 13, we compare the computation times (in seconds and on a log10 scale) for

all of the methods that we examine. The computers that we use for this comparison have

12 CPU cores (Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz) and have 48 GB RAM. The

most computationally expensive method is Core-Score, which is 1–2 orders-of-magnitude

slower than Path-Core, which is in turn 3–4 orders of magnitude slower than the spectral

LowRank-Core and Lap-Score methods (which have very similar computation times).

Finally, as expected, the trivial Degree-Core method has the fastest computation times.



Detection of core–periphery structure 29

(a) (b)

Figure 12. Comparison of the values of the objective function (4.6) for a single experiment for all

methods as a function of the parameter κ in the ensemble G(pcc, pcp, ppp) from Table 1 with n = 100

and β = 0.5. The probability vector in the block model is p = (pcc, pcp, ppp) = (κ, κ, 1−κ). We do our

comparison both (a) without knowledge of β and (b) with knowledge of β.

(a) (b) (c)

Figure 13. Comparison of the computation times (in seconds and on a log10 scale) for all methods

and for three synthetic graph ensembles: (a) C1(n, β, p, κ), n = 100, β = 0.5, p = 0.25; (b) C2(n, β, p, κ),

n = 100, β = 0.5, p = 0.25; and (c) G(pcc, pcp, ppp) with p = (pcc, pcp, ppp) = (κ, κ, 1− κ).

7.2 Application to empirical data

In a recent publication [56], a subset of us applied the Path-Core and Core-Score

algorithms for detecting core–periphery structure in a variety of real-world networks. In

the present paper, we use our various methods on a few other empirical data sets.

We consider four examples of social networks using all of the methods that we have

discussed for detecting core–periphery structure. The first two graphs are publicly available

networks of network scientists from 2006 (NNS2006) [64] and 2010 (NNS2010) [31]

with 379 and 552 vertices, respectively, in their largest connected components (LCCs).

Ref. [76] considered core–periphery structure in both of these networks. The vertices are

scholars (predominantly from physics) who study network science, and the weight of each

(undirected) edge represents the strength of a coauthorship relationship. (See the original

references for additional discussion of these networks and for more details about the

weights, which are not necessarily defined in the same way in the two networks.) The

other two networks are two universities (Caltech and Reed College) from the Facebook100

data set [86, 87], which consists of a single-time snapshot from the online social network



30 M. Cucuringu et al.

Facebook in autumn 2005 for each of 100 universities in the United States. Caltech has

762 vertices in its LCC, and Reed has 962 vertices in its LCC.

In Figures 14 (for the networks of network scientists) and 15 (for the Facebook

networks), we present the objective-function values (4.6) for each method for detecting

core–periphery structure. In Table D1 in Appendix D, we compare the Pearson and

Spearman correlations between the coreness values that we obtain from applying the

different methods to these empirical networks. For these networks, we find that the values

of Degree-Core, Core-Score, Path-Core, and LowRank-Core are usually strongly

correlated to each other, whereas the Lap-Core and LapSgn-Core values are very different

from the others (and the Lap-Core values are sometimes almost entirely uncorrelated with

them). We find similar results when we use a similarity measure to compare partitions into

a core set and periphery set from maximizing the objective function (4.6). We compute a

similarity between two measures using the expression

Sfrac =
w1

w1 + w0
, (7.1)

where w1 is the number of vertices classified in the same way (i.e., either both as core

vertices or both as peripheral vertices) in both measures, and w0 is the number of vertices

that are classified differently in the two measures. (Thus, w0 + w1 = n is the total number

of vertices.) One can also observe that the two networks of network scientists are similar

to each other and that the two Facebook networks are similar to each other in terms of

their correlations and core–periphery partitions. See Table D1 in Appendix D, and also

see Figures 14 and 15. For instance, the core–periphery separation points of Lap-Core

and LapSgn-Core yield much closer Sfrac values for Facebook networks than for the

networks of network scientists.

8 Summary and discussion

We introduced several new methods for detecting core–periphery structure in graphs, and

we compared these methods to each other and with Core-Score (an existing method) using

both synthetic and empirical networks. Our approach based on transportation relies on

computing shortest paths in a graph between a pair of adjacent vertices after temporarily

removing the edge between the two vertices. Another approach, which is motivated by

the putative existence of a low-rank structure in networks that exhibit core–periphery

structure, relies on a low-rank approximation of the adjacency matrix of a graph. We

also introduced two methods that rely on the bottom eigenvector of the random-walk

Laplacian associated with a graph. Finally, we introduced an objective function that helps

in the classification of vertices into core and peripheral vertices, and we showed how one

can use this objective function after obtaining a vector of scores to measure coreness (using

any of the above methods). Core–periphery structure is a common feature of real-world

networks, and it is important to continue to develop methods to detect it and to compare

the performance of such methods against each other on a wide variety of networks. We

have introduced and explored the performance of several new methods in this paper. The

different methods that we introduced are based on rather different ideas, and it is very

important to explore core–periphery structure from a multitude of perspectives.



