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The physics of spreading processes in
multilayer networks
Manlio De Domenico1*, Clara Granell2, Mason A. Porter3,4,5 and Alex Arenas1*

Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems,
which often include di�erent types of relationships (or ‘multiplexity’) between their components. Such structural complexity
has a significant e�ect on both dynamics and function. Throwing away or aggregating available structural information can
generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent multilayer
approach for modelling networked systems explicitly allows the incorporation of multiplexity and other features of realistic
systems. It allows one to couple di�erent structural relationships by encoding them in a convenientmathematical object. It also
allows one to couple di�erent dynamical processes on top of such interconnected structures. The resulting framework plays a
crucial role in helping to achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has
also revealed new physical phenomena that remain hiddenwhen using ordinary graphs, the traditional network representation.
Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we
highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.

Networks provide a powerful representation of interaction
patterns in complex systems1–3. The structure of social
relations among individuals, interactions between proteins,

food webs, and many other situations can be represented using
networks. Until recently, the vast majority of studies focused on
networks that consist of a single type of entity, with different
entities connected to each other via a single type of connection.
Such networks are now called single-layer (or monolayer) networks.
The idea of incorporating additional information—such as multiple
types of interactions, subsystems, and time-dependence—has long
been pointed out in various fields, such as sociology, anthropology,
and engineering, but an effective unified framework for the
mathematical treatment of such multidimensional structures,
which are usually called multilayer networks, was developed
only recently4,5.

Multilayer networks can be used to model many complex
systems. For example, relationships between humans include
different types of interactions—such as relationships between family
members, friends, and coworkers—that constitute different layers
of a social system. Different layers of connectivity also arise
naturally in natural and human-made systems in transportation6,
ecology7, neuroscience8, and numerous other areas. The potential
of multilayer networks for representing complex systems more
accurately than was previously possible has led to an explosion of
work on the physics of multilayer networks.

A key question concerns the implications ofmultilayer structures
on the dynamics of complex systems, and several papers about
interdependent networks—a special type of multilayer network—
revealed that such structures can change the qualitative behaviours
in a significant way. For example, several studies have provided
insights on percolation properties and catastrophic cascades of

failures in multilayer networks9–15. These findings helped highlight
an important challenge: How does one account for multiple layers
of connectivity in a consistent mathematical way? An explosion
of recent papers has developed the field of multilayer networks
into its modern form, and there is now a suitable mathematical
framework16, novel structural descriptors17–21, and tools from
fields (such as statistical physics22,23) for studying these systems.
Many studies have also started to highlight the importance of
analysingmultilayer networks, instead of relying on theirmonolayer
counterparts, to gain new insights about empirical systems (see, for
example, refs 24,25).

It has now been recognized that the study of multilayer networks
is fundamental for enhancing understanding of dynamical processes
on networked systems. An important example consists of spreading
processes, such as flows (and congestion) in transportation
networks26,27, and information and disease spreading in social
networks28–32. For instance, when two spreading process are coupled
in a multilayer network, the onset of one disease-spreading process
can depend on the onset of the other one, and in some scenarios
there is a curve of critical points in the phase diagram of the
parameters that govern a system’s spreading dynamics30. Such a
curve reveals the existence of two distinct regimes, such that the
criticality of the two dynamics is interdependent in one regime but
not in the other. Similarly, cooperative behaviour can be enhanced
by multilayer structures, providing a novel way for cooperation to
survive in structured populations33. For additional examples, see
various reviews and surveys4,5,10,28,34–36 on multilayer networks and
specific topics within them.

A multilayer framework allows a natural representation of
coupled structures and coupled dynamical processes. In this article,
after we give a brief overview on representing multilayer networks,
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Figure 1 | Multilayer networks. a, An edge-coloured multigraph, in which nodes can be connected by di�erent types (that is, colours) of interactions. In this
example, there are no inter-layer edges. b, A multiplex network, which consists of an edge-coloured multigraph along with inter-layer edges that connect
entities with their replicas on other layers. c, An interdependent network, in which each layer contains nodes of a di�erent type (circles, squares and
triangles) and includes inter-layer edges to nodes in other layers; in this case, inter-layer edges can occur either between entities and their replicas or
between di�erent entities.

we will focus on spreading processes in which multilayer analysis
has revealed new physical behaviour. Specifically, we will discuss
two cases: a single dynamical process, such as continuous or discrete
diffusion, running on top of a multilayer network; and different
dynamical processes, in which each one runs on top of a given layer,
but they are coupled by a multilayer structure.

