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The spread of ideas across a social network can be studied using complex contagion models, in
which agents are activated by contact with multiple activated neighbors. The investigation of
complex contagions can provide crucial insights into social influence and behavior-adoption
cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on
networks. Agents at different stages—which could, for example, represent differing levels of
support for a social movement or differing levels of commitment to a certain product or idea—
exert different amounts of influence on their neighbors. We demonstrate that the presence of even
one additional stage introduces novel dynamical behavior, including interplay between multiple
cascades, which cannot occur in single-stage contagion models. We find that cascades—and hence
collective action—can be driven not only by high-stage influencers but also by low-stage
influencers. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790836]

Studying models of cascades allows one to gain insights
into a variety of processes ranging from the spread of
fads and ideas in social networks to the appearance of
cascading failures in infrastructure networks. To date,
researchers have mostly considered single-stage cascade
models wherein the propagation of a cascade is charac-
terized by a single subpopulation of active agents,1–5

though some multi-stage models have been examined
recently.6,7 In the usual approach, it is assumed that all
active agents exhibit the same amount of influence on
their peers. In reality, however, supporters of a cause can
vary significantly in their desire and ability to recruit
new members. In this paper, we introduce a model of
multi-stage cascading dynamics in which agents can exert
different amounts of influence on their peers depending
on the stage of their adoption (i.e., on the level of their
commitment to a certain idea or product). We investigate
the dynamics of our multi-stage cascade model on various
networks and observe an interplay between cascades—
e.g., one cascade driving the other one or vice versa—
that cannot be observed in single-stage cascade models.
We also provide an analytical method for solving the
model that gives a good prediction for the cascade sizes
on configuration-model networks.

I. INTRODUCTION

Social movements and other forms of collective action,
which often arise spontaneously, require an ensemble of sup-
porters with different levels of commitment. Social influence
and its potential to yield a critical mass of supporters can
make a crucial difference as to whether or not movements
succeed.8–11 More generally, the effect that other people’s

opinions and actions have on the decisions that people make
is a crucial sociological consideration,8,12–14 and the impact
that individual influence can have on the large-scale spread
of rumors, fads, beliefs, and norms via social networks is of
particular interest.2,3,7,15–36 A closely related societal con-
cern is that the mechanisms rooted in social interaction can
give rise to financial crashes,37 political revolutions,38 suc-
cessful technologies,39 and cultural market sensations.40

The sudden changes in state exhibited in these examples
are known as cascades: Initially local behavior becomes
widespread through collective action. The perceived similar-
ity between social and biological epidemics16,41 has led to
the use of the term contagion for the spread of social influ-
ence.42 Specifically, contagion refers to cases in which—
much like with a virus or a disease—exposure to some
source is enough to initiate propagation. Importantly, social
contagions need not just spread from one specific source to
another. In many situations, the chance of a node becoming
active (e.g., adopting a new technology or joining a political
revolution) depends on several other people who are
active—and this is particularly true of people who are
“close” or perceived as close in a social network. Conse-
quently, social contagions have been called complex conta-
gions.2,17,18 Key investigations of complex contagions have
included examinations of the diffusion of applications on the
social networking site Facebook,43 memes (short textual
phrases) on news websites44 and other social media,45,46 in-
formation on blogs47 and on the micro-blogging service
Twitter,48 and voting in political elections.49

Although large data sets have the potential to help pro-
vide a better picture of social contagions, analyzing them
without accompanying dynamical models offers little hope of
distinguishing between underlying causes of individual behav-
ior (social influence versus homophily versus covariates).50
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Statistical methods have been developed to approach the data
side of this problem,51 but mathematical modelling is an
underappreciated and crucial component of these efforts. In
particular, simple models make it possible to isolate effects
(e.g., social contagion) and develop and test quantitative diag-
nostics that characterize macroscopic dynamics.

Early studies in the sociology of behavioral cascades
considered threshold models of binary decisions.26 In such
models, agents can switch from an initially inactive state to
an active state if a sufficient proportion of other agents are
active. These models capture two important features:8 inter-
dependence (an agent’s behavior depends on the behavior of
other agents) and heterogeneity (differences in behavior are
reflected in the distribution of thresholds). In recent stud-
ies,3,4,52,53 threshold models of social influence have been
examined on networks in which the nodes correspond to
agents and the edges between nodes indicate who influences
whom. In a network setting, models with simple threshold
dynamics also capture fundamental mechanisms that can be
related (at least by analogy) to a large range of phenomena
that include failures in power grids and the transmission of
infectious diseases.5,54 Tractable models of threshold dynam-
ics have also sparked a great deal of interest in the physics
and applied mathematics communities, because many results
from graph theory, statistical physics, and dynamical systems
can be applied directly in this setting. For example, such
techniques allow one to identify critical cascade thresholds,3

mean cascade sizes,55 and the effects of seed size52 and net-
work topology.5

Motivated by the observation that not all opinions have
equal weight, we introduce in this paper a model for multi-
stage complex contagions in which agents can adopt several
different states with variable levels of influence. Almost all
existing models assume that active agents exert equal influ-
ence over their peers. A notable exception is Ref. 7, which
recently considered networked agents with variable levels of
social influence but used a very different framework from
ours and also focused on different dynamics. Another excep-
tion is Ref. 6, which considered multiple levels of social influ-
ence in the context of viral marketing but again used a very
different approach. As these papers illustrate, it is important
to examine multi-stage social contagions in detail, as a binary
description of agents’ states can be woefully inadequate. For
example, it has been well-documented that supporters with
varying level of commitment are crucial in social move-
ments;8,9 regular users of a product are more enthusiastic rec-
ommenders than casual users; supporters of a political party
can vary significantly in their desire and ability to recruit new

members; there are substantial behavioral differences between
fans and fanatics of sports teams; and experience with free
trial versions of software can greatly influence a user’s deci-
sion to purchase a costly commercial version.

We show schematics of single-stage and two-stage com-
plex contagion models in Fig. 1. To focus our discussion, we
consider the simplest multi-stage progression, in which there
are three possible states [see Fig. 1(b)]: inactive (no influ-
ence; unaware of an innovation or indifferent to a social
movement), active (low level of influence; testing an innova-
tion or supporting a social movement), and hyper-active
(high level of influence; full adoption of an innovation or
activists in a social movement).

The rest of this paper is structured as follows. In Secs. II
and III, we define our model and illustrate some of its novel
dynamics. We demonstrate that it is possible for one cascade
to drive the other one even in situations in which there would
be no propagation (or only small amount of propagation) in
the associated single-stage cascade model. We then use syn-
thetic networks and analytical approximations to further
explore the model’s dynamics, and we derive conditions for
the appearance of cascades. We include additional details in
the appendices.

II. MULTI-STAGE MODEL

We consider situations in which there is an underlying
social network, which we represent using an unweighted,
undirected graph with N nodes. At any given point in time,
there are three possible influence levels for each node: Inac-
tive nodes exert no influence on their neighbors and are said
to be in state S0, active nodes exert some influence and are
said to be in state S1, and hyper-active nodes exert additional
influence and are said to be in state S2 [see Fig. 1(b)]. Impor-
tantly, nodes in state S2 are a subset of nodes in state S1,
because nodes that are S2-active are necessarily S1-active
(i.e., we consider fanatics to be a specific type of fan), but S1-
active nodes need not be S2-active. A natural generalization
of the two-stage model includes further levels of influence
such that an Sn-active agent is Si-active for all i 2 f1;…; ng.