Detection of core–periphery structure 31

50 100 150 200 250 300
0

0.05

0.1

0.15

cut point

ob
je

ct
iv

e−
fu

nc
tio

n 
va

lu
e

 

 

DEGREE−CORE [C=38]
PATH−CORE   [C=38]
LOWRANK−CORE   [C=38]
LAP−CORE    [C=39]
LAPSGN−CORE [C=189]
CORE−SCORE  [C=38]

(a)

100 150 200 250 300

0

0.01

0.02

0.03

0.04

0.05

0.06

cut point

ob
je

ct
iv

e−
fu

nc
tio

n 
va

lu
e

 

 

DEGREE−CORE [C=76]
PATH−CORE   [C=76]
LOWRANK−CORE   [C=76]
LAP−CORE    [C=76]
LAPSGN−CORE [C=189]
CORE−SCORE  [C=76]

(b)

100 200 300 400
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

cut point

ob
je

ct
iv

e−
fu

nc
tio

n 
va

lu
e

 

 

 

DEGREE−CORE [C=55]
PATH−CORE   [C=55]
LOWRANK−CORE   [C=55]
LAP−CORE    [C=55]
LAPSGN−CORE [C=272]
CORE−SCORE  [C=55]

(c)

150 200 250 300 350 400

0

0.01

0.02

0.03

0.04

0.05

cut point

ob
je

ct
iv

e−
fu

nc
tio

n 
va

lu
e

 

 

 

DEGREE−CORE [C=110]
PATH−CORE   [C=110]
LOWRANK−CORE   [C=110]
LAP−CORE    [C=114]
LAPSGN−CORE [C=272]
CORE−SCORE  [C=110]

(d)

Figure 14. Comparison of the methods for detecting core–periphery structure for networks of

network scientists in (a,b) a data set from 2006 [64] and (c,d) a data set from 2010 [31] for the

objective function in equation (4.6). We assume a minimum size for the core and periphery sets of at

least (a,c) 10% of the vertices and (b,d) 20% of the vertices. We mark the cut points on the curves

with a large asterisk for LapSgn-Core and using symbols whose colours match the colours of the

corresponding curves for the other methods. The cut point refers to the number of core vertices,

and the C values in the legends give the cut points. In other words, there are C vertices in the core

set. For all methods except LapSgn-Core, we determine a cut point to separate core and periphery

sets by using the Find-Cut algorithm, which in our computations finds a global optimum at (or

very close to) the boundary of the search interval.

Given the common use of k-cores in the consideration of core parts of networks, it is also

interesting to examine the assignment of vertices into core and periphery sets based only

on vertex degrees. Although using vertex degree as a measure of centrality or likelihood

of belonging to a core can often produce inaccurate results [76], it can sometimes be true

that a degree-based classification of vertices as core vertices or peripheral vertices should

be successful for certain random-graph ensembles (and certain empirical networks) [92].

One can thus ask what properties such ensembles ought to have. More generally, it is also

important to compare coreness scores with other centrality measures [6, 56, 76]. Another

interesting question is whether one can use current methods for solving the group-

synchronization problem (such as the eigenvector method and semidefinite programming

[39, 42, 81]) for the detection of core–periphery structure in various families in networks.



32 M. Cucuringu et al.

100 200 300 400 500 600

0.1

0.2

0.3

0.4

0.5

cut point

ob
je

ct
iv

e−
fu

nc
tio

n 
va

lu
e

 

 

DEGREE−CORE [C=76]
PATH−CORE   [C=77]
LOWRANK−CORE   [C=76]
LAP−CORE    [C=543]
LAPSGN−CORE [C=399]
CORE−SCORE  [C=76]

(a)

200 300 400 500 600
0.05

0.1

0.15

0.2

0.25

0.3

0.35

cut point

ob
je

ct
iv

e−
fu

nc
tio

n 
va

lu
e

 

 

DEGREE−CORE [C=152]
PATH−CORE   [C=152]
LOWRANK−CORE   [C=152]
LAP−CORE    [C=543]
LAPSGN−CORE [C=399]
CORE−SCORE  [C=152]

(b)

200 400 600 800

0.1

0.2

0.3

0.4

cut point

ob
je

ct
iv

e−
fu

nc
tio

n 
va

lu
e

 

 

DEGREE−CORE [C=96]
PATH−CORE   [C=96]
LOWRANK−CORE   [C=96]
LAP−CORE    [C=555]
LAPSGN−CORE [C=537]
CORE−SCORE  [C=96]

(c)

200 300 400 500 600 700

0.05

0.1

0.15

0.2

0.25

0.3

cut point

ob
je

ct
iv

e−
fu

nc
tio

n 
va

lu
e

 

 

DEGREE−CORE [C=192]
PATH−CORE   [C=192]
LOWRANK−CORE   [C=192]
LAP−CORE    [C=555]
LAPSGN−CORE [C=537]
CORE−SCORE  [C=192]

(d)

Figure 15. Comparison of the methods for detecting core–periphery structure for Facebook net-

works [86, 87] of (a,b) Caltech and (c,d) Reed College for the objective function in equation (4.6).

We assume a minimum size for the core and periphery sets of at least (a,c) 10% of the vertices

and (b,d) 20% of the vertices. We mark the cut points on the curves with a large asterisk for

LapSgn-Core and using symbols whose colours match the colours of the corresponding curves for

the other methods. The cut point refers to the number of core vertices, and the C values in the

legends give the cut points. In other words, there are C vertices in the core set. For all methods

except LapSgn-Core, we determine a cut point to separate core and periphery sets by using the

Find-Cut algorithm, which in our computations finds a global optimum at (or very close to) the

boundary of the search interval.

An important future application is to examine core–periphery structure in temporal

and multilayer networks [45, 52, 61]. Community structure (see, e.g., [47, 61]) has been

studied in such contexts, and it should also be very insightful to also consider core–

periphery structure in multilayer networks. Another interesting direction is developing

additional objective functions for classifying vertices as core or peripheral vertices. It is

also important to pursue statistical methods for studying core–periphery structure and

other mesoscale network structures [70].

