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Human activities increasingly take place in online environments,
providing novel opportunities for relating individual behaviors to
population-level outcomes. In this paper, we introduce a simple
generative model for the collective behavior of millions of social
networking site users who are deciding between different software
applications. Our model incorporates two distinct mechanisms: one
is associated with recent decisions of users, and the other reflects
the cumulative popularity of each application. Importantly, although
various combinations of the two mechanisms yield long-time behav-
ior that is consistent with data, the only models that reproduce the
observed temporal dynamics are those that strongly emphasize the
recent popularity of applications over their cumulative popularity.
This demonstrates—evenwhen using purely observational data with-
out experimental design—that temporal data-driven modeling can
effectively distinguish between competing microscopic mechanisms,
allowing us to uncover previously unidentified aspects of collective
online behavior.

branching processes | complex systems

The recent availability of datasets that capture the behavior of
individuals participating in online social systems has helped

drive the emerging field of computational social science (1), as
large-scale empirical datasets enable the development of de-
tailed computational models of individual and collective behav-
ior (2–4). Choices of which movies to watch, which mobile
applications (“apps”) to download, or which messages to retweet
are influenced by the opinions of our friends, neighbors, and
colleagues (5). Given the difficulty in distinguishing between
potential explanations of observed behavior at the individual
level (6), it is useful to examine population-level models and at-
tempt to reproduce empirically observed popularity distributions
using the simplest possible assumptions about individual behavior.
Such generative models have arisen in a wide range of disciplines—
including economics (7, 8), evolutionary biology (9, 10), and physics
(11). When studying generative models, the microscopic dynamics
are known exactly, so it is possible to explore the population-level
mechanisms that emerge in a controlled manner. This contrasts
with studies driven by empirical data, in which confounding effects
can always be present (6). The value of explanations based on
mechanisms has long been appreciated in sociology (12–14), and
they have recently received increased attention due to the avail-
ability of extensive data from online social networks (15–18).
One well-studied rule for choosing between multiple options is

cumulative advantage (also known as preferential attachment),
in which popular options are more likely to be selected than
unpopular ones. This leads to a “rich-get-richer” agglomeration
of popularity (7, 9, 19–22). Bentley et al. (5, 23, 24) proposed an
alternative model, in which members of a population randomly
copy the choices made by other members in the recent past. As
a result, products whose popularity levels have recently grown
the fastest are the most likely to be selected (whether or not they
are the most popular overall). In the present paper, we show that
models of app-installation decisions that are biased heavily

toward recent popularity rather than cumulative popularity
provide the best fit to empirical data on the installation of
Facebook apps. We use the model to identify the timescales over
which the influence of Facebook users upon each others’ choices
is strongest, and we argue that the interaction between these
timescales and the diurnal variation in Facebook activity yields
many of the observed features of the popularity distribution of
apps. More generally, we illustrate how to incorporate temporal
dynamics in modeling and data analysis to differentiate between
competing models that produce the same long-time (i.e., after
transients have died out) behavior.
We use the Facebook apps dataset that was first reported in

ref. 15 by Onnela and Reed-Tsochas. These data include the
records, for every hour from June 25, 2007 to August 14, 2007, of
the number of times that every Facebook app (of the n = 2,705
total available during this period) was installed. At the time,
Facebook users had two streams of information about apps:
a “cumulative information” stream gave an “all-time best-seller”
list, in which all apps were ranked by their cumulative popularity
(i.e., the total number of installations to date), and a “recent ac-
tivity information” stream consisted of updates provided by
Facebook on the recent app installation activity by a user’s friends.
Users could also visit the profiles of their friends to see which
applications a friend had installed.
The data thus consist of N time series ni(t), where the “pop-

ularity” ni(t) of app i at time t is the total number of users who
have installed app i by hour t of the study period. The discrete
time index t counts hours from the start of the study period (t = 0)
to the end (t = tmax ≡ 1,209). The distribution of ni values is
heavy-tailed (SI Appendix, Fig. S1), so the popularities ni(t) of
the apps cover a very wide range of scales. Facebook apps first
became available on May 24, 2007, corresponding to t ≈ −720 in
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our notation. By time t = 0, when the data collection began,
980 apps had already launched (with unknown launch times);
the remaining apps in our dataset were launched during the
study period. Among the latter, we pay particular attention to
those for which we have at least tLES ≡ 650 h (i.e., more than
one-half of the data collection window) of data. We call these

apps the “launched-early-in-study” (LES) apps. Denoting by
ti the launch time of app i, the 921 LES apps i are those that
satisfy ti > 0 and ti < tmax − tLES = 559. We set ti = 0 for apps
that were launched before the study period.
To measure the change in app popularity during hour t,

we define the “increment” in popularity of app i at time t as
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Fig. 1. (Left) Mean scaled age-shifted growth rate r(a), (Center) distributions of app popularity, and (Right) popularity over time for the top-five apps,
showing turnover. (A and B) Behavior of the entire LES set of applications and its two subsets (which are described in the text); (C ) trajectories of the top-
five apps in the dataset (ordered by popularity at t = 0; note apps that were not in the t = 0 top-five are not shown here but can be seen in SI Appendix,
Fig. S7). (D–F ) Cumulative-information model (γ = 1), for which (E ) shows popularity distributions at t = tmax (upper symbols) and for LES app growth to
age a = tLES (lower symbols); empirical data are in black. (G–I) Recent-activity model with short memory (γ = 0, H = 168, T = 5). (J–L) Recent-activity model
with long-memory (γ = 0, H = 168, T = 50).
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fi(t) = ni(t) − ni(t − 1) [with fi(t) = 0 for t ≤ ti] (15). The total app
installation activity of users during hour t is then as follows:

FðtÞ=
XN
i=1

fiðtÞ: [1]

We show in SI Appendix, section SI1 that F(t) has large diurnal
fluctuations superimposed on a linear-in-time aggregate growth.
We define the “age-shifted popularity” ~niðaÞ= niðti + aÞ and

“age-shifted increment” ~f iðaÞ= fiðti + aÞ of app i at age a to en-
able comparison of apps when they are the same age (i.e., at the
same number of hours after their launch). An examination of the
trajectories of the largest LES apps reveals that their popularity
grows exponentially for some time before reaching a steady-
growth regime in which ~niðaÞ increases approximately linearly
with age. The corresponding age-shifted increment functions
~f iðaÞ reach a “plateau” at large a, although they have a super-
imposed 24-h oscillation (SI Appendix, Figs. S3 and S4). To study
the entire set of LES apps, we scale the increment ~f i of app i by
its temporal average ~μi = ðPtLES

a=1  
~f iðaÞÞ=tLES over the first tLES =

650 observations for each app. This weights very popular apps
and other (less popular) apps in a similar manner (25). For
a given set I of LES apps, we define the “mean scaled age-
shifted growth rate” as follows:

rðaÞ=
*
~f iðaÞ
~μi

+
I
; [2]

where 〈·〉 denotes an ensemble average over all apps in the set I .
The mean scaled age-shifted growth rate reveals several in-

teresting features (Fig. 1A). First, at large ages (e.g., a ≥ 150 h),
the function r(a) has 24-h oscillations superimposed on a nearly
constant curve. The behavior of r(a) is very different for smaller
ages; we dub this the “novelty regime,” as it represents the
(approximately 1-wk) time period that immediately follows the
launch of apps. The r(a) curve for the entire LES set is similar to
those found by splitting the LES set into two disjoint subsets
based on ordered launch times—the 460 applications with earlier
launch times (ti ≤ 260; early-launch) and the 461 applications
with later launch times (ti ≥ 261; late-launch). The small differ-
ence between the r(a) curves for these cases gives an estimate of
the inherent variability within the data and sets a natural target
for how well stochastic simulations can fit the data. We find
similar results for other subsets of the same size (SI Appendix,
section SI3).
To directly measure the growth of new apps in their first tLES