To specify the model, we also need to indicate precisely
how nodes influence their neighbors and how the neighbors
respond to such influence. Accordingly, we define the influ-
ence response function Fiðm1;m2; kÞ as the probability that a
degree-k node (i.e., a node with k neighbors) becomes Si-
active given that it has m1 neighbors in state S1 and m2 neigh-
bors in state S2. This macroscopic description can be derived
directly from a microscopic description of response functions

FIG. 1. (a) Schematic of a single-stage complex con-
tagion. All nodes can be either inactive (S0) or active
(S1). Nodes that are barely above the S1-threshold
have the same level of influence as nodes that are
strongly above that threshold. (b) Multi-stage com-
plex contagion. A subset of active nodes (called
“S1-active”) can become hyper-active (called
“S2-active”) and have additional influence. Note that
S2-active nodes are necessarily also S1-active.
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of individual nodes.54 Formulating our model in such general
terms allows us to capture a wide range of types of local
interactions between nodes via the detailed form of the
response functions Fi.

5 In Sec. III, we use a threshold model
to illustrate the dynamics of multi-stage contagion models.

III. THRESHOLD MODELS

We define the “peer pressure” P ¼ ðm1 þ bm2Þ=k to be
the total influence experienced by a degree-k node from its
m1 neighbors in state S1 and its m2 neighbors in state S2,
scaled by the node degree k. Note that our definition of the
states Si implies that a neighbor in state S2 contributes 1þ b
to the influence, so b measures the bonus influence exerted by
S2-active nodes. It is the presence of such bonus influence
that distinguishes our multi-stage contagion model from
single-stage models.

For threshold models of complex contagions, a node
becomes Si-active if the peer pressure P is equal to or exceeds
a certain threshold Ri (which can be different for each node).
Therefore, the response function is Fiðm1;m2; kÞ ¼ CiðPÞ,
where Ci is the cumulative distribution of thresholds for state
Si across network nodes. In this paper, we focus mostly on
uniform-threshold cases in which Si-activation thresholds Ri

are the same for all nodes. For uniform thresholds, the
response functions are step functions

Fiðm1;m2; kÞ ¼
1; if ðm1 þ bm2Þ=k % Ri

0; otherwise:

!
(1)

We require that R2 % R1 in order to satisfy F1ðm1;m2; kÞ
% F2ðm1;m2; kÞ and thereby guarantee that all S2-active nodes
are also S1-active. When b ¼ 0, the S1-state dynamics reduce
to a single-stage contagion (i.e., with only one set of thresh-
olds) because the S2-active nodes are indistinguishable from
S1 nodes. As an initial condition, we select a small fraction
/ðiÞ of nodes to be initially Si-active (and we note that they are
never allowed to become less active). At each subsequent time
step (of size Dt ¼ 1=N), we update a randomly chosen node
according to the threshold rules (1). This implies monotone
dynamics—i.e., nodes can never become less active than they
are currently.

In single-stage threshold models, it is usually the case
that if a node needs a number m of active neighbors to
become active, then any subset of its neighbors with at least
m active nodes is sufficient to make it active. In our multi-
stage model, however, there is a heterogeneity in the subset
of a node’s neighbors needed for activation. For example,
the subset might consist of various possible combinations: 4
active neighbors, or 2 active and 1 hyper-active neighbor, or
just 2 hyper-active neighbors. Indeed, depending on a node’s
threshold values, various possible subsets of neighbors can
make it active or even hyper-active. Moreover, for some pa-
rameters, a single hyper-active node might cause a cascade
of activations even when a much larger number of active
nodes that are spread throughout the network do not.

We now compare single-stage and multi-stage cascade
dynamics and highlight situations that occur in multi-stage
models that do not occur in the corresponding single-stage

models. Because these dynamics cannot arise if there are
only two types of nodes (inactive and active), we see that the
presence of hyper-active nodes can play a crucial role in
driving cascades on networks. We start by simulating these
dynamics on the Facebook network of students at the Uni-
versity of Oklahoma (recorded in September 2005 as a
single-time snapshot).56,57

A. Cascades driven by high influencers

This example illustrates that a small amount of addi-
tional influence can trigger cascades. This can model, for
example, the role of a charismatic leader in a social move-
ment or the potential effect of customer product reviews on
retail websites such as Amazon. In the context of our model,
the presence of S2-active nodes triggers a cascade of
S1-active nodes that otherwise would not have occurred. In
particular, this effect arises specifically due to the extra influ-
ence attributed to S2-active nodes, which can be significantly
above the S1-activation threshold.

In Fig. 2, we compare the dynamics of a single-stage
contagion [panel (a); b ¼ 0] and a multi-stage contagion
[panel (b); b ¼ 0:5]. Both cases use the response function
defined in Eq. (1) with parameter values R1 ¼ 0:15 and
R2 ¼ 0:3. In both cases, we show an average over 100 real-
izations with the same initially active nodes.58 In Fig. 2(a),
S2-active nodes have no influence on the activation of S1-
active nodes (because b ¼ 0) and there is no cascade: The
fraction of S1 nodes remains small. Note, however, that
some nodes are well above the activation threshold (purple
region). Specifically, these nodes surpass the threshold
R2 ¼ 0:3 but have no additional influence. In Fig. 2(b), S2-
active nodes that surpass the higher threshold R2 ¼ 0:3
have 1.5 times as much influence as S1-active nodes. This
additional influence is enough to trigger a global (system-
wide) cascade.

FIG. 2. Comparison of single-stage [panel (a)] and multi-stage [panel (b)]
cascade dynamics on the Oklahoma Facebook network.56 Time t is on the
horizontal axis, and we indicate the fractions of nodes in each state on the
vertical axis. Light blue, blue (and purple), and red regions represent S0-, S1-,
and S2-active nodes, respectively. In panel (a), b ¼ 0; and in panel (b),
b ¼ 0:5. The threshold parameter values are R1 ¼ 0:15 and R2 ¼ 0:3. We
use 348 S1-active seed nodes (corresponding to /ð1Þ & 0:02) and zero S2-
active seeds (/ð2Þ ¼ 0). There is no cascade in panel (a), but some of the
nodes (colored in purple) are well above the S1-threshold. The bonus influ-
ence of S2-active nodes drives a cascade in panel (b).
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B. Cascades driven by low influencers

This example illustrates that a small number of addi-
tional low-level influencers that are S1-active can also trigger
a cascade. This could represent situations in which a com-
pany gives out free trials of a product to potential customers
with the aim of boosting sales of the full product. Once again,
we use the Oklahoma Facebook network to compare two
example situations. In the first, we set R1 ¼ R2 ¼ 0:2; in the
second, we set R1 ¼ 0:15 and R2 ¼ 0:2. The first case is
essentially a single-stage process because the S1 dynamics are
slaved to the S2 dynamics. The other parameters are the same
in both simulations: b ¼ 0:3 and /ð1Þ ¼ /ð2Þ & 0:02. The
response function is again given by Eq. (1). We again average
over 100 realizations using the same set of initially active
nodes for both cases.59

There is no cascade in Fig. 3(a), in which the activation
thresholds are equal. In Fig. 3(b), however, the S1-activation
threshold is slightly lower. This results in a small number of
additional S1-active nodes, which is enough to trigger a
cascade.