Networks have many different types of mesoscale structures. In most research thus

far, community structure has taken centre stage. Other mesoscale structures, such as role

assignment [77] and core–periphery structure [26], are also very important. These ideas

are worthy of considerably more exploration.



Detection of core–periphery structure 33

Acknowledgements

S.H.L. and M.A.P. were supported by a grant (EP/J001795/1) from the Engineering

and Physical Sciences Research Council (EPSRC), and M.A.P. and P.R. were supported

by the James S. McDonnell Foundation (#220020177). M.C. thanks Radek Erban and

OCCAM at University of Oxford for their warm hospitality while hosting him for two

months during Spring 2012 (during which this project was initiated) and is grateful to Amit

Singer for his guidance and support via Award Number R01GM090200 from the NIGMS

and Award Number FA9550-09-1-0551 from AFOSR. M.C. and P.R. also acknowledge

support from AFOSR MURI grant FA9550-10-1-0569, ONR grant N000141210040, and

ARO MURI grant W911NF-11-1-0332. We thank Tiago Peixoto for helpful comments.

Part of this work was undertaken while M.C. and P.R. were attending the Semester

Program on Network Science and Graph Algorithms at the Institute for Computational

and Experimental Research in Mathematics (ICERM) at Brown University. This work

was initiated while M.C. was affiliated with the Program in Applied and Computational

Mathematics (PACM) at Princeton University.

References

[1] Ahn, Y.-Y., Bagrow, J. P. & Lehmann, S. (2010) Link communities reveal multiscale complexity

in networks. Nature 466, 761–764.

[2] Anthonisse, J. M. (1971) The Rush in a Directed Graph, Stichting Mathematisch Centrum,

Amsterdam. Available at http://oai.cwi.nl/oai/asset/9791/9791A.pdf.

[3] Arenas, A., Dı́az-Guilera, A. & Pérez-Vicente, C. J. (2006) Synchronization reveals topolo-

gical scales in complex networks. Phys. Rev. Lett. 96, 114102.

[4] Ball, B., Karrer, B. & Newman, M. E. J. (2011) Efficient and principled method for detecting

communities in networks. Phys. Rev. E 84, 036103.

[5] Barranca, V. J., Zhou, D. & Cai, D. (2015) Low-rank network decomposition reveals structural

characteristics of small-world networks. Phys. Rev. E 92, 062822.

[6] Barucca, P., Tantari, D. & Lillo, F. (2016) Centrality metrics and localization in core–

periphery networks. J. Stat. Mech. Theor. Exp. 2016, 023401.

[7] Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. (2003) The nested assembly of

plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U.S.A. 100, 9383–9387.

[8] Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M. & Grafton, S. T.

(2011) Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad.

Sci. U.S.A. 108, 7641–7646.

[9] Bassett, D. S., Wymbs, N. F., Rombach, M. P., Porter, M. A., Mucha, P. J. & Grafton, S. T.

(2013) Task-based core–periphery organization of human brain dynamics. PLoS Comput.

Biol. 9, e1003171.

[10] Belkin, M. & Niyogi, P. (2003) Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Comput. 15, 1373–1396.

[11] Benaych-Georges, F. & Nadakuditi, R. R. (2011) The eigenvalues and eigenvectors of finite,

low rank perturbations of large random matrices. Adv. Math. 227, 494–521.

[12] Bhatia, R. (1997) Matrix Analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag,

Berlin, Germany.

[13] Borgatti, S. P. & Everett, M. G. (1999) Models of core/periphery structures. Soc. Netw. 21,

375–395.

[14] Borgatti, S. P., Everett, M. G. & Freeman, L. C. (2011) UCINET, version 6.289. Available

at http://www.analytictech.com/ucinet/.



34 M. Cucuringu et al.

[15] Boyd, J. P., Fitzgerald, W. J., Mahutga, M. C. & Smith, D. A. (2010) Computing continuous

core/periphery structures for social relations data with MINRES/SVD. Soc. Netw. 32,

125–137.

[16] Brandes, U. (2001) A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177.

[17] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z. & Wagner,

D. (2008) On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188.

[18] Chase-Dunn, C. (1989) Global Formation: Structures of the World-Economy, Basil Blackwell,

Oxford, UK.

[19] Chen, J. & Yuan, B. (2006) Detecting functional modules in the yeast protein–protein inter-

action network. Bioinformatics 22, 2283–2290.

[20] Chung, F. R. K. (1997) Spectral Graph Theory, CBMS Regional Conference Series, American

Mathematical Society, Providence, RI.

[21] Clauset, A., Arbesman, S. & Larremore, D. B. (2015) Systematic inequality and hierarchy

in faculty hiring networks. Sci. Adv. 1, e1400005.

[22] Coifman, R. R. & Lafon, S. (2006) Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30.

[23] Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F. & Zucker,

S. W. (2005) Geometric diffusions as a tool for harmonic analysis and structure definition

of data: Diffusion maps. Proc. Natl. Acad. Sci. U.S.A. 102, 7426–7431.

[24] Colizza, V., Flammini, A., Serrano, M. A. & Vespignani, A. (2006) Detecting rich-club

ordering in complex networks. Nat. Phys. 2, 110–115.

[25] Comrey, A. L. (1962) The minimum residual method of factor analysis. Psychol. Rep. 11,

15–18.

