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We employ an evolutionary algorithm to investigate the opti-
mal design of composite protectors using one-dimensional granular
chains composed of beads of various sizes, masses, and stiffnesses.
We define a fitness function using the maximum force transmitted
from the protector to a “wall” that represents the body to be pro-
tected and accordingly optimize the topology (arrangement), size,
and material of the chain. We obtain optimally randomized granu-
lar protectors characterized by high-energy equipartition and the
transformation of incident waves into interacting solitary pulses.
We consistently observe that the pulses traveling to the wall com-
bine to form an extended (long-wavelength), small-amplitude pulse.

Keywords granular protectors, optimal design, solitary waves, pulse
disintegration and reflection, thermalization, evolutionary
algorithms

1. INTRODUCTION
One-dimensional (1D) lattices (chains) of particles interact-

ing according to nonlinear potentials have been receiving in-
creasing attention in the scientific community because of their
special wave dynamics, which allows energy transport through
solitary waves [1–7]. In the case of granular systems, particle
interactions are strongly nonlinear because of nonlinear contact
interactions between particles and tensionless behavior [6–10].
As a result, granular lattices can support traveling compacton-
like solitary waves [6]. The evolution of nonlinear particle sys-
tems toward energy equipartition (or thermalization), predicted
by statistical mechanics [11], is also particularly interesting.
Stable or transient energy transport through coherent modes
(solitary waves, breathers, etc.) can develop [2, 12–18], and
eventual thermalization might not occur at all, as investigated
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in great detail for the Fermi-Pasta-Ulam problem and related
nonlinear lattice systems [1].

By designing protectors or containers optimally, the strongly
nonlinear dynamics of granular systems can be exploited to
produce fast decomposition of an external impulse into trains of
solitary waves, energy trapping, shock disintegration, and more
[10, 19–25]. Furthermore, it has been emphasized that using a
suitable randomization of the granular system—involving, for
example, the variation of particle sizes, masses, and materials—
one might induce nonuniformity in the steady states in the veloc-
ity profiles; the appearance of negative velocities; marked ther-
malization; wave-amplitude decay; and anomalous features of
wave propagation through interfaces between particles differing
in masses, sizes, and/or mechanical properties [6, 20, 23, 24, 26].

When dealing with the optimal design of granular protectors,
one can optimize features such as particle distribution, con-
nectivity, size, and material through either discrete or continu-
ous approaches. (These ideas are known, respectively, as shape,
topology, size, and material optimization.) Discrete approaches
introduce suitable background structures in which the material
densities of predefined connections are subject to optimization
[27–31]. Continuous models instead use homogenization theory,
as they examine design domains with perforated composite mi-
crostructures [27, 32–36]. There are numerous possible choices
for optimization methodology. Well-established gradient-based
optimization techniques include mathematical programming,
optimality criteria (that is, finding suitable mathematical condi-
tions that define an optimally designed structure) [37, 38], and
sequential approximate optimization [39–41]. Available meth-
ods that are not based on gradients include simulated annealing
[42, 43], biological growth [44, 45], and genetic and evolution-
ary algorithms [46–50].

Evolutionary Algorithms (EAs) provide a family of opti-
mization methods inspired by Darwin’s theory of evolution.
They search for the best “phenotype” in a given population of
candidate solutions by applying selection mechanisms and ge-
netic operators similar to the intermingling of chromosomes
in cell reproduction and replication. First, one evaluates each

1

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
a
r
a
i
o
,
 
C
h
i
a
r
a
]
 
A
t
:
 
2
1
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
0



2 F. FRATERNALI ET AL.

element (individual) of the population in terms of a quantitative
fitness, which represents the feature that discriminates between
phenotypes. One then mates the individuals using a recombi-
nation operator. Finally, one mutates a given percentage of the
individuals, thereby creating a new population. One then re-
peats these steps cyclically until some termination criterion is
reached. The individual with the best fitness in the final pop-
ulation provides a guess of the global optimum of the fitness
function. EAs are a natural fit for optimization problems in
granular systems, as in such problems one can easily identify
the system particles (i.e., the beads) with cells and their geomet-
rical and mechanical properties (including radii, mass densities,
elastic moduli, material types, and so on) with the corresponding
genes. Furthermore, EAs require little knowledge of the search
environment, can escape from local optima (in order to achieve
a better global optimum), and are well-suited to problems with
large and complex solution spaces [49] (such as those arising
from the optimization of strongly nonlinear dynamical systems).

The present work exploits EAs for the optimal design of
composite granular protectors. We identify the fitness function
with the force Fout transmitted from the protector to a “wall”
that represents the body to be protected. We compute the perfor-
mance of the candidate solutions under given impact loadings
through a Runge-Kutta time-discretization of Hamilton’s equa-
tions of motion. We adopt a Hertz-type model of interactions
between adjacent beads for computational reasons, as a very
large number of simulations are required by the optimization
process. We also ignore dissipative effects, in accord with the
standard models in the literature [6]. We note, however, that
including relevant dissipative effects [51, 52] such as friction,
plasticity, large deformations, and so on, using (for example)
time-stepping techniques of non-smooth contact dynamics [53]
or molecular dynamics [54], would not change the above EA
framework. Dissipation is expected to enhance the effectiveness
of the protector by further reducing the force amplitude trans-
mitted at the wall, as shown (for example) in the experimental
results reported below.