IV. SYNTHETIC NETWORKS

To better understand the cascade dynamics, it is instruc-
tive to consider well-chosen synthetic networks that make it
possible to control the final cascade sizes.

We design synthetic scenarios in which some nodes do
not become active in the single-stage case, but the cascade
in the multi-stage case occupies the entire system. We con-
struct ensembles of random networks consisting of nodes of
degrees 4 and 24 in proportion 1:1 with positive degree-
degree correlations. (We dub such networks “(4,24)-corre-
lated random networks”; degree assortativity is positive
when degree-degree correlations are positive.) We then use
the response function defined in Eq. (1) that scales the acti-
vation thresholds by node degree. It is thereby harder for
high-degree nodes to become active because they need a
larger number of active neighbors (most of which are also

of high degree). We construct the network using the method
described in Ref. 60, where the assortativity is captured by
the joint distribution Pðk; k0Þ, which gives the probability
that a randomly chosen edge connects a node of degree k to
a node of degree k0. For our example, we choose Pðk; k0Þ to
be a (symmetric) matrix whose non-zero entries satisfy
P(4, 4)/P(4, 24) ¼ 3 and P(24, 24)/P(24, 4) ¼ 23. This gives
a network with a specified amount of (positive) assortativ-
ity. An additional consequence of the multi-stage dynamics
on such networks is that a trajectory tends to spend a signifi-
cant amount of time near a value that is not the final steady
state.

In the first example, which we illustrate in Fig. 4, the
extra influence exerted by S2-active nodes is needed to drive
a system-wide cascade. To demonstrate this effect, we com-
pare the dynamics resulting from a single-stage case, which
is captured by the S1-dynamics of the multi-stage case with
an upper threshold R2 ¼1, with those resulting from a
(true) multi-stage case with R2 ¼ 0:7. (See the caption of
Fig. 4 for the values of the other parameters.) In Fig. 4, we
show the results of numerical simulations using symbols
and analytical results given by Eqs. (2) and (3) using curves.
The analytical results qualitatively reproduce the numerical
behavior; in some cases, we also observe good quantitative
agreement. However, as discussed in Appendix B, some
novel effects arising in the multi-stage model are not cap-
tured by our analytical approximation and can potentially
lead to incorrect estimates. We show the aggregate fractions
of S1- and S2-active nodes for the single-stage case in Fig.
4(a) and for the multi-stage case in Fig. 4(b). We show the
separate temporal evolutions for the two degree classes in
Figs. 4(c) and 4(d), and we show the temporal evolution for
nodes in each degree class that are S1- but not S2-active in
Fig. 4(e).

In the single-stage case, only the low-degree nodes ulti-
mately become S1-active, which results in the aggregate
active fraction of 0.5 illustrated in Fig. 4(a). Observe that
none of the high-degree nodes become S1-active [see Fig.
4(c)] and that no nodes become S2-active because R2 ¼1.
In the multi-stage case, which we show in Fig. 4(b), the
low-degree nodes that were significantly above the S1-acti-
vation threshold in the single-stage case eventually become
S2-active and consequently exert more influence on their
neighbors. As we show in Fig. 4(d), this initiates a gradual
increase in the number of S1-active high-degree nodes
(starting around t¼ 10) until there are sufficiently many
such nodes to trigger a delayed rapid transition or a second-
ary cascade (around t¼ 13) in which all nodes become S2

active.
In Fig. 4(e), we show for each degree class the temporal

evolution of the fraction of the S1-active nodes that are not
S2-active. The number of such nodes is given by the differ-
ence between S1-active and S2-active nodes. The peaks in
Fig. 4(e) imply that nodes in each degree class first become
S1 active and that there is some delay for their S2-activation.

Now imagine that only the S1-dynamics in Fig. 4(b) can
be observed. For example, suppose that a publisher knows
which nodes purchased a particular book but has no idea
about the level of excitement of any of the nodes. In this

FIG. 3. Comparison of single-stage [panel (a)] and multi-stage [panel (b)] cas-
cade dynamics on the Oklahoma Facebook network.56 As in Fig. 2, the time t
is on the horizontal axis, and we indicate the fractions of nodes in each state
on the vertical axis. Light blue, blue, and red regions represent S0-, S1-, and
S2-active nodes, respectively. We use 348 S2-active seed nodes (corresponding
to /ð2Þ ¼ /ð1Þ & 0:02) and b ¼ 0:3. In panel (a), R1 ¼ R2 ¼ 0:2, so the S1

dynamics are slaved to the S2 dynamics. A small change in the threshold pa-
rameter (R1 ¼ 0:15) in panel (b) yields a small number of additional S1-active
nodes, which are nevertheless enough to trigger a cascade.
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case, at time t¼ 8, the publisher might mistakenly conclude
that the product is not going to be sold anymore and could
perhaps discontinue it. However, the heterogeneity of excite-
ment and influence levels among book purchasers suggests
instead that the publisher should continue printing more cop-
ies of the book. In this toy example, there would be a sharp
rise in sales at time t¼ 13 caused by the S2-active agents
(who, e.g., could represent customers who write book
reviews on Amazon).

We now consider another example, illustrated in Fig. 5,
in which the addition of an S1-active state enhances the prop-
agation of an S2-cascade, which (in this case) eventually
reaches the entire network. In Fig. 5(a), we illustrate the case
in which R1 ¼ R2 ¼ 0:35. This is effectively a single-stage
scenario because the S2-active nodes are also S1 active. (See
the caption of Fig. 5 for the values of all parameters.) Similar
to the previous example, all of the low-degree nodes become
S1-active—but now they are also all S2 active. None of the
high-degree nodes become active [see Fig. 5(c)]. In order to
obtain a (true) multi-stage scenario, we reduce the R1 thresh-
old to 0.22 and show the resulting aggregate dynamics in Fig.
5(b). The dynamics are initially qualitatively similar to the
single-stage case of Fig. 5(a). However, after some time

passes, there is an S1-activation surge of high-degree nodes
due to the lower S1 threshold. They subsequently drive an
S2-activation cascade [see Fig. 5(d)].

In Fig. 5(e), we show the temporal evolution of the frac-
tion of the S1-active nodes that are not S2-active. This quan-
tity exhibits a peak for the high-degree nodes but remains at
zero for low-degree nodes. This indicates that high-degree
nodes become S2-active some time after becoming S1-active,
whereas low-degree nodes become S2-active and S1-active
simultaneously.