[26] Csermely, P., London, A., Wu, L.-Y. & Uzzi, B. (2013) Structure and dynamics of

core/periphery networks. J. Cplx. Netw. 1, 93–123.

[27] da Silva, M. R., Ma, H. & Zeng, A.-P. (2008) Centrality, network capacity, and modularity as

parameters to analyze the core–periphery structure in metabolic networks. Proc. IEEE 96,

1411–1420.

[28] Darlington, R. B., Weinberg, S. L. & Walberg, H. J. (1973) Canonical variate analysis and

related techniques. Rev. Educ. Res. 43, 433–454.

[29] Della-Rossa, F. D., Dercole, F. & Piccardi, C. (2013) Profiling core–periphery network

structure by random walkers. Sci. Rep. 3, 1467.

[30] Doreian, P. (1985) Structural equivalence in a psychology journal network. J. Assoc. Inf. Sci.

36, 411–417.

[31] Edler, D. & Rosvall, M. (2010) The map generator software package (2010 net-

work scientist coauthorship network). Accessed 12 September 2014. Available at

http://mapequation.org/downloads/netscicoauthor2010.net.

[32] Erdős, P. & Rényi, A. (1959) On random graphs I. Publ. Math. Debrecen 6, 290–297.

[33] Everett, M. G. & Valente, T. W. (2016) Bridging, brokerage and betweenness. Soc. Netw. 44,

202–208.

[34] Féral, D. & Péché, S. (2007) The largest eigenvalue of rank one deformation of large Wigner

matrices. Comm. Math. Phys. 272, 185–228.

[35] Fortunato, S. (2010) Community detection in graphs. Phys. Rep. 486, 75–174.

[36] Freeman, L. C. (1977) A set of measures of centrality based on betweenness. Sociometry 40,

35–41.

[37] Gilbert, E. N. (1959) Random graphs. Ann. Math. Stat. 30, 1141–1144.

[38] Girvan, M. & Newman, M. E. J. (2002) Community structure in social and biological networks.

Proc. Natl. Acad. Sci. USA 99, 7821–7826.

[39] Goemans, M. X. & Williamson, D. P. (1995) Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145.



Detection of core–periphery structure 35

[40] González, M. C., Herrmann, H. J., Kertész, J. & Vicsek, T. (2007) Community structure

and ethnic preferences in school friendship networks. Physica A 379, 307–316.

[41] Good, B. H., de Montjoye, Y.-A. & Clauset, A. (2010) Performance of modularity maximiz-

ation in practical contexts. Phys. Rev. E 81, 046106.

[42] Grant, M. & Boyd, S. (2008) Graph implementations for nonsmooth convex programs, In: V.

Blondel, S. Boyd & H. Kimura (editors), Recent Advances in Learning and Control, Lecture

Notes Contr. Inf. Sci., Springer-Verlag, Berlin, Germany, pp. 95–110.

[43] Guattery, S. & Miller, G. L. (1995) On the performance of spectral graph partitioning

methods. In: Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms, SODA ’95, January

22–24, 1995, San Francisco, CA, USA. SIAM, Philadelphia, PA, USA, pp. 233–242.

[44] Holme, P. (2005) Core–periphery organization of complex networks. Phys. Rev. E 72, 046111.

[45] Holme, P. & Saramäki, J. (2012) Temporal networks. Phys. Rep. 519, 97–125.

[46] Jeub, L. G. S., Balachandran, P., Porter, M. A., Mucha, P. J. & Mahoney, M. W. (2015)

Think locally, act locally: Detection of small, medium-sized, and large communities in large

networks. Phys. Rev. E 91, 012821.

[47] Jeub, L. G. S., Mahoney, M. W., Mucha, P. J. & Porter, M. A. (2015) A local perspective on

community structure in multilayer networks, arXiv:1510.05185.

[48] Kelmans, A. K. (1965) The number of trees of a graph I. Aut. Remote Contr. 26, 2118–2129.

[49] Kelmans, A. K. (1966) The number of trees of a graph II. Aut. Remote Contr. 27, 233–241.

[50] Kelmans, A. K. (1997) Transformations of a graph increasing its Laplacian polynomial and

number of spanning trees. Europ. J. Comb. 18, 35–48.

[51] Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E. & Makse,

H. A. (2010) Identification of influential spreaders in complex networks. Nat. Phys. 6,

888–893.

[52] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y. & Porter, M. A. (2014)

Multilayer networks. J. Cplx. Netw. 2, 203–271.

[53] Krugman, P. (1996) The Self-Organizing Economy, Oxford University Press, Oxford, UK.

[54] Laumann, E. O. & Pappi, F. U. (1976) Networks of Collective Action: A Perspective on Com-

munity Influence, Academic Press, New York, NY, USA.

[55] Lee, S. H. (2016) Network nestedness as generalized core–periphery structures. Phys. Rev. E

93, 022306.

[56] Lee, S. H., Cucuringu, M. & Porter, M. A. (2014) Density-based and transport-based

core–periphery structures in networks. Phys. Rev. E 89, 032810.

[57] Lewis, A. C. F., Jones, N. S., Porter, M. A. & Deane, C. M. (2010) The function of

communities in protein interaction networks at multiple scales. BMC Syst. Biol. 4, 100.

[58] McLachlan, G. & Peel, D. (2000) Finite Mixture Models, Wiley-Interscience, Hoboken, NJ,

USA.