In this paper, we investigate several optimization problems.
We focus, in particular, on topology, size, and material optimiza-
tion of 1D composite granular chains. We compare the dynamics
of the optimized systems we obtain with those of granular pro-
tectors and special granular systems (sonic vacua) available in
the literature [6, 19, 22, 23]. We show that the use of EAs of-
fers a dramatic advantage in the design of granular protectors,
leading to a significant decrease of the transmitted force. This
EA-driven optimal design generates suitable topology, size, and
material randomization by combining effects of wave disintegra-
tion and reflection at the interfaces between different particles.
A general feature we observe in the optimized protectors is the
transformation of incident waves into a collection of interact-
ing reflected and transmitted solitary pulses, which in particular
form an extended (long-wavelength), small-amplitude wave that
travels to the wall. We also find that optimization randomizes
these systems (adding to their disorder) and produces a marked

thermalization. We constantly observe (in the absence of forced
symmetry constraints) the appearance of soft/light beads near
the wall, hard/heavy beads near the end impacted by the striker,
and alternating hard and soft beads in the central section of the
optimized chains. The observed “shock mitigation” behavior
allows one to think of granular protectors in a new way—as
tunable kinetic systems rather than purely as a means to add
dissipation. Consequently, they offer the exciting possibility of
creating much more effective energy transformation and shield-
ing devices.

The remainder of the paper is organized as follows. In Sec-
tion 2, we formulate our mechanical and numerical models. We
then show how to optimize granular protectors in Section 3.
We consider, in turn, topology optimization, size optimization,
periodic sequences of optimized cells, and material optimiza-
tion. As an extended example, we investigate the optimization
of a container proposed by Hong [23] with both impulsive
and shock-type loading. Finally, we summarize our results in
Section 4.

2. MECHANICAL AND NUMERICAL MODELING
Consider a non-dissipative chain of N granular particles de-

scribed by the Hamiltonian [6]

H =
N∑

i=1

(
1

2

p2
i

mi

+ Vi(qi − qi+1) − Wi(qi)

)
, (1)

where mi , qi , and pi , respectively, denote the mass, the dis-
placement from the “packed” configuration (particles touching
each other without deformation), and the momentum of the ith
particle; Vi is the potential of the interaction force between par-
ticles i and i + 1; and Wi is the potential of the external forces
acting on the ith particle (including gravity, static precompres-
sion, etc.). We introduce an (N + 1)th particle in order to model
a wall that constrains the chain. In so doing, we assume that
pN+1 = qN+1 = 0 during the motion. The Hamiltonian Eq. (1)
yields a system of 2N first-order differential equations describ-
ing the motion of the system:

ṗi = −∂H

∂qi

, q̇i = ∂H

∂pi

, i = 1, · · · , N , (2)

to be solved with the initial conditions pi(t = 0) = p
(0)
i , qi(t =

0) = q
(0)
i , where t ∈ [0, t̄] denotes the time variable, t̄ indicates

the final observation instant, and a dot over a variable denotes
its derivative with respect to time.

Assuming that stresses remain within the elastic thresh-
old and that particle contact areas and velocities are suffi-
ciently small, we introduce tensionless, Hertz-type power-law
interaction potentials [6]

Vi (qi − qi+1) = 1

ni + 1
αi [(qi − qi+1)+]ni+1 , (3)
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COMPOSITE GRANULAR PROTECTORS 3

where αi and, ni are coefficients depending on material prop-
erties and particle geometry, and (·)+ denotes the positive part
of (·). Most of the examples that we examine in this paper are
spherical grains, for which Hertz’s law implies

αi =
4EiEi+1

√
ri ri+1

ri+ri+1

3Ei+1
(
1 − ν2

i

) + 3Ei

(
1 − ν2

i+1

) , ni = 3

2
, (4)

where ri , Ei , and νi denote, respectively, the radius, elastic
(Young) modulus, and Poisson ratio of particle i. In the case
of the granular container investigated by Hong [23], we instead
use the values shown in Table 1 for αi and ni .

Additionally, let

T =
N∑

i=1

1

2

p2
i

mi

, V =
N∑

i=1

[Vi(qi − qi+1) − Wi(qi)] , (5)

and E = H = T + V , where T denotes the system’s kinetic
energy, V denotes the potential energy, and E denotes the total
energy. We also introduce the local energies

Ei = 1

2

p2
i

mi

+ 1

2
[Vi(qi−1 − qi) + Vi(qi − qi+1)] (6)

at each site (bead), and the energy correlation function (which
is slightly different from that introduced in Ref. [12])

C(t, 0) = c(t)

c(0)
, (7)

where

c(t) = 1

N

〈
N∑

i=1

E2
i (t)

〉
−

〈
1

N

N∑
i=1

Ei(t)

〉2

, (8)

〈·〉 denotes the average over time (from 0 to the current time),
and C(t, 0) indicates how the energy is transferred between the
different beads. Observe that C(t, 0) = 0 corresponds to energy
equipartition.