V. ANALYSIS

We now present an analytical approximation for the
temporal evolution of the fraction of active nodes in our
multi-stage model. The method that we employ is based on
pairwise interactions between nodes5,52 and entails two
requirements: (i) for any fixed k, the response functions Fi

must be non-decreasing functions of both m1 and m2; and (ii)
Fiðm1;m2; kÞ % Fiþ1ðm1;m2; kÞ. Condition (i) reflects the
effect of positive externalities: When a node has more active
neighbors, it is more likely to become Si-active. Condition
(ii) follows from the fact that the number of hyper-active

FIG. 4. Demonstration of dynamics when an S2-
cascade drives an S1-cascade. Panels (a) and (b)
show the aggregate fractions of S1- and S2-active
nodes, panels (c) and (d) show these fractions for
each degree class separately, and panel (e) shows
the fractions of nodes in each degree class that are
S1-active but not S2-active. We show the numeri-
cal results (averaged over 100 realizations) using
symbols and the analytical results given by
Eqs. (2) and (3) using curves. The timescales are
independent of network size N, which we take to
be N ¼ 104. The values of the other parameters
are R1 ¼ 0:2; R2 ¼ 0:7; b¼ 0:45; /ð1Þ ¼ 10'3, and
/ð2Þ ¼ 0. (We choose seed nodes uniformly at ran-
dom.) We use an upper threshold of R2 ¼1 to
model the single-stage case.
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nodes should not exceed the number of all active nodes in
the system. The situations that we illustrate in this paper sat-
isfy these conditions, which usually tend to be sensible
assumptions when studying social influence.62

One computes the density qðiÞk ðtÞ of degree-k nodes that
are Si-active at time t by solving the set of ordinary differen-
tial equations

_qðiÞk ðtÞ ¼ HðiÞk

"
qðiÞk ðtÞ;Q

ð1ÞðtÞ;Qð2ÞðtÞ
#
; (2)

_Q
ðiÞðtÞ ¼ GðiÞ

"
Qð1ÞðtÞ;Qð2ÞðtÞ

#
; (3)

where QðiÞ is a vector of auxiliary variables. We present the
functionals HðiÞk and GðiÞ (each of which depends on Fi and
the network topology) and the derivation of Eqs. (2) and (3)
in Appendix A. The fraction /ðiÞ of nodes that are initially
Si-active specifies the initial conditions qðiÞk ð0Þ ¼ /ðiÞ and
QðiÞð0Þ ¼ ½/ðiÞ;…;/ðiÞ). The aggregate fraction of nodes that
are Si-active at time t is qðiÞðtÞ ¼

Pkmax

k¼0 Pkq
ðiÞ
k ðtÞ, where Pk is

the degree distribution of the network and kmax is the maxi-
mum node degree in the network.

VI. FINAL STATE AND TEMPORAL EVOLUTION
OF CASCADES

In Fig. 6, we compare the analytical predictions of Eqs.
(2) and (3) with numerical simulations of both the final val-
ues and the temporal evolution of active fractions of nodes.
This figure uses two example network ensembles: (1) Erd}os-
R!enyi random graphs (i.e., graphs in which each pair of
nodes is connected by an edge with equal, independent prob-
ability) with mean degree z¼ 5, and (2) uncorrelated random
graphs (i.e., random graphs whose joint degree-degree distri-
bution can be expressed in terms of the degree distribution as
Pðk; k0Þ ¼ kPkk0Pk0=z2) consisting of degree-4 and degree-5
nodes in proportion 1:2. We dub the latter graphs “(4,5)-
uncorrelated random networks.” In this example, we use the
response functions Fiðm1;m2; 1Þ to obtain a threshold model
in which the threshold conditions are based on the number—
rather than on the fraction—of active neighbors. (This vari-
ant of a threshold model was used, for example, in Ref. 4 to
investigate cascading dynamics in modular networks.) In this
situation, the peer pressure experienced by a node from its
neighbors is not scaled by the node’s degree k, so the number
of active neighbors required to activate a node is independent

FIG. 5. Demonstration of dynamics when an S1-
cascade drives an S2-cascade. Panels (a) and (b)
show the aggregate fractions of S1- and S2-active
nodes, panels (c) and (d) show these fractions for
each degree class separately, and panel (e) shows
the fractions of nodes in each degree class that are
S1-active but not S2-active. We show the numerical
results (averaged over 100 realizations) using sym-
bols and the analytical results given by Eqs. (2) and
(3) using curves. The timescales are independent of
network size N, which we take to be N ¼ 104. We
use the values R1 ¼ R2 ¼ 0:35 for the single-stage
case [panels (a) and (c)] and the values R1 ¼ 0:22
and R2 ¼ 0:35 for the multi-stage case [panels (b),
(d), and (e)]. The values of the other parameters are
b ¼ 0:45 and /ð1Þ ¼ /ð2Þ ¼ 10'3 (where we choose
the seed nodes uniformly at random).
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of degree. Additionally, an active node influences all of its
neighbors equally (regardless of their degrees), and high-
degree nodes can thus become active more easily.

As one can see in Fig. 6, Eqs. (2) and (3) correctly pre-
dict the final fractions of active nodes in all cases and are in
good agreement with the numerically computed temporal
evolution. (Note that we do not plot the final fraction of S1-
active nodes, as it equals 1 in each of the examples illus-
trated in this figure.) Observe that the agreement between
theory and simulation in Fig. 6 is better than that in Figs. 4
and 5 because the effects described in Appendix B have little
impact in this situation.

In Fig. 6(a), the blue dashed-dotted curve corresponding
to the (4,5)-uncorrelated random network has steps at
b ¼ 1=4 and b ¼ 1=3. These steps arise as follows: When
b < 1=4, degree-4 nodes can never experience enough peer
pressure from their neighbors to overcome the threshold
R2 ¼ 5 to become S2-active (see Eq. (1) with k * 1). There-
fore, the final fraction of S2-active nodes qð2Þð1Þ is given by
the fraction of degree-5 nodes in the network (which is equal
to 2/3 in this example). When b 2 ½1=4; 1=3Þ, degree-4 nodes
become S2-active only when all of their neighbors are S2-
active. Consequently, a finite fraction (about 0.26) of degree-
4 nodes becomes S2-active, yielding the aggregate value of
qð2Þð1Þ & 0:75. We show the temporal evolution of the
active fraction of nodes for each degree class for this case in

Figs. 6(b) and 6(c). Finally, for b % 1=3, degree-4 nodes
become S2-active if all of their neighbors are S1-active and
any 3 of them are S2-active. In this situation, all degree-4
nodes become S2-active by the end of the cascade.

VII. CASCADE CONDITION AND BIFURCATION
ANALYSIS

In Fig. 7, we illustrate the relationship between the final
fraction of S1-active nodes qð1Þ1 , the bonus influence b, and
the mean degree z for Erd}os-R!enyi random graphs. Darker
colors indicate larger final activation fractions. The final
fraction of S2-active nodes is qualitatively similar. Note that
when b ¼ 0 (i.e., single-stage dynamics), there is no cas-
cade; as b increases from 0 (for fixed values of z), we
observe transitions that are qualitatively similar to those of
Fig. 6(a).