[59] Meilǎ, M. & Shi, J. (2001) A random walks view of spectral segmentation. In: 8th International

Workshop on Artificial Intelligence and Statistics (AISTATS), Key West, FL, USA.

[60] Morone, F. & Makse, H. A. (2015) Influence maximization in complex networks through

optimal percolation. Nature 524, 65–68.

[61] Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. (2010) Com-

munity structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–

878.

[62] Nesterov, Y. (2004) Introductory Lectures on Convex Optimization: A Basic Course, Applied

optimization, Kluwer Academic Publ., Dordrecht, the Netherlands.

[63] Newman, M. E. J. (2005) A measure of betweenness centrality based on random walks. Soc.

Netw. 27, 39–54.

[64] Newman, M. E. J. (2006) Finding community structure in networks using the eigenvectors of

matrices. Phys. Rev. E 74, 036104.

[65] Newman, M. E. J. (2010) Networks: An Introduction, Oxford University Press, UK.



36 M. Cucuringu et al.

[66] Newman, M. E. J. & Girvan, M. (2003) Mixing patterns and community structure in networks.

In: R. Pastor-Satorras, M. Rubi & A. Dı́az-Guilera (editors), Statistical Mechanics of Complex

Networks Lecture Notes in Physics, vol. 625, Springer-Verlag, Berlin, Germany, pp. 66–87.

[67] Newman, M. E. J. & Girvan, M. (2004) Finding and evaluating community structure in

networks. Phys. Rev. E 69, 026113.

[68] Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J. &

Barabási, A. L. (2007) Structure and tie strengths in mobile communication networks. Proc.

Natl. Acad. Sci. U.S.A. 104, 7332–7336.

[69] Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community

structure of complex networks in nature and society. Nature 435, 814–818.

[70] Peixoto, T. P. (2014) Hierarchical block structures and high-resolution model selection in large

networks. Phys. Rev. X 4, 011047.

[71] Piccardi, C. (2011) Finding and testing network communities by lumped Markov chains.

PLoS ONE 6, e27028.

[72] Pons, P. & Latapy, M. (2006) Computing communities in large networks using random walks.

J. Graph Algorithms Appl. 10, 191–218.

[73] Porter, M. A., Mucha, P. J., Newman, M. E. J. & Warmbrand, C. M. (2005) A network

analysis of committees in the U.S. House of Representatives. Proc. Natl. Acad. Sci. U.S.A.

102, 7057–7062.

[74] Porter, M. A., Onnela, J.-P. & Mucha, P. J. (2009) Communities in networks. Notices Amer.

Math. Soc. 56, 1082–1097, 1164–1166.

[75] Richardson, T., Mucha, P. J. & Porter, M. A. (2009) Spectral tripartitioning of networks.

Phys. Rev. E 80, 036111.

[76] Rombach, M. P., Porter, M. A., Fowler, J. H. & Mucha, P. J. (2014) Core–periphery structure

in networks. SIAM J. Appl. Math. 74, 167–190.

[77] Rossi, R. A. & Ahmed, N. K. (2015) Role discovery in networks. IEEE Trans. Knowl. Data

Eng. 27, 1112–1131.

[78] Rosvall, M. & Bergstrom, C. T. (2008) Maps of random walks on complex networks reveal

community structure. Proc. Natl. Acad. Sci. U.S.A. 105, 1118–1123.

[79] Roweis, S. T. & Saul, L. K. (2000) Nonlinear dimensionality reduction by locally linear

embedding. Science 290, 2323–2326.

[80] Shi, J. & Malik, J. (2000) Normalized cuts and image segmentation. IEEE Trans. Pattern

Anal. Mach. Intell. 22, 888–905.

[81] Singer, A. (2011) Angular synchronization by eigenvectors and semidefinite programming.

Appl. Comput. Harmon. Anal. 30, 20–36.

[82] Smith, D. A. & White, D. R. (1992) Structure and dynamics of the global economy: Network

analysis of international trade. Soc. Forces 70, 857–893.

[83] Spielman, D. A. & Teng, S.-H. (1996) Spectral partitioning works: Planar graphs and finite

element meshes. In: Foundations Of Computer Science (FOCS), IEEE Computer Society,

Washington, D.C., USA, pp. 96–105.

[84] Spielman, D. A. & Teng, S.-H. (2007) Spectral partitioning works: Planar graphs and finite

element meshes. Linear Algebra Appl. 421, 284–305. Special Issue in honor of Miroslav

Fiedler.

[85] Steiber, S. (1979) The world system and world trade: An empirical explanation of conceptual

conflicts. Sociol. Quart. 20, 23–26.

[86] Traud, A. L., Kelsic, E. D., Mucha, P. J. & Porter, M. A. (2011) Comparing community

structure to characteristics in online collegiate social networks. SIAM Rev. 53, 526–543.

[87] Traud, A. L., Mucha, P. J. & Porter, M. A. (2012) Social structure of Facebook networks.

Physica A 391, 4165–4180.

[88] Valente, T. W. & Fujimoto, K. (2010) Bridging: Locating critical connectors in a network.

Soc. Netw. 32, 212–220.



Detection of core–periphery structure 37

[89] Verma, T., Russmann, F., Araújo, N. A. M., Nagler, J. & Hermann, H. J. (2016) Emergence

of core–peripheries in networks. Nat. Commun. 7, 10441.

[90] Wallerstein, I. (1974) The Modern World-System I: Capitalist Agriculture and the Origins of

the European World-Economy in the Sixteenth Century, Academic Press, New York, NY,

USA.