Equations (2) can be solved numerically using a standard
fourth-order Runge-Kutta integration scheme (as discussed in,
for example, Ref. [6]) with a time integration step of

�t = k

[
min

i=1,...,N

{
ri

ci

}]
, (9)

where ci is the sound speed in the material for the ith particle
and k ∈ (0, 1] is a scaling factor. Equation (9) gives a time-
integration step of about 2 × 10−8 s for k = 0.1 and 1 mm
stainless steel bead chains (see Table 2), ensuring relative errors
lower than 10−8 in the total energy conservation for times up to
few thousand µs.

We now assume that the configuration of the granular sys-
tem is described by a collection of design variables or “genes”
(which can include particle radii, mass densities, elastic moduli,
material types, etc.)

x = {xi}i=1,...,M , (10)

subject to simple bounds of the form

x ∈ X = [
xlb

1 , xub
1

] × . . . × [
xlb

M, xub
M

]
. (11)

One can always assume that xlb
i = 0 and xub

i = 1 for all
i ∈ {1, . . . , M} through suitable rescaling of design variables.

Given an assigned x, a numerical simulation of the sys-
tem dynamics under a prescribed impulse or shock loading
gives the protection performance (fitness) f = ‖Fout‖L∞ of
the corresponding design configuration. Here, Fout denotes the
force profile transmitted from the system to the wall, and
‖Fout‖L∞ denotes its norm with respect to the Sobolev space
L∞([0, t̄]) [55]. The optimal design configuration xopt can then
be identified with the solution of the multivariate optimization
problem,

min
x∈X

f (x) , (12)

which is expected to be influenced by multiple local optima.
The problem (12) can be conveniently solved via EAs (see, for
example, Refs. [46–50, 56]) through the cyclic iterative proce-
dure illustrated in Figure 1. In the present paper, we will use
the Breeder Genetic Algorithm (BGA) presented in Ref. [57].
BGAs, in contrast to other EAs (in which the selection is fully
stochastic), selects only from among the TR% best elements of
the current population of NI individuals (where TR% denotes
the so-called truncation rate) to be recombined and mutated
(mimicking animal breeding). This feature makes BGAs more
efficient than standard EAs for performing optimization in large
search spaces [58, 59].

3. OPTIMIZATION OF GRANULAR PROTECTORS
We deal in this section with topology, size, and material

optimization of 1D composite granular protectors subject to im-
pulsive and shock-type loadings. We employ formula (9) with
k = 0.1 for time discretization and always assume that genes
are continuous variables ranging over [0, 1] with a population
size of 50 individuals. We use an initial, randomly-chosen trun-
cation rate (TR) equal to 15%, employ Extended Intermediate
Recombination (EIR) [59], and consider mutation rates in the in-
terval [10%, 50%]. (We use the value 10% for size optimization,
which has genuinely continuous genes, and 50% in all of the
other examples, which instead model discrete design variables
using continuous genes.) EIR generates offspring along the line
defined by the parents in the search space and allows one to also
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4 F. FRATERNALI ET AL.

FIG. 1. Diagrammatic representation of an evolutionary algorithm.

create offspring outside of the segment joining the parents. See
[57–59] for further technical details of the employed BGA.

The examples of Sections 3.1 and 3.2 consider chains of stain-
less steel beads, whereas those in Section 3.4 examine a com-
posite chain composed of polytetrafluoroethylene (PTFE) and
stainless steel beads. We show the material properties of these
beads in Table 2. The final example, discussed in Section 3.5,
considers a long composite chain—the protector recently inves-
tigated by Hong [23])—with the material properties shown in
Table 1. We studied protectors with one end in unilateral contact
with a rigid wall (simulating the body to be protected) and the
other end free. In most cases, we assumed that the free end was
impacted by a striker; in the final example, we assumed that it
was loaded by a prescribed force. We focused our attention on
the short-term dynamics of the protector over an observation
time slightly larger than that necessary to transmit the input
actions to the wall.

TABLE 1
Material properties (mass m, contact coefficient α, and contact

exponent n) of the granular container investigated by Hong
[23] (in abstract units, as discussed in the main text)

Label m α n

mat1 2.0 5657 1.0
mat2 1.0 5657 2.0
mat3 0.3 5657 1.5
mat4 0.1 5657 1.5

3.1. Topology Optimization
Nesterenko used the moniker sonic vacua to describe unpre-

compressed (or weakly precompressed) granular chains because
the sound speed is zero or very small in such systems [6]. He
studied the behavior of two adjacent monodisperse sonic vacua
(2SV), characterized by a sharp variation in bead size (i.e., a
stepped 2SV), under the impact of a striker. He observed two re-
markable phenomena: disintegration of the incident pulse into a
solitary wave train when it passes from the sub-chain with larger
radius to the one with smaller radius; and a partial reflection in
the opposite case (see also Ref. [26]). Here we examine topol-
ogy optimization of a stepped 2SV in order to determine the
particle arrangement that minimizes Fout under a given impact
event. Figure 2 shows different force-time histories in a 2SV
hit by a striker at the sub-chain with larger radius. The system
is composed of 20 large beads of radius r = rL = 3.95 mm,
20 small beads of radius r = rS = 2.375 mm, and the striker
(particle number 1), which has radius r = rL and initial velocity
v = 1 m/s (see § 1.6.10 of [6]). The plots in Figure 2 show the
force Fin at the contact between the striker and the first bead, the