A bifurcation analysis gives an analytical estimate of the
boundary of the region in which cascades occur. In analogy to
the methods developed for single-stage models,5,52 we derive
a cascade condition from Eqs. (2) and (3). (We present full
details in Appendix C.) Briefly, we compute the zero eigenval-
ues of the Jacobian matrix of G evaluated at Qð1Þ ¼ Qð2Þ ¼ 0.
This yields a closed-form expression that approximates the
boundary of the cascade region. This approximation, which is
crude but given by a closed-form expression (see Appendix
C), yields the dashed curve in Fig. 7.

For small values of z, we find a continuous transition
from small to large values of qð1Þ1 , which reflects the distribu-
tion of small component sizes of the graph (for further
details, see Ref. 52). In contrast, for larger values of z, we
find a discontinuous transition. This jump arises from a
saddle-node bifurcation that occurs as z is increased while b
is held fixed. This bifurcation can be followed numerically
by solving G¼ 0 and finding zero eigenvalues of the Jaco-
bian evaluated at the corresponding equilibria (see the solid
curve in Fig. 7). We provide full details in Appendix C.

As in the Watts single-stage threshold model,3 numeri-
cal simulations using parameter values close to a saddle-
node bifurcation are very sensitive to the choice of seed
nodes. A recent (and somewhat controversial) empirical
study61 has suggested that real cascades are extremely rare

FIG. 7. Two-parameter bifurcation diagram for qð1Þ1 (whose value is indi-
cated by color) calculated from Eqs. (2) and (3) for Erd}os-R!enyi random
graphs. The mean degree z is on the horizontal axis, and the bonus influence
b is on the vertical axis. The first threshold is R1 ¼ 0:3, and the second
threshold R2 is Gaussian-distributed with mean l ¼ 0:8 and standard devia-
tion r ¼ 0:2. The initial seed fractions are /ð1Þ ¼ 2+ 10'3 and /ð2Þ ¼ 0.
The dashed curve gives the boundary of the cascade condition, and the solid
curve is a numerical continuation of the saddle-node bifurcation.

FIG. 6. Comparison of numerical computations (symbols) with analytical
predictions of Eqs. (2) and (3) (curves) for (a) the final fractions of S2-active
nodes as functions of the bonus influence b for ensembles of (4,5)-uncorre-
lated random networks (blue dashed-dotted curve) and Erd}os-R!enyi random
graphs with mean degree z¼ 5 (black dashed curve) and (b,c) the temporal
evolution of active fraction of nodes in each degree class in (4,5)-uncorre-
lated random networks for b ¼ 0:25. In panel (a), we use the response func-
tions of Eq. (1) with k * 1 and uniform thresholds R1 ¼ 1 and R2 ¼ 5. For
the ER graphs, we also use a solid red curve to show the case in which the
R2 thresholds are Gaussian-distributed with mean l ¼ 5 and standard devia-
tion r ¼ 0:1. The total number of nodes in each network is N ¼ 104. For the
numerical simulations, we initially S1-activate a fraction /ð1Þ ¼ 10'3 of
nodes chosen uniformly at random, and we average over 100 realizations of
networks and initial conditions.
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events. This is consistent with the dynamics that occur near
the saddle-node bifurcation in the present example: A few
specific choices of initial seeds produce large-scale cascades
but most choices do not.

In Fig. 8, we illustrate the relationship between the final
fraction of S1-active nodes qð1Þ1 and the uniform thresholds
R1 and R2 for Erd}os-R!enyi random graphs with mean
degree z¼ 4. The bonus influence is b ¼ 2, and the initial
seed fractions are /ð1Þ ¼ 1+ 10'4 and /ð2Þ ¼ 0. As in Fig.
7, darker colors indicate larger final activation fractions and
the cascade condition is indicated by the dashed red line.
The corresponding plot of the final fraction of S2-active
nodes as a function of R1 and R2 is qualitatively similar to
Fig. 8 except for R2 > 1, for which there are no cascades of
high influencers because /ð2Þ ¼ 0. The region R1 > R2 is
forbidden by our definitions of R1 and R2. Recall that (1)
cascades are driven by high influencers if there is a cascade
for some b > 0 when there is none at b ¼ 0; and (2) cas-
cades are driven by low influencers if there is a cascade for
some R1 < R2 but there is none at R1 ¼ R2. We can identify
regions in Fig. 8 corresponding to cascades driven by (a)
low influencers, (b) low and high influencers, and (c) high
influencers. When b ¼ 0 and all other parameters are held
constant, the value R1 & 0:2 marks a boundary between a
region without cascades (to the right) and a region in which
cascades are possible (to the left). Thus, the cascades in
Fig. 8 that occur to the right of R1 & 0:2 are driven by high
influencers. Similarly, cascades that occur above R2 & 0:6
are driven by low influencers, because increasing R1 even-
tually results in no cascades.

VIII. CONCLUSIONS

Social movements and other forms of collective action
require an ensemble of supporters with different levels of
commitment, and social influence can make a crucial differ-
ence as to whether or not they succeed. This motivates the
development of analytically tractable complex contagion
models with multiple stages in which different agents have
different levels of influence.

In the present paper, we have introduced and analyzed
such a model, in which we define the level of influence on a
node from its neighbors using a general function of the
node’s degree and the state of its nearest neighbors. We illus-
trated that this model can exhibit interesting dynamics that
are not possible with single-stage cascade models. This
includes, in particular, the interplay between the cascades of
fans (active nodes) and fanatics (hyper-active nodes), in
which one cascade can drive the other and vice versa. Our
model and our analytical results can be generalized to multi-
stage cases with any finite number of active states. The
model can also be developed further to allow one to distin-
guish the level of a node’s commitment and the influence it
has on its neighbors.

Different levels of commitment and influence have well-
documented importance on social movements, product
advertising, and other sociological, political, and economic
situations. However, mere observation and data analysis of
complex social dynamics make it difficult to discern the rela-
tive importance of social influence, homophily, and covari-
ates on observations.50 It is therefore imperative to develop
new mathematical models to tackle this challenging situa-
tion, and we hope that the model we have introduced in this
paper will prove beneficial for such efforts.
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APPENDIX A: ANALYTICAL APPROXIMATION

In this section, we derive approximate analytical results
for the time-dependence of the density of active nodes in our
multi-stage model. The derivation is based on pairwise inter-
actions between nodes and builds on the method described in
Refs. 5 and 52. We first consider the synchronous updating
case in which the states of all N network nodes are updated
at each discrete time step. We then extend the results to sit-
uations in which only the states of a certain fraction s of
nodes (chosen uniformly at random) are updated. Thus, the
value s ¼ 1 corresponds to synchronous updating of all
nodes and s ¼ 1=N corresponds to completely asynchronous

FIG. 8. Two-parameter bifurcation diagram for qð1Þ1 (whose value is indi-
cated by color) calculated from Eqs. (2) and (3) for Erd}os-R!enyi random
graphs with mean degree z¼ 4. We plot the uniform thresholds R1 and R2 on
the horizontal and vertical axes, respectively. The bonus influence is b ¼ 2,
and the initial seed fractions are /ð1Þ ¼ 1+ 10'4 and /ð2Þ ¼ 0. The dashed
red line gives the boundary of the cascade condition. The labeled regions
(which are separated by dashed white lines) indicate cascades that are driven
by (a) low influencers, (b) low and high influencers, and (c) high influencers.
See the description in the text.
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updating in which a single (randomly chosen) node is
updated at each time step. For our model, both types of
updating lead to the same final density values, but the tran-
sient behavior can be different.