hours, we show the distribution of ~niðtLESÞ− ~nið0Þ for the entire
LES set in Fig. 1B. We also show the corresponding distributions
for the two LES subsets (early and late launch). The similarity of
distributions for early-born apps and late-born apps implies that
the launch time, at least in the period that we examined, does not
have a strong effect on the growth of new apps. This contrasts
with Yule–Simon models of popularity (7, 21, 26) and related
preferential-attachment models used to model citations (11). In
these models, early-born apps have more time to accumulate
popularity and hence exhibit a different aging behavior to later-
born apps (27).
In Fig. 1C, we examine changes in the rank order of the top-5

list of apps by plotting the trajectories of the largest apps (ranked
by their popularity at time t = 0) over the duration of the study
(and see SI Appendix, Fig. S7, for plots of top-10 lists). Repro-
ducing realistic levels of turnover in such lists is a challenging test
for models of popularity dynamics (24, 28).
The popularity dynamics for the novelty regime seem to be

app-specific (Fig. 1A and SI Appendix, Fig. S4), but a simple model
can satisfactorily describe the postnovelty regime. We introduce
a general stochastic simulation framework with a “history-window

parameter” H and consider an app to be within its “history
window” for the first H hours that data on the app are available.
The history window of LES apps extends from their launch time
to H hours later; for non-LES apps, we define the history window
to be the first H hours (t = 0 to t = H) of the study. We conduct
stochastic simulations by modeling F(t) computational “agents”
in time step t, each of whom installs one app at that time step.
We take the values of F(t) from the data (Eq. 1). Note that our
simulated agents do not correspond directly to Facebook users,
as we do not have data at the level of individual users. In reality,
a Facebook user can, for example, install several different apps
during an hour; in our simulations, however, such actions would
be modeled by the choices of several agents.
We simulate the choices of the agents as follows. First, for any

app i that is in its history window at time t, we copy the increment
fi(t) directly from the data. This determines the choices of FH(t)
of the agents, where FH(t) is the number of installations of all
apps that are within their history window at time t. Each of the
remaining F(t) − FH(t) agents then installs any one of the apps
that are not in their history window. An installation probability
pi(t) is allocated based on model-specific rules (see below), and
the F(t) − FH(t) agents each independently choose app i with
probability pi(t). These rules ensure that the total number of
installations in each hour exactly matches the data and that the
history window of each app is reproduced exactly.
We investigate several possible choices for pi(t) by comparing

the results of simulations with the characteristics of the data
highlighted in Fig. 1 A–C. The history-window parameter H plays
an important role in capturing the app-specific novelty regime.
However, if H is very large, then most of the simulation is copied
directly from the data and the decision probability pi(t) becomes

Fig. 2. Schematic of the model. The squares indicate the number of in-
stallations at time t of two example apps; their size represents the number of
installations of an app in a particular hour. The circles represent agents, and
the arrows indicate the adoption of an app. In the history window (ages 0 to
H), we copy the installation history directly from the data. Outside of the
history windows, we simulate the actions of F(t) agents by assigning prob-
abilistic rules for how they choose which app to install. An agent who uses
(Left) the recent-activity rule at a given time copies the choice of an agent
who acted in the recent past, so apps that were recently more popular are
more likely to be chosen. By contrast, an agent who uses (Right) the cu-
mulative rule at a given time installs the app with the larger number of
accumulated installations. We represent this cumulative popularity using
the dashed contour, which increases in width with time as more instal-
lations occur.
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irrelevant. It is therefore desirable to find models that fit the
data well while keeping H as small as possible. Motivated by
the information available to Facebook users during the data col-
lection period, we propose a model based on a combination of a
“cumulative rule” pci ðtÞ and a “recent activity rule” pri ðtÞ. See the
schematic in Fig. 2.
An agent who uses the cumulative rule at time t chooses app

i with a probability proportional to its cumulative popularity
ni(t − 1), yielding the following:

pci ðtÞ=K   niðt− 1Þ; [3]

where the constant K is determined by the normalizationP
ip

c
i ðtÞ= 1. In contrast, an agent who follows the recent-activity

rule at time t copies the installation choice of an agent who acted
in an earlier time step, with some memory weighting (Eq. 4
below). Consequently, apps that were recently installed by many
agents [i.e., apps with large fi(τ) values for τ ≈ t] are more likely
to be installed at time step t even if these apps are not yet
globally popular [i.e., ni(t − 1) can be small]. In reality, the in-
formation available to Facebook users on the recent popularity
of apps was limited to observations of the installation activity of
their network neighbors. As we lack any information on the real
network topology, we make the simplest possible assumption:
that the network is sufficiently well-connected (see ref. 29 for
a study of Facebook networks from 2005) to enable all agents in
the model to have information on the aggregate (system-wide)
installation activity. When applying the recent-activity rule, an
agent chooses app i with a probability proportional to the recent
level of that app’s installation activity:

pri ðtÞ=L
Xt−1
τ=0

W ðt− τÞfiðτÞ; [4]

where L is determined by the normalization
P

i p
r
i ðtÞ= 1. The

“memory function” W(τ) determines the weight assigned to
activity from τ hours ago and thereby incorporates human-activity
timescales (30). In SI Appendix, we consider several examples
of plausible memory functions and also examine the possibility of
heterogeneous app fitnesses.
If our dataset included the early growth of every app, then

a constant weighting function W(t) ≡ 1 would reduce pri to pci .
However, because of our finite data window, many apps have
large values of ni(0), so we cannot capture the cumulative rule by
using a suitable weighting function in the recent-activity rule.
Instead, we introduce a tunable parameter γ ∈ [0, 1] so that the
population-level installation probability pi used in the simulation
is a weighted sum,

piðtÞ= γ   pci ðtÞ+ ð1− γÞ pri ðtÞ; [5]

that interpolates between the extremes of γ = 0 (recent-activity
rule) and γ = 1 (cumulative rule). The model ignores externalities

between apps, an assumption that is supported by the results
of ref. 15.
To explore our model, we start by considering the case γ = 1,

in which agents consider only cumulative information. In Fig. 1
D–F, we compare the results of stochastic simulations with the
data (Fig. 1 A–C) using a history window of H = 168 h (i.e.,
1 wk). Clearly, the cumulative model does not match the data
well. Although the app popularity distributions at t = tmax are
reasonably similar (Fig. 1E), the largest popularities are over-
predicted by the model. By contrast, the popularity of the LES
apps—which include many of the less popular apps—is under-
predicted. In particular, their mean scaled age-shifted growth
rate has a lower long-term mean than that of the data (Fig. 1D).
Recall from Eq. 2 that each app’s increments are scaled by their
temporal average ~μi before ensemble averaging to calculate r(a).
As a result, any error in predicting the value of ~μi has an effect on
the entire r(a) curve. This explains why, for example, the values
of r(a) for a < H are overpredicted in Fig. 1D, despite the fact
that the increments in this regime are copied from the data. The
corresponding temporal averages are too low, so the scaled in-
crement values are too high. In Fig. 1F, we illustrate that the
ordering among the top-five apps does not change in time for this
model, so it does not produce realistic levels of app-popularity
turnover (Fig. 1C and SI Appendix, Fig. S7). In SI Appendix, sections
SI6 and SI7, we demonstrate that several alternative models
based on cumulative information also match the data poorly.
We next consider the case in which γ is small, so recent infor-

mation dominates (5, 24). In Fig. 3, we show results for stochastic
simulations using an exponential response-time distribution PðtÞ=
ð1=TÞe−t=T to determine the weights W(t) assigned to activity
from t hours earlier for varying history-window lengths H and
response-time parameters T. The colors in the (H, T) parameter
plane represent the L2 error, which is given by the L2 norm of the
difference between the simulated r(a) curve and the r(a) curve
from the data. A value of 3.11 is representative of inherent fluc-
tuations in the data (SI Appendix, section SI3), and the bright
colors in Fig. 3 represent parameter values for which the differ-
ence between the model’s mean growth rate and the empirically
observed growth rate is less than the magnitude of fluctuations
present in the data. Observe that the model requires a history
window of approximately 1 wk (i.e., H ≈ 168 h) to match the
data. As γ increases, cumulative information is weighted more
heavily, and the region of “good-fit” parameters moves toward
larger T and larger H (SI Appendix, section SI3). As noted
previously, large-H models trivially provide good fits (because
they mostly copy directly from data), but the γ = 0 case provides
a good fit to the data even with a relatively short history
window H.
In Fig. 1 G–I, we compare model results with data for param-

eter values H = 168, T = 5, and γ = 0 (i.e., the “recent-activity,
short-memory” case). This reproduces the app popularity distri-
butions of the data rather well, but the mean scaled age-shifted
growth rates are markedly different. In contrast, Fig. 1 J–L