Structural representation of multilayer networks
One can represent a monolayer network mathematically by
using an adjacency matrix, which encodes information about
(possibly directed and/or weighted) relationships among the entities
in a network. Because multilayer networks include multiple
dimensions of connectivity, called aspects, that have to be
considered simultaneously, their structure is much richer than
that of ordinary networks. Possible aspects include different types
of interactions or communication channels, different subsystems,
different spatial locations, different points in time, and more. One
can use tensors to encode the connectivity of multilayer networks as
(multi)linear-algebraic objects4,16.Multilayer networks include three
types of edges: intra-layer edges (connecting nodes within the same
layer), inter-layer edges between replica nodes (that is, copies of
the same entity) in different layers, and inter-layer edges between
nodes that represent distinct entities (see Fig. 1). Distinguishing
disparate types of edges has deep consequences bothmathematically
and physically. Mathematically, this yields banded structures in
multilinear-algebraic objects that depend on a system’s physical
constraints, and such structures impact features such as a network’s
spectral properties. These, in turn, have a significant impact on
dynamical systems (for example, of spreading processes or coupled
oscillators) that are coupled throughmultilayer networks.Moreover,
intra-layer edges and inter-layer edges encode relationships in
fundamentally different ways, and they thereby represent different
types of physical functionality. For example, in a metropolitan
transportation system6,37, intra-layer edges account for connections
between the same type of node (for example, between two different
subway stations), whereas inter-layer edges connect different types
of nodes (for example, between a certain subway station and an
associated bus station). In some cases, inter-layer edges and intra-
layer edges may even be measured using different physical units.
For instance, an intra-layer edge in a multilayer social network
could represent a friendship between two individuals on Facebook,
whereas an inter-layer edge in the same network could represent
the transition probability of an individual switching from using
Facebook to use Twitter.

The rich variety of connections in a typical multilayer network
can be mathematically represented by the components mjβ

iα of a
fourth-order tensor M , called the multilayer adjacency tensor16,
encoding the relationship between any node i in layer α and any
node j in layer β in the system (where i, j ∈ {1, 2, . . . , N } and

α,β ∈{1, 2, . . . ,L}, N denotes the number of nodes in the network
and L denotes the number of layers).

Once the connectivity of the nodes and layers are encoded
in a tensor, one can define novel measures to characterize the
multilayer structure. However, this is a delicate process, as naively
generalizing existing concepts from monolayer networks can lead
to qualitatively incorrect or nonsensical results4. An alternative way
of generalizing concepts from monolayer networks to multilayer
networks is to use sets of adjacency matrices rather than tensors.
This alternative approach has the advantage of familiarity, and
indeed it is also convenient to ‘flatten’ adjacency tensors into
matrices (called ‘supra-adjacency matrices’) for computations4,5.
However, the compact representation of multilayer networks in
terms of tensors allows greater abstraction, which has been
very insightful, and it will facilitate further development of the
mathematics of complex systems.

Studies of structural properties of multilayer networks include
descriptors to identify the most ‘central’ nodes according to
various notions of importance16–20 and quantify triadic relations
such as clustering and transitivity16,19,21. Significant advances
have been achieved to reduce the structural complexity of
multilayer networks38, to unveil mesoscale structures (for
example, communities of densely connected nodes)39–42, and
to quantify intra-layer and inter-layer correlations43–45 in empirical
networked systems.