TABLE 2
Material properties (mass density ρ, elastic modulus E , and

Poisson ratio ν) of stainless steel and PTFE beads [20]

ρ (kg/m3) E (GPa) ν

Stainless steel 8000 193.00 0.30
PTFE 2200 1.46 0.46
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COMPOSITE GRANULAR PROTECTORS 5

FIG. 2. Force vs. time plots for the stepped two sonic vacua (2SV). The striker impacts the end with larger-radius beads.

force F (i) that denotes the mean of the contact force between
particles i and i − 1 and that between i + 1 and i, and the force
Fout recorded at the wall. The observation time is 750 µs. All
of the beads are made of stainless steel (see the material prop-
erties in Table 2). The F (i) plots for i > 21 in Figure 2 clearly
illustrate the aforementioned pulse disintegration phenomenon.
One can also see that the fitness f = ‖Fout‖L∞ of the 2SV is
equal to 0.18 kN.

We ran a topology optimization of the 2SV by introducing
M = N = 40 genes xi related to the radius size (large
or small) of the different beads. (This does not include the
striker—particle number 1—which is assumed to have a large
radius.) We defined the genes so that xi ∈ [0, 0.5] implies

ri+1 = rS , whereas xi ∈ (0.5, 1] implies ri+1 = rL. We used
a penalty technique to constrain the number of particles with
large and small radii to each be equal to 20; that is, we assigned
a very large fitness f to (unfeasible) solutions that do not satisfy
this criterion. We show the BGA-optimized system and the cor-
responding force-time plots in Figure 3. The optimized system
has many large beads near the end of the chain that is hit by
the striker (shown on the right), small beads near the wall, and
an alternation of sequences of multiple consecutive large and
small particles in the center of the system (xopt = {1, 0, 12, 02,

13, 03, 15, 09, 16, 02, 1, 0, 1, 03}, where 1 denotes a large par-
ticle, 0 denotes a small particle, and ab refers to b consecutive
particles of type a). We obtained a stable solution (i.e., a

FIG. 3. Force vs. time plots in the topology-optimized system. (Compare this to the (unoptimized) stepped 2SV configuration in Figure 2.)
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6 F. FRATERNALI ET AL.

FIG. 4. Energy vs. time plots in the stepped 2SV and in the topology-optimized system (energies are in mJ, and times are in µs).

solution with constant best fitness) after about 340 generations
of the algorithm. Observe that pulse disintegration appears
very early (within the first few beads) in the optimized system,
so that the leading solitary wave transforms into a train of
interacting, small-amplitude pulses. This configuration exhibits
a fitness of about 0.049 kN, which is almost four times smaller
than that of the 2SV.

We compare the energies (as a function of time) of the stepped
2SV and the optimized system in Figure 4 over a time window
preceding the achievement of a loose state (in which there are no
interaction forces).1 We obtained this by restricting the energy
time-histories up to the first instant t > 0 for which T = 0.99E.
The kinetic energy T of the 2SV shows a marked peak when
the leading wave passes from the larger sub-chain to the smaller
one and valleys when the wave is reflected at the wall. The
potential energy V behaves in the opposite manner because the
total energy is conserved. In the optimized system, on the other
hand, the valleys and peaks of T and V arise earlier during wave
propagation, and the peaks of the potential energy are markedly
lower than those observed in the 2SV. Denoting by 〈T 〉 and 〈V 〉
the time-averaged values of T and V , respectively, over a time of
1000 ms from the striker impact, we observe that in both the 2SV
(which has 〈T 〉/〈V 〉 ≈ 1.55) and the optimized system (which
has 〈T 〉/〈V 〉 ≈ 1.86), the ratio 〈T 〉/〈V 〉 deviates from the value
1.25 predicted by the virial theorem of statistical physics [11].
Nesterenko observed similar results using randomized granular
chains subject to piston-like impacts [6].

Figure 5 shows density plots of particle energies Ei for the
stepped 2SV and the optimized system. In each plot, the horizon-
tal axis indicates the particle site, the vertical axis shows the time
step (we produced a plot for every five integration steps), and
the shading gives the energy normalized to unity (i.e., the energy

1In the absence of gravity and precompression, a loose state is
reached after a sufficiently long time because the granular chain is con-
strained only at one end. The dynamics evolve so that the interactions
go to zero.

divided by its maximum value among all of the beads). One can
clearly recognize the disintegration phenomenon in the stepped
2SV when the incident pulse passes from the large-bead regime
to the small-bead regime. In this system, pulse reflection occurs
only at the wall (and not along the body of the chain) during the
first transmission. Note that when already-reflected pulses pass
from the small-bead regime to the large-bead regime, they are
reflected for a second time. In the optimized system, however,
one observes a combination of disintegration and reflection of
traveling pulses along the entire chain. One also observes the
production of interacting pulses that travel in opposite direc-
tions. In particular, the pulses moving toward the wall combine
to form an extended (long-wavelength), small-amplitude wave
that is clearly visible in Figure 3. Figure 6 shows the time histo-
ries of the energy correlation function for the stepped 2SV and
topology-optimized systems, revealing that the latter exhibits a
faster and stronger thermalization (i.e., equipartition of energy)
than the former.