[91] Yang, J. & Leskovec, J. (2014) Structure and overlaps of ground-truth communities in

networks. ACM Trans. Intell. Syst. Technol. 5, 26.

[92] Zhang, X., Martin, T. & Newman, M. E. J. (2015) Identification of core–periphery structure

in networks. Phys. Rev. E 91, 032803.

Appendix A Algorithm for computing path-core scores

Let G(V , E) be an unweighted graph without self-edges or multi-edges. (In other words, it

is a simple graph.) Recall that we define the Path-Core score (3.2) of a vertex i ∈ V = V (G)

as the sum over all adjacent vertex pairs in G of the fraction of shortest non-trivial paths

containing i between each vertex pair in V (G)\ i. By “non-trivial,” we mean that the direct

edge between those adjacent vertices does not count as a path. Our algorithm has strong

similarities to the algorithm presented in Ref. [16], and we follow some of the notation

introduced therein. Let dG(j, i) be the “distance” between vertices j and i; we define this

distance as the minimum length of any path that connects j and i in G. Let σst(i) be the

number of shortest paths between s and t that contain i. Define the set of predecessors of

a vertex i on shortest paths from s as

Ps(i) = {j ∈ V : (j, i) ∈ E , dG(s, i) = dG(s, j) + 1} .

We use the following observation: if i lies on a shortest path between s and t, then

σst(i) =

⎛
⎝ ∑

k∈Ps(i)

σsi(k)

⎞
⎠×

⎛
⎝∑

l∈Pt(i)

σit(l)

⎞
⎠ .

This will help us count the number of shortest paths on which a vertex lies without

keeping track of the locations of these shortest paths. In the Path-Score algorithm, σs(i)

is the number of paths between s and i of length dG′ (s, i) if and only if i lies on a shortest

path between s and t (i.e., if (s, t) is the edge that is currently removed), where G′ is the

graph G \ (s, t). The algorithm records the distance between s and i in G′ as ds(i). In

Algorithm 5, we calculate Path-Core scores for every vertex.

Lemma 1 Algorithm 5 outputs the Path-Core scores for all vertices in an unweighted

graph G.

Proof It suffices to show for one edge (s, t) ∈ E(G) and one iteration (i.e., lines 3–44)

that the algorithm counts, for each vertex w ∈ V (G) \ (s, t), the number of shortest

paths between s and t that contain w. This number σs,t(w) is given by the algorithm as

σs(w) ·σt(w). In this case, σs(w) is the number of paths between s and w of length dG′ (s, w)

(where the graph G′ = G \ (s, t)) if and only if w lies on a shortest path between s and t.

Algorithm 5 performs three breadth-first-searches (BFSs). In the first BFS, it starts



38 M. Cucuringu et al.

Algorithm 5 Path-Core: Computes Path-Core scores for all vertices of a graph G.

Input: G

Output: CP

1: CP (w)← 0, w ∈ V ;

2: for (s, t) ∈ E(G) do

3: G′ ← G \ (s, t);

4: σs(w), σt(w)← 0, v ∈ V ;

5: σs(s), σt(t)← 1;

6: ds(w), dt(w)← −1, v ∈ V ;

7: ds(s), dt(t)← 0;

8: Q← empty queue;

9: enqueue s→ Q;

10: while Q not empty do

11: dequeue w ← Q;

12: for each u ∈ ΓG′ (w) do

13: if ds(u) < 0 then

14: enqueue u→ Q;

15: ds(u)← ds(w) + 1;

16: end if

17: end for

18: end while

19: enqueue t→ Q;

20: while Q not empty do

21: dequeue w ← Q;

22: for each u ∈ ΓG′ (w) do

23: if dt(u) < 0 then

24: enqueue u→ Q;

25: dt(u)← dt(w) + 1;

26: end if

27: if ds(u) < ds(w) then

28: σt(u) = σt(u) + σt(w);

29: end if

30: end for

31: end while

32: enqueue s→ Q;

33: while Q not empty do

34: dequeue w ← Q;

35: for each u ∈ ΓG′ (w) do

36: if dt(u) < dt(w) then

37: enqueue u→ Q;

38: σs(u) = σs(u) + σs(w);

39: end if

40: end for

41: end while

42: for w ∈ V \ (s, t) do

43: CP (w) = CP (w) + σs(w) · σt(w)/σs(t);

44: end for

45: end for

from vertex s and records the distances from s to all other vertices. It then performs a

BFS starting from vertex t. During this second BFS, it records the distances to all vertices

from t, and it also records σt(w) for vertices that lie on a shortest path between s and t.

The Path-Score algorithm knows that u lies on a shortest path between s and t if it has

a distance from s that is less than the distance from s of its predecessor in the BFS that

started from t. In other words, if dt(w) < dt(u), then an edge (w, u) lies on a shortest path

between s and t if and only if ds(u) < ds(w). Additionally,

σt(u) =
∑

w∈Pt(u)

σt(w) .

In the second BFS, Algorithm 5 finds a vertex u exactly once for each of its predecessors

w ∈ Pt(u), and it adds σt(w) to σt(u). Therefore, in the second BFS, for each vertex

u ∈ V (G) \ (s, t), Path-Score records σt(v) as the number of shortest paths from t to u if

u is on a shortest path between s and t. If it is not, then σt(u) is still 0.

By the same arguments, in the third BFS, for each vertex u ∈ V (G) \ (s, t), Path-Core

records σs(u) as the number of shortest paths from s to u if u is on a shortest path between

s and t. If it is not, then σs(u) is still 0.