The structural properties of multilayer networks depend
crucially on how layers are coupled together to form a multilayer
structure. Inter-layer edges provide the coupling and help encode
structural and dynamical features of a system, and their presence
(or absence) produces fascinating structural and dynamical effects.

a

Single dynamics Coupled dynamics

b

Figure 2 | Dynamical processes on multilayer networks. a, Schematic of a
single type of dynamical process running on all layers of a multiplex
network. (Arcs of the same colour represent the same dynamical process.)
b, Schematic of two dynamical processes, each of which is running on a
di�erent layer, that are coupled by the interconnected structure of a
multilayer network.
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Figure 3 | Single dynamics on a multilayer network. The speed of di�usion dynamics in a multilayer network is characterized by the second smallest
eigenvalue32 of a Laplacian tensor. We consider a pair of coupled Erdős–Rényi networks in which we independently vary the probabilities p1,p2∈[0,1] to
connect two nodes within the same layer between. The condition50 to observe faster di�usion in the multilayer network than di�usion in each layer
separately is3multiplex

2 ≥max{3layer 1
2 ,3layer 2

2 }. In the central panel, we see that the condition is satisfied when the two layers have similar edge-connection
probabilities (that is, p1≈p2). We set the inter-layer connections between each node and its replica in the other layer to a weight ω∈[0.1, 110]. In the left
panel, we show the behaviour of32 as a function of the inter-layer coupling weight ω. A sharp change in the value of the eigenvalue32 separates two
di�erent regimes that correspond to di�erent structural properties of the multilayer network.

For example, in multimodal transportation systems, in which
layers represent different transportation modes, the weight of
inter-layer connections might encode an economic or temporal
cost to switching between two modes6,46. In multilayer social
networks, inter-layer connections allow models to tune, in a natural
way, an individual’s self-reinforcement in opinion dynamics47.
Depending on the relative importances of intra-layer and inter-
layer connections, a multilayer network can act either as a system
of independent entities, in which layers are structurally decoupled,
or as a single-layer system, in which layers are indiscernible in
practice. In some multilayer networks, one can even derive a sharp
transition between these two regimes48,49.

Single and coupled dynamics on multilayer networks
There are two different categories of dynamical processes on
multilayer networks: a single dynamical process on top of the
coupled structure of a multilayer network (see Fig. 2a); and ‘mixed’
or ‘coupled’ dynamics, in which two or more dynamical processes
are defined on each layer separately and are coupled together by the
presence of inter-layer connections between nodes (see Fig. 2b).

Single dynamics. In this section, we analyse physical phenomena
that arise from a single dynamical process on top of a multilayer
structure. The behaviour of such a process depends both on intra-
layer structure (that is, the usual considerations in networks) and
on inter-layer structure (that is, the presence and strength of
interactions between nodes on different layers).

One of the simplest types of dynamics is a diffusion process
(either continuous or discrete). The physics of diffusion, which
has been analysed thoroughly in multiplex networks50,51, reveals an
intriguing and unexpected phenomenon: diffusion can be faster
in a multiplex network than in any of the layers considered
independently50.

One can understand diffusion in multiplex networks in terms
of the spectral properties of a Laplacian tensor (in particular, we
consider the type of Laplacian that is known in graph theory
as the ‘combinatorial Laplacian’52), obtained from the adjacency
tensor of a multilayer network, that governs the diffusive dynamics.
One first ‘flattens’53—without loss of information, provided one
keeps the layer labels—the Laplacian tensor16 into a special lower-
order tensor called ‘supra-Laplacian matrix’. The supra-Laplacian
matrix has a block-diagonal structure, where diagonal blocks encode
the associated Laplacian matrices corresponding to each layer
separately and off-diagonal blocks encode inter-layer connections.

The supra-Laplacian matrix was initially presented in the literature
as a matrix for a multilayer network that includes both intra-layer
edges and inter-layer edges50.

The timescale of diffusion is controlled by the smallest positive
eigenvalue 32 of the supra-Laplacian matrix. In Fig. 3, we show
a representative result that conveys the existence of two distinct
regimes in multiplex networks as a function of the inter-layer
coupling strength. The regimes illustrate how multilayer structure
can influence the outcome of a physical process. For small values
of the inter-layer coupling, the multilayer structure slows down
the diffusion; for large values, the diffusion speed converges to
the mean diffusion speed of the superposition of layers. In many
cases, the diffusion in the superposition is faster than that in any
of the separate layers. These findings are a direct consequence of
the emergence of more paths between every pair of nodes due to
the multilayer structure. The transition between the two regimes is
a structural transition48, a characteristic of multilayer networks that
can also arise in other contexts54,55.