We focus on a class of undirected, unweighted random
networks defined by the joint degree-degree distribution
Pðk; k0Þ, which gives the probability that a randomly chosen
edge connects a node of degree k to a node of degree k0

(with everything else selected uniformly at random). This
class of random networks reduces to configuration-model
networks defined by the degree distribution Pk when the
joint degree-degree distribution is Pðk; k0Þ ¼ kPkk0Pk0=z2,
where z ¼

Pkmax

k¼0 kPk is the mean degree and kmax is the
maximum degree in the network. We assume that the net-
work topology is locally tree-like (which implies that the
number of short loops is small).64

We start by calculating the fraction qðiÞk ðnÞ of degree-k
nodes that are Si-active (i 2 f1; 2g) at the nth time step of
the synchronous update process (i.e., after the nth synchro-
nous update of all nodes). We thus consider a randomly
chosen degree-k node A and calculate its probability of
being Si-active at time step n. We choose A uniformly at
random, so this probability is qðiÞk ðnÞ. As an initial condi-
tion, we set a fraction /ðiÞ of all nodes to be Si-active. Thus,
node A is initially Si-active with probability /ðiÞ. If it is not
initially Si-active, then (as discussed in the main text) it can
become Si-active after a synchronous update with probabil-
ity Fiðm1;m2; kÞ. The arguments m1 and m2 are, respec-
tively, the numbers of A’s neighbors in states S1 and S2

before the update.
We denote by "qðiÞk ðn' 1Þ the probability that at time

step n'1 (i.e., immediately before the nth update of node A)
a random neighbor of node A is Si-active, conditioned on
node A itself not being Si-active.63 Thus, the probability that
exactly m1 of the k neighbors of node A is S1-active is given
by Bk

m1
ð"qð1Þk ðn' 1ÞÞ, where

Bk
mðqÞ ¼

k
m

$ %
qmð1' qÞk'm (A1)

is the binomial distribution. Similarly, the probability that
exactly m2 of these m1 S1-active neighbors is also S2-active is

given by Bm1
m2
ð"qð2Þk ðn' 1Þ="qð1Þk ðn' 1ÞÞ. Note that "qð2Þk ðn' 1Þ

="qð1Þk ðn' 1Þ is the probability that an S1-active neighbor of
node A is also S2-active. Combining these probabilities yields
(for i¼ {1, 2})

qðiÞk ðnÞ ¼ /ðiÞ þ
"

1' /ðiÞ
#Xk

m1¼0

Bk
m1

"
"qð1Þk ðn' 1Þ

#

+
Xm1

m2¼0

Bm1
m2

"qð2Þk ðn' 1Þ
"qð1Þk ðn' 1Þ

 !

Fiðm1;m2; kÞ : (A2)

In Eq. (A2), we have assumed that the states of any two
neighbors of node A are independent. We would expect this
to be the case for a graph that is locally tree-like, such as ran-
dom networks constructed using the configuration model.
Although this assumption breaks down on real-world net-
works with high clustering coefficients and/or significant

community structure, it has been demonstrated recently
using several dynamical processes (including single-stage
complex contagions) that cascade results obtained using
locally tree-like approximations often remain valid.64

A neighbor B of the degree-k node A has degree k0 with
probability Pðk; k0Þ=

P
k0 Pðk; k0Þ. Therefore, assuming that A

is not Si-active, we can express "qðiÞk , the probability that a
random neighbor of A is Si-active in terms of qðiÞk0 , defined as
the probability that a degree-k0 neighbor of A is Si-active.65

The formula is

"qðiÞk ðnÞ ¼

X
k0

Pðk; k0ÞqðiÞk0 ðnÞX
k0

Pðk; k0Þ
: (A3)

To calculate qðiÞk and thus "qðiÞk , we will establish a recurrence

relation for qðiÞk ðnÞ and use the fact that qðiÞk ð0Þ ¼ /ðiÞ (i.e.,
using the fact that all nodes are initially Si-active with proba-

bility /ðiÞ). Consider node B, which is a neighbor of node A.
Using similar reasoning as for Eq. (A2), we express the prob-

abilities qðiÞk that B is Si-active, given that A is not Si-active,

in terms of probabilities "qðiÞk . The probabilities "qðiÞk are the
probabilities that B’s children (i.e., neighbors of B that are
one step further away from A; see Fig. 9) are Si-active at the
previous time step, given that B is not Si-active

qð1Þk ðnþ 1Þ ¼ /ð1Þ þ
"

1' /ð1Þ
#Xk'1

m1¼0

Bk'1
m1

"
"qð1Þk ðnÞ

#

+
Xm1

m2¼0

Bm1
m2

"qð2Þk ðnÞ
"qð1Þk ðnÞ

 !

F1ðm1;m2; kÞ (A4)

and

qð2Þk ðnþ 1Þ ¼ /ð2Þ þ
"

1' /ð2Þ
#Xk'1

m1¼0

Bk'1
m1

"
"qð1Þk ðnÞ

#

+
Xm1

m2¼0

Bm1
m2

"qð2Þk ðnÞ
"qð1Þk ðnÞ

 !&"
1' "qð1Þk ðnÞ

#

+ F2ðm1;m2; kÞ þ "qð1Þk ðnÞF2ðm1 þ 1;m2; kÞ
'
:

(A5)

FIG. 9. Tree-like structure of a network near node A, which we treat as the
root of the tree. For every two nodes connected by an edge (e.g., nodes B
and C), the node that is closer to A is called the parent; thus, node B is the
parent of node C, and node C is the child of node B. Only the influence from
nodes within a distance n of node A can reach A in n time steps.
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By the definition of qð1Þk , the parent A of node B is not S1-
active. Therefore, unlike Eq. (A2), the sum over m1 in Eq.
(A4) runs to m1 ¼ k ' 1, which implies that B can only be
S1-activated by its k ' 1 children if it is not part of the seed.
Similarly, A is not S2-active when calculating qð2Þk in Eq.
(A5). However, even though A is not S2-active, it could still
be S1-active and thereby contribute to S2-activation of B. We
take this into account in the quantity in square brackets in
Eq. (A5): With probability "qð1Þk , the parent of B is S1-active,
so the number m1 of S1-active neighbors of B is increased by
1 in F2; meanwhile, m1 in F2 is unchanged with complemen-
tary probability 1' "qð1Þk .