3.2. Size Optimization
Doney and Sen recently studied the energy absorption capa-

bilities of 1D granular protectors consisting of “tapered” and/or
“decorated” chains [21, 22]. The simplest type of tapered chain
is composed of a sequence of progressively larger or progres-
sively smaller beads, and a decorated chain is a composite chain
obtained by placing interstitial small grains between the large
grains in a monodisperse chain. Using analytical and numerical
techniques, Doney and Sen observed marked energy absorp-
tion in highly tapered chains. For their analytical work, they
employed the Hertz contact model. In their numerical studies,
they utilized hydrocode simulations up to very high impact ve-
locities (up to 1 km/s). In Figures 7 and 8, we show several
numerical force recordings for, respectively, a decorated and a
tapered chain impacted by strikers with different velocities. In
both cases, the initial force peak is Fin = 1.4 kN. The decorated
chain consists of a sequence of dimers formed by alternating
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COMPOSITE GRANULAR PROTECTORS 7

FIG. 5. Density plots of particle energies normalized to unity. Horizontal axes are labeled according to particle site and vertical axes give the time step.

FIG. 6. Energy correlation function vs. time for the topology-optimized and
stepped 2SV systems.

r = r̂L = 3.243 mm and r = r̂S = 0.973 mm stainless steel
beads with total length 7.78 cm (not counting the striker). The
striker (3.243 mm) impacts this chain with an initial velocity of
18.88 m/s. The tapered chain, on the other hand, is composed
of 20 stainless steel beads with decreasing radii, ranging from
r = rL = 5 mm (the striker, which impacts the chain at a
speed of 7.20 m/s) to r = rS ≈ 0.675 mm over a length of
7.78 cm (not counting the striker). That is, the tapering ratio
is qs = ri+1/ri = 0.9. The fitness of the decorated chain is
about 1.7 kN, whereas that of the tapered chain is equal to about
0.75 kN.

We carried out a size optimization of the above sys-
tems, introducing M = 19 genes xi related to the radii of
the different beads (not including the striker), which in the

FIG. 7. Force vs. time plots in a decorated chain.
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8 F. FRATERNALI ET AL.

FIG. 8. Force vs. time plots in a tapered chain.

present example (in contrast to the previous one) were as-
sumed to change continuously in the interval [rS, rL] (with
ri+1 = rS + xi(rL − rS)). We ran a BGA optimization with
a striker radius always equal to 5 mm and an impact speed
equal to 10 m/s. We also constrained the total length of
the system to remain equal to 7.78 cm (not including the
striker). We obtained constant best fitness and the solution
shown in Figure 9 after about 590 generations (xopt ={0.605,
0.584, 0.570, 0.677, 0.009, 0.021, 0.506, 0.988, 0.875, 0.012,
0.006, 0.469, 0.015, 0.568, 0.018, 0.007, 0.001, 0.002,
0.011}). The fitness of the size-optimized system (0.42 kN) is
about 1.8 times smaller than that of the (unoptimized) tapered
chain. Observe that there is simple reflection at the wall in the
decorated chain (see Figure 7), significant pulse disintegration
in the tapered chain (see Figure 8), and a transformation of

the leading solitary pulses into an extended (long-wavelength),
small-amplitude wave in the optimized chain (Figure 9). The
choice of the fitness parameters used in this study differs from
the strategy employed in Ref. [22], which instead attempts to
minimize the kinetic energy ratio Kout/Kin between output and
input. Because of the continuum formulation of the genes in the
current examples, our work encompasses all geometries consid-
ered in Ref. [22]. We compare the energy profiles of the deco-
rated, tapered, and optimized chains in Figure 10. We observed
the highest 〈T 〉/〈V 〉 in the tapered chain (〈T 〉/〈V 〉 ≈ 1.94),
resulting from the anticipated evolution of this system toward a
loose state. Figure 11 shows the density plots of particle energies
for the three systems under examination. As in the previous ex-
ample, one can clearly observe from the plots the effects of both
wave disintegration and reflection in the optimized system. The

FIG. 9. Force vs. time plots in the size-optimized system.
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COMPOSITE GRANULAR PROTECTORS 9

FIG. 10. Energy vs. time plots in the decorated, tapered, and size-optimized chains (energies in J, times in µs).

profiles of the energy correlation function shown in Figure 12
indicate that the size-optimized and tapered chains both evolve
toward thermalization and that the decay of C(t, 0) is slightly
faster in the former system. We show in the next section that a
similar behavior can also be induced in a long dimeric system
(i.e., in a long decorated chain) by introducing suitable alter-
ations of the periodic particle arrangement (i.e., by introducing
another form of disorder into the system).