The above phenomenology can also occur in discrete processes.
Perhaps the most canonical examples of discrete dynamics are
random walks, which are used to model Markovian dynamics on
monolayer networks and which have yielded numerous insights
over the past few decades56,57. In a random walk, a discretized
form of diffusion, a walker jumps between nodes through available
connections. In a multilayer network, the available connections
include layer switching via an inter-layer edge, a transition that
has no counterpart in monolayer networks and which enriches
random-walk dynamics39,46,49. An important physical insight of the
interplay betweenmultilayer structure and the dynamics of random
walkers is ‘navigability’46, which we take to be the mean fraction of
nodes that are visited by a random walker in a finite time, which
(similar to the case of continuous diffusion) can be larger than
the navigability of an aggregated network of layers. In terms of
navigability, multilayer networks are more resilient to uniformly
random failures than their individual layers, and such resilience
arises directly from the interplay between the multilayer structure
and the dynamical process.

Another physical phenomenon that arises inmultilayer networks
is related to congestion, which arises from a balance between flow
over network structures and the capacity of such structures to
support flow. Congestion in networks was analysed many years ago
in the physics literature58–60, but it has been studied only recently in
multilayer networks27,61, which can be used to model multimodal
transportation systems. It is now known that the multilayer
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Figure 4 | Coupled dynamics on multilayer networks. Two (left) reciprocally enhanced and (right) reciprocally inhibited disease-spreading processes of
susceptible–infected–susceptible type. We compute these diagrams for multiplex networks formed by two layers of 5,000-node Erdős–Rényi graphs with
mean intra-layer degree 〈k〉=7. The colours in the figure represent the prevalence levels of the diseases at a steady state of Monte Carlo simulations. Note
the emergence of a curve of critical points (at a ‘metacritical point’) in which the spreading in one layer depends on the spreading in the other.

structure of a multiplex network can induce congestion even when
a system would remain decongested in each layer independently27.

Coupled dynamics. Coupled dynamical processes are a second
archetypical family of dynamics in which multilayer structure
plays a crucial role. Thus far, the most thoroughly studied
examples are coupled spreading processes, which are crucial for
understanding phenomena such as the spreading dynamics of
two concurrent diseases in two-layer multiplex networks31,35,62–64
and spread of disease coupled with the spread of information or
behaviour28–30,32,65,66. We illustrate two basic effects: the first is that
two spreading processes can enhance each other (for example, one
disease facilitates infection by the other31), and the second is that one
process can inhibit the spread of the other (for example, a disease can
inhibit infection by another disease31 or the spreading of awareness
about a disease can inhibit the spread of the disease30). Interacting
spreading processes also exhibit other fascinating dynamics, and
multilayer networks provide a natural means to explore them28.

The above phenomenology is characterized by the existence of
a curve of critical points that separate endemic and non-endemic
phases of a disease. This curve exhibits a crossover between two
different regimes: a regime in which the critical properties of one
spreading process are independent of the other, and a regime in
which the critical properties of one spreading process do depend on
those of the other. The point at which this crossover occurs is called
a ‘metacritical’ point.

In Fig. 4, we show (left) a phase diagram of disease incidence in
one layer of two reciprocally enhanced disease-spreading processes;
and (right) a phase diagram of the incidence in one layer of an
inhibitory disease-spreading process affecting another disease. The
metacritical point delineates the transition between independence
(dashed line) and dependence (solid curve) of the critical properties
of the two processes.

Perspectives
In most natural and engineered systems, entities interact with
each other in complicated patterns that include multiple types
of relationships and/or multiple subsystems, change in time,
and incorporate other complications. The theory of multilayer
networks seeks to take such features into account to improve our
understanding of such complex systems.