Fig. 3. Parameter planes showing the L2 error (SI Appendix, section SI3) for the r(a) curve for the recent-activity–dominated model described in the text. The
parameter H is the length of the history window, and T is the mean of the exponential response-time distribution. For each point in the plane, we average
values of the L2 error over 24 realizations. We show all values above 3.11 as dark red.
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compare model results with data for parameter values H = 168,
T = 50, and γ = 0 (i.e., the “recent-activity, long-memory” case).
These parameters are just inside the good-fit region of Fig. 3A,
so the r(a) curve in Fig. 1J matches the data well. Moreover, the
popularity distributions at t = tmax and at age tLES (Fig. 1K) are
both reasonably matched by the model, which also allows re-
alistic turnover in the top-10 list (Fig. 1L and SI Appendix, Fig.
S7). These considerations highlight the importance of using
temporal data to develop and fit models of complex systems.
Distributions at single times can be insensitive to model dif-
ferences, and the r(a) curves are crucial for distinguishing
between competing models. In SI Appendix, section SI4, we
show that the recent-activity (γ = 0) case still gives good fits
to the data if the exponential response-time distribution is
replaced by a lognormal, gamma, or uniform distribution.
Another noteworthy feature of the recent-activity case is its

ability to produce heavy-tailed popularity distributions in
stochastic simulations even if no history is copied from the data
(H = 0). Even if all apps initially have the same number of in-
stallations, random fluctuations lead to some apps becoming
more popular than others, and the aggregate popularity dis-
tribution becomes heavy-tailed (10, 23, 24, 31). In SI Appendix,
section SI5, we show that this situation is described by a near-
critical branching process, for which power-law popularity dis-
tributions are expected (32–36).
Our model suggests that app adoption among Facebook users

was guided more by recent popularity of apps (as reflected in
installations by friends within 2 days) than by cumulative popu-
larity. The fact that the model is a near-critical branching process
might help to explain the prevalence of heavy-tailed popularity
distributions that have been observed in information cascades on
social networks, such as the spreading of retweets on Twitter (4, 17,
18) or news stories on Digg (37). The branching-process analysis is
also applicable to the random-copying models of Bentley et al. (5,
23, 24). Although most random-copying models consider only short
(e.g., single time-step) memory (5, 23), the simulation study of ref.

24 includes a uniform response-time distribution and demonstrates
the role of memory effects in generating turnover. As shown in Fig.
1 and detailed in SI Appendix, section SI7, generating realistic
turnover of rank order in the top-10 apps is a significant challenge
for all models based on cumulative information, even those that
include a time-dependent decay of novelty (38, 39). In SI Ap-
pendix, section SI9, we show that our model can also explain the
results of the fluctuation-scaling analysis of the Facebook apps
data in ref. 15 that highlighted the existence of distinct scaling
regimes (depending on app popularity).
Our approach also highlights the need to address temporal

dynamics when modeling complex social systems. Online experi-
ments have been used successfully in computational social sci-
ence (1), but it is challenging to run experiments in online
environments that people actually use (as opposed to creating
new online environments with potentially distinct behaviors). If
longitudinal data are available, as in the present case, it is pos-
sible to evaluate a model’s fit based not only on long-time be-
havior but also on dynamical behavior. Given that several models
successfully produce similar long-time behavior, the investigation
of temporal dynamics is critical for distinguishing between com-
peting models. As more observational data with high temporal
resolution from online social networks become available, we believe
that this modeling strategy, which leverages temporal dynamics,
will become increasingly essential.
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Supplementary Information for “A Simple Generative Model of

Collective Online Behaviour”

James P. Gleeson, Davide Cellai, Jukka-Pekka Onnela, Mason A. Porter, and Felix
Reed-Tsochas

SI1: Data Cleaning and Aggregate Installation Activity

The data was downloaded from Facebook for all existing 2720 applications (“apps”) between
25 June 2007 (shortly after applications were introduced) and 14 August 2007 [1]. The data
consists of time series ni(t), where i ∈ {1, 2, . . . , 2720}, discrete time is indexed by the (real-
time) hour t ∈ {0, 1, 2, . . . , 1209}, and ni(t) corresponds to the aggregate number of users who
have application i installed at time t. Data for 15 applications was corrupted, so we omitted
these from our investigation and examined a total of N = 2705 applications. This data covers
100% of the population of 50 million potential app adopters and about 99% (2705 of 2720) of all
applications that could be adopted. This thereby gives an almost complete view of system-wide
adoptions during the time period of the data collection. We define the launch time ti of app i as
the smallest value of t for which ni(t) > 0, and we define the increment in hour t for app i to be
fi(t) = ni(t) − ni(t− 1).

The data-cleaning process involves removing any undefined values within the data and imput-
ing replacement values. For each app i, if fi(t) is undefined for t > ti, then we copy the most
recent well-defined increment value for app i into fi(t). A second cleaning step entails remov-
ing negative values of fi(t). Such values correspond to the (rare) cases in which deinstallations
exceeded installations of an app in a given hour. We do this by setting any instances in the
data with fi(t) < 0 to fi(t) = 0. The effects of the data cleaning are small in the context of
the aggregate statistical characteristics of the data. In Fig. S1, the distribution function of the
popularity at t = tmax for the cleaned data is shown in black. We show the corresponding function
that uses the raw (pre-cleaning) ni(t) time series as red circles. The two distributions are almost
indistinguishable, except for the smallest (i.e., least popular) apps, indicating that the cleaned
data is very similar to the original data.

Figure S1 shows that the popularities ni(t) of the apps cover a range of scales from very small
to extremely popular and that the distribution of ni values is heavy-tailed. In Fig. S2, we show
the total app installation activity F (t), which is defined by Eq. (1) of the main text, of Facebook
users during hour t. This function exhibits slow growth and 24-hour oscillations. We highlight
these features by also plotting a linear growth function A(t) = c1 + c2t and (as a guide to the eye)
a growing oscillation A(t)ψ(t), where ψ(t) = 1 + 0.5 cos(2π(t + 8)/24) gives the oscillatory part
of the function. Least-squares fitting gives c1 ≈ 5.5 × 104 and c2 ≈ 49. Thus, by t = tmax (i.e.,
the end of the data-collection period), the mean hourly installation rate is approximately twice
as large as it was at t = 0.
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Figure S2: Total installation activity in hour t, as defined in Eq. (1) in the main text. We describe
the linear growth function A(t) and the 24-hour oscillation function ψ(t) in Section SI1.
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Rank Name C D E θ

1 Likeness 1.59 × 105 1.48 × 10−2 5.63 × 103 35
2 FunWall 4.25 × 107 5.26 × 10−5 3.31 × 103 481
3 What’s your stripper name? 4.10 × 104 1.12 × 10−2 2.30 × 103 243
4 My Aquarium 4.44 × 103 2.85 × 10−2 2.10 × 103 99
5 Vampires 3.14 × 104 2.58 × 10−2 1.77 × 103 48
6 Harry Potter Magic Spells 3.10 × 104 8.30 × 10−3 1.22 × 103 350
7 Pirates vs. Ninjas 7.65 × 103 1.23 × 10−2 1.70 × 103 236
8 Booze Mail 7.22 × 103 9.95 × 10−3 1.88 × 103 329
9 Superlatives 1.14 × 104 7.24 × 10−3 1.50 × 103 402
10 Texas HoldEm Poker 1.10 × 104 8.24 × 10−3 1.02 × 103 399

Table S1: Parameter values for the fitting functions m(a) used in Fig. S3.