Detection of core–periphery structure 39

It should now be clear that for all w ∈ V (G) \ (s, t), it follows that σs(w) · σt(w) equals

σs,t(w). �

Lemma 2 Algorithm 5 finishes in O(m2) time.

Proof Algorithm 5 iterates (i.e., it runs lines 3–44) once for each edge. In one iteration, it

performs three BFSs. During a BFS, every edge of G′ is considered exactly once; this is

an O(1)-time procedure. Therefore, every iteration of Path-Core runs in O(m) time, and

the temporal complexity of Path-Core is O(m2). �

For weighted graphs, one can implement an algorithm that is very similar to Algorithm

5. This algorithm uses Dijkstra’s algorithm for shortest paths instead of BFS, and it

runs in O(m + n log n) time instead of O(m), so the total temporal complexity becomes

O(m2 + mn log n).

Appendix B Symmetry in the random-walk Laplacian

We now show that a symmetry relation like (6.2) exists for the random-walk Laplacian

associated to an unweighted graph only under certain conditions. Additionally, the most

obvious version of such a statement does not hold. To see this, let x be an eigenvector of

L̄. (This eigenvector is non-trivial, so x ⊥ 1n.) We use the notation D̄ = diag(n− 1− di),

where di denotes the degree of vertex i, and calculate

L̄ = D̄−1Ā

= D̄−1(Jn − A− In)

= D̄−1(Jn − In)− D̄−1A

= D̄−1(Jn − In)− D̄−1DD−1A

= D̄−1(Jn − In)− D̄−1DL . (B 1)

Because D̄−1 = diag
(

1
n−1−di

)
and D = diag(di) are diagonal matrices, it follows that

D̄−1D = diag
(

di
n−1−di

)
. Given an eigenvector x of L̄, we obtain L̄x = λ̄x for some

eigenvalue λ̄. Because L̄ is a row-stochastic matrix, it has the trivial eigenvalue λ̄1 = 1 with

associated eigenvector v̄1 = 1n. We apply both sides of equation (B 1) to the eigenvector

x and note that Jnx = 0 because x ⊥ v̄1 = 1n. We thereby obtain

λ̄x = L̄x

= D̄−1(Jn − In)x− D̄−1DLx

= −D̄−1Inx− D̄−1DLx . (B 2)



40 M. Cucuringu et al.

Multiplying both sides of equation (B 2) by D−1D̄ on the left yields

D−1D̄λ̄x = −D−1D̄D̄−1x− Lx , (B 3)

so

Lx = −D−1D̄λ̄x− D−1x

= −(D̄λ̄ + In)D
−1x

= −diag

(
λ̄(n− 1− di) + 1

di

)
x .

Therefore, x is not an eigenvector of L unless

λ̄(n− 1− di) + 1

di
= θ for all i ∈ {1, . . . , n},

for some constant θ. In other words, di = λ̄(n−1)

θ+λ̄
for i ∈ {1, . . . , n}, so the graph is d-regular,

with d1 = d2 = · · · = dn = d = λ̄(n−1)

θ+λ̄
. Therefore,

θ =
λ̄(n− 1− d) + 1

d
,

so the eigenvector x of L̄ is also an eigenvector of L (with a corresponding eigenvalue

of −θ).

Appendix C Planted high-degree vertices

To illustrate the sensitivity of the Degree-Core method to the presence of high-degree

peripheral vertices, we conduct a numerical experiment in which we intentionally plant

high-degree vertices in the periphery set. This helps illustrate that it is dangerous to use

methods like k-core decomposition (which has very strong demands that vertices have

a high degree to be construed as core vertices) to study core–periphery structure. In

Figure C1, we consider a graph from the ensemble G(pcc, pcp, ppp, nc, np) with n = 100

vertices, edge probabilities (pcc, pcp, ppp) = (0.4, 0.4, 0.2), nc core vertices, np peripheral

vertices (with n = nc + np), and planted high-degree vertices in the periphery set. To

perturb the graph G from the above ensemble to plant high-degree peripheral vertices, we

proceed as follows. First, we select each peripheral vertex with independent probability

0.1. Second, we connect each such vertex to 15 non-neighbouring peripheral vertices that

we choose uniformly at random. In the left panel of Figure C1, we show an example with

a boundary size of 10%, so we are assuming that the core and periphery sets each have at

least 0.1n = 10 vertices. We then search for a cut point in the interval [10, 90]. In the right

panel, we consider a larger boundary size and assume that the core and the periphery sets

each have at least 25 vertices. We now search for an optimal cut in the interval [25, 75].

In the two planted-degree scenarios for which the size of the core set is unknown, all



Detection of core–periphery structure 41

Figure C1. Comparison of the methods for one instantiation of the graph ensemble

G(pcc, pcp, ppp, n, nc, np) with n = 100 vertices, nc = 50 core vertices, np = 50 peripheral vertices,

edge probabilities (pcc, pcp, ppp) = (0.4, 0.4, 0.2), and planted high-degree vertices for the objective

function in equation (4.6). The cut point refers to the number of core vertices. In the legends,

C denotes the size of the core set, and E = (y1, y2) denotes the corresponding 2-vector of errors.