3.3. Periodic Sequences of Optimized Cells
We now consider a periodic sequence of the 19-particle size-

optimized cell in the decorated chain shown in Figure 9. As
discussed above, the single optimized cell that we obtained can
be viewed as a disordered configuration, so it is interesting to
investigate the effects on the wave dynamics of periodically
repeating such a structure to obtain a “quasi-disordered” con-
figuration. As can be seen in Figure 13, a reasonably localized
wave structure does develop as long as there are enough peri-
ods, just as with periodic arrangements of simpler cells [25, 60].

However, the original wave disintegrates and emits a significant
number of secondary pulses, so that a stable coherent structure
does not form.

Using long-wavelength asymptotics, one can obtain a non-
linear partial differential equation (PDE) description of the
decorated chain in the continuum limit [6, 25, 60]. This PDE
has known compact solitary wave solutions, which we illustrate
in the top panels of Figure 14. However, adding even a small
number of impurities to the system can change things com-
pletely (introducing some pulse disintegration, pulse reflection,
and thermalization), although one still obtains a basically local-
ized pulse. The impurities that we consider consist of particles
of radius 5 mm and mass 2.31 g, so that they are much larger
and heavier than the other beads in the chain. Throughout the
region of the chain that has impurities, we place one of them
every 19 particles, giving a cell length that is the same as that
in the periodically repeated size-optimized chain of Figure 9.
The second through fourth rows of Figure 14 contain regions
of different lengths that contain these periodic impurities. In
each case, the last impurity is placed before bead 1000. The first
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10 F. FRATERNALI ET AL.

FIG. 11. Density plots of particle energies normalized to unity. Horizontal axes are labeled according to particle site and vertical axes give the time step.

impurity is in particle 501 in the second row of Figure 14. The
third row of the figure is for a chain with impurities every 19
beads starting from bead 801, and the bottom row is for a chain
with impurities every 19 beads starting from bead 951 (so that
there are three impurities in total—at beads 951, 970, and 989—
in this last example). As shown in these plots, the insertion of
such heavy impurities leads to partial reflections of the wave,
some thermalization, significant pulse disintegration, and even
a bit of trapping (see the bottom left panel). Also observe in the
bottom row that we have induced delays in the wave reflection.
By tuning the material properties carefully, one can perhaps
optimize the properties of such wave trapping so that they can
be exploited in applications. Moreover, these numerical experi-
ments also illustrate the complicated series of secondary pulse
emission and partial wave reflections that occur in the periodic
sequence of optimized/randomized cells.

The study of soliton-like pulses in perturbations of uniform
Hertzian chains was reported earlier in works that suggest the
possibility of using them as systems to detect buried impurities
via the analysis of back-scattered signals [61, 62]. Our results

show that similar phenomena can also be observed in “quasi-
disordered” systems; as shown in Figure 14, the masses and
positions of the defects in the chain detectably shift the reflection
and the radiation.

FIG. 12. Energy correlation function vs. time for the examined systems.
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COMPOSITE GRANULAR PROTECTORS 11

FIG. 13. (Left) Density plot (colored by force, with larger values given by darker shading) of the optimized chain in Figure 9. (Right) Force (in kN) vs. time
plot for particle 1500 of this chain.

It would be interesting to extend this type of discussion
by considering increasingly disordered configurations, such as
systems with quasiperiodic arrangements of cells (with vari-
ous lengths and component particles) rather than periodic ones.
Some preliminary research in this direction (using, for example,
arrangements that follow Fibonacci sequences) has appeared re-
cently in the literature in order to study Anderson localization
in atomic chains [63, 64]. It would similarly be interesting to
consider systems with random arrangements of cells.

3.4. Material Optimization
In Ref. [19], Daraio et al. investigated the optimization of

a composite granular protector consisting of 22 stainless steel
beads and 10 PTFE beads (see Table 2) with a uniform radius
of 2.38 mm. The authors examined different design solutions,
based on material distribution, using both numerical and labora-
tory experiments. The protector they considered was impacted
by an Al2O3 striker (0.47 g) with initial velocity of 0.44 m/s and
was initially precompressed by a static force of 2.38 N. Using
piezosensors embedded in selected particles, they obtained
laboratory measurements of force versus time profiles in several
beads and compared them against numerical predictions. Here
we report analogous experiments to confirm the results that we
obtained from optimization. We used a four-garolite-rod stand
as the holder for the beads and assembled sensors as described
in Refs. [25, 60]. We selected a steel particle (0.45 g) as the
striker and recorded the traveling signal with a TKTDS 2024
oscilloscope (Tektronix, Inc.). The sensors (PiezoSystems, Inc.)
were calibrated by conservation of linear momentum. The 1.86
N static precompression included the preloading of the topmost
particle with about 190 g of symmetrically suspended masses.

Figure 15 shows numerical and experimental force record-
ings in a soft-hard-soft configuration (see Figure 2 of Ref. [19])
with sequences of five PTFE beads at both the top and bot-

tom of the chain. This system had the minimum value of Fout

of all of the configurations considered in [19]. (A different,
hard-soft-hard-soft-hard configuration minimized Fout /Fin ra-
tio, as shown in Figure 3 of Ref. [19].) Observe the good
qualitative agreement between numerical and experimental re-
sults over the initial phase of the pulse propagation. The dynam-
ics of the experiments and numerics subsequently deviate from
each other, as the laboratory tests are affected by dissipative
effects that are not included in the numerics. Dissipation can
arise from friction, inelastic collisions, viscous drag, etc. The
experimental traveling wave is thus progressively damped as it
travels through the chain, resulting in an even better protector.