One can write Eqs. (A2)–(A5) in concise form using
vector notation. Writing QðiÞðnÞ ¼ ½qðiÞ1 ðnÞ;…; qðiÞkmax

ðnÞ)
yields

qðiÞk ðnÞ ¼ hðiÞk

"
Qð1Þðn' 1Þ;Qð2Þðn' 1Þ

#
; (A6)

QðiÞðnÞ ¼ gðiÞ
"

Qð1Þðn' 1Þ;Qð2Þðn' 1Þ
#
: (A7)

Starting with QðiÞð0Þ ¼ ½/ðiÞ;…;/ðiÞ), we iterate Eqs. (A6)
and (A7) to obtain qðiÞk ðnÞ for all n and k. Because node A has
degree k with probability Pk, the aggregate fraction of Si-
active nodes at time step n is given by

qðiÞðnÞ ¼
X

k

Pkq
ðiÞ
k ðnÞ: (A8)

Additionally, note that Eqs. (A2)–(A5) can be simplified
for configuration-model networks, as the degrees of nodes at
the two ends of an edge are independent, so the joint degree-
degree distribution factorizes as Pðk; k0Þ ¼ kPkk0Pk0=z2. In
this case, it follows from Eq. (A3) that "qðiÞ ¼

P
k kPkqðiÞk =z is

degree-independent. One thereby obtains

qðiÞðnþ 1Þ ¼ /ðiÞ þ
"

1' /ðiÞ
#X

k

Pk

Xk

m1¼0

Bk
m1

"
"qð1ÞðnÞ

#

+
Xm1

m2¼0

Bm1
m2

"qð2ÞðnÞ
"qð1ÞðnÞ

$ %
Fiðm1;m2; kÞ; (A9)

"qð1Þðnþ 1Þ ¼ /ð1Þ þ
"

1' /ð1Þ
#X

k

kPk

z

+
Xk'1

m1¼0

Bk'1
m1

"
"qð1ÞðnÞ

#Xm1

m2¼0

Bm1
m2

"qð2ÞðnÞ
"qð1ÞðnÞ

$ %

+ F1ðm1;m2; kÞ; (A10)

"qð2Þðnþ 1Þ ¼ /ð2Þ þ
"

1' /ð2Þ
#X

k

kPk

z

+
Xk'1

m1¼0

Bk'1
m1

"
"qð1ÞðnÞ

#Xm1

m2¼0

Bm1
m2

"qð2ÞðnÞ
"qð1ÞðnÞ

$ %

+
&"

1' "qð1ÞðnÞ
#

F2ðm1;m2; kÞ

þ "qð1ÞðnÞF2ðm1 þ 1;m2; kÞ
'
: (A11)

Note, however, that Eqs. (A9)–(A11) are inaccurate for net-
works with degree-degree correlations. For example, they
fail to predict the cascades illustrated in Figs. 4 and 5.

We now consider asynchronous updating, in which we
update only a fraction s of nodes at each time step. We
choose the time step Dt ¼ s to have a common time scale for
all s (including the synchronous updating case of s ¼ 1). If
the updating is synchronous (i.e., if s ¼ 1), then the probabil-
ity QðiÞ increases by DQðiÞ ¼ gðiÞðQð1Þ;Qð2ÞÞ ' QðiÞ. In
other words, all nodes that are available for activation
are activated. In the asynchronous updating case,
DQðiÞ ¼ sðgðiÞðQð1Þ;Qð2ÞÞ ' QðiÞÞ. Therefore, for sufficiently
small values of s, the temporal evolutions of QðiÞ and qðiÞk can
be approximated as continuous. This yields the following set
of ordinary differential equations:

_qðiÞk ðtÞ ¼ hðiÞk

"
Qð1ÞðtÞ;Qð2ÞðtÞ

#
' qðiÞk ðtÞ

* HðiÞk

"
qðiÞk ðtÞ;Q

ð1ÞðtÞ;Qð2ÞðtÞ
#
; (A12)

_Q
ðiÞðtÞ ¼ gðiÞ

"
Qð1ÞðtÞ;Qð2ÞðtÞ

#
' QðiÞðtÞ

* GðiÞ
"

Qð1ÞðtÞ;Qð2ÞðtÞ
#
; (A13)

which are Eqs. (2) and (3) of the main text.

APPENDIX B: ADDITIONAL FEATURES
OF THE MODEL

Our multi-stage model possesses several additional
interesting features that we did not discuss in the main text.
They motivate the development of more accurate analytical
approximations than the one that we presented in this paper.
The reason for this is that the above theory, which we gener-
alized from previous work on single-stage models and other
dynamical systems,5,52 neglects some effects that arise in the
multi-stage model. These features are either minimal or
absent entirely from single-stage contagions models, so the
need to develop more accurate analytical approximations has
become apparent only because of the new model in this pa-
per. Below we highlight two features that we have identified
as requiring more accurate modelling.

The first feature, which amounts to believing one’s
own gossip, is similar to the “June bug effect” from sociol-
ogy,66 except that here the feedback is of primary impor-
tance. This feature can be understood by considering a node
that is initially S1-active but not S2-active. Suppose that this
node S1-activates some of its neighbors at a subsequent
time step. After that, these S1-active neighbors can in turn
S2-activate the original node. That is, a node can become
more active because of the feedback peer pressure that it
experiences from the neighbors it had S1-activated in the
first place. The analytical approximation that we have
employed does not account for this effect, as it assumes that
neighbors activated by a node are distributed across the net-
work (rather than gathered around the node). The ensuing
theory thus can underestimate the number of S2-active
nodes in the system.
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The second feature, which we call “state segregation,”
leads to theoretical predictions that overestimate the numeri-
cally observed fractions of active nodes [see Fig. 10(d)]. In
this figure, we consider (4,24)-correlated random networks,
and the theory predicts that S1-activation of degree-24 nodes
happens earlier than what we observe numerically. This
arises as follows. Degree-24 nodes begin to become S1-
active because they are activated by their S2-active degree-4
neighbors. However, degree-4 nodes first become S2-active
[for the threshold value R2 ¼ 0:8 used in Fig. 10(d)] only if
they are connected exclusively to other degree-4 nodes who
are all S1-active at that time. Degree-4 nodes do not experi-
ence sufficient peer pressure to become S2-active if they are
connected to any of the degree-24 nodes (who are all inac-
tive at that time). In other words, there is a negative correla-
tion between a degree-4 node becoming S2-active and that
node being connected to an inactive degree-24 node. Our
theory does not take this anticorrelation into account; it
assumes that inactive degree-24 nodes are equally likely to
have connections to degree-4 nodes of any state. This
assumption does not hold when the first S2-activations of
degree-4 nodes occur. Therefore, the theory assumes that
there are at least some connections between inactive degree-

24 nodes and early S2-active degree-4 nodes, even though
there are no such connections in the network. As a result, the
theory overestimates the fraction of S1-active degree-24
nodes in Fig. 10(d).

The consequences of state segregation become less pro-
nounced when the S2-threshold is reduced from R2 ¼ 0:8 to
R2 ¼ 0:7. The degree-4 nodes now become S2-active if at
least 3 (rather than 4) of their neighbors are S1-active,
thereby relaxing the restriction of not being connected to any
of the degree-24 nodes. One can see this in Fig. 4(d) in the
main text, where the agreement between theory and numeri-
cal results is clearly better than in Fig. 10(d).