The first component of E indicates the number of core vertices that we label as peripheral ver-

tices, and the second indicates the number of peripheral vertices that we label as core vertices. In

this graph, each peripheral vertex has a probability of 0.1 of becoming adjacent to 15 additional

non-neighbouring peripheral vertices that we select uniformly at random. We mark the cut points

on the curves with a large asterisk for LapSgn-Core and using symbols whose colours match the

colours of the corresponding curves for the other methods. For all methods except LapSgn-Core,

we determine a cut point to separate core and periphery sets by using the Find-Cut algorithm,

which in our computations finds a global optimum at (or very close to) the boundary of the search

interval.

methods yield many misclassified vertices, although the LapSgn-Core method has the

lowest number (28) of misclassifications in both cases.

Appendix D Correlations between coreness values from different methods

In Table D1, we consider several empirical networks and give the numerical values for

the Pearson and Spearman correlations between the coreness values that we obtain for

several core–periphery-detection methods.



42 M. Cucuringu et al.

Table D1. Pearson and Spearman correlation coefficients for various coreness measures and

the similarity measure Sfrac for core–periphery partitioning with a boundary of 20% of the

vertices (see the right panels in Figures 14 and 15) between the objective function in equa-

tion (4.6) for several empirical networks. We use the notation q for Degree-Core, C for

Core-Score, P for Path-Core, R for LowRank-Core, L for Lap-Core, and LS for

LapSgn-Core. We use the designation ∗ for correlation values that have a p-value smal-

ler than 0.01 and the designation † for z-scores whose absolute value is larger than 2. We

construe these results as statistically significant. We calculate the z-scores by randomly per-

muting the vertex indices (with 10000 different applications of such a permutation for each

calculation) as described in [86]: z = (Sfrac − μ)/(std), where μ and “std”, respectively,

are the means and standard deviations of the Sfrac values for random permutations. We use

NNS2006 to denote the 2006 network of network scientists, NNS2010 to denote the 2010

network of network scientists, FB-Caltech to denote the Facebook network for Caltech, and

FB-Reed to denote the Facebook network for Reed.

NNS2006 q,C q,P q,R q,L C,P C,R C,L P,R P,L R,L
Pearson 0.79∗ 0.89∗ 0.72∗ 0.02 0.64∗ 0.56∗ 0.03 0.62∗ 0.03 −0.01

Spearman 0.79∗ 0.62∗ 0.43∗ 0.04 0.37∗ 0.65∗ −0.05 0.14∗ −0.01 0.01

Sfrac 0.93 0.90 0.79 0.69 0.88 0.82 0.69 0.78 0.69 0.67

(z-score) (19.5†) (17.4†) (8.2†) (1.1) (15.7†) (10.2†) (1.1) (7.5†) (0.7) (−0.9)

q,LS C,LS P,LS R,LS L,LS
Sfrac 0.50 0.47 0.47 0.44 0.70

(z-score) (0.1) (−1.5) (−1.9) (−3.4†) (11.9†)

NNS2010 q,C q,P q,R q,L C,P C,R C,L P,R P,L R,L
Pearson 0.78∗ 0.84∗ 0.71∗ 0.01 0.62∗ 0.46∗ 0.01 0.56∗ 0.02 0.01

Spearman 0.84∗ 0.56∗ 0.39∗ 0.10 0.38∗ 0.56∗ 0.04 0.17∗ 0.08 0.03

Sfrac 0.96 0.88 0.80 0.71 0.87 0.82 0.72 0.76 0.70 0.75

(z-score) (29.1†) (20.2†) (12.4†) (3.7†) (19.8†) (14.0†) (4.1†) (8.7†) (1.9†) (7.8†)

q,LS C,LS P,LS R,LS L,LS
Sfrac 0.54 0.52 0.50 0.51 0.71

(z-score) (2.7†) (1.5) (−0.1) (0.9) (16.9†)

FB-Caltech q,C q,P q,R q,L C,P C,R C,L P,R P,L R,L
Pearson 0.96∗ 0.97∗ 0.98∗ 0.02 0.86∗ 0.97∗ 0.01 0.93∗ 0.01 0.02

Spearman 1.00∗ 0.99∗ 0.99∗ 0.09 0.98∗ 1.00∗ 0.08 0.97∗ 0.09∗ 0.07

Sfrac 0.98 0.97 0.97 0.43 0.97 0.99 0.42 0.96 0.42 0.42

(z-score) (38.4†) (36.9†) (36.7†) (5.7†) (35.5†) (38.4†) (5.0†) (34.4†) (5.5†) (4.7†)

q,LS C,LS P,LS R,LS L,LS
Sfrac 0.53 0.53 0.53 0.53 0.81

(z-score) (4.7†) (4.2†) (4.4†) (4.1†) (25.7†)

FB-Reed q,C q,P q,R q,L C,P C,R C,L P,R P,L R,L
Pearson 0.92∗ 0.95∗ 0.98∗ −0.01 0.77∗ 0.94∗ −0.02 0.90∗ −0.01 −0.01

Spearman 0.99∗ 0.98∗ 0.96∗ 0.07 0.96∗ 0.98∗ 0.07 0.90∗ 0.09∗ 0.05

Sfrac 0.99 0.98 0.98 0.51 0.97 0.99 0.51 0.96 0.51 0.51

(z-score) (41.8†) (39.7†) (40.2†) (6.3†) (39.1†) (42.0†) (6.5†) (38.2†) (6.5†) (6.3†)

q,LS C,LS P,LS R,LS L,LS
Sfrac 0.51 0.52 0.52 0.52 0.98

(z-score) (5.4†) (5.9†) (5.6†) (5.7†) (42.5†)