We carried out a material optimization by introducing 32
genes xi related to the material identification of the individual
beads (not including the striker). They are defined such that
xi ∈ [0, 0.5] implies that the (i + 1)th bead is made of PTFE,
whereas xi ∈ (0.5, 1] implies that the same bead is instead
made of stainless steel. (We assumed that the striker was al-
ways made of steel.) We constrained the total number of PTFE
beads to be equal to 10 through a penalty technique. We also
introduced an additional gene (so that the total number of genes
M is equal to 33) related to the intensity of the preloading,
allowing the static precompression force F0 to vary continu-
ously within the interval [0, 2.38] N (i.e., F0 = 2.38x33 N).
The optimized system, obtained after about 110 BGA gener-
ations, is shown in Figure 16 together with the corresponding
numerical and experimental force plots (xopt = {111, 0, 12, 0, 1,

02, 1, 02, 17, 04}, where 1 denotes a steel particle and 0 denotes
a PTFE particle). As in the previous examples, observe that the
material-optimized system contains soft beads near the wall,
hard beads near the end impacted by the striker, and alternat-
ing hard and soft beads in the central section of the chain. We
computed the optimal precompression force to be about 1.86 N.
Both the numerical and the experimental force plots of Figuer 16
show that the leading solitary wave first decomposes into a
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12 F. FRATERNALI ET AL.

FIG. 14. (Left) Density plots (colored by force, with larger values given by darker shading) for (top row) decorated chain of Figure 7 and for decorated chains
with a single impurity in each 19-particle cell between beads 501 and 1000 (second row), 801 and 1000 (third row), and 951 and 1000 (bottom row). (Right) Force
(in kN) vs. time plots for particle 1500 in each of these chains.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
a
r
a
i
o
,
 
C
h
i
a
r
a
]
 
A
t
:
 
2
1
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
0



COMPOSITE GRANULAR PROTECTORS 13

FIG. 15. Force vs. time plots in a soft-hard-soft granular chain. (The applied precompression was added to the force profiles experimentally recorded through
piezosensors.)

FIG. 16. Force vs. time plots in the material-optimized system. (The applied precompression was added to the force profiles experimentally recorded through piezosensors.)

FIG. 17. Density plots of particle energies normalized to unity. Horizontal axes are labeled according to particle site and vertical axes give the time step.
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14 F. FRATERNALI ET AL.

FIG. 18. Hong’s container and optimized composite long chains (showing half of the chain; the other half is obtained by reflection about the right end of the
depicted half).

FIG. 19. Force vs. time plots in a long composite chain subject to impulsive loading (force values divided by 1000).
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COMPOSITE GRANULAR PROTECTORS 15

FIG. 20. Energy vs. time plots in Hong’s container and the optimized chain under impulsive loading.

train of small pulses and subsequently mutates into an extended
(long-wavelength), small-amplitude wave. The density plots of
Figure 17 illustrate the mechanisms of wave disintegration and
reflection characterizing the dynamics of these systems. The
experimental results presented in this article and in Ref. [19]
confirm the enhanced performance of the BGA-optimized sys-
tem (minimum Fout ), as compared to all of the other examined
protectors.

3.5. Long Composite Protector
In a recent paper [23], Hong investigated a long 1D com-

posite granular protector (or “energy container”) consisting of
nine 20-bead sections. The beads in this chain were made of
four different materials with varying particle mass m, contact
stiffness α, and contact exponent n (see the parameter values in
Table 1). Hong used abstract units, introducing factors of 10−5

m, 2.36 × 10−5 kg, and 1.0102 × 10−3 s to convert the adopted
units of length, mass, and time, respectively, into real units. The
terminal and central sections of the protector are composed of
a (linear) material (“material 1”) characterized by a contact ex-
ponent n = 1 and mass m = 2. The remaining inner sections
are composed of beads (made of nonlinear materials) that have

different masses and contact exponents greater than 1 (materials
2, 3, and 4). This is used to simulate sharp contact surfaces and
rough materials such as sand (see Figure 18). The container has
a reflection symmetry about its center and the initial distance
between particle centers of mass is uniformly equal to 200 along
its body.

Hong analyzed the behavior of this container (and variations
thereof) by considering its dynamics after the impact of a striker
of mass m = 100 traveling with speed v = 10. He ran numeri-
cal simulations of the chain dynamics, employing a Hertz-type
contact model and introducing lateral constraints through ad-
ditional beads consisting of very heavy grains (m = 100). He
found a universal power-law scaling for how long it took the
energy to leak from the protector to the lateral sides. That is,
the energy remaining in the protector is given by ER = At−γ,
where A is a constant that depends on the protector construc-
tion, t is the time, and γ is a constant (that Hong estimated
in Ref. [23] to be about 0.7055) independent of the protector
construction.