SI2: Top Ten Launched-Early-in-Study (LES) Apps

In Fig. S3, we show the ten most popular Launched-Early-in-Study (LES) apps. We order them
by ñi(tLES), which denotes the number of installations by age tLES ≡ 650. To highlight common
features of app growth, we use the heuristic fitting function

m(a) =
{

C(eDa − 1) , if a ≤ θ,
C(eDθ − 1) + E(a− θ) , if a > θ ,

(S1)

where the parameters C, D, E, and θ are determined by least-squares fitting of m(a) to ñi(a) −
ñi(0) for each app i. We give the values of these parameters in Table S1. The parameter values
that we obtain are sensitive to the initial guesses that are used in the fitting routine, but it is
nevertheless clear that most apps exhibit exponential growth in a novelty regime (i.e., when age
a < θ) followed by linear growth at later ages (i.e., a > θ).1

In Fig. S4, we show the scaled age-shifted growth rates f̃i(a)/µ̃i for the three most popular
LES apps and the mean scaled age-shifted growth rate r(a) (as defined in Eq. (2) of the main
text) for the set of top-20 LES apps. At large values of a, the function r(a) is qualitatively similar
to that of the full LES set in Fig. 1a in the main text, as it exhibits a “quasi-stationary” (i.e.,
constant plus 24-hour oscillations) behaviour. However, the small-a novelty regime is different
in the two cases; this reflects differences in early-stage growth patterns. In particular, the most
popular apps exhibit steadily growing popularity during the novelty regime. This is consistent
with the exponential growth in Fig. S3, but it contrasts with the decrease in novelty experienced
by the majority of apps in their early stages (and reflected in the r(a) curve in Fig. 1a of the main
text).

1The notable exception among the top 10 in terms of fitting quality is Harry Potter Magic Spells (the 6th most
popular app).

3



0 200 400 600
0

2

4
x 10

6

a

ñ(
a)

0 200 400 600
0

10

x 10
5

a

ñ(
a)

0 200 400 600
0

10

x 10
5

a

ñ(
a)

0 200 400 600
0

5

10

x 10
5

a
ñ(

a)

0 200 400 600
0

5

10

x 10
5

a

ñ(
a)

0 200 400 600
0

5

x 10
5

a

ñ(
a)

0 200 400 600
0

5

x 10
5

a

ñ(
a)

0 200 400 600
0

5

x 10
5

a

ñ(
a)

0 200 400 600
0

5

x 10
5

a

ñ(
a)

0 200 400 600
0

5

x 10
5

a

ñ(
a)

1: Likeness 2: FunWall

3: What’s your
    stripper 
    name?

4: My Aquarium

5: Vampires 6: Harry Potter
    Magic
    Spells

7: Pirates vs. 
    Ninjas

8: Booze Mail

9: Superlatives 10: Texas HoldEm
       Poker
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SI3: Further Information on Figure 1 of the Main Text

SI3.1 Discussion of the L2 Error in the Mean Scaled Age-Shifted Growth Rate

In Fig. 1a of the main text, we saw that the mean scaled age-shifted growth rate r(a) for the
entire LES set is similar to the corresponding r(a) curves that we obtained by splitting the LES
set into two disjoint subsets: the early-launch subset and the late-launch subset. To quantify the
level of inherent diversity within the data, we calculate the L2 norm of the difference between the
r(a) curves and call this the L2 error of the partition:

EL2 =

√√√√tLES∑
a=1

(rLES(a) − rsubset(a))
2 . (S2)

For the aforementioned subsets, we find that the L2 error is less than 3.11, and we take this value
to represent a natural target for how well stochastic simulations can be fit to the data. In Fig. 3
of the main text, we showed all L2 error values above 3.11 as dark red, and we concentrated on
the light-coloured regions of the (H,T ) parameter plane, as these constitute the locations where
high-quality fits are possible.

We obtain similar results for any partition into two disjoint subsets of the same sizes as above.
In Fig. S5, we again show the results of Figs. 1a,b of the main text, but we now also include
curves for which we only use a subset (chosen uniformly at random and without replacement)
that includes 460 of the LES apps. The randomly-chosen subset has very similar characteristics
to the early-launch and late-launch subsets. Using 5000 realization of randomly drawn subsets of
the same size, the mean L2 error is 1.99 (with a standard deviation of 0.13.

In Fig. S6, we show the L2 error EL2 as a function of the memory time T for exponential
memory function W (τ) for a fixed history window of length H = 168 and several values of the
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Figure S7: Growth trajectories of the 10 most popular apps in (a) data (as Fig. 1c), (b) simulation
with cumulative-information model (γ = 1, as Fig. 1f), (c) simulation with recent-activity model
with short memory (as Fig. 1i), (d) simulation with recent-activity model with long memory (as
Fig. 1l). The solid curves show the popularities of the top-5 apps from t = 0; the dashed curves
show the popularities of the remainder of the top-10 apps from t = tmax.

parameter γ (see Fig. 3 of the main text). The dashed line indicates the threshold for the “good-
fit” regime of EL2 ≤ 3.11. The error tends to increase with increasing γ and is unacceptably high
for all values of T for γ > 0.2. It is interesting to note that the good-fit regime moves towards
larger T values as γ increases. This seems to be a characteristic feature of the model—it appears
also in Figs. S8 and S9—but we do not, as yet, have an explanation for it.

SI3.2: Turnover in the Top-10

The right column of Fig. 1 of the main text shows the popularity of those apps that are in the
top-5 list at t = 0. Figure S7 shows more detail for each of the four cases (data plus three models)
corresponding to Fig. 1c,f,i,l. In each panel of Fig. S7, the apps in the t = 0 top-5 are shown with
solid lines, while dashed lines show the popularity of those apps that make up the remainder of
the top-10 list at t = tmax. As in Fig. 1, the change in rankings (turnover) is given in the legend
of each panel, but here all apps in the top-10 are shown.
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Figure S8: As in Fig. 3 of the main text, but now we use a memory function W that is generated
from the uniform distribution (S3).

SI4: Response Functions Generating Memory Weighting

If one assumes that the total installation activity F (t) is constant in time, then the memory
function W (τ) introduced in Eq. (4) of the main text is proportional to the probability that an
agent copies the installation choice of an agent from τ hours in the past (see SI5 for details).
Consequently, we consider weighting functions that are related to previous empirical studies of
the distribution of response times for e-mails [2–4]. Consider an update message that informs
a Facebook user—which we model as a single computational agent—that a friend has installed
a certain app, which can then lead to the user subsequently installing the app. Let τ ′ denote
the time between receiving the update message and installing the app, and let P (τ ′) denote the
probability distribution function (PDF) of these “response times” across the user population. We
coarse-grain to the one-hour temporal resolution of the data by setting W (τ) =

∫ τ
τ−1 P (τ ′) dτ ′

(for τ ∈ {1, 2, . . .}), with an initial condition of W (0) = 0.
In the main text, we showed an example in which P (t) is an exponential distribution. We

now consider alternative assumptions on the underlying response-time distribution P (t) and show
results corresponding to Fig. 3 of the main text for the L2 error in the mean scaled age-shifted
growth rate. We find similar results for lognormal, gamma, and uniform distributions. In all of
these cases, we obtain good results with a history window parameter of H ≈ 168 hours (i.e., 1
week). Interestingly, whenH = 168, the results for all distributions are very similar to those shown
in Figs. 1j,k,l of the main text if the characteristic response-time ⟨τ⟩ =

∑168
τ=1 τ W (τ)/

∑168
τ=1W (τ)

is about 45 hours (i.e., approximately 2 days2).
In Fig. S8, we show results for the uniform distribution given by

P (t) =
{

1
T , if t ≤ T ,
0 , if t > T ,

(S3)

where T is the cutoff time. (The mean response time is T/2.) As with Fig. 3 in the main text,
we show results in the (H,T ) parameter plane to highlight the roles of both the history window
H and the memory cutoff T . The three panels illustrate the effects of using increasing amounts

2The value of ⟨τ⟩ is similar to the mean response time if most of the probability mass lies in the range τ < H.
The cutoff at τ = H reflects the fact that apps at early stages in their simulated growth possess a window of only
approximately H hours of previous-installation history to drive their temporal evolution.
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Figure S9: As in Fig. 3 of the main text, but now we use a (top row) lognormal distribution
and (bottom row) gamma distribution of response times. The left panel in each row shows the
contours of the cutoff mean response time ⟨τ⟩, which we defined in Eq. (S4).

of cumulative information (i.e., progressively larger values of γ) in the installation probability pi.
Moving from left to right, the weighting of cumulative information increases from 0 to 0.1 and
0.15. As this weight increases, observe that the “good-fit” region of parameters moves to higher
values of H and T . This supports our conclusion in the main text that the recent-activity case
γ = 0 is “optimal” in the sense of requiring only a relatively small history window size H to fit
the data. Similar conclusions were also reached in Ref. [5]. We have also confirmed that the other
main results for the exponential distribution (e.g., the ones depicted in Fig. 1 of the main text)
are closely reproduced using the uniform distribution (where we set T ≈ 100 so that the mean
response times are equal in the two cases).