It is also important to recognize that our multi-stage
model requires the use of a more comprehensive set of proba-
bilities than the probabilities "qðiÞk ðnÞ defined in Appendix A.
For example, strictly speaking "qð1Þk can be used in Eq. (A5)
for calculating qð2Þk only in the case of a direct transition of
the parent node from state S0 to state S2. The correctness of
the use of "qð1Þk for calculating qð2Þk depends on the extent to
which the fact that the parent node is S1-active will affect the
probability that it will become S2-active. In many cases, the
use of "qð1Þk is adequate. In general, however, if the parent
node is already S1-active, then the probability that its child is

FIG. 10. This figure is analogous to Fig. 4 of the
main text, but here we use a different value of the
upper threshold R2 for the multi-stage case [panels
(b), (d), and (e)]. In this example, we use the thresh-
old value R2 ¼ 0:8; in Fig. 4, we used R2 ¼ 0:7. As
discussed in the text, the state-segregation effect is
more pronounced for R2 ¼ 0:8, which implies that
all of the neighbors of degree-4 nodes must be S1-
active for such a node to become S2-active (whereas
only three S1-active neighbors are needed for such
S2-activation when R2 ¼ 0:7). Our analytical
approximation does not properly account for state
segregation, and the consequences of that can be
seen by comparing panels (d) in the two figures. The
match with the numerical simulations in this figure
is clearly worse than that in Fig. 4.
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S1-active will be higher than what is given by "qð1Þk . For this
reason, the analytical approximation given in Appendix A
can underestimate (or even fail to predict) the cascades of
activations in some parameter regimes. It is therefore desira-
ble to develop better (but more complicated) approximations.

APPENDIX C: CASCADE CONDITION
AND BIFURCATION ANALYSIS

We now derive the cascade condition and describe the
computational bifurcation analysis that we illustrated in
Fig. 7 in the main text. The cascade condition determines
whether an infinitesimally small seed fraction of activated
nodes triggers a finite-size cascade (i.e., a cascade in which
the number of active nodes scales linearly with the size of
the network). We present a derivation for uncorrelated ran-
dom networks with degree distribution Pk.

67 It is sufficient to
analyze the dynamics of the auxiliary variables "qðiÞ, which
are described by Eqs. (A10) and (A11). To avoid restating
lengthy formulas, we rewrite these equations as

qðiÞ ¼ ~gðiÞ
"

qð1Þ; qð2Þ
#
; (C1)

where we have dropped the bars on "qðiÞ to avoid cluttering
the notation. The dynamics under asynchronous updating
can be approximated by the ordinary differential equations

dqi

dt
¼ ~gðiÞ

"
qð1Þ; qð2Þ

#
' qðiÞ * ~G

ðiÞ"
qð1Þ; qð2Þ

#
; (C2)

which, written in vector form, results in the two-dimensional
dynamical system

dq

dt
¼ ~gðqÞ ' q : (C3)

Because the equilibria for both synchronous and asynchro-
nous updating are the same, our cascade condition and bifur-
cation analysis are valid for both cases. The function ~g is
monotone increasing, so each of the partial derivatives of ~gðiÞ

with respect to qðjÞ is positive. That is, Dj ~g
ðiÞ > 0. Hence,

one finds (e.g., by direct calculation) that the eigenvalues of
the Jacobian matrix D~gðqÞ [and consequently the eigenval-
ues of D ~GðqÞ] are real.

In analogy to the methodology proposed for single-stage
cascades,5,52 a small initial seed will grow if one of the (real)
eigenvalues of D ~Gð0Þ is positive. This can be established by
checking the sign of the determinant of D ~Gð0Þ, which yields
the following condition for global cascades:

D2 ~gð1Þ0 D1 ~gð2Þ0 '
"

D1 ~gð1Þ0 ' 1
#"

D2 ~gð2Þ0 ' 1
#
> 0 ; (C4)

where Dj ~g
ðiÞ
0 denotes the partial derivative of ~gðiÞ with

respect to qðjÞ evaluated at q¼ 0. The partial derivatives are
given by

D1 ~gð1Þ0 ¼
"

1' /ð1Þ
#X

k

kðk ' 1ÞPk

z

+ ½F1ð1; 0; kÞ ' F1ð0; 0; kÞ) ;

D2 ~gð1Þ0 ¼
"

1' /ð1Þ
#X

k

kðk ' 1ÞPk

z

+ ½F1ð1; 1; kÞ ' F1ð1; 0; kÞ) ;

D1 ~gð2Þ0 ¼
"

1' /ð2Þ
#X

k

k2Pk

z
½F2ð1; 0; kÞ ' F2ð0; 0; kÞ) ;

D2 ~gð2Þ0 ¼
"

1' /ð2Þ
#X

k

kðk ' 1ÞPk

z

+ ½F2ð1; 1; kÞ ' F2ð1; 0; kÞ) :

Note that if b ¼ 0, then Fið1; 1; kÞ ¼ Fið1; 0; kÞ. Therefore,
D2 ~gð1Þ0 ¼ D2 ~gð2Þ0 ¼ 0 and Eq. (C4) reduces to the single-
stage cascade condition derived in Ref. 52. For networks
with degree-degree correlations, the Jacobian matrix has a
much higher dimension, so the eigenvalues must typically be
located numerically.

Although the derivation of the cascade condition results
in a closed-form expression (C4), it is a fairly crude approxi-
mation. This can be seen in Fig. 7, where the area of parame-
ter space in which cascades occur is larger than that
predicted by the cascade condition. We now show that this
discrepancy arises in part from the value at which the partial
derivatives in (C4) are evaluated. The fact that the eigenval-
ues of D~gðqÞ [and hence of D ~GðqÞ] are real rules out the pos-
sibility of Hopf bifurcations. It follows that typical
bifurcations will be of saddle-node type, since the lack of
symmetry means that other types of local, codimension 1
bifurcations must be non-generic. One can locate such bifur-
cations accurately using linear stability analysis and numeri-
cal computations. Toward this end, we define the small
perturbation n ¼ q' q, and linearize about the equilibrium
point q, to obtain

_n ¼ ½D~gðq,Þ ' I)n ; (C5)

where D~gðq,Þ is the Jacobian matrix of ~g evaluated at the
equilibrium point q, (so its components are Dj ~g

ðiÞ
, ) and I is

the identity matrix. The equilibrium point q, is unstable
when one of the eigenvalues of D~gðq,Þ ' I is positive. In
contrast to the derivation of the cascade condition, in which
we set q, ¼ 0, one must now determine the equilibrium point
q,, which is typically only possible via numerical computa-
tion. To locate the bifurcation, one must solve

qðiÞ, ¼ ~gðiÞ,

"
qð1Þ, ; q

ð2Þ
,

#
; i 2 f1; 2g (C6)

for the equilibria and

D2 ~gð1Þ, D1 ~gð2Þ, '
"

D1 ~gð1Þ, ' 1
#"

D2 ~gð2Þ, ' 1
#
¼ 0 (C7)

for the zero eigenvalue. (Note that (C7) is similar to the cas-
cade condition (C4), but the partial derivatives in the former
are evaluated at the equilibrium point q ¼ q,.) Using one
model parameter as a free variable (with all other parame-
ters held constant), one can solve Eqs. (C6) and (C7)
numerically and thereby determine the location of the
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saddle-node bifurcation. It is then possible to use numerical
continuation to trace the bifurcations as a second parameter
is varied. We show the results of this continuation in Fig. 7
of the main text.
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