We carried out a joint topology-material optimization of
Hong’s container (shown in the top panel of Figure 18), introduc-
ing M = 90 genes xi that characterize the material identification
of each individual bead. The conditions xi ∈ [0, 0.25], xi ∈

FIG. 21. Density plots of particle energies normalized to unity. Horizontal axes are labeled according to particle site and vertical axes give the time step.
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16 F. FRATERNALI ET AL.

FIG. 22. Energy correlation function vs. time for the examined systems.

(0.25, 0.5], xi ∈ (0.5, 0.75], and xi ∈ (0.75, 1] respectively im-
ply that the ith bead of one half of the protector is composed of
material 1, 2, 3, and 4. We enforced the symmetry with respect to
the center of the chain by suitably relating the material identifi-
cation numbers of the 90 grains in the second half to those of the
grains in the first half. We did not enforce any constraints on the
numbers of beads of the different materials. Due to the symmetry
constraint, the optimized protector is not allowed to have differ-
ent constructions near the impacted and the constrained ends, in
contrast to the protectors we examined in the previous sections.

3.5.1. Impulsive Loading
In our first optimization procedure, we considered the impact

of an m = 2 striker (material 1) traveling with speed v = 10. We
show the corresponding optimized protector, which we obtained
after about 400 BGA generations, in Figure 18. This optimal im-
pulse absorber has nonlinear beads near its extremities and in
its center and sequences of linear beads in its remaining sec-

tions (a few of them are also near the center of the half chain).
We show the corresponding force plots and energy profiles (as
well as the ones for Hong’s container) in Figures 19 and 20, re-
spectively. Observe that the optimized scheme transmits to the
wall a maximum force (126) that is about three times smaller
than that transmitted by the basic scheme (371). As in the pre-
vious examples, the initial pulse is progressively disintegrated,
reflected, and transformed into an extended wave within the
optimized system (as confirmed also by the density plots of Fig-
ure 21). Hong’s container instead shows wave reflection only
when the incident wave crosses the central section of the system.
The time histories of the energy correlation function, depicted in
Figure 22, highlight the fact that the optimized system spreads
out energy (i.e., thermalizes) on a faster time scale than Hong’s
container.

3.5.2. Shock-Type Loading
We also carried out an optimization procedure using a shock-

type force profile with constant intensity F = 1000 on the
first bead (composed of material 1), external to the container,
for a time equal to 0.25. We show the corresponding optimal
container, which we obtained after about 200 BGA generations,
in Figure 18. The force-time plots of this optimal shock absorber
and those of the basic Hong configuration, with the shock-type
loading, are shown in Figure 23. Observe that the basic protector
transmits to the wall a peak force (1300 units) larger than the
force of the applied shock, whereas the optimized system is able
to reduce the shock’s force at the wall to a peak of 770 units
(a 23% reduction). Note additionally that the optimal shock
absorber is characterized by heavy, linear (material 1) grains
near the extremities (see Figure 18). This is likely due to the
symmetry constraint discussed above. Figure 23 also shows that
the input shock gets weakened when traveling along the optimal

FIG. 23. Force vs. time plots in a long composite chain subject to shock-type loading (forces values divided by 1000).
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COMPOSITE GRANULAR PROTECTORS 17

FIG. 24. Density plots of particle energies normalized to unity. Horizontal axes are labeled according to particle site and vertical axes give the time step.

protector. We show the density plots of particle energies in these
two systems in Figure 24.

4. CONCLUSIONS
In summary, we used an evolutionary algorithm to investigate

the optimal design of composite granular protectors using one-
dimensional chains of beads composed of materials of various
size, masses, and stiffnesses. Identifying the maximum force
Fout transmitted from the protector to a “wall” that represents
the body to be protected as a fitness function, we optimized the
topology (arrangement), size, and material of the beads in the
chain in order to minimize Fout . We considered several exam-
ples that were investigated recently in the literature, including
stepped two sonic vacua, tapered chains, decorated chains, and
a recent configuration due to Hong.

The optimization procedure, driven by a Breeder Genetic
Algorithm, produced (optimally) randomized/disordered sys-
tems, along which the incident waves were disintegrated and
reflected, exhibiting marked thermalization. Additionally, the
solitary pulses traveling to the wall combined to form extended
(long-wavelength), small-amplitude waves. In the absence of
enforced bilateral symmetry, the optimal configurations had
soft/light beads near the wall, hard/heavy beads near the loaded
end, and alternating hard/heavy and soft/light beads in the re-
maining part of the chain. In the presence of bilateral symmetry,
we instead obtained an optimal configuration that had light, non-
linear beads toward the ends in the case of impulsive loading
and one that had heavy, linear beads toward the ends in the case
of shock-type loading.

The present research paves the way for many interesting de-
velopments, as our approach can be generalized to numerous
situations. First, the techniques we employed can be applied
to more intricate experimental configurations—including two-
dimensional systems, three-dimensional systems, systems com-
posed of ensembles of particles with non-spherical geometries,
and even layered materials. Second, one can incorporate addi-

tional physical effects, such as dissipation and more complicated
contact mechanics. Third, one can generalize the methods them-
selves by, for example, adopting continuous optimization tech-
niques such as the material distribution method [27] or formu-
lating multiple-scale approaches that involve scale-dependent
interaction forces.
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