In Fig. S9, we show results in which the response-time distribution P (t) is given by (top row)
lognormal and (bottom row) gamma distributions. These distributions both have two parameters,
so we fix the history window size H to be 168 hours (i.e., 1 week) and consider the effect of the
parameters that define the distributions. The lognormal distribution with parameters µ and σ is

P (t) =
1

t
√

2πσ2
exp

{
−(ln t− µ)2

2σ2

}
,

and the gamma distribution with parameters k and T is

P (t) =
1

Γ(k)T k
tk−1e−

t
T .

In the special case k = 1, the gamma distribution is an exponential distribution, while for k < 1
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it limits to a power-law distribution as T → ∞. The lognormal and gamma distributions were
used in Refs. [2–4] to model distributions of e-mail response times.

The center panel of each row of Fig. S9 gives results for γ = 0, and the right panel of each row
gives results for γ = 0.1. For γ = 0.15, the “good-fit” regions have almost disappeared from these
plots, so we do not show them. The left panel of each row shows the contours of the quantity

⟨τ⟩ =
∑168

τ=1 τ W (τ)∑168
τ=1W (τ)

, (S4)

which is related to the goodness-of-fit of the recent-activity (γ = 0) models. Observe that the light-
coloured regions of the center panels align closely with the contours showing ⟨τ⟩ values between
30 and 50 hours. Note that ⟨τ⟩ is not identical to the mean response time of the distribution P (t)
because of the cutoff at 168 hours in the sums of Eq. (S4). This cutoff reflects the fact that the
history window of 168 hours defines the τ range upon which the recent-activity model operates
for an app that was launched recently. It seems that a memory weighting that corresponds to
roughly 2 days (i.e., 48 hours) of recent activity is sufficient in all of these cases to fit the model to
the data. A 2-day window was also identified as significant in the temporal clustering of adoption
decisions among online friends in Ref. [6].

SI5: Recent-Activity Model as a Random-Copying-with-Memory
Process

In this section, we show that one can interpret the recent-activity model (γ = 0) described in the
main text as a random-copying process that is similar to those studied by Bentley et al. [7,8]. We
also describe these models in terms of branching processes and discuss the circumstances under
which one obtains critical branching processes. In this context, a critical branching process is one
in which each parent has, on average, one child over its lifetime [9].

We consider a random-copying model in which each individual (an agent in our simulation)
at time t copies the action (i.e., the choice of app to install) of an agent from a previous time
step. In the schematic of Fig. S10a, we denote the copying action with an arrow from the earlier
installation event to the later installation event (i.e., arrows point from the target of the copying
to the copier). This generates a tree structure in time in which each node represents a single
installation action and each arrow links a “parent” (target) node to some number of “child”
(copier) nodes. Each child node has exactly one parent—this represents the installation action
that was copied—but the number of children assigned to any given parent depends on the details
of the random-copying process. As noted in the main text, we do not have any information on
network topology, so we make the assumption that all agents can copy the action of any earlier
agent, unrestricted by network connectivity.

There are F (t) agents who install an app at time t, and they all act independently of each other.
Consider one such agent Y , who must choose an earlier installation to copy. Let Φ(X,Y ) denote
the probability that Y copies the past action of a selected node X (see Fig. S10a). Normalization
implies that

∑
X Φ(X,Y ) = 1, where the sum is over all possible target nodes X such that X

takes an action before Y . We assume that the selection probability depends only on the time τ of
the target node X and the time t of the action Y , so we write Φ(X,Y ) = Φ (X(τ), Y (t)) ≡ ϕ(τ, t).
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Figure S10: (a) Tree schematic for the model in Section SI5. Nodes indicate the installation of
an app at the time indicated on the horizontal axis. (b) Effective branching number z(t) for the
data from Eq. (S8).

This implies that all installations at time τ are equally likely to be copied by Y . Moreover, we
assume that the dependence on τ appears only through the time te := t − τ elapsed since the
target event, so ϕ(τ, t) ∝W (t− τ), where W is the memory function (see SI4). Because there are
F (τ) installing agents (i.e., nodes) at time τ , the correctly normalized copying probability must
obey

∑
τ<t ϕ(τ, t)F (τ) = 1. This yields

ϕ(τ, t) =
W (t− τ)∑t−1

τ ′=−∞W (t− τ ′)F (τ ′)
. (S5)

Note we are allowing a potentially infinite history, which might be appropriate for very heavy-
tailed memory-functions [10,11].

Using this random-copying model, we want to compute the probability that user Y installs
a given app i at time t. There are fi(τ) agents who install app i at each time τ with τ < t.
(Installer X in Fig. S10a is just one example of many.) Agent Y can copy each of these agents
with probability ϕ(τ, t). Summing over all earlier times implies that the total probability that Y
installs app i is

t−1∑
τ=−∞

ϕ(τ, t)fi(τ) . (S6)

Using the definition of ϕ(τ, t), Eq. (S6) can be rewritten as∑t−1
τ=−∞W (t− τ)fi(τ)∑t−1

τ ′=−∞W (t− τ ′)F (τ ′)
, (S7)

which is precisely pr
i in the main text, where we note that fi(τ) = 0 for τ < 0 in Eq. (4) from the

main text because data is available only from t = 0 onwards. The normalization constant L in
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Eq. (4) can be written as

L =

(∑
i

∑
τ ′

W (t− τ ′)fi(τ ′)

)−1

=

(∑
τ ′

W (t− τ ′)
∑

i

fi(τ ′)

)−1

=

(∑
τ ′

W (t− τ ′)F (τ ′)

)−1

by reordering the summations and using Eq. (1) from the main text.
Returning to the branching-process interpretation of Fig. S10a, we calculate the expected

number of children for each parent in the tree. Consider node X, which can be copied by any one
of the F (t) installing agents at time t. Each of these agents chooses to copy X with probability
ϕ(τ, t). Summing over t gives the expected number of children of node X (and indeed of any user
at time τ) over all future times:

z(τ) =
∞∑

t=τ+1

ϕ(τ, t)F (t) =
∞∑

t=τ+1

W (t− τ)F (t)∑t−1
τ ′=−∞W (t− τ ′)F (τ ′)

. (S8)

This effective branching number z(τ) depends on the time label τ of the parent node (i.e., the
time at which user X installed the app) because the interaction of the variable level of installation
activity F (t) with the memory function W (τ) implies that installations from some times are more
likely to be copied in the future than installations from other times.

If F (t) is constant, it follows that z(τ) = 1 for all τ . (In this case, letting s = t−τ and s′ = t−τ ′
gives z(t) =

∑∞
s=1W (s)/

∑∞
s′=1W (s′) = 1.) Because each individual installation then has, on

average, exactly one offspring, we obtain a critical branching process [9], for which one expects
to obtain power-law distributions of popularity (with exponents α ∈ [3/2, 2)) in the mean-field
limit [12–14]. Consequently, the competition among apps for the finite number of installer slots
leads to a critical branching process that is reminiscent of the self-organization mechanism in self-
organized-criticality models [12, 15, 16]. Bentley et al. [8] used numerical simulations to examine
this case of constant F (t), though they did not give a branching-process interpretation. Note
additionally that we concentrate on the accumulated popularity over time ni(t). In contrast,
rewiring models such as those in Refs. [17, 18] focus instead on the distribution of short-time
increments [similar to our fi(t)].