In the past few years, there have been intense efforts to
generalize traditional network theory by developing and validating
a framework to study multilayer systems in a comprehensive
fashion. The implications of multilayer network structure
and dynamics are now being explored in fields as diverse
as neuroscience25,67,68, transportation6,37, ecology7, granular
materials69, evolutionary game theory36, and many others. For
instance, in ecological networks, different layers might encode
different types of interaction—for example, trophic and non-
trophic—or different spatial patches (or different temporal
snapshots), where the same interaction may or may not appear7.
In human brain networks, different layers might encode functional
connectivity corresponding to specific frequency bands, with
inter-layer connections encoding cross-frequency interactions68.
In gene interaction networks, layers might correspond to different
genetic interactions (for example, suppressive, additive, or based on
physical or chemical associations)38,70. In financial networks, layers
might represent different interdependent networks of entities71—for
example, banking networks and commercial firms—or different
trade relationships among legal entities, ranging from individuals
to countries. Despite considerable progress in the past few years4,5,
much remains to be done to obtain a deep understanding of the new
physics of multilayer network structure and multilayer network
dynamics (both dynamics of and dynamics on such networks).
In seeking such a deep understanding, it is crucial to underscore
the inextricable interdependence of the structure and dynamics
of networks.

Recent efforts have revealed fundamental new physics in
multilayer networks. The richer types of spreading and random-
walk dynamics can lead to enhanced navigability, induced
congestion, and the emergence of new critical properties. Such
new phenomena also have a major impact on practical goals
such as coarse-graining networks to examine mesoscale features
and evaluating the importance of nodes—two goals that date to
the beginning of investigations of networks1,3,72. For multilayer
networks to achieve their vast potential, there remain crucial
problems to address. For example, from a structural point of view, it
is much easier to measure edge weights reliably for intra-layer edges
than for inter-layer edges. Moreover, inter-layer edges not only play
a different role from intra-layer ones, but they also play different
roles in different applications, and the research community is only
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scratching the surface of the implications of their presence and
the new phenomena to which they lead. For example, how to infer
or impose inter-layer edges (and their associated meaning) is a
major challenge in many applications of social networks, where an
inter-layer connection could exploit the fact of changing from one
social platform to another in time as the probability of switching.
This can be even more complicated in many types of biological
networks (for example, when considering protein and genetic
interactions). We know that different layers are not independent of
each other, but it is much more difficult to quantify and measure
the weights of the dependencies in a meaningful way. Another
major challenge is to understand the propagation of dynamical
correlations, due to network structure, across different layers,
which affects not only spreading processes but dynamical systems
more generally.

Although our manuscript addresses only physical phenomena
related to spreading processes, other dynamical processes also
pose extremely fascinating questions73. One important example
is synchronization, although there are many others (for example,
opinion models, games, and more). A few studies with particular
set-ups have made good progress on multilayer synchronization
(see, for example, refs 74–77), but their phenomenology is very
rich, and it will require the development of solid theoretical
grounding to study synchronization manifolds, stability analysis,
transient dynamics, and more. Additionally, one can build
on diffusion dynamics to study reaction–diffusion systems in
multilayer networks78,79.

A particularly promising approach in network theory that will
have a major impact on future studies of multilayer networks is
the analysis of network structure that arises from latent geometrical
spaces80–82. Observed connectivity in networks often depends on
space83—either through explicit constraints or by influencing the
existence probability andweights of edges—and thus on the distance
in that space. Either or both of the latent space (for example, people
with connections on more layers can lead to a higher probability
of observing an edge between them84) and associated observed
network connections can have a multilayer structure. Such explicit
use of geometry also allows the possibility of incorporating more
continuum types of analyses to accompany the traditional discrete
approaches to studying networks. We thus assert that techniques
from both geometry and statistics will be crucial for scrutinizing
dynamical processes on multilayer networks.

The study of multilayer networks is in its infancy, and new
emergent physical phenomena that arise from the interaction of
such networks and the dynamical processes on top of them are
waiting to be discovered.

Received 6 April 2016; accepted 22 July 2016;
published online 22 August 2016
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