As we show in Fig. S2, the total installation activity F (t) exhibits substantial variation over
time due to daily human activity patterns and to the aggregate growth in popularity of Facebook
applications. In Fig. S10b, we show the effective branching number z(t) calculated from Eq. (S8)
using the F (t) function taken from the data and the long-memory weighting function (i.e., an
exponential response-time distribution with T = 50 hours) used in Figs. 1j,k,l of the main text.
Despite the growth and fluctuations in F (t) that are evident in Fig. S2, the values of z(t) remain
close to the critical value of 1 throughout the period of the study. This occurs because the memory
of the weighting functionW achieves a balance: it is sufficiently long so that it dampens the impact
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Figure S11: As in Fig. 1a,b of the main text, but now we use the ranking model described in
Section SI6.

of daily oscillations on z(t), but it is sufficiently short so that it also ameliorates the effect of the
slow growth in F (t) on z(t). The resulting branching process is therefore near-critical [13], with
an effective branching number between 0.9 and 1.2. This might help to explain the heavy-tailed
popularity distributions that have been observed not only in this data set [1] but also in many
other empirical data sets [19]. Recent models for the popularity of memes on Twitter have also
been shown to be poised near criticality [16,20].

SI6: Ranking Model

The ranking model introduced in Refs. [21, 22] suggests an alternative rule for how Facebook
users might choose an app to install if they base their decisions only on a global listing of all apps
according to their popularity. If an agent focuses only on the rank order of apps within the list
and ignores the popularities (i.e., the numbers of installations) of the apps, then it is plausible
that the probability of choosing app i at time t depends only on its ranking at time t− 1. In the
ranking model, this probability is

pr
i (t) =

r−δ
i∑
j r

−δ
j

, (S9)

where ri is the rank of app i at time t − 1 and the quantity δ is a tunable parameter. For
example, the second-ranked app (ri = 2) is 2δ times less likely to be chosen than the top-ranked
app (ri = 1). Such rich-get-richer dynamics is different to the linear preferential attachment
mechanism of Eq. (3) of the main text, although it can also lead to power-law distributions of
popularity [21,22].

In Fig. S11, we show the results of replacing the cumulative rule of Eq. (3) from the main
text with the ranking model rule (S9) while neglecting all recent information (i.e., putting γ = 1).
For δ = 2, the ranking model results are qualitatively similar to those of the linear preferential
attachment case of Figs. 1d,e,f of the main text. Both models underpredict installations of LES
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apps, so the r(a) curve is too low at large ages. For δ = 1, however, installations of (less-popular)
LES apps are overpredicted by the ranking model, so the r(a) curve in Fig. S11a is higher than the
data curve at large a. In all cases—even δ = 1.5, for which the fit to r(a) is reasonably good—the
distributions of app popularities differ dramatically from the data (see Fig. S11b). We conclude
that the ranking model, like the cumulative-information model that we considered in the main
text, cannot provide a good fit to the data on Facebook apps.

SI7: Cumulative-Rule Models Requiring Parameter-Fitting

In this section, we examine three extensions of the basic cumulative rule [see Eq. (3) of the main
text]. Unlike the parsimonious models that we studied in the main text, each of the extensions that
we now consider includes multiple parameters—one or more for each app—that need to be fitted
from the available data. In order to make a fair comparison with the results that we presented
in Fig. 1 of the main text, we use a history window of H = 168 hours to fit the parameters for
each app, and we then implement a stochastic simulation using the appropriate version of the
cumulative rule (with γ = 1 in all cases). In Fig. S13, we present our results for mean scaled
age-shifted growth rates, distributions of app popularity, and turnover plots. They should be
compared with Fig. 1 of the main text, as that figure shows the corresponding results for the
models that we described in the main text.

In each of the three models that we describe below, we define the probability pi(t) that app
i will be chosen by one of the F (t) agents who install an app at time t. To allow the models to
be fitted to the history-window data of each app, we need to make an important assumption. We
assume that the actual number fi(t) of installers of app i at time t is equal to its expected value:

Assumption 1: fi(t) = pi(t)F (t) . (S10)

This assumption is likely to be good when the mean number of installers pi(t)F (t) is large, but it
can be inaccurate for unpopular apps that have small numbers of installations at time t.

To test the effect of Assumption 1, we calculate the exact installation probabilities pi(t) =
fi(t)/F (t) from the full data set and then insert these probabilities into a stochastic simulation
(using a history window of H = 168). We show the results of this calculation in Fig. S12, from
which it is clear that Assumption 1 does not cause the simulation results to differ appreciably
from the data (see Fig. 1a,b,c). This test also provides an important check on our stochastic
simulations: when the probabilities pi(t) are set correctly, it is evident that the data can indeed
be accurately reproduced by our simulations.

We proceed to consider several models that are based on extensions of the cumulative rule.
Each model is motivated by an example from the extensive literature on modelling heavy-tailed
distributions [23–28]. In Sections SI7.1–SI7.3, we use H = 168 data points for each app to fit
the parameters of the model. This gives a fair comparison with the situations that we considered
in the main text. In Section SI7.4, we check whether we can obtain better results if we use all
available data for model fitting. We conclude that the parsimonious recent-activity model of the
main text gives superior performance to the alternatives that we consider in this section, as it can
produce accurate results based on a history window of only 168 data points.
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Figure S12: Results of using the exact installation probabilities pi(t) = fi(t)/F (t) in stochastic
simulators. The excellent match to data (compare these results to Figs. 1a,b,c of the main text)
implies that any violations of Assumption 1 do not cause appreciable errors in the simulation
results.

SI7.1: Cumulative Advantage with Heterogeneous Fitnesses

The first extension of the basic cumulative rule (see Eq. (3) of the main text) is based on the idea
that a cumulative model supplemented with fitnesses can allow new entrants a head start [25].
To implement this idea, we replace the original cumulative rule by a refined version:

pc
i (t) = λiK ni(t− 1) , (S11)

where λi is the fitness of app i (cf. Section SI8) and the constant K is determined by the usual
normalization:

∑
i p

c
i (t) = 1 [so K = 1/

∑
i λini(t − 1)]. As noted above, we use the history

window (with H = 168) of data for each app to infer the values of the λi parameters and then
run stochastic simulations based on the rule (S11).

To estimate the λi values for this model, we begin with the full data set (i.e., the exact values
of fi(t) and ni(t) for all i and all t). If the rule (S11) were exact, then Assumption 1 would imply
that

fi(t) = pc
i (t)F (t)

= λiK ni(t− 1)F (t)

=
λi ni(t− 1)∑
j λj nj(t− 1)

F (t) (S12)

for all times t and all apps i. We can thus write the unknown λi values in terms of known
quantities:

λi ni(t− 1)∑
j λj nj(t− 1)

=
fi(t)
F (t)

. (S13)

Recalling from Eq. (1) in the main text that F (t) =
∑

j fj(t), we obtain a solution of Eq. (S13)
by setting λi ni(t− 1) equal to fi(t)/F (t) for each app i. Solving for the fitnesses then yields

λi =
fi(t)

F (t)ni(t− 1)
. (S14)
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Figure S13: As in Fig. 1 of the main text (with H = 168), but now we show results for the
extensions to the cumulative-information model that we examine in Sections SI7.1–SI7.4. (a,b,c)
Results for the cumulative-information-with-fitness model of Section SI7.1. (d,e,f) Results for the
cumulative rule with fitness and novelty decay (see Section SI7.2). (g,h,i) Results for the model
with app-specific novelty decay (see Section SI7.3). Our parameter estimation for panels (a)–(i)
uses 168 data points for each app. (j,k,l) Results for the model with app-specific novelty decay,
but with parameters estimated using all available data (see Section SI7.4).
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Because the model is not exact, the right-hand side of Eq. (S14) is not constant. To estimate
the parameters in a manner consistent with the models that we study below, we sum both sides
of Eq. (S14) over the history window of app i to obtain the relation

λi(T − ti) =
T∑

t=ti+1

fi(t)
F (t)ni(t− 1)

for T ∈ {ti + 1, . . . , ti +H} . (S15)

We calculate the values of the right-hand side of this relation from the history-window data, and
then estimate the parameter λi using least-squares fitting on the H data points.

In Figs. S13a,b,c, we show the results of using the rule (S11) with the fitness values inferred
in the way that we just described. The turnover plot in Fig. S13c highlights the shortcoming of
this model: the app that was initially most popular (and that continues to grow linearly in time
in the real data, as illustrated in Fig. S12c and in Fig. 1c of the main text) has a sudden decrease
in installation rate as soon as it exits its history window. By comparing with the benchmark
case of Fig. S12c, we identify the reason for this loss of popularity: the inferred fitnesses of many
other apps give installation probabilities of pc

i (t) at time t = H + 1 that substantially exceed
their true probabilities from Eq. (S10). Because the total number of installing agents at each
time step is restricted to be exactly F (t), there is competition between the apps for the limited
resource of agent attention. (Such competition has been examined in several data sets of online
social networks [20, 29, 30].) Therefore, when many apps have installation probabilities that are
too high, some other apps must suffer the consequence of fewer installations. In this case, the
initially most-popular apps become victims of the intense competition. Apps that were initially
less popular but have high fitnesses rise to take the top ranking by t = tmax. It is clear that this
model—despite having 2705 fitted parameters—does not do as well in reproducing the temporal
behaviour of the data as the recent-activity model of the main text (see, e.g., Fig. 1l of the main
text).

SI7.2: Cumulative Rule with Fitness and Novelty Decay

Wu and Huberman [26] examined data from the news web site digg.com and proposed a model
that includes an age-dependent decay in the novelty value of stories. In our notation, their basic
idea is a further refined version of the cumulative rule of Eq. (S11):

pc
i (t) = λiK ni(t− 1) d(t− ti) , (S16)

where d = d(a) is a decaying function of its argument (recall a = t− ti is the age of app i at time
t, because ti is its launch time) that models the loss of attractiveness due to novelty decay over
time. As before, K is a normalization constant.

We begin by considering how to estimate the unknown parameters in Eq. (S16) using only the
data for each app within its history window (with H = 168). Following the same steps as those
leading from Eq. (S12) to Eq. (S14) yields the relation

λi d(t− ti) =
fi(t)

F (t)ni(t− 1)
(S17)

17



10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

14

a

ac
cu

m
ul

at
ed

 d
ec

ay
 fu

nc
tio

n

Figure S14: Accumulated novelty-decay function—i.e., the left-hand side of Eq. (S19)—as a
function of age a fitted by λΦ((log(a) − µ)/σ) with parameters λ ≈ 16.58, µ ≈ 4.47, and σ ≈
2.68.

for each app i and for all times t > ti. Because the novelty-decay function d(a) is assumed to
be the same for all apps (we will relax this assumption in Section SI7.3), it can be computed
explicitly, up to a scaling factor, by averaging Eq. (S17) over all apps i in the LES subset I (see
Eq. (2) of the main text). We thereby obtain

d(a) ∝

⟨
f̃i(a)

F (ti + a)ñi(a− 1)

⟩
I

for a ∈ {1, . . . , H} . (S18)

We find that one can fit the novelty-decay function by a lognormal function of age. Specifically,
Fig. S14 illustrates a successful fit to the accumulated decay function

a∑
s=1

d(s) ∝ Φ
(

log(a) − µ

σ

)
, (S19)

where Φ(x) = (2π)−1/2
∫ x
−∞ e−y2/2dy is the cumulative normal distribution and the parameters of

the lognormal decay function are µ ≈ 4.47 and σ ≈ 2.68. This form of novelty decay contrasts to
the stretched exponential function fitted to data from digg.com in [26], but a lognormal decay
function was successfully used in [27] to model the likelihood of a paper being cited at a time a
after its publication (see Section SI7.3).

Now that we have estimated the novelty-decay function using the LES apps, we determine
the fitness parameter λi for each LES app i by summing both sides of Eq. (S17) over the app’s
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history window and using Eq. (S19):

λi

T∑
t=ti+1

d(t− ti) =
T∑

t=ti+1

fi(t)
F (t)ni(t− 1)

for T ∈ {ti + 1, . . . , ti +H} ,

⇒ λi Φ
(

log(T − ti) − µ

σ

)
=

T∑
t=ti+1

fi(t)
F (t)ni(t− 1)

for T ∈ {ti + 1, . . . , ti +H} . (S20)

Because we know the right-hand side of Eq. (S20) from the data, we can use least-squares fitting
to the determine the best fit parameter λi for each app. Recall that for those apps that are not
launched in the study window, we set ti = 0; we examine the effects of this approximation in
Section SI7.4.

Now that we have used the history window for each app to estimate the parameters for this
model, we run stochastic simulations using rule (S16). We show our results in Figs. S13d,e,f. As
we also saw for the model of Section SI7.1, we observe that the competition between the apps
quickly causes the growth of the largest apps to deviate from their exact trajectories, leading to
a turnover plot (see Fig. S13f) that is very different to that in the data (see Fig. S12c).

SI7.3: App-Specific Novelty Decay

Wang, Song, and Barabási recently proposed a cumulative-advantage model for the the number of
citations that scientific papers garner over time [27]. In our notation, their model can be expressed
in a manner similar to the Wu and Huberman model (see Section SI7.2), but with app-specific
novelty-decay functions di = di(a) replacing the universal decay function d(a) of Eq. (S16):

pc
i (t) = λiK ni(t− 1) di(t− ti) . (S21)

Wang et al. used a lognormal function to describe the novelty decay observed in their data, and
our analysis of LES apps in Section SI7.2 supports a similar choice for our study. We therefore
assume that the di(a) are lognormal functions with app-specific parameters µi and σi. All of the
derivations of Section SI7.2 also hold for this model, with the consequence that we estimate the
values of λi, µi, and σi from the data by least-squares fitting of the relation [compare to Eq. (S20)]

λi Φ
(

log(T − ti) − µi

σi

)
=

T∑
t=ti+1

fi(t)
F (t)ni(t− 1)

for T ∈ {ti + 1, . . . , ti +H} . (S22)

As in Section SI7.2, we set ti = 0 for those apps that are not launched within the study window
(see Section SI7.4).

As an aside, we note that one can make the connection to the model in Ref. [27] explicit by
taking the continuous-time approximation

f̃i(a) ≈
d

da
ñi(a) , (S23)

setting F (t) to be constant, and replacing sums by integrals. Equation (S22) then becomes

λi Φ
(

log(a) − µi

σi

)
=
∫ a

0

1
ñi(a′)

d

da′
ñi(a′) da′ , (S24)
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and its solution

ñi(a) ∝ exp
[
λi Φ

(
log(a) − µi

σi

)]
(S25)

gives the popularity of app i at age a. Equation (S25) reproduces, up to an additive constant,
Eq. (3) of Ref. [27].

Returning to the least-squares fitting of Eq. (S22), we estimate the 3 × 2705 parameters for
this model, and then use our stochastic-simulation framework to make predictions. We show our
results in Figs. S13g,h,i. As we have seen for the other extensions of the cumulative-information
model, competition between apps (which is not considered in Refs. [26, 27]) amplifies any error
in the fitting functions of the model. We conclude that none of these adaptations of cumulative-
advantage models provide a generative mechanism that describes the Facebook apps data as well
as the recent-activity model that we described in the main text.

SI7.4: App-Specific Novelty Decay Using All Data

As we noted in Sections SI7.2 and SI7.3, there are 980 apps that were launched prior to the study
window and thus have unknown launch times. Throughout our work, we assume that ti = 0 for
these apps. It is possible that this assumption might adversely affect the fitting of the models
that rely on age-dependent novelty decay, as the ages of some apps will be misrepresented. To
check the impact of this assumption, we therefore recalibrate the model of Wang et al. [27] that
we described in Section SI7.3 by using all available data for every app to estimate parameters
rather than just the 168 hours used in Section SI7.3 as a priori information. To do this, we replace
the set of T values in Eq. (S22) by T ∈ {ti +1, . . . , tmax}. The extra data is helpful for the model,
as it enables it to perform much better in stochastic simulations—see Figs. S13j,k,l—although it
is still not quite as accurate as the recent-activity model of Figs. 1j,k,l of the main text. The
improvement in accuracy from using extra data implies that the inaccurate launch times do not
prevent this model from fitting reasonably well to the data. However, the quantity of data required
to estimate the parameters is much larger than the history window of 168 hours that suffices to
produce good results for the recent-activity model of Figs. 1j,k,l. The model of Wang et al. also
has many more fitting parameters than the model that we presented in the main text.

SI8: Recent-Activity Model With Heterogeneous Fitnesses

We now consider replacing the recent-activity rule [see Eq. (4) of the main text] with an alternative
that includes a fitness parameter λi for app i. The refined recent-activity rule is

pr
i (t) = λiL

t−1∑
τ=0

W (t− τ)fi(τ) , (S26)

which is normalized so that
∑
pr

i (t) = 1. All else being equal, apps with higher fitnesses are more
likely to be selected for installation than apps with lower fitnesses. Thus far for the recent-activity
model, we have focused on the so-called neutral-model [19, 31] scenario, in which all fitnesses are
equal (with λi = 1 for all i). Noting from Fig. 1k of the main text that some of the largest LES app
popularities are underpredicted by the otherwise successful recent-activity, long-memory model
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Figure S15: (a) Growth trajectory for “Pirates vs. Ninjas” from data (black) and from models
(red and blue). (b) Popularity distributions as in Figs. 1e,h,k but for H = 336 hours (i.e., 2
weeks).

with homogeneous fitnesses (e.g., for n ∈ [105, 106]), it is natural to ask whether heterogeneous
fitnesses might lead to a better fit to the data.

In Fig. S15, we show the growth of “Pirates vs. Ninjas”, the 7th most popular (at age t = tLES)
LES app (see panel 7 of Fig. S3). This is one of the apps in which the recent-activity, long-memory
model of the main text with a 1-week history window gives an inaccurate prediction (solid red
curve). This leads to notable differences between the popularity distributions of LES apps in
Fig. 1h of the main text near n = 106. We thus consider changing the fitness of this particular
app to a value λP > 1, while maintaining λi = 1 for all other apps. In Fig. S15a, we show
the results of typical simulations using the dashed red curves. Although it is clearly possible to
increase the popularity of this app by changing its fitness, we note that the λP > 1 trajectories
exhibit increasing curvature, and the growth is super-linear in time rather than linear in time. For
comparison, we also show results of an equal-fitness simulation in which we use a larger history
window of 2 weeks (i.e., H = 336 hours) for all apps. In this case, the model’s linear growth is
much closer to the data, because the history window now includes the transition from novelty to
post-novelty regimes (see Table S1 and the heuristic fit of Fig. S3) at about 236 hours (i.e., about
1.4 weeks). The plots in Fig. S15b confirm that using this longer history window leads to a much
closer match between model and data.

We conclude that there does not appear to be strong evidence for heterogeneous fitnesses [as
defined in our model through Eq. (S26)] among the apps, at least in the post-novelty regime.
This conclusion is consistent with the findings of Bentley et al. regarding the applicability of the
neutral model to other instances of choice among multiple alternatives [7] as well as with the
experimental results of Salganik et al. [32], who showed that attractiveness of downloaded music
is influenced more heavily by the actions of other downloaders than by the inherent quality of the
music itself.
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Figure S16: Fluctuation-scaling plots for (a) data and (b) the recent-activity, long-memory model
described in the main text. The straight lines correspond to scaling exponents of β = 1/2 (lower
line) and β = 1 (upper line).

SI9: Fluctuation-Scaling Relations

In Fig. S16a, we show a fluctuation-scaling (FS) plot of the Facebook apps data. As in Ref. [1],
we calculate for each app i the mean µi and standard deviation σi of the increments fi(t) over
times t from launch time ti (recall we set ti = 0 if the launch time is unknown) to the end of
the data (i.e., t = tmax). We then plot µi versus σi for all i to generate Fig. S16a. Reference [1]
highlighted the existence of two FS regimes: the relation σi ∼ µβ

i with β ≈ 1/2 is evident for
small-µi apps, whereas a larger β value (β ≈ 0.85) occurs for large-µi apps. In Fig. S16b, we show
the corresponding FS plot for the simulated results from the recent-activity, long-memory model
of Figs. 1j,k,l in the main text. Clearly, the plot is qualitatively similar to that of the data. In
particular, it has scaling regimes with FS exponents of β ≈ 1/2 for low-µi (i.e., low popularity)
apps and β ≈ 1 for high-µi (i.e., high popularity) apps. We now use our model to further analyze
these two regimes. (The possible nature of the transition between these regimes is discussed in
Ref. [1].)

As we discuss below, our model reveals that the β ≈ 1 scaling of the large-µi apps is related
intimately to the large diurnal oscillations in Facebook user activity. Recall that we represent such
oscillations at the population level using the function F (t). In simulations using non-oscillatory
versions of F (t), we find that the β = 1/2 regime extends to much larger values of µi, which
suggests that the β ≈ 1 regime in Fig. S16 appears because very popular apps exhibit coherent
diurnal oscillations in their levels of installation activity. By contrast, small-µi apps receive a
mean of fewer than 2 installations per hour, and their fi(t) time series appear similar to shot
noise, for which one expects an FS exponent of β = 1/2.

In the top row of Fig. S17, we show FS plots for the data and the model with a slightly different
way of calculating µi and σi from the one that discussed above. (Recall that we calculated µi as
the temporal mean of the increments fi(t) from t = ti to the final time t = tmax; we calculated the
standard deviation σi similarly.) In Fig. S17, however, we instead begin the temporal averaging
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Figure S17: (Top row) Fluctuation-scaling plots using only values of a such that a > 168. The red
crosses in the top row and the fi(t) time series in the bottom row correspond to the app “What’s
your stripper name?”.

at t = ti + 168. (If ti + 168 > tmax, then we drop this point from the plot.) This implies that we
calculate the means and standard deviations only over ages from 1 week onwards, so we neglect
the novelty regimes for most apps. Comparing Fig. S17a with Fig. S16a, we see that this change
in definition of µi and σi does not strongly affect the FS plot of the data. However, as one can
see by comparing Fig. S17b to Fig. S16b, the model results clearly are impacted by ignoring the
novelty regime in calculating µi and σi. This arises from the relatively small fluctuations in the
model for very popular apps. For example, the panels in the bottom row of Fig. S17 show the
fi(t) time series for the app “What’s your stripper name?” (see panel 3 of Fig. S3). In the data
(Fig. S17d), the fi(t) time series decays slowly with the age of the app. However, the model does
not reproduce this decay (see Fig. S17e), as it instead has a mostly unchanging envelope of fi(t)
values in the post-novelty regime, and the fluctuations are due mainly to the aggregate activity
level F (t) that is input into the model. These fluctuations clearly give the main contribution to
the standard deviation σi in our revised calculation. Indeed, the diurnal variations are inherited
directly from the F (t) function, and these fluctuations have the same order of magnitude as the
mean. See, in particular, the function ψ(t) in Fig. S2. This implies that σi ∼ µi in this case, and
it thereby yields an FS scaling exponent of β = 1.

We generate the third panel in each row of Fig. S17 using a further modification of our model:
we replace the total activity function F (t) that we input into the model with the linear growth
function A(t) from Fig. S2. This revised model has a total installation activity that grows linearly
in time, but it does not experience the system-wide diurnal variations of the data. We still copy the
H = 168 hour history window for newly-launched apps directly from the data (see the black curve
in Fig. S17f). This introduces some residual 24-hour variation, but it is much less prominent than
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in the model before modififcation. The resulting post-novelty standard deviations σi for popular
apps are much smaller than in the other cases considered. Moreover, the scaling σi ∼ µ

1/2
i holds

for a much larger range of µi values. (Compare Fig. S17c to Fig. S17b.) We conclude that the
high-µi scaling of β ≈ 1 is connected intimately with diurnal variations in the activity levels of
Facebook users